DIPARTIMENTO DI SCIENZE BIOCHIMICHE A. Rossi Fanelli



Dottorato di Ricerca in Biochimica Scuola di Biologia e Medicina Molecolare



# FUNDAMENTALS OF ENZYME KINETICS

**CFU:** 2 (14 hours of theoretical and practical lectures)

**Teachers:** Prof. Francesco Malatesta, Prof. Serena Rinaldo, Prof. Roberto Contestabile (from the Department of Biochemical Sciences "Alessandro Rossi Fanelli")

**Location:** Due to the Covid-19 pandemic, we cannot presently guarantee that lessons will take place in a classroom. If this will be possible, it will be our first choice; if not the course will take place remotely and we will readily communicate with you in early September.

## **Calendar:**

Thursday September 10, 9-11 am (F. Malatesta) Friday September 11, 9-11 am (F. Malatesta) Monday September 14, 9-11 pm (F. Malatesta) Friday September 18, 9-11 am & 14-16 pm (S. Rinaldo) Friday September 25, 9-11 am & 14-16 pm (R. Contestabile)

## **Application guidelines:**

The course is addressed to 1<sup>st</sup> & 2<sup>nd</sup> year Students of the BeMM PhD School and is open to anybody who is interested.

Applications should be sent by email to *francesco.malatesta@uniroma1.it*, not later than September 1<sup>st</sup> 2020. Please, indicate "Enzyme Kinetics Course" as the email object, and your Surname and Name, as well as the title of your Ph.D. course, in the text body.

## Aim of the Course:

The goal of this short Course is to introduce cell biology, biotechnology, molecular biology, chemistry and biochemistry Students to the kinetics of enzyme-catalyzed reactions, and to cover in detail the assumptions, derivation, and meaning of the Michaelis–Menten equation within a biological context. Special emphasis will also be given on the practical aspects of enzymology and its biological relevance as detailed by specific examples.

## **Detailed program:**

Basic principles of chemical kinetics \* Introduction to enzyme kinetics \* Practical aspects of enzyme kinetics \* Derivation of steady-state rate equations \* Reversible inhibition \* Multisubstrate enzymes \* Frontiers in steady-state enzyme kinetics \* From theory to practice: the cases of phosphodiesterases and cyclases controlling biofilm formation \* Enzyme inhibition and activation \* Types of inhibition \* Complex inhibition systems \* Examples from the literature.