Forme d'onda con modulazione di fase

Pierfrancesco Lombardo

Forme d'onda con codifica di fase

$$s_{0}(t) = \frac{1}{\sqrt{N\tau_{p}}} \sum_{n=0}^{N-1} s_{0n}(t - n \cdot \tau_{p})$$

$$s_{0n}(t) = e^{j\phi_{n}} \operatorname{rect}_{\tau_{p}}(t - \frac{\tau_{p}}{2}) = \begin{cases} e^{j\phi_{n}}, & 0 \le t \le \tau_{p} \\ 0, & altrove \end{cases}$$
Barker
Frank
P3 e P4
P(n,k)

• Codici bi-fase:

- facili da implementare
- permettono buon controllo dei lobi laterali
- non forte tolleranza alla frequenza Doppler

• Codici poli-fase:

- tendono ad avere migliore tolleranza alla frequenza Doppler
- tendono a permettere un miglior controllo dei lobi laterali

Codici Binari

• La fase della portante ad RF commuta fra due valori di fase distanti di 180°

Può essere descritta usando sequenze di +1 e -1:

Codici di Barker

Sono codici binari di lunghezza N, caratterizzati da Funzione di AutoCorrelazione (ACF) con lobi laterali in modulo ≤ 1/N

• Esistono solo poche sequenze con queste caratteristiche:

-

Calcolo ACF del codice di Barker da 7

{ u _n }	+	+	+	_	_	+	_						
$\{u_{N-n+1}^*\}$													
-	_	-	_	+	+	_	+						
+		+	+	+	-		+						
-			-	-	-	+	+	_	+				
-				_	_	_	+ '	+	_	+			
+					+	+	+	_	_	+	_		
+						+	+	+	-	_	+	~	
+	-						+	+	+	_	_	+	_
Output sequence	-1	0	-1	0	-1	0	+7	0	-1	0	-1	0	-1

Table 8.3 The Autocorrelation Sequence of a Barker Code of Length 7

Da N. Levanon, "Radar Principles"

ACF del codice di Barker da 13

Rispetto ad impulso non modulato τ_p :

- Energia trasmessa BT=n=13 volte superiore
- risoluzione in tempo uguale
- risoluzione in Doppler BT=n=13 volte superiore
- (zona cieca BT=n=13 volte più larga)

Rispetto ad impulso non modulato $T=n\tau_p$:

- Energia trasmessa uguale
- 13 risoluzione in tempo BT=n=13 volte migliore
 - risoluzione in Doppler uguale
 - (zona cieca uguale)

 $13\tau_n$ $- au_p$ $-13\tau_n$

Radiotecnica e Radiolocalizzazione

Codici di Barker innestati

- Esempio di ACF per combinazione di Barker 13 con Baker 3

Radiotecnica e Radiolocalizzazione

Codici di Barker Polifase

- Usare valori di fase generici (non binari) può portare a lobi più bassi e sequenze lunghe
- Il lobo laterale più lontano dal picco vale sempre 1 (sia per codici binary che polifase)
- Le sequenze polifase con PSLR massimo (escluso il lobo laterale esterno) sono chiamate sequenze di barker generalizzate o sequenze di Barker Polifase

Codici di Barker Polifase

- Caso 1: valori di fase pari alla radice k-esima dell'unità
 (es: k=2 codici di Barker, k=6 sextic Barker codes).
- Caso 2: senza restrizione sui valori di fase quantizzati utilizzabili (sequenze note per valori di $M \leq 36$)

Codici di Barker Polifase (I)

