Due eventi in S: \((x_1, t_1)\) e \((x_2, t_2)\)
Perché i due eventi possano essere in relazione causale tra loro occorre che la distanza che li divide (la separazione spaziale \(\Delta x = x_2 - x_1\)) sia minore della distanza che può essere percorsa dal segnale più veloce \((c)\) nell’intervallo temporale che intercorre tra di essi \((\Delta t = t_2 - t_1)\)

\[\Delta x \leq c \Delta t\] o meglio, dato che interessano i valori assoluti

\[(\Delta x)^2 \leq c^2 (\Delta t)^2\]

Se è \((\Delta x)^2 - c^2 (\Delta t)^2 \leq 0\), tra i due eventi può esserci un nesso di causalità (se vale il segno di uguaglianza, possono sentirsi solo grazie allo scambio di un segnale luminoso); se è invece \((\Delta x)^2 - c^2 (\Delta t)^2 > 0\), i due eventi non possono dipendere l’uno dall’altro (non può esserci connessione causale tra di loro)
Ci piacerebbe che l’esistenza di una relazione causale tra due eventi fosse un fatto intrinseco, non dipendente dal particolare sistema di riferimento da cui gli eventi vengono osservati.

\[(\Delta x')^2 - c^2 (\Delta t')^2 = \gamma^2 (\Delta x - u \Delta t)^2 - c^2 \gamma^2 (\Delta t - u/c^2 \Delta x)^2 = \]

\[\gamma^2 [(\Delta x)^2 + u^2(\Delta t)^2 - 2u\Delta x\Delta t - c^2(\Delta t)^2 - u^2/c^2 (\Delta x)^2 + 2u\Delta x\Delta t] = \]

\[\gamma^2 [(\Delta x)^2 (1 - u^2/c^2) - c^2(\Delta t)^2 (1 - u^2/c^2)] = (\Delta x)^2 - c^2 (\Delta t)^2 \]

La quantità \((\Delta x)^2 - c^2 (\Delta t)^2\) è un invariante relativistico (intervallo spazio-temporale). La possibilità di un nesso causale tra due eventi non dipende dal particolare sistema di riferimento, e il principio di causalità è salvo.
Dinamica relativistica (ma prima, rivediamo quella classica, in un modo non convenzionale)
Perché la velocità di un corpo cambi occorre che esso senta l’effetto di una forza (dovuta alla presenza di un altro corpo)
Per studiare come l’interazione modifica lo stato di moto di un corpo, costruiamo nel nostro spazio unidimensionale la più semplice interazione possibile: due corpi identici che si vengono incontro con velocità v_1 e v_2 in un certo sistema di riferimento S e collidono

![Diagram](image.png)

La collisione (l’interazione) produrrà una variazione delle velocità dei corpi. Senza sapere altro sulle caratteristiche dell’urto, si può prevedere qualcosa sulle nuove velocità w_1 e w_2 dopo la collisione?
Osserviamo lo stesso fenomeno da un sistema di riferimento S’ in cui le velocità dei due corpi sono uguali in modulo: basta prendere nelle TG la velocità di S’ rispetto ad S $u = (v_1 + v_2)/2$.

$v_1' = \frac{v_1 + v_2}{2}$

$v_2’ = - v_1’$

Per ragioni di simmetria (i due corpi sono identici e "non c’è differenza tra destra e sinistra") di qualunque tipo sia l’urto anche le velocità w_{1}' e w_{2}' dovranno essere uguali ed opposte.

● (urto completamente anelastico, $w_{1}' = - w_{2}' = 0$)

$w_{1}' = - w_{1}'$

$w_{2}' = - w_{1}'$
Dunque nel sistema S', per qualunque valore delle velocità prima e dopo l’urto, deve valere la relazione

$$v_1' + v_2' = w_1' + w_2'$$

Ma è immediato vedere che questa relazione deve valere in tutti i sistemi di riferimento, dato che $v' = v - u$. Vediamo quindi che, sfruttando solo le proprietà di simmetria dello spazio e le TG, possiamo scrivere una legge di conservazione valida in ogni sistema di riferimento e per ogni tipo di urto

$$v_1 + v_2 = w_1 + w_2$$

La somma delle velocità prima dell’urto è uguale alla somma delle velocità dopo l’urto (per due corpi identici) n.b. è una somma vettoriale: le velocità hanno un segno…
E se i due corpi non sono identici?
Si “pesa” la velocità con un coefficiente intrinseco del corpo (la massa m), introducendo la grandezza “quantità di moto” espressa dal prodotto della massa per la velocità \(p = m \cdot v \)

Si studia l’urto nel sistema di riferimento \(S' \) in cui sono uguali ed opposte le quantità di moto dei due corpi (si chiama il sistema del centro di massa, in cui la quantità di moto totale è uguale a zero), e si ottiene la legge di conservazione

\[
m_1 v_1' + m_2 v_2' = m_1 w_1' + m_2 w_2'
\]

E si verifica facilmente, usando le TG, che questa proprietà è soddisfatta in qualunque sistema di riferimento. La validità della legge di conservazione della quantità di moto è dunque strettamente legata alle proprietà dello spazio espresse nelle trasformazioni galileiane.
Tra tutti i possibili urti tra corpi identici, visti nel sistema del centro di massa, uno mostra una simmetria particolare; quello in cui dopo l’urto le velocità non solo sono uguali ed opposte tra loro, ma anche uguali in modulo a quelle prima dell’urto

\[v_1' = -v_1' \]
\[v_2' = -v_1' \]
\[w_1' = -v_1' \]
\[w_2' = -w_1' = v_1' \]

Se si invertono le velocità finali (il che equivale a “mandare il tempo all’indietro”) si osserva esattamente lo stesso urto. La uguaglianza dei moduli delle velocità prima e dopo l’urto si esprime con una nuova legge di conservazione

\[v_1'^2 + v_2'^2 = w_1'^2 + w_2'^2 \]
Se i corpi hanno masse diverse, la grandezza conservata si ottiene combinando la massa con il quadrato della velocità. La legge di conservazione, definita in S', è soddisfatta in ogni altro sistema di riferimento S. Infatti, se

$$m_1 v_1'^2 + m_2 v_2'^2 = m_1 w_1'^2 + m_2 w_2'^2$$

usando le TG per passare ad S si ottiene

$$m_1 (v_1-u)^2 + m_2 (v_2-u)^2 = m_1 (w_1-u)^2 + m_2 (w_2-u)^2$$

e, svolgendo i quadrati, tenendo conto della conservazione della quantità di moto e semplificando, si resta con

$$m_1 v_1^2 + m_2 v_2^2 = m_1 w_1^2 + m_2 w_2^2$$

La grandezza così costruita è l’energia cinetica (a meno di un fattore $1/2$ dovuto ad una ragione di calcolo che in questa sede non è importante spiegare). Mentre per la quantità di moto la legge di conservazione risulta legata alla simmetria dello spazio, per l’energia essa è associata alla proprietà di invarianza per inversione temporale.