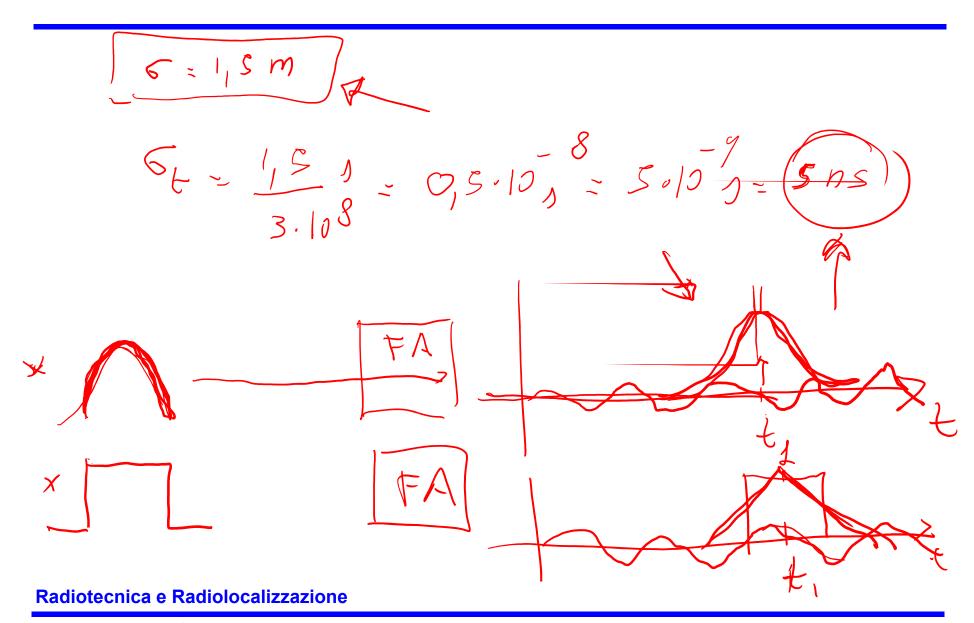
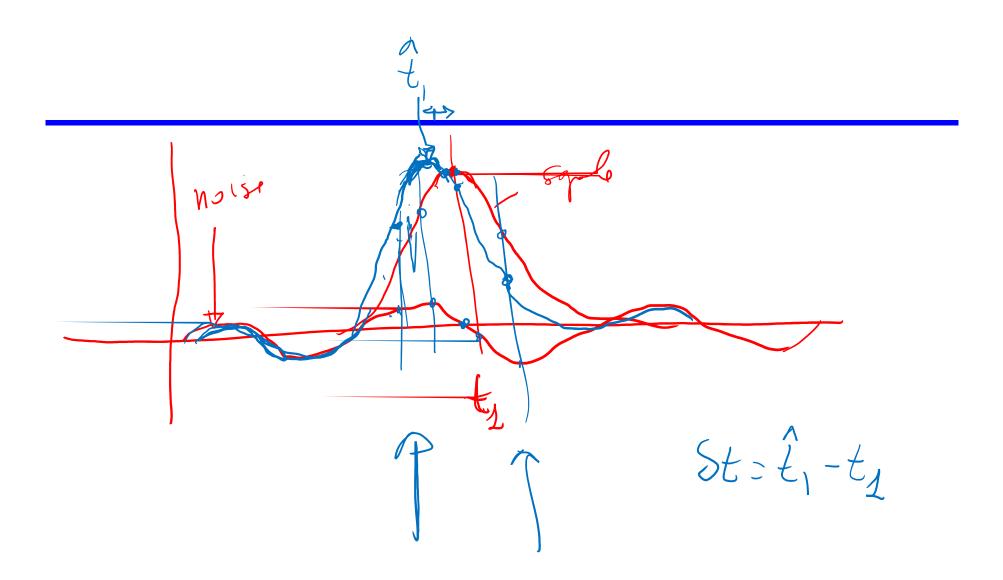
