Esercizio 1. Sia X_1, \ldots, X_n un campione casuale proveniente da una popolazione con funzione di densità

$$f_X(x;\theta) = (\theta+1)x^{\theta}$$
 $x \in (0,1), \quad \theta > 0.$

- 1. Indicare gli elementi che definiscono il modello statistico e stabilire se la famiglia di densità $\{f_X(\cdot;\theta), \theta \in \Theta\}$ costituisce una famiglia esponenziale.
- 2. Determinare la funzione di verosimiglianza di θ e una statistica sufficiente per il modello e la stima di massima verosimiglianza per θ .
- 3. Calcolare la stima di massima verosimiglianza di θ e l'informazione osservata di Fisher per il campione osservato (0.7, 0.6, 0.8).
- 4. Verificare che

$$E_{\theta}(X) = \frac{\theta + 1}{\theta + 2}, \qquad V_{\theta}(X) = \frac{(\theta + 1)}{(\theta + 3)(\theta + 2)^2}$$

e determinare la distribuzione asintotica della statistica della media campionaria \bar{X}_n .

5. Utilizzando l'approssimazione normale di \bar{X}_n , calcolare la probabilità dell'evento

$$2\bar{X}_n - 1 > \frac{1}{2}$$

in funzione di θ . Stimare la quantità così determinata utilizzando il valore della stima di massima verosimiglianza di θ ottenuto al punto (3) dell'esercizio.

Svolgimento:

FOGLIO EXTRA