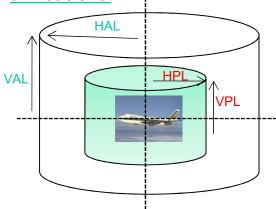
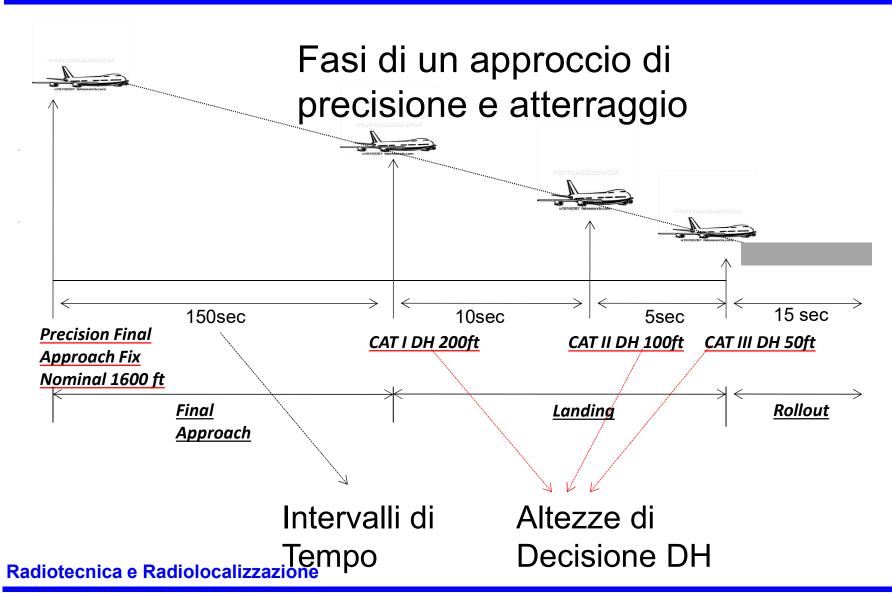

Ground Based Augmentation System


GBAS

Controllo del Traffico Aereo - ICAO/RNP

ICAO/Categorie di Avvicinamento

International C ivil		Catego	Precisione	Integrità/	Disponibil	Continuità
Aviation Organization	RNP	ria	orizz / vert	Tempo di allarme	ità	
APV: Approach with Vertical	0.3/125	APV I	±0.3 NM	1-10^-5/h	0.95	1-10^-4/h
Guidance			$\sqrt{125} \text{ ft}$			
CAT : categoria di aeroporto;con	0.03/50	APV II	±0.03 NM	$1-3,5x10^-7/h$	0.9975	1-10^-5/h
le categorie vengono identificati			50 ft	6 sec		
gli aeroporti attrezzati agli	0.02/40	CAT I	±0.02 NM	$1-3,5x10^{-7/h}$	0.9975	1-10^-5/h
avvicinamenti con bassa visibilità:			40 ft	6 sec		
CAT III è la più avanzata, in cui è	0.01/15	CAT II	±0.01 NM	1-2,5x10^-9/h	0.9985	1-10^-5/h
possibile atterrare anche in	0.01/13		15 ft	6 sec	0.7703	1 10 3/11
condizioni di visibilità molto				0 SCC		
ridotta NdR. Sono Avvicinamenti	0.003/0	CAT III	±0.003 NM	$1-2x10^{-9/h}$	0.999	1-10^-5/h
di Precisione.				1 sec		



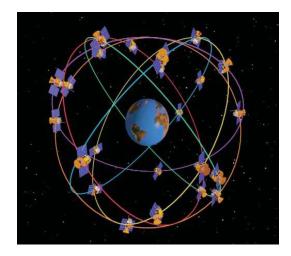
definiscono le semidimensioni di un volume entro il quale l'aeromobile deve mantenere la propria posizione durante l'avvicinamento con un margine di probabilità del 95% (tunnel di contenimento interno). Un secondo volume di contenimento (tunnel esterno) rappresenta il limite massimo entro cui si deve trovare l'aeromobile con una probabilità che sfiora il 100%.