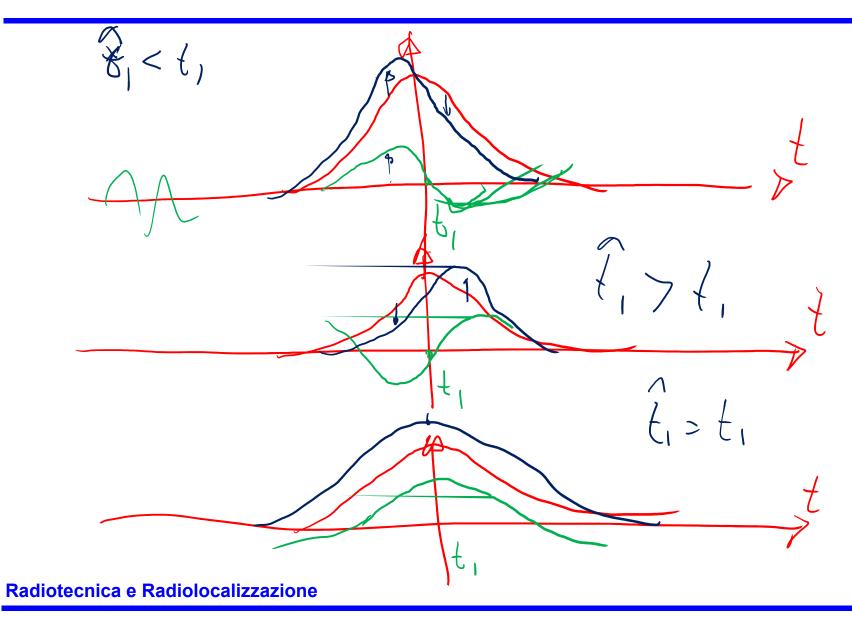
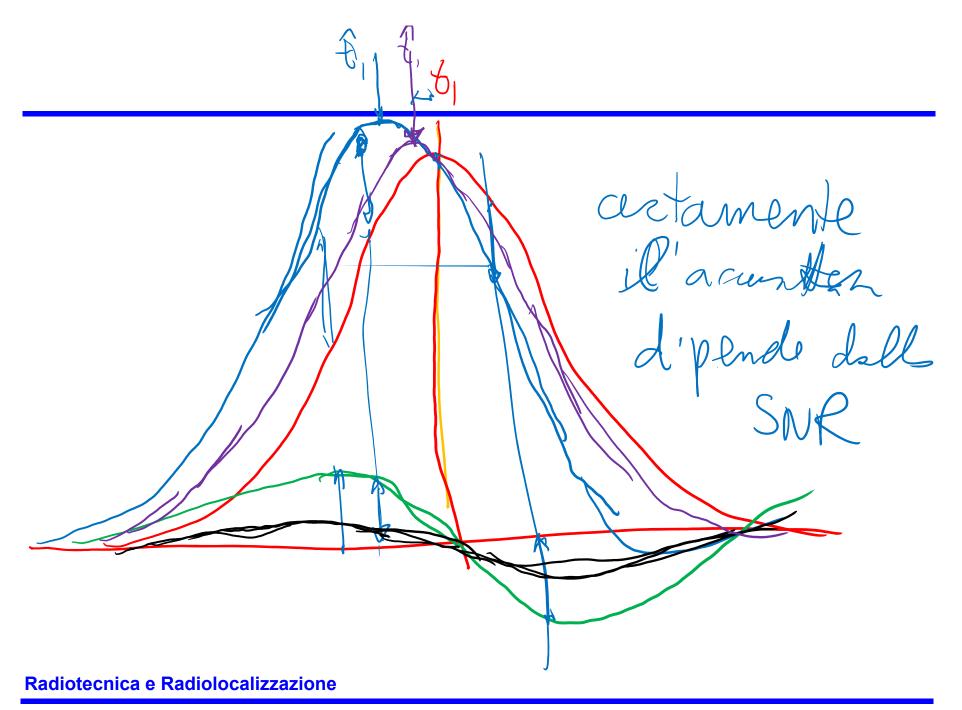
La stima di distanza

