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somatic diploids. Fruiting bodies can form in somatic
diploid strains of A. nidulans. However, most of the ascos-
pores they contain are sterile, and some asci contain six-
teen rather than the standard eight ascospores. This has
been interpreted as a tetraploid meiosis in which two
diploid nuclei had fused and then undergone meiosis [1],
but cytological observations failed to detect nuclear fusions
and are incompatible with this neat model [18]. Thus,
somatic diploids can ‘switch’ in the right developmental
environment to germinal diploids, which will engage
instantly in meiosis. Why this meiosis should be aberrant
at all and sometimes lead to 16 ascospores asci remains a
mystery.

These old problems can now be examined through new
eyes. I propose that A. nidulans is epigenetically hetero-
thallic. In this model, within specialized structures and
preceding karyogamy, alternative mating type loci would
be activated in the pairs of nuclei destined to fuse,
leading to diploids that are epigenetically heterozygous
at each of the mating loci. The proportion of selfed and
crossed cleistothecia would depend on the ability of the
different pairs of nuclei to switch to opposite mating
types, which in turn might depend on the genetic mar-
kers segregating and/or subtle and uncontrolled envir-
onmental cues. In somatic diploids both mating types
would be in the same state (possibly off). When somatic
diploid nuclei find themselves in fruiting bodies, differ-
ent combinations of mating gene switching would be
possible. Only the switching patterns that mimic exactly
that of germinal diploids would allow the completion of
meiosis (Figure 2b), the others leading to aberrant
meioses. The availability of the genome sequences, rapid
gene replacement techniques and the fluorescent
tagging of proteins involved in karyogamy and meiosis
should enable the verification or falsification of this
hypothesis.
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Shall I compare thee to a GM potato?
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A fundamental issue in the safety assessment of
genetically modified crops is the question of whether
unintentional changes have occurred in the crop plant
as a consequence of the genetic modification. This
question was addressed recently by using a powerful
metabolite fingerprinting and metabolite profiling
method to assess whether genetically modified pota-
toes are substantially similar to their corresponding
conventional cultivars.
Introduction
One of the stages in the safety assessment of genetically
modified (GM) crop plants is the compositional comparison
of the GM line with its corresponding traditionally bred
cultivar. This is to identify any unintended changes result-
ing from the genetic modification (such as insertion of the
transgene into another gene, or the production of new
metabolites), a process formalized as the Principle of Sub-
stantial Equivalence [1,2]. Any changes detected in the GM
line are assessed in the context of the range of values for a
given variable found within different conventionally bred
cultivars. In the case of metabolites, if a GM line has an
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Box 1. Metabolomics data analysis methods

Univariate and multivariate statistics

Every sample analyzed by metabolomics is characterized by the same

variables. The variables are data points taken directly from the

instrumental output (e.g. FIE-MS) or intensities related to concentra-

tions of individual compounds (e.g. GC/MS). Univariate statistical

tests are carried out on one variable at a time. There are advantages to

using multivariate methods in which all variables are considered

simultaneously.

Principal component analysis

PCA generates a rotated set of axes using linear combinations of the

original axes (variables), which reduces the number of variables

needed to describe the variance in the dataset. The scores are the

co-ordinates of the samples in the new axis system. When groups of

samples have systematic differences, the scores plots on one or

more principal components show spatial clustering. The PC

loadings show the contribution of the original variables to each

PC. Loadings plots identify the data points or compounds that are

responsible for the differences between groups.

Supervised and unsupervised classification methods

In a supervised method [15] the experimental data and sample group

are input together. The group information affects the outcome. In an

unsupervised method (e.g. PCA) the experimental data alone is

analyzed [15]. The sample group is not provided. Discriminant factor

analysis, linear discriminant analysis and decision tree analysis are

supervised ‘machine learning’ methods. They take the sample vectors

from known classes to build a model or system of rules that provides

optimal separation of classes. Interpretable models identify variables

(compounds) responsible for the discrimination and unknown

samples can be submitted to the model for classification.