VAL / HAL definiscono Alarm Level

VPL / HPL definiscono il Protection Level

ICAO/Approccio di Precisione

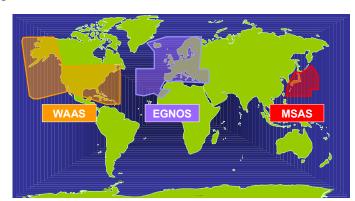
GNSS Augmentation


Global Navigation **S**atellite **S**ystem

GPS/GLONASS/GALILEO

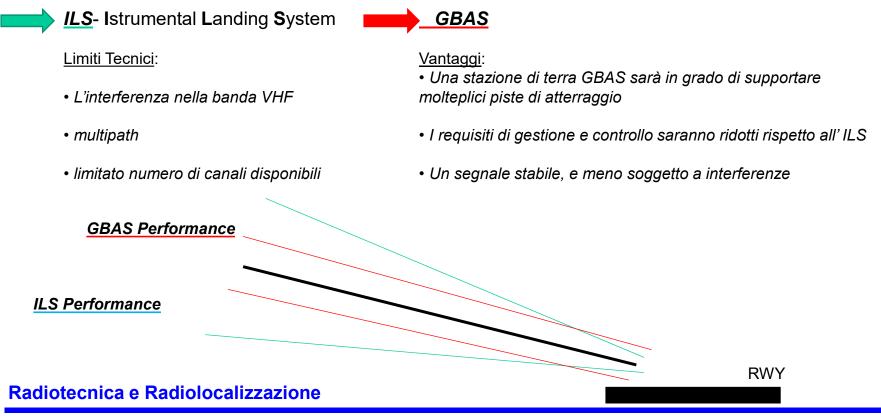
* Galileo: Europa

- Concepiti per usi civili
- Può supportare tutte le operazioni sino ad avvicinamenti <u>CAT I</u>

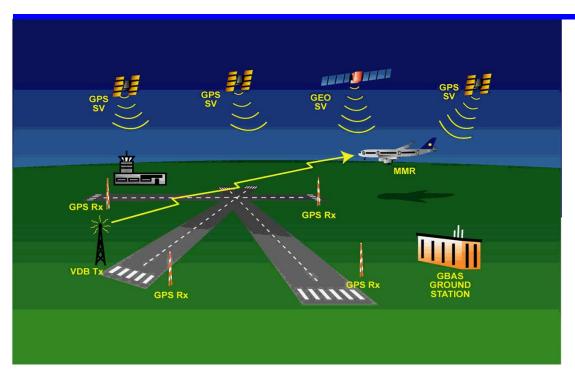

- * **GPS** (**G**lobal **P**ositioning **S**ystem) US
- * GLONASS (GLObal Navigation Satellite System) Russia
 - Concepiti durante la Guerra fredda
 - Gli attuali sistemi satellitari non soddisfano completamente i requisiti RNP stabiliti dall'ICAO senza opportuni sistemi di potenziamento

Augmentation Systems

GNSS Augmentation Systems


- 1. ABAS (Avionic Based Augmentation System) agiscono sul segmento utente
 - RAIM (Receiver Autonomous Augmentation)
 - AAIM (Aircraft Autonomous Augmentation System)

- Avendo più di 4 SV in visibilità, attraverso un opportuno software, che elabora tutte le possibili combinazioni dei 4, dal loro confronto si riesce ad escludere, se presente, il SV in avaria.
- Utilizza informazioni ricavate da altri sensori di bordo, quali altimetro barometrico, orologio o sistema inerziale
- 2. SBAS (Satellite Based Augmentation System) si basano sull'utilizzo di satelliti geostazionari
 - Stazioni al suolo effettuano misure di distanza dai satelliti in vista
 - Trasmettono i dati ad una stazione di controllo centrale MCC (Mission Control Center)
 - Questa trasmette agli utenti le correzioni da apportare e dati di integrità attraverso SV Geostazionari
- il WAAS (Wide Area Augmentation System) Stati Uniti;
- l'EGNOS (European Geostationary Navigation Overlay Service) -Europa;
- il MSAS (Multi Satellite-based Augmentation System) Pacifico.