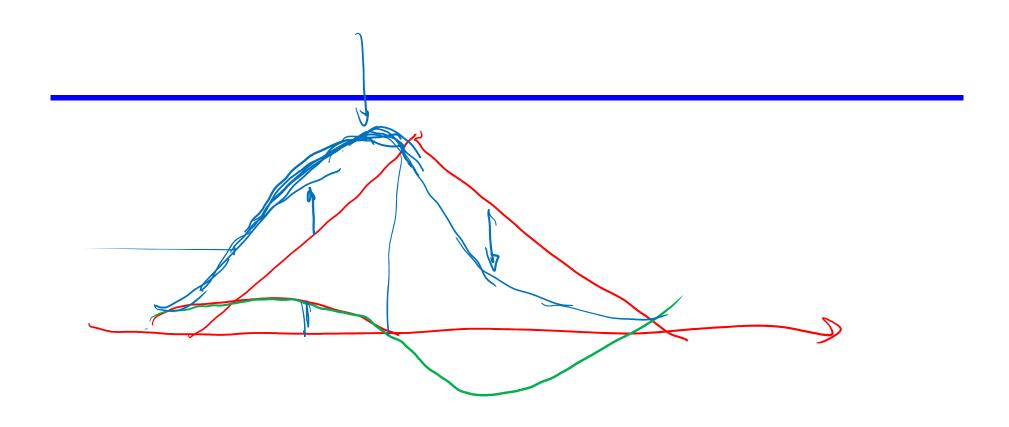
Accuratezza

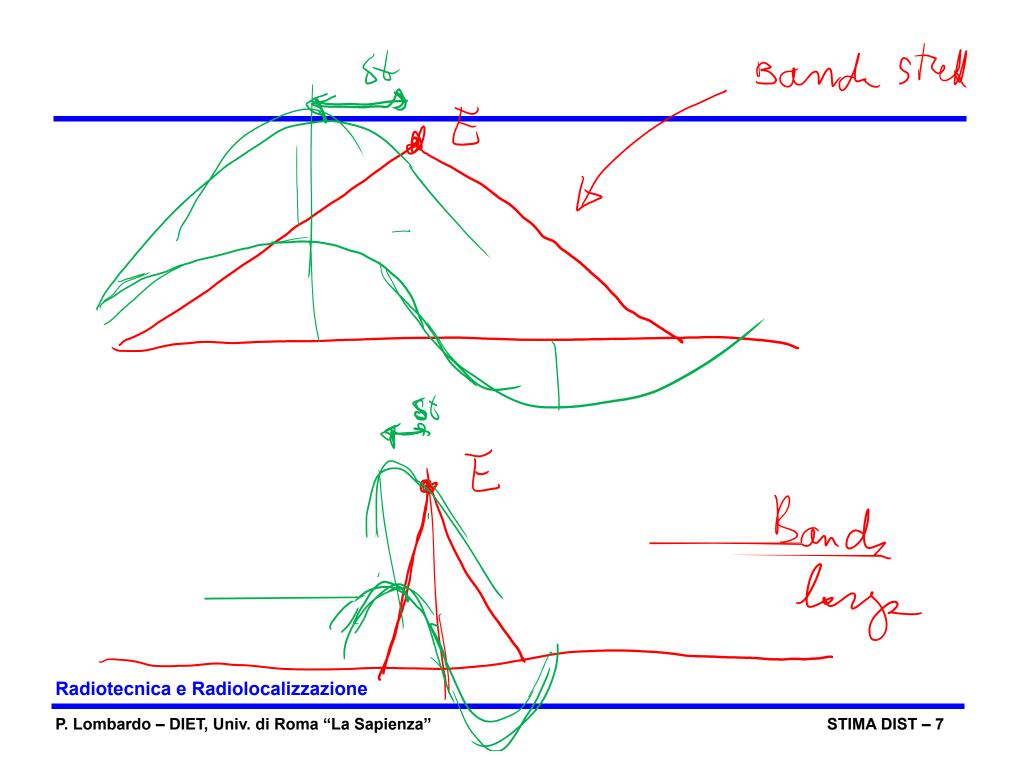


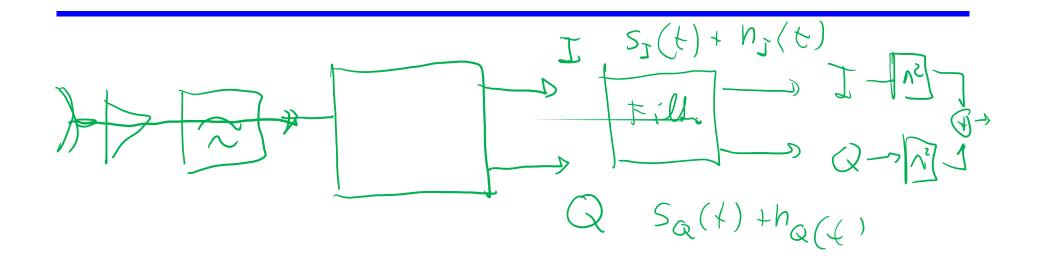








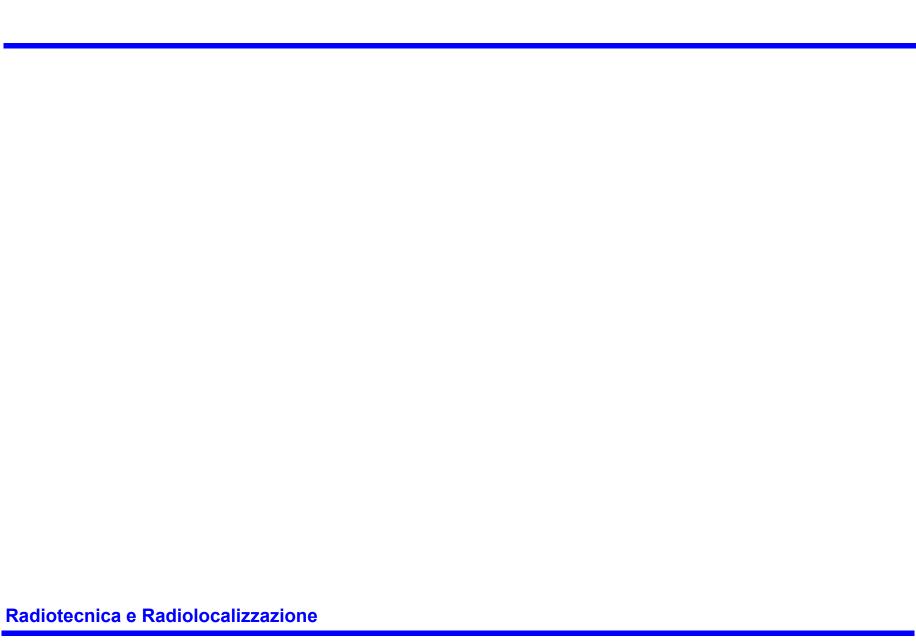




Radiotecnica e Radiolocalizzazione		

Radiotecnica e Radiolocalizzazione		

Radiotecnica e Radiolocalizzazione		



Risoluzione ed accuratezza

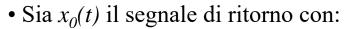
- uratezza S
- Risoluzione = rappresenta la distanza minima fra due oggetti di cui si riescono a distinguere i ritorni. La risoluzione è il parametro di interesse quando si è interessati alla rivelazione dei bersagli.
- Accuratezza = rappresenta la capacità di misurare con precisione la distanza di un oggetto. Il parametro rappresentativo è l'errore di stima della distanza.