The model must be validated by classifying a test set (samples not

used to build the model). The results of the test set predictions are

summarized in a confusion matrix (Table I). In this example a model is

tested with 30 samples, 10 in each class. All class A samples are

correctly predicted; two class B samples are incorrectly assigned to A;

two class C samples are incorrectly assigned, one to each of A and B.

Table I. Example of a confusion matrix

Predicted class

True class A B C

A 10 0 0

B 2 8 0

C 1 1 8

Box 2. The transgene enzymes and their metabolic

products

The sucrose:sucrose 1-fructosyltransferase (1-SST) gene encodes an

enzyme that transfers a fructosyl residue from one sucrose molecule

to another to form the trisaccharide 1-kestose (S series). A second

transgene encodes 1-fructan:fructan 1-fructosyltransferase (1-FFT),

an enzyme that forms inulin polymers from 1-kestose and other

oligofructans. Transgenic potato plants with both transgenes form

the SF series. Fructans are oligomers and polymers of fructose and

are soluble in water: inulins are linear fructans. In the transgenic

potato lines expression of 1-SST leads to production of oligofruc-

tans (DP3 and DP4 resulting from addition of fructose to sucrose,

where DP is the degree of polymerization) in potato tubers and

expression of both genes produces oligofructans and inulin

polymers of high DP.
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unexpected change in the concentration of a particular
metabolite but that change is within the natural range
of concentrations found amongst natural cultivars, then
the change would be regarded as ‘safe’.

Transcriptomic, proteomic and metabolomic analyses
have begun to be used recently to assess unintended effects
in GM crops [3] and, of these approaches, metabolomics
is currently themost useful owing to its independence from
the requirement for pre-existing genome or expressed
sequence tag data. The metabolome is defined as the
quantitative content of all low molecular weight metabo-
lites in a cell in a specific physiological state [4]. Although
there is some semantic uncertainty about the term meta-
bolomics as an analytical approach or as an area of inte-
grative biology concerning metabolites [5], it is generally
taken that metabolomics means measuring as many
detectable metabolites as possible. Metabolomics is begin-
ning to have a role in functional genomics [6] and
in optimising metabolic engineering in plants [7]. The
potential of metabolomics for comparing GM plants with
conventional cultivars and detecting qualitative and
www.sciencedirect.com
quantitative changes was shown recently in an important
paper by Catchpole and colleagues [8]. This is the first
report of a large scale metabolomic analysis of field grown
GM potato plants, and it highlights the importance of
analytical technology and appropriate data analysis for
the safety assessment of GM crops.

Hierarchical metabolomic analysis of GM potato lines
To assess metabolite compositional changes in GM potato
lines, Catchpole et al. [8] used a two stage non-targeted
analytical approach that they termed ‘hierarchical meta-
bolomics’. The first stage was a rapid metabolome finger-
printing using flow injection electrospray ionization mass
spectrometry (FIE-MS), in which samples were analyzed
directly by MS without prior chromatographic separation
of metabolites. This fingerprinting method was used to
guide a more detailed second-stage profiling by gas chro-
matography time-of-flight MS (GC-ToF-MS). Data were
analyzed by multivariate statistics: the unsupervised
method of principal components analysis (PCA) followed
by the supervised classification methods of either linear
discriminant analysis or decision tree analysis (Box 1).

Catchpole et al. [8] chose to analyze two series of
transgenic potato lines [9] expressing genes from
globe artichoke (Box 2), either the sucrose:sucrose
1-fructosyltransferase (1-SST) gene alone (S series), or
the 1-SST and 1-fructan:fructan 1-fructosyltransferase
(1-FFT) genes together (SF series). Catchpole et al. [8]
compared the tuber composition across 12 genotypes:
three independent transgenic lines from each of the S
and SF series, two lines from the parent cultivar, Désirée,
plus four other conventional cultivars, included to provide
a wider background of natural variation than given by
Désirée alone. The Désirée controls were a wild-type line
produced through tuber propagation (De1) and another
non-transgenic line produced by tissue culture (De2).
Plants were field grown over two years.