	М	Peak sidelob e	Phase values [°]
Espressione in forma	4	0.5	104 313
normalizzata:	5	0.77	73 225.3 90.6
	6	1	58.2 175.9 354.1 234.2
i primi due elementi di ogni	7	0.522	106.4 93 316.7 60.5 270.7
codice valgono 0 e non	8	0.662	72.1 28.6 294.3 151.7 251.2 63.3
	9	0.430	38.7 41.5 270.2 215.1 40.5 160.7 334.3 [ol]
sono riportati in tabella.	10	0.832	60.2 132.1 142.8 18.3 10.7 230.8 22.9 242.9
	11	0.892	34.1 259 266.5 327.9 158.4 13.7 22.7 221.5 94.5
	12	0.908	104.8 163 170.9 344.3 241 185.5 282.2 147.6 209 78.7
	13	0.721	115.8 114.8 248.4 213.4 123.1 154.9 140.2 12.7 149.6 303.5 121.6
	14	0.968	66.8 133.5 202.2 100.4 37.5 235.8 167.2 86 168.7 33.5 143.1 13.3
	15	0.805	17.8 5.5 5.4 142.4 212 298.1 123.9 91.6 1.3 206 314.2 156.5 23.9
	16	0.933	26.5 38.5 97.3 49.4 305.8 286.5 197 65.7 241.3 137.5 319.1 47.9 178.5 303
	17	0.733	5.3 18.5 278.4 307.6 67.3 149 207.5 70.6 301.2 282.8 137.3 6.5 120.5 327.9 186
	18		(?)
	19	0.980	53.3 24.7 90 79.2 232.5 8 331.4 99 240 318.4 159.8 307.8 161.3 137.1 31.8 338.2 217
Radiotecnica e Radiolocalizzazi	20	0.979	99.1 125.8 233.1 251.4 133.9 144 354.8 304.5 192.1 302.5 219.5 161.7 283.8 145.4 250.2 106.1 228.4 107

RRSN – DIET, Univ. di Roma "La Sapienza"

Codici di Barker Polifase (II)

Espressione in forma normalizzata:

i primi due elementi di ogni codice valgono 0 e non sono riportati in tabella.

22	0.995	23.8 53.7 82.1 74.5 349.3 265 314 247.2 147.2 74.6 285.7 160.2 335.4 78.5 317.2 148.4 248.6 344.3 87.8 208.7
23	0.912	7.4 276 286.4 253.9 256.7 351.7 58.4 60.2 226.3 353.1 100.5 168.6 41 208.5 347.8 219.2 125.9 349.7 315.3 182.1 56.3
24	0.997	5 316.4 257.1 216.5 202.4 319 311.1 356.9 296.8 111.2 36.1 280.8 136.9 10.1 115.7 259.2 134.3 268.0 28.0 142.3 208.4 333.8
25	0.936	81.9 65 316.3 273.1 326.3 339.8 62.7 18.8 270.5 198 98.8 126.6 206.5 350.7 105.9 270.8 295.4 162.3 334.2 155.5 339.8 147.7 4.4
26	0.879	51.3 117.1 138.2 265.4 267 175.4 117.8 260.2 200 136.1 154.2 179 75.8 341 187.4 307 194.4 92.5 190.2 17.2 110 250.3 38.7 199.7
27	0.985	10.6 21.9 28.7 324.7 308.4 280.6 118.4 99.2 112.2 284.5 200.6 313.8 116.3 326.7 184.8 53.4 8.8 193.9 97.1 240.9 335.3 103 228.6 332 93
28	0.950	46.9 84.3 166.3 145.7 199.8 105.1 116.6 58.7 109.7 325.9 24.3 189.9 21.4 196.2 58.8 326.5 129.2 259 306.7 123.5 111.2 312.7 298.5 173.8 97.9 327.8
29	0.871	6.9 318.2 239.9 264.7 239.2 160.4 301.5 327.5 18.7 319.7 84.9 108.6 224.1 6.3 31.4 184 167.8 89.9 325.2 227.5 145.4 329.9 91.6 263.7 94 252.9 59.6
30	0.998	33.1 34.6 33.7 11.9 300.1 281.5 26.5 54.2 155.6 211.9 231.6 134.4 76 317.7 275.8 67.6 299 184.6 72.6 153.8 6.6 262.6 94.1 242.8 359.1 149.7 306.4 71.5
31	0.935	28.4 117.7 165.1 236.5 308.7 305 236.5 216.4 327.4 279.5 211.3 247.2 192 95.4 17 273 52.8 331.1 224 303.7 147.2 21.7 245.6 29.3 145.5 297.1 62.4 190.8 7.8
32	0.996	13.5 16.5 90.5 110 95 60.5 333 307 289 281.5 85.5 164 248.5 335 171.5 76 64 221.5 298 110 37 272.5 179.5 19.5 179 288 82.5 292 133 329.5
33	0.990	143 153.5 339 332.5 180.5 133.5 19 108.5 166 216.5 225.5 227.5 318.5 238.5 184.5 226 141.5 113.5 75 36 185.5 327 226.5 108.5 302.5 116.5 273 350 188 356.5 164.5
34	0.997	11 1 307 245 200 184 231 293 300 348 45 227 247 57 335 1 127 249 68 91 315 221 57 116 238 58 287 127 273 127 5 216
35	0.999	93.2 65.4 166.4 132.4 344.1 279.4 337.6 301.3 197.6 56.2 36.8 9.2 325.8 334.3 24.4 157.8 291.1 301.1 148.4 112.9 141.3 296.6 128.7 125.4 341.4 129.9 244.6 73.8 321.5 157.6 300.7 107.5 254.4
36	0.969	82 118 228 228 58 60 154 108 20 234 212 262 236 196 220 116 12 226 178 122 126 76 266 114 256 108 320 100 266 30 124 246 60 186