 L'accuratezza è la qualità di interesse quando si è interessati alla misura di distanza e non alla rivelazione.

bodipent d'hace e sor

Segnali impulsivi per stima di distanza

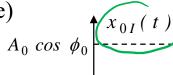
- Si consideri di trasmettere la forma d'onda $g_0(t)$ con banda B_n
- Si assuma che il segnale trasmesso sia inviato indietro da un oggetto a distanza R (per riflessione, o ritrasmissione)



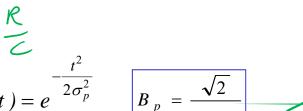
- ampiezza A_0 e

Esempio:

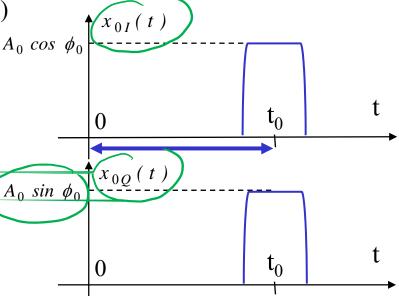
- fase ϕ_0 incognita (dovuta alla propagazione)
- ritardo t_0 =2R/c (c = velocità della luce)



 $x_0(t) = A_0 e^{j\overline{\phi_0}}$



$$x_0(t) = A_0 e^{j\phi_0} e^{-\frac{(t-t_0)^2}{2\sigma_p^2}}$$

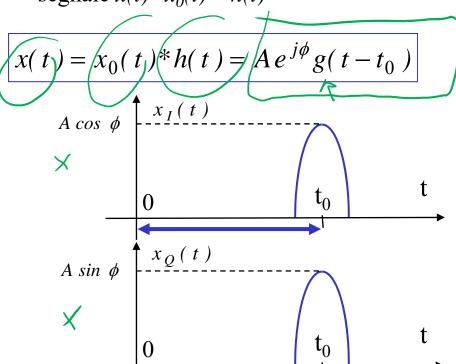


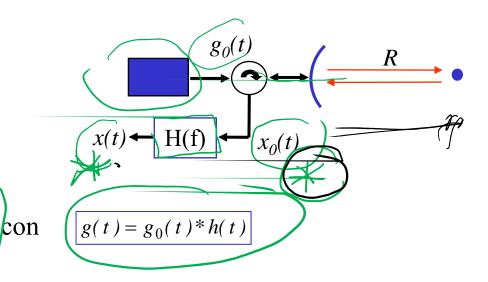
 $g_0(t)$

 $g_0(t-t_0)$

Filtro di ricezione

- il ricevitore può schematizzarsi come un filtro con funzione di trasferimento H(f) (risposta impulsiva h(t))
- in uscita dal ricevitore si ha idealmente il segnale $x(t)=x_0(t)*h(t)$



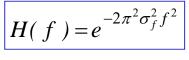


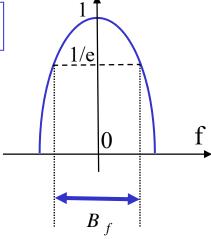
- il filtro è caratterizzato dalla forma di H(f) e dalla sua larghezza di banda a 3 dB, B_f :
 - se $B_f << B_p$, solo una piccola parte del segnale di ritorno arriva al ricevitore. Si perde potenza trasmessa e risoluzione (mai in pratica).
 - se $B_f = B_p$, e la forma di h(t) è la stessa di $g^*(-t)$, siamo nel caso di un filtro adattato.
 - se $B_f >> B_p$, il segnale di ritorno non viene alterato dalla presenza del filtro.

Segnali impulsivi e filtro di ricezione

Esempio:

• si usi un filtro con funzione di trasferimento





- risposta impulsiva h(t) $h(t) = \frac{1}{\sqrt{2\pi \sigma_f^2}} e^{-\frac{t^2}{2\sigma_f^2}}$
- in uscita dal ricevitore si ha idealmente il segnale

$$x(t) = x_0(t) * h(t)$$

$$x(t) = x_0(t) * h(t) = A e^{j\phi} g(t - t_0)$$

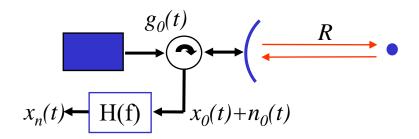
$$G(f) = G_0(f) \cdot H(f) = \sqrt{2\pi\sigma_p^2} e^{-2\pi\sigma_p^2 f^2} e^{-2\pi\sigma_f^2 f^2} = \sqrt{2\pi\sigma_p^2} e^{-2\pi(\sigma_p^2 + \sigma_f^2)f^2}$$

$$g(t) = \frac{\sigma_p}{\sqrt{\sigma_p^2 + \sigma_f^2}} e^{-\frac{t^2}{2(\sigma_p^2 + \sigma_f^2)}}$$

Radiotecnica e Radiolocalizzazione

• banda a 3 dB (circa 1/e)