First-stage data analysis: FIE-MS
FIE-MS metabolite fingerprinting data were analyzed by
PCA (Box 1). The first principal component (PC) axis of the
scores plot showed a separation into three main groups
corresponding to the two series of transgenic lines and the
conventional cultivars including Désirée. The first PC
loading indicated that fructans (DP3–DP7; see Box 2)
were responsible for the separation. As the substantial
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equivalence test is meant to look at compounds other than
the primary products of the modification, the columns
corresponding to these compounds were removed from
the data table and the PCA was repeated. It still showed
a separation between transgenic and non-transgenic lines
(including the Désirée controls), although it was less pro-
nounced and only appeared on the second PC axis. Does
this mean that the Désirée-based transgenic and control
lines are not substantially equivalent? The loadings for the
second PC were not shown [8], so we can only speculate on
the reason for the separation. One possibility is that not all
the ‘primary products’ have been removed from the data
table.

Confusion matrices (Box 1) were used to ask whether
different groups of samples were substantially equivalent
or not. When fructans were omitted from the decision tree
analysis (see Ref. [8]), there was confusion between the S
series transgenic lines and the Désirée controls, suggesting
equivalence, whereas the conventional cultivars were
clearly separated from each other and the transgenic lines.
However, the SF series transgenic lines were fully distin-
guished from the Désirée background controls. This sug-
gests that the SF series transgenic lines are not equivalent
to the Désirée control lines, De1 and De2. Also, based on
the full FIE-MS dataset, linear discriminant analysis cor-
rectly separated De2 from De1 in 16 out of 16 cases,
suggesting that the tuber-propagated Désirée line is not
equivalent to the tissue culture generated Désirée line (see
Ref. [8]). This has ramifications for the equivalence of the
transgenic lines, as they were produced by tissue culture
procedures [9].

Second-stage data analysis: GC-ToF-MS
GC-ToF-MS data were acquired for >2000 tubers (�180
per genotype). Altogether 252 metabolites were measured,
including known and unknown compounds. Data analysis
followed the same procedure as above but, in addition to
multivariate analyses, a systematic univariate statistical
analysis was carried out for every compound that could be
measured. The large number of tubers analyzed per geno-
type enabled a population distribution to be plotted for
metabolite levels. A separate distribution was plotted,
showing the mean and spread in metabolite levels for each
genotype for all 252 metabolites measured. From the
combined data for the control genotypes (all regarded as
‘safe’), a lower and upper limit can be set for each meta-
bolite. The distributions calculated for the GM lines were
then examined for breaches of these limits. In Catchpole
et al. [8] the DP2 and DP3 fructans were the only com-
pounds found to exceed the limits (mean values exceeded
the upper limit for six peaks in several of the GM lines).
Apart from these intentionally introduced differences, the
GM lines could be judged substantially equivalent to con-
ventional cultivars on the basis of almost 250 metabolites
analyzed.

The results of the multivariate analysis on the GC data
confirmed that the separation between transgenics and
Désirée controls was much diminished with removal of the
six fructan peaks, whereas the other cultivars remained
distinct. The confusion matrices bear this out, although
from the pattern of the misclassifications the two series of
www.sciencedirect.com
transgenics seem closer to each other than they are to the
Désirée control lines (see Ref. [8]). This perceptible lack of
equivalence could be due to tissue culture effects or higher
glucose levels in some of the transgenic lines, as reported
previously [9], and glucose is known to regulate a broad
range of genes [10].