ACF del codice di Barker Polifase con M=15

Codici binari con PSL massimo (I)

	M	PSL	Sample code
	6	2	110100
	8	2	10010111
	9	2	011010111
	10	2	0101100111
	12	2	100101110111
	14	2	01010010000011
	15	2	001100000101011
	16	2	0110100001110111
	17	2	00111011101001011
	18	2	011001000011110101
	19	2	1011011101110001111
	20	2	01010001100000011011
	21	2	101101011101110000011
	22	3	0011100110110101011111
	23	3	01110001111110101001001
	24	3	011001001010111111100011
G Coxson &	25	2	1001001010100000011100111
	26	3	10001110000000101011011001
J Russo,	27	3	01001011011101110000111
IEEE Trans	28	2	100011110001000100101101
	29	3	10110010010101000000011100111
on AES	30	3	100011000101010010000001111
Jan 2005	31	3	010101001001001100000001111
	32	3	00000001111001011010101001100
	33	3	0110011001010101010100001111111
	34	3	1100110011111111100001101001010101
	35	3	00000000111100101101010100110011
Radiotecnica e Ra	36	3	001100110001010010100000100000111110

Codici binari con PSL massimo (II)

	37	3	0010101110100001001110110111110011110
	38	3	00000001111000011010010101001100110
	39	3	0010011001101000010111110111100111100
	40	3	001000100010001111011100001110100101101
	41	3	0001110001110101001000000001101100100
	42	3	00010001000100011110111000011101001011010
	43	3	0000000101101100101011001100111000011100
	44	3	00001111111011001110110010110010101010111
	45	3	0001010101111000011001100011011011011111
	46	3	0000111100000011001111011110110100101010
	47	3	00001101001101001111110100001010001100110001000
	48	3	0001010101101011011000011110011001001111
	49	4	000010010101010111101100011110011110010001101111
	50	4	00001001011000011000111010101111000010011001101111
[51	3	000111000111111100010001100100101010100100100101
[52	4	0000100101000101101011100000111100110010010001101111
[53	4	00001001100101010101011111111000110100101
[54	4	0000100110011010100010100000101001011001111
	55	4	0000100110000100110101010000111100011001001001101111
	56	4	0000100110011011101010101010101000111101111
	57	4	0000100100110100010101000111011010100010001111
	58	4	000010001111001110010100010111001001111011010
[59	4	0000100100111010011100000010010100001010
[60	4	0000101010111000110111110000110010010111001100100101
[61	4	00000010110110100010011000100110001111001111
[62	4	00000001011010110011001100011010010110000
	63	4	00001001100111101010100010010000111000101
[64	4	010000001001000010100010111010011110011000110010001101111
[65	4	0000000101101110000001011000011011001101111
[66	4	000000011010011011010001010100011100111001111
[67	4	01000000101000001101100100110101010001111
	68	4	0000000100111100100101111000110110011000101
	69	4	000100110111111011011000010011010100000111010
Radiotecnica e Rac	70	4	011010000100110011101001110001100001001

<u>Lobi laterali</u>

Quanto è importante ridurre i lobi laterali?