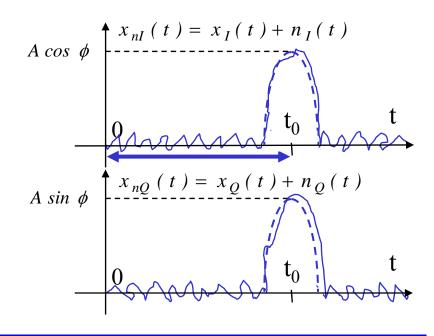
Rumore termico



- In antenna e nei primi stadi di amplificazione si genera la componente dominante di rumore termico
- quindi, in pratica, si usa una misura del segnale $x_n(t)$, affetta da rumore termico
- il rumore termico ha valore medio nullo sulle componenti I e Q
- Il rumore termico $n_0(t)$ in ingresso al ricevitore ha spettro di densità di potenza costante e pari ad N_0
- il rumore termico n(t) in uscita al ricevitore ha spettro di densità di potenza $S_n(f) = N_0 |H(f)|^2$ e potenza totale $\sigma_n^2 = N_0 B_n$, con B_n = banda di rumore

$$x_n(t) = x(t) + n(t)$$

$$x_n(t) = A e^{j\phi} g(t - t_0) + n(t)$$



Caratteristiche del rumore termico

Esempio:

• si usi un filtro con funzione di trasferimento

 $\left| \left| H(f) \right|^2 = e^{-4\pi^2 \sigma_f^2 f^2}$

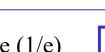
0 f

• Potenza di rumore termico:

$$\sigma_n^2 = N_0 \int_{-\infty}^{\infty} |H(f)|^2 df = N_0 \int_{-\infty}^{\infty} e^{-4\pi^2 \sigma_f^2 f^2} df = \frac{N_0}{2\sqrt{\pi}\sigma_f} = N_0 B_n$$

- banda equivalente di rumore termico
- $B_n = \frac{1}{2\sqrt{\pi} \sigma_f}$
- Autocorrelazione del rumore termico

$$R_{nn}(t) = \Im^{-1} \{ S_n(f) \} = N_0 \Im^{-1} \{ H(f) |^2 \} = \frac{N_0}{2\sqrt{\pi}\sigma_f} e^{-\frac{t^2}{4\sigma_f^2}}.$$

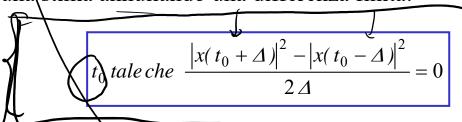


Tempo di decorrelazione (1/e)

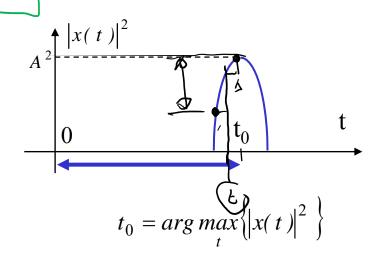
 $\Delta t = 2\sigma_f$

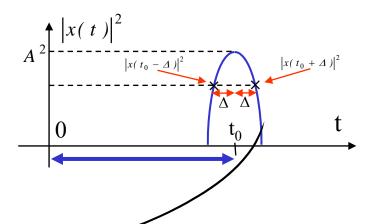
Misura del tempo di arrivo

- In assenza di rumore, la misura del tempo di arrivo si può ottenere misurando l'istante di tempo in cui la potenza istantanea del segnale di ritorno presenta il massimo
- Il massimo si ottiene quando si annulla la derivata
- usando una forma d'onda simmetrica, si può ottenere una stima annullando una differenza finita:



• Si noti che, facendo tendere Δ a zero, questa è esattamente la derivata. Dunque la espressione di sopra contiene anche la derivata come caso limite.





Stima del tempo di arrivo

• In presenza di rumore, la stima del tempo di arrivo \hat{t}_0 si può ottenere misurando l'istante di tempo in cui :

$$\frac{\left|x_n(\hat{t}_0 + \Delta)\right|^2 - \left|x_n(\hat{t}_0 - \Delta)\right|^2}{2\Delta} = 0$$

- Vogliamo ricavare l'errore di stima $\delta t = \hat{t}_0 t_0$
- Assumendo errore di stima δt piccolo, e rumore $|n(t)|^2$ piccolo, si sviluppa al primo ordine:

$$\begin{aligned} \left| x_{n}(t) \right|^{2} &= \left| A_{0} e^{j\phi_{0}} g(t - t_{0}) + n(t) \right|^{2} = A_{0}^{2} \left| g(t - t_{0}) \right|^{2} + \left| n(t) \right|^{2} + 2 A_{0} Re \left\{ e^{j\phi_{0}} g(t - t_{0}) n^{*}(t) \right\} \\ \left| x_{n}(\hat{t}_{0} + \Delta) \right|^{2} &= A_{0}^{2} \left| g(\delta t + \Delta) \right|^{2} + \left| n(\hat{t}_{0} + \Delta) \right|^{2} + 2 A_{0} Re \left\{ e^{j\phi_{0}} g(\delta t + \Delta) n^{*}(\hat{t}_{0} + \Delta) \right\} = \\ &\cong A_{0}^{2} \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \right|_{t = \Delta} \delta t + 2 A_{0} Re \left\{ e^{j\phi_{0}} g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right\} = \\ &\cong A_{0}^{2} \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right\} = \\ &\cong A_{0}^{2} \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right\} = \\ &\cong A_{0}^{2} \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right\} = \\ &\cong A_{0}^{2} \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \left|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2 A_{0} \left| g(\Delta) n^{*}(\hat{t}_{0} + \Delta) \right|_{t = \Delta} \delta t + 2$$

Sviluppo al I° ordine:

Si trascura termine quadratico nel rumore $|n(t)|^2$ e termini misti in δt e n(t).