From science to policy
What are the practical limitations on wider scale adoption
of this method of substantial equivalence testing? First, it
should be recognized that a huge number of chromato-
grams had to be run. The whole procedure, from sample
preparation through measurement and data evaluation, is
a complex one calling for standard operating procedures
and quality control checks at each step. It has to be
demonstrated that different laboratories can produce
reproducible results. The ‘metabolite levels’ used here to
generate the population distributions were relative levels,
not absolute concentrations, so inter-laboratory compari-
sons would be difficult. There is no doubt, however, that
further development and validation of the technology,
already being seen in FIE-MS [11,12] and LC/MS profiling
[13], will continue apace. More subtle metabolome changes
can be addressed by GC-ToF-MS to detect metabolic
network connectivity [14], which could help explain the
physiological basis for lack of substantial equivalence
where it exists. It remains to be defined clearly how sub-
stantial ‘substantial equivalence’ should be, but the work
of Catchpole and colleagues [8] demonstrates that even
subtle changes between plants can be revealed by
metabolomics.
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Genome Analysis
In plants, highly expressed genes are the least compact
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In both the monocot rice and the dicot Arabidopsis,
highly expressed genes have more and longer introns
and a larger primary transcript than genes expressed at
a low level: higher expressed genes tend to be less
compact than lower expressed genes. In animal
genomes, it is the other way round. Although the
length differences in plant genes are much smaller than
in animals, these findings indicate that plant genes
are in this respect different from animal genes.
Explanations for the relationship between gene
configuration and gene expression in animals might
be (or might have been) less important in plants.
We speculate that selection, if any, on genome
onfiguration has taken a different turn after the
divergence of plants and animals.
Introduction
A major issue in relating genome structure to gene
expression is the relationship between the relative activity
of genes and their position and/or structure. In organisms
as diverse as human [1–4] and Caenorhabditis elegans [1],
highly expressed genes have fewer and shorter introns,
shorter coding sequences and shorter intergenic regions
[1–5]. This compact nature of highly expressed genes is
explained by a selection for either transcriptional efficiency
to reduce time and energy [1], a regionalmutation bias that
positions highly expressed genes in domains more prone to
deletions [3] or by a genomic design into open chromatin
[4]. We here present a whole genome analysis of the
relationship between gene structure and gene expression
for two widely diverged plant species, the monocotyledo-
nous plant rice (Oryza sativa) and the dicotyledonous plant
Arabidopsis thaliana, with data from two different expres-
sion platforms, massively parallel sequencing signature
(MPSS) and microarrays. In both plant genomes, highly
expressed genes havemore and longer introns and a longer
primary transcript. In short, they are less compact than
the genes expressed at a low level. This contrasts with the
relationship between gene expression and gene structure
in human andC. elegans, although the absolute differences
between plant genes are considerably smaller than for
human genes. These findings could suggest that the out-
come of selection has been different between animals and
plants.

Analysis of plant gene expression in relationship to
gene structure
The public domain MPSS expression data for Arabidopsis
[6] (http://mpss.udel.edu/at/) and rice [7] (http://mpss.udel.
edu/rice/) offer good genome-wide expression coverage in a
range of different expression libraries and allow easy
quantification. To correlate expression data with gene
structure, we obtained Arabidopsis and rice genome
sequences and annotations from The Institute of Genomic
Research (TIGR). All genes annotated as either (retro)-
transposons or pseudogenes were excluded from the ana-
lysis and, in cases of alternative splicing, the longest
variant was used in the analyses. We mapped the MPSS
expression data to their position in the Arabidopsis
(TIGR5) and rice (TIGR version 3) genome and all 17 base
MPSS tags with a unique position were taken into account.
Genes without expression data were not included in the
analysis.

To compare the levels of expression of genes in different
expression libraries, we sorted the expression values in
each library in an ascending order, then divided them into
five groups, each containing 20% of the population, and
assigned an expression rank from 1 (low expression) to 5
(high expression). Where the cutoff caused equal expres-
sion values to be in different rank groups (happening
notably with zero expression), the expression values were
placed in the lower rank group. For each gene, we averaged
the expression ranks over all libraries. This averaged
expression rank (rE) indicates the relative expression level
of each gene under all conditions analyzed. Alternative
methods of expression analysis (see the supplementary
material online) give similar results as found for rE. As
the rE can be influenced in part by the number of libraries
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