Codici con ACF ideale

• E' possibile trovare una sequenza di impulsi con ACF ideale (lobi laterali a zero) ?

• Ci si può avvicinare di più a tale ACF usando i codici di Huffman, che richiedono modulazione di ampiezza e fase

Codice Polifase di Frank (I)

- Usando M valori di fase
- Numero di elementi N=M²
- Costruito dalle righe della matrice quadrata:

$$\phi_{pq} = \frac{2\pi}{M}(p-1)(q-1)$$
 $p,q = 1, \dots, M$

$$\phi_{pq} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \pi/2 & \pi & 3\pi/2 \\ 0 & \pi & 2\pi & 3\pi \\ 0 & 3\pi/2 & 3\pi & 9\pi/2 \end{bmatrix} \qquad s_{0pq} = e^{j\phi_{pq}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

Codice Polifase di Frank (II)

RRSN – DIET, Univ. di Roma "La Sapienza"

Codice Polifase di Frank (III)

Table 8.5 The Autocorrelation Sequence of a 16-Bit Frank Code

RRSN – DIET, Univ. di Roma "La Sapienza"

Radiotecnica e

Codice Polifase di Frank (IV)

Per N= 16
$$PSR = \frac{16}{\sqrt{2}} = 8\sqrt{2} = 11,3$$
 (21*dB*) (peggiore di Barker)

Per N grande $PSR = \pi \sqrt{N} = \pi M \implies 9.94 + 10 * \log_{10}(N)$

 $(N=100 ~~\sim 30 ~dB)$

Radiotecnica e Radiolocalizzazione

RRSN – DIET, Univ. di Roma "La Sapienza"

Codici Polifase P3 e P4 (I)

RRSN – DIET, Univ. di Roma "La Sapienza"

Codici Polifase P3 e P4 (III)

Filtro adattato al singolo impulso

• Per $\tau_p < T/2$:

$$\left|\chi_{P}(\tau,\nu)\right| = \left|\int_{0}^{T} s_{0}(t) \sum_{n=-\infty}^{\infty} s_{0}^{*}(t-n\cdot T+\tau) e^{j2\pi\nu t} dt\right|$$

Radiotecnica e Radiolocalizzazione

RRSN – DIET, Univ. di Roma "La Sapienza"

PAF del Barker 4

Autocorrelazione periodica perfetta!

PAF dei codici di Frank

RRSN – DIET, Univ. di Roma "La Sapienza"

PAF dei codici P4

P4 da 25 elementi

Autocorrelazione periodica perfetta!

CHIRP: linear frequency modulated signal

CHIRP: Time domain waveform (I)

CHIRP: Time domain waveform (II)

CHIRP: Time domain waveform (III)

Radiotecnica e Radiolocalizzazione

CHIRP: Frequency domain waveform (I)

AMPLITUDE SPECTRUM

PHASE SPECTRUM

CHIRP: Frequency domain waveform (II)

CHIRP: Frequency domain waveform (III)

Chirp approximation and sidelobes (I)

 Chirp autocorrelation (matched filter output)

$$g(t) = \sqrt{\frac{B}{T}} \frac{\sin\left[\pi \frac{B}{T} (T - |t|)t\right]}{\pi \frac{B}{T} t}$$

approximated with

$$g(t) \cong \sqrt{\frac{B}{T}} \frac{\sin[\pi Bt]}{\pi \frac{B}{T}t} = \sqrt{BT} \sin c [\pi Bt]$$

which is the Inverse Fourier Transform of a rectangle in the frequency domain

$$G(f) = \sqrt{\frac{T}{B}} rect_B(f)$$

Pulse compression technique (I)