Errore di stima del tempo di arrivo (I)

• sviluppando la differenza in presenza di rumore si ha:

$$\begin{split} & \left| x_{n}(\hat{t}_{0} + \Delta) \right|^{2} - \left| x_{n}(\hat{t}_{0} - \Delta) \right|^{2} = \\ & \cong A_{0}^{2} \left| \left| g(\Delta) \right|^{2} + A_{0}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \right|_{t=\Delta}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \Big|_{t=\Delta}^{2} \frac{\partial \left| g(t) \right|^{2}}{\partial t} \Big|_{t$$

$$\delta t = \frac{\left| g(\Delta) \right|}{A_0 2 \left| g(\Delta) \right| \frac{\partial \left| g(t) \right|}{\partial t} \bigg|_{t=\Delta}} \left[n_R'(t_0 - \Delta) - n_R'(t_0 + \Delta) \right]$$

$$\delta t = \frac{1}{2A_0 \frac{\partial \left| g(t) \right|}{\partial t} \bigg|_{t=\Delta}} \left[n_R'(t_0 - \Delta) - n_R'(t_0 + \Delta) \right]$$

$$\delta t = \frac{1}{2A_0 \frac{\partial |g(t)|}{\partial t}} \left[n_R'(t_0 - \Delta) - n_R'(t_0 + \Delta) \right]$$

Errore di stima del tempo di arrivo (II)

• effettuando il valore atteso dei due membri della equazione:

Valore atteso dell'errore

$$\left\langle \delta t \right\rangle = \frac{1}{2A_0 \frac{\partial \left| g(t) \right|}{\partial t} \bigg|_{t=\Delta}} \left[\left\langle n_R' (t_0 - \Delta) \right\rangle - \left\langle n_R' (t_0 + \Delta) \right\rangle \right] = 0$$

Stima non polarizzata

Varianza dell'errore

$$\left\langle \delta t^{2} \right\rangle = \frac{1}{4A_{0}^{2} \left(\frac{\partial |g(t)|}{\partial t} \Big|_{t=\Delta} \right)^{2}} \left\langle \left[n_{R}'(t_{0} - \Delta) - n_{R}'(t_{0} + \Delta) \right]^{2} \right\rangle$$

$$\left\langle \left[n_R'(t_0 - \Delta) - n_R'(t_0 + \Delta) \right]^2 \right\rangle =$$

$$= \left\langle n_R'^2(t_0 - \Delta) \right\rangle + \left\langle n_R'^2(t_0 + \Delta) \right\rangle - 2\left\langle n_R'(t_0 - \Delta) n_R'(t_0 + \Delta) \right\rangle =$$

$$= 2\sigma_{nR}^2 - 2R_{nR}(2\Delta) = \sigma_n^2 - R_n(2\Delta) = \sigma_n^2 \left[1 - \rho_n(2\Delta) \right]$$

Coefficiente di correlazione

$$\rho_n(\tau) = \frac{R_n(\tau)}{\sigma_n^2}$$

Ricordando

$$\begin{split} R_{nn}(\tau) = & < \left[n_R(t) + j n_I(t) \right] \left[n_R(t+\tau) - j n_I(t+\tau) \right] > = \\ = & < n_R(t) n_R(t+\tau) > + < n_I(t) n_I(t+\tau) > + j < n_I(t) n_R(t+\tau) > - j < n_R(t) n_I(t+\tau) > = \\ = & R_{n_R n_R}(\tau) + R_{n_I n_I}(\tau) + 0 = 2 R_{n_R n_R}(\tau) \end{split}$$

$$\left\langle \partial t^{2} \right\rangle = \frac{1}{4A_{0}^{2} \left(\frac{\partial |g(t)|}{\partial t} \Big|_{t=\Delta} \right)^{2}} \sigma_{n}^{2} \left[1 - \rho_{n}(2\Delta) \right]$$

Errore di stima del tempo di arrivo (III)

• sviluppando la differenza in presenza di rumore si ha:

$$\left\langle \delta t^{2} \right\rangle = \frac{1}{4A_{0}^{2} \left(\frac{\partial |g(t)|}{\partial t} \Big|_{t=\Delta} \right)^{2}} \sigma_{n}^{2} \left[1 - \rho_{n}(2\Delta) \right] = \frac{1}{4\frac{A_{0}^{2}}{\sigma_{n}^{2}} \left(\frac{\partial |g(t)|}{\partial t} \Big|_{t=\Delta} \right)^{2}} \left[1 - \rho_{n}(2\Delta) \right]$$

$$\left\langle \delta t^{2} \right\rangle = \frac{1 - \rho_{n}(2\Delta)}{4 \, SNR \left(\frac{\partial \left| g(t) \right|}{\partial t} \right|_{t=\Delta} \right)^{2}}$$

- l'errore di stima diminuisce:
 - all'aumentare del SNR
 - all'aumentare della derivata del segnale nel punto usato Δ
 - leggera dipendenza da Δ anche per il numeratore

Nota: per Δ =0 sia numeratore che denominatore si annullano e tutto dipende dalla velocità con cui vanno a zero

Errore di stima del tempo di arrivo (IV)

$$\left\langle \partial t^{2} \right\rangle = \frac{1 - \rho_{n}(2\Delta)}{4 \, SNR \left(\frac{\partial \left| g(t) \right|}{\partial t} \right|_{t=\Delta} \right)^{2}}$$