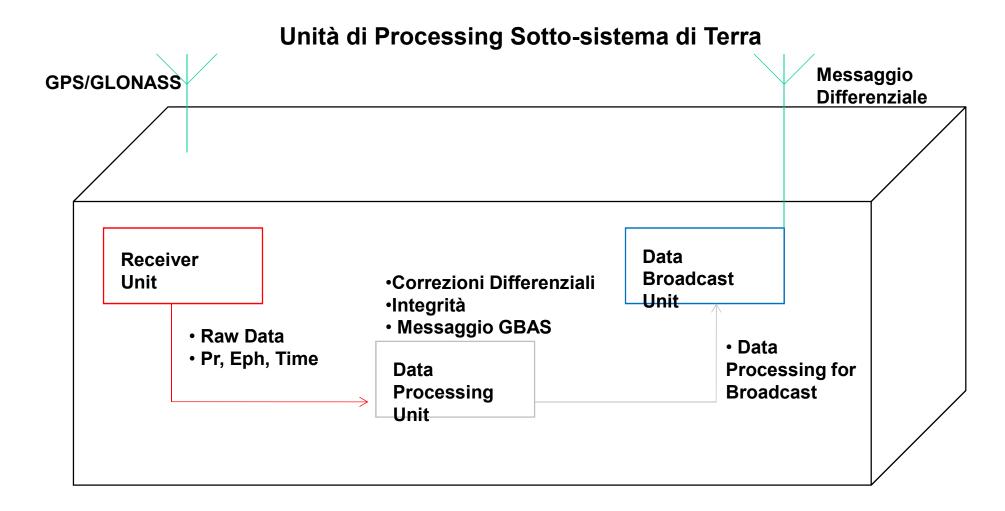
G B A S: Introduzione

- 3. GBAS (Ground Based Augmentation System)
 - Stazioni monitoraggio al suolo collocate nelle aree critiche laddove è necessaria una maggiore precisione e affidabilità del sistema satellitare
 - Supporta un aeromobile nell'avvicinamento, nell'atterraggio, nel decollo, e in tutte le operazioni in superficie all'interno della sua area di copertura

GBAS: Sotto-sistema di Terra

Componenti:

- 1 ("<u>Monitoring Station"</u> o <u>GMS</u>) ricezione del segnale VDB, e GPS, monitoraggio delle prestazioni del sistema di navigazione GPS + GBAS.
- 2 ("<u>Reference Station</u>") generazione e trasmissione del segnale di augmentation VDB (VHF Data Broadcast). Si compone di:
 - ricevitori GNSS di riferimento;
 - · stazione di data processing;
 - stazione VDB per la diffusione agli utenti dei messaggi di correzione ed integrità in banda VHF


Principio:

- GNSS Rx (Posizione nota) misurano gli pseudoranges dai satelliti in vista
- · Li inviano alla stazione di processing
- Confronta le misure ridondanti
- •Rileva eventuali anomalie
- Calcola le correzioni differenziali
- •Le trasmette al VDB Tx.
- •Questo diffonde i messaggi di correzione ed integrità nonché il (Final Approach Segment, FAS).

