Chemistry and Introduction to Biochemistry

International School of Medicine (Corso F) Academic Year 2016-2017 - 21st December 2017

Surname and Name	Matriculation No.
Multiple choice questions: select the correct answer (one) by crossing the corresponding box. Formulas: draw all the atoms, bonds and charges (when applicable). Quantitative exercises: briefly explain your chosen procedure and copy the final result(s) in the brackets at the end of the text.	
 The different isotopes of an elemen the same number of neutrons the same atomic weight different number of protons the same number of electrons 	t have: [] [] [] []
2) In isochoric conditions (V=const), a exponentially increase the gas pre- double the gas pressure linearly increase the gas pressure leave the pressure unchanged	an increase in temperature of a given gas will: ssure [] [] [] [] []
 3) Which of the following compounds cyclohexanol 2-methyl-2-butanol 1-propanol none of the above 	is a secondary alcohol? [] [] [] [] [] [] [] [] [] []
 4) Which reaction takes places at the a oxidation uptake of electrons reduction depends on the electrode 	node of a battery? [] [] [] [] [] [] [] [] [] []
5) Which is the molar concentration of $10^{-2}M$ 0.02 M 10^{-14} M 10^{-12} M	f H3O+ in a solution of potassium hydroxide 0.01 M? [] [] [] [] []

6) Draw the chemical formula of each compound indicating all the atoms, bonds and charges (when applicable): *trans*-1,2-di-Cl-ethene, phosphoric acid, galactose, alanine.

7) Calculate the final concentration of a solution obtained by mixing 45ml of potassium sulphate 50% w/w (d=1.2g/ml) with 50ml of a 0.8 M solution of the same salt. [Answer:]

8) The osmotic pressure of an aqueous solution of a weak electrolyte (AB \leftrightarrows A⁺ + B⁻) is 3.2 atm at 20°C. Calculate the dissociation coefficient knowing that the concentration of the solution is 0.1 M. [Answer:]

9) 4.5 mol of H₂ and 4.5 mol of O₂ are mixed in a volume of 3 L at 450 °C. The following homogeneous reaction in the gas phase takes place: $2H_2 + O_2 \rightleftharpoons 2 H_2O$. At equilibrium, the molar concentration of water is 0.5 M. Calculate the equilibrium constants Kc and Kp, indicating the units of measurements. [Answer:]

10) Calculate the pH of a solution obtained by mixing 160 ml of nitrous acid 0.05 M with 80 ml of sodium hydroxide 0.1 M. (Ka = $4.9 \cdot 10^{-4}$ M). [Answer:]