- <u>H(f) a banda larga</u> $(B_f >> B_p, B_n >> B_p)$:
 - banda di rumore B_n grande \Rightarrow SNR piccolo
 - assumendo che $\Delta \le 2/B_p \implies \Delta >> 1/B_f \implies \rho_n(2\Delta) \approx 0$
 - g(t) è quasi identico a $g_0(t)$ (quasi inalterato dal filtro)
 - il valore ottimo di Δ dipende solo dalla derivata del segnale
- $\underline{H(f)} = \underline{filtro\ adattato}\ (B_f = B_p)$:
 - SNR massimo possibile (per definizione)
 - $\rho_{\rm n}(\tau)$ circa si dimezza in $1/B_p \implies \Delta >> 1/B_f \Rightarrow \approx 0$
 - g(t) è pari all'autocorrelazione di $g_0(t)$
 - \bullet il valore ottimo di Δ dipende sia dalla derivata del segnale, sia dalla decorrelazione del rumore

Esempi di varianza di stima (I)

$$|H(f)|^{2} = e^{-4\pi^{2}\sigma_{f}^{2}f^{2}} \qquad B_{n} = \frac{1}{2\sqrt{\pi}\sigma_{f}} \qquad R_{nn}(t) = N_{0}B_{n} e^{-\frac{t^{2}}{4\sigma_{f}^{2}}}$$

$$g_{0}(t) = e^{-\frac{t^{2}}{2\sigma_{p}^{2}}} \qquad g(t) = \frac{\sigma_{p}}{\sqrt{\sigma_{p}^{2} + \sigma_{f}^{2}}} e^{-\frac{t^{2}}{2(\sigma_{p}^{2} + \sigma_{f}^{2})}} \qquad \frac{\partial g(t)}{\partial t} = \frac{-\sigma_{p}t}{(\sigma_{p}^{2} + \sigma_{f}^{2})^{3/2}} e^{-\frac{t^{2}}{2(\sigma_{p}^{2} + \sigma_{f}^{2})}}$$

$$\left\langle \delta t^{2} \right\rangle = \frac{1 - \rho_{n}(2\Delta)}{4 SNR \left(\frac{\partial \left| g(t) \right|}{\partial t} \right|_{t=\Delta} \right)^{2}} = \frac{1 - e^{-\frac{\Delta^{2}}{\sigma_{f}^{2}}}}{4 \frac{A_{0}^{2}}{N_{0} B_{n}} \frac{\sigma_{p}^{2} \Delta^{2}}{(\sigma_{p}^{2} + \sigma_{f}^{2})^{3}} e^{-\frac{\Delta^{2}}{\sigma_{p}^{2} + \sigma_{f}^{2}}}}$$

Esempi di varianza di stima (II)

- <u>H(f)</u> a banda larga $(B_f >> B_p, \sigma_f << \sigma_p)$:
 - banda di rumore B_n grande \Rightarrow SNR piccolo
 - assumendo che $\Delta \le 2/B_p \implies \Delta >> 1/B_f \implies \rho_n(2\Delta) \approx 0$
 - g(t) è quasi identico a $g_0(t)$ (quasi inalterato dal filtro): $\sigma_p^2 + \sigma_f^2 \approx \sigma_p^2$

$$\left\langle \delta t^{2} \right\rangle = \frac{1 - \rho_{n}(2\Delta)}{4 \, SNR \left(\frac{\partial \left| \, g(t \,) \right|}{\partial t} \right|_{t=\Delta} \right)^{2}} = \frac{1 - e^{-\frac{A^{2}}{\sigma_{f}^{2}}}}{4 \, \frac{A_{0}^{2}}{N_{0} \, B_{n}} \frac{\sigma_{p}^{2} \, \Delta^{2}}{\left(\sigma_{p}^{2} + \sigma_{f}^{2} \,\right)^{3}} e^{-\frac{A^{2}}{\sigma_{p}^{2} + \sigma_{f}^{2}}}}{4 \, \frac{A_{0}^{2}}{N_{0} \, B_{n}} \frac{\Delta^{2}}{\sigma_{p}^{2}} e^{-\frac{A^{2}}{\sigma_{p}^{2}}}}$$

• il valore ottimo di Δ dipende solo dalla derivata del segnale: usando $z = \Delta^2 / \sigma_p^2$, a denominatore si ha ze^{-z}

$$\frac{\partial}{\partial z} \left[z e^{-z} \right] = e^{-z} - z e^{-z} = e^{-z} \left[1 - z \right] = 0$$

Valore ottimo z=1 cioè

$$\Delta = \sigma_p$$

$$\left\langle \delta t^2 \right\rangle = \frac{e \, \sigma_p^2}{4 \, SNR^{(f)}}$$

Esempi di varianza di stima (III)

- $\underline{\mathbf{H}(\mathbf{f})} = \mathbf{filtro} \ \mathbf{adattato} \ (B_f = B_p, \ \sigma_f = \sigma_p)$:
 - SNR massimo possibile (per definizione)