Caratteristiche Segnale VDB

- **Banda** 108-118 MHz
- Copertura 23 NM

G B A S: Processing Sotto-sistema di Terra

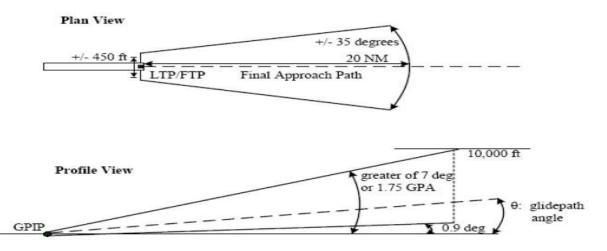
GBAS: Esempio Toulouse (Francia)

GPS Reference Receivers

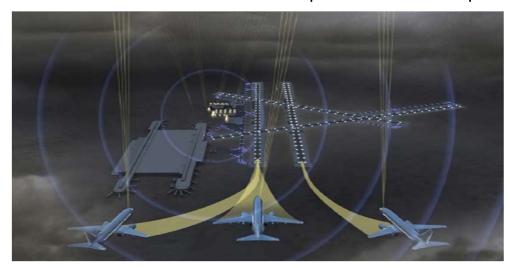
VDB TX antenna

Sito GBAS

- 4 GPS ReferenceReceivers
- Processing units
- •1 VDB Tx and 1 VDB Rx antenna
- •Maintenance and Air Traffic Control Units



GBAS: Sotto-sistema di Bordo


Componenti: Cockpit Displays **GPS** Antena Autopilot MMR Pilot Interface VHF Antenna **Processing Sotto-sistema di Bordo:** Riceve II GNSS SIS **GNSS Signal** Misura gli Pseudo Range da ogni Satelliti Applica le correzioni elaborate dal Graund Station Data Broadcast Signal Il Sottosistema di Bordo estrae Correzioni Differenziali Calcola Posizione, Velocità, · Informazioni di Integrità Tempo FAS Radiotecnica e Radiolocalizzazione

GBAS: Volumi di Servizio

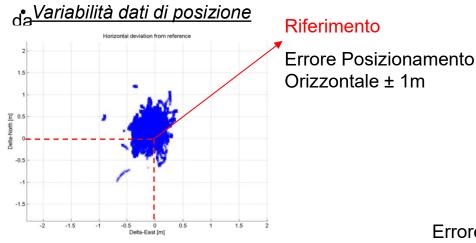
Si riportano in figura i volumi di servizio minimi (all'interno dei quali devono essere assicurati i requisiti di accuratezza, integrità e continuità).

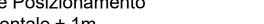
Il GBAS nel suo volume di servizio può servire contemporaneamente un numero di utenti illimitato.

Radiotecnica e Radiolocalizzazione

Prestazioni

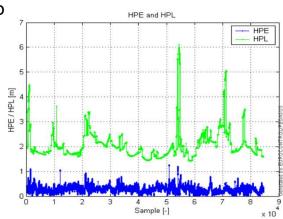
Attualmente il sistema GBAS è in grado di supportare avvicinamenti di precisione sino alla CAT I.


Sono inoltre in fase di studio sistemi GBAS dalle prestazioni più avanzate, CAT II e III È previsto che a medio-lungo termine il GBAS potrà supportare procedure avanzate quali avvicinamenti curvilinei e su piste parallele


GBAS: misure presso Aeroporto di Linate

Componenti

Ground Monitoring Station comprende le seguenti unità: • Ricevitore GNSS: riceve il SIS di GPS/GEO


- Unità Locale di Controllo
- Unità di memorizzazione.
- Ricevitore VHF : riceve i messaggi trasmessi una stazione di riferimento GBAS (CAT-1)

Errore di posizione inferiore al relativo livello di protezione

Integrità

Conclusioni

Tutti i test soddisfano la categoria di volo richiesta. Infatti la precisione per gli avvicinamenti CAT-I è in orizzontale di 0.02 NM (37.04 m) ed è ampiamente verificata; l'accuratezza verticale che è di 40 ft (12.19 m) risulta anch'essa rispettata.