 - $\rho_{\rm n}(\tau)$ circa si dimezza in $1/B_p \implies \Delta >> 1/B_f \implies \approx 0$ g(t) è pari all'autocorrelazione di $g_0(t)$ $\sigma_p^2 + \sigma_f^2 = 2\sigma_p^2$

$$\left\langle \delta t^{2} \right\rangle = \frac{1 - \rho_{n}(2\Delta)}{4 \, SNR \left(\frac{\partial |g(t)|}{\partial t} \Big|_{t=\Delta} \right)^{2}} = \frac{1 - e^{-\frac{\Delta^{2}}{\sigma_{f}^{2}}}}{4 \, \frac{A_{0}^{2}}{N_{0} \, B_{n}} \frac{\sigma_{p}^{2} \, \Delta^{2}}{\left(\sigma_{p}^{2} + \sigma_{f}^{2}\right)^{3}} e^{-\frac{\Delta^{2}}{\sigma_{p}^{2} + \sigma_{f}^{2}}}} = \frac{2 \, \sigma_{p}^{2} \, \left[1 - e^{-\frac{\Delta^{2}}{\sigma_{p}^{2}}} \right]}{\frac{A_{0}^{2}}{N_{0} \, B_{n}} \frac{\Delta^{2}}{\sigma_{p}^{2}} e^{-\frac{\Delta^{2}}{2\sigma_{p}^{2}}}}$$

• il valore ottimo di Δ dipende sia dalla derivata del segnale, sia dalla decorrelazione del rumore

$$\frac{\partial}{\partial z} \left[\frac{1 - e^{-z}}{z e^{-\frac{z}{2}}} \right] = \frac{\partial}{\partial z} \left[\frac{1}{z} \left(e^{\frac{z}{2}} - e^{-\frac{z}{2}} \right) \right] = -\frac{1}{z^2} \left(e^{\frac{z}{2}} - e^{-\frac{z}{2}} \right) + \frac{1}{2z} \left(e^{\frac{z}{2}} + e^{-\frac{z}{2}} \right) = \frac{1}{2z^2} e^{-\frac{z}{2}} \left[-2e^z + 2 + ze^z + z \right] = 0$$

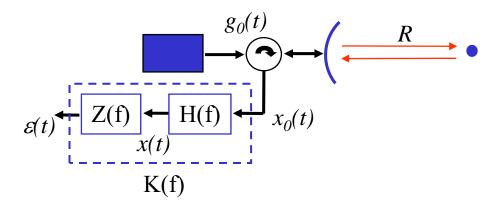
$$e^{z}[2-z]=2+z$$
 $e^{z}=\frac{2+z}{2-z}$ $z=0$

$$\left\langle \delta t^{2} \right\rangle = \frac{2 \, \sigma_{p}^{2}}{SNR^{(p)}}$$

Interpretazione/Implementazione (I)

• la stima di t_0 consiste nel trovare il valore di t tale che $\varepsilon(t)=0$

$$z(t) = \frac{1}{2\Delta} u_0(t + \Delta) - \frac{1}{2\Delta} u_0(t - \Delta)$$
$$Z(f) = 2j \frac{\sin(2\pi f \Delta)}{2\Delta}$$



$$k(t) = z(t) * h(t) = \frac{1}{2\Delta} h(t + \Delta) - \frac{1}{2\Delta} h(t - \Delta)$$

$$K(f) = 2j \frac{\sin(2\pi f \Delta)}{2\Delta} H(f)$$

$$h(t) = \frac{1}{2\Delta\sqrt{2\pi\sigma_f^2}} e^{\frac{(t+\Delta)^2}{2\sigma_f^2}} - \frac{1}{2\Delta\sqrt{2\pi\sigma_f^2}} e^{\frac{(t-\Delta)^2}{2\sigma_f^2}} =$$

$$= \frac{1}{2\Delta\sqrt{2\pi\sigma_f^2}} e^{\frac{t^2}{2\sigma_f^2}}$$

$$= \frac{1}{2\Delta\sqrt{2\pi\sigma_f^2}} e^{\frac{t^2}{2\sigma_f^2}} \left[e^{\frac{\Delta t}{\sigma_f^2}} - e^{\frac{\Delta t}{\sigma_f^2}} \right] e^{\frac{t^2}{2\sigma_f^2}} =$$

$$= -\frac{1}{\Delta} sinh \left(\frac{\Delta t}{\sigma_f^2} \right) e^{\frac{t^2}{2\sigma_f^2}} \frac{1}{\sqrt{2\pi\sigma_f^2}} e^{\frac{t^2}{2\sigma_f^2}}$$
Early-Late gate

Interpretazione/Implementazione (II)

• condizione ottima per filtro adattato:

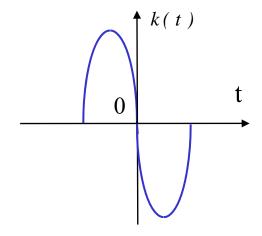
• per
$$\Delta \to 0$$

$$\lim_{\Delta \to 0} K(f) = \lim_{\Delta \to 0} 2j \frac{\sin(2\pi f \Delta)}{2\Delta} H(f) = j 2\pi f H(f)$$

$$k(t) = \frac{\partial}{\partial t} h(t)$$

$$h(t) = \frac{1}{\sqrt{2\pi\sigma_p^2}} e^{\frac{-t^2}{2\sigma_p^2}}$$

$$k(t) = \frac{-t}{\sigma_p^2 \sqrt{2\pi\sigma_p^2}} e^{\frac{-t^2}{2\sigma_p^2}}$$



Early-Late gate