 $r(t) = e^{j2\pi \left(f_{p}t + \frac{B}{T}\frac{t^{2}}{2}\right)} rect_{T}(t)$ Received signal **Matched Filter** • g(t) **r(t)** H(f) $h(t) = \sqrt{\frac{B}{T}} e^{-j2\pi \left(-f_p t + \frac{B}{T} \frac{t^2}{2}\right)} rect_T(t)$ matched filter impulse response $\sqrt{\frac{B}{T}} \frac{\sin\left[\pi \frac{B}{T}(T-|t|)t\right]}{\pi \frac{B}{T}t}$ $g(t) = r(t) * h(t) = \int r(\tau)h(t-\tau)d\tau$ matched filter output $e^{j2\pi f_p t}$ $\sin x/x$ signal envelope: with -4dB aperture =1/B. \checkmark g(t) autocorrelation of the The pulse has been input signal ($f_d=0$). compressed to: ✓ for $f_d \neq 0$ mismatched filter $\tau_c = 1/B < T$

Pulse compression technique (II)

Pulse compression technique (III)

Pulse compression technique (IV)

Matched filter output : sidelobes

SAW pulse compression (I)

Radiotecnica e

SAW pulse compression (II)

- In a pulse compression system, a very brief pulse consisting of a range of frequencies passes through a dispersive delay line (SAW expander) in which its components are delayed in proportion to their frequency.
- In the process the pulse is stretched; for example a 1ns pulse may be lengthened by a factor of 1000 to a duration of 1µs before it is upconverted amplified and transmitted.
- A constant amplitude waveform is produced in which the frequency increases or decreases linearly by ∆f over the duration of the pulse

SAW pulse compression (III)

- The echo returns from the target are down converted and amplified
- It is then passed through a pulse compression filter which is designed so that the velocity of propagation is proportional to frequency
- The pulse is compressed to a width $1/\Delta f$
- The compressed echo yields nearly all of the information that would have been available had the unaltered 1ns pulse been transmitted.
- The amount of signal-to-noise ratio (SNR) gain achieved is approximately equivalent to the pulse time-bandwidth product β. τ.
- Most pulse compression systems use surface acoustic wave (SAW) technology to implement the pulse expansion and compression functions
- The maximum β . τ product that is readily available is about 1000.

SAW pulse compression (IV)

Chirp approximation and sidelobes

 Chirp autocorrelation (matched filter output)

$$g(t) = \sqrt{\frac{B}{T}} \frac{\sin\left[\pi \frac{B}{T} (T - |t|)t\right]}{\pi \frac{B}{T} t}$$

approximated with

$$g(t) \cong \sqrt{\frac{B}{T}} \frac{\sin[\pi Bt]}{\pi \frac{B}{T}t} = \sqrt{BT} \sin c [\pi Bt]$$

which is the Inverse Fourier Transform of a rectangle in the frequency domain

$$G(f) = \sqrt{\frac{T}{B}} rect_B(f)$$

Distorsioni lineari (I)

Effetto delle distorsioni • Il sistema reale sarà affetto da distorsioni (non sarà esattamente uguale a quello ideale): tutte le distorsioni di sistema possono essere sintetizzate in un filtro distorcente posto in cascata al filtro adattato ideale:

• Nell'ipotesi di piccole distorsioni la $H_d(f)$ può essere sviluppata in serie arrestandosi al primo termine

$$H_{d}(f) = A(f)e^{jB(f)} \rightarrow \begin{cases} A(f) = 1 + a_{1}\cos(2\pi C_{a}f) \\ e^{jB(f)} = e^{jb_{1}\sin(2\pi C_{b}f)} \cong 1 + jb_{1}\sin(2\pi C_{b}f) \end{cases}$$

- a₁: valore di picco della componente di ampiezza;
- b₁: valore di picco della componente di fase;
- C_a: frequenza ripple di ampiezza;
- C_b: frequenza ripple di fase;

$1+a_1\cos c_{\omega}$

Distorsioni lineari (II)

• Il segnale di uscita distorto è dato da:

$$s_{o}^{d}(t) = s_{o}(t) + \frac{a_{1}}{2}s_{o}(t + C_{a}) + \frac{a_{1}}{2}s_{o}(t - C_{a}) \longrightarrow \text{ effetto della distorsione di ampiezza;}$$

$$s_{o}^{d}(t) = s_{o}(t) + \frac{b_{1}}{2}s_{o}(t + C_{b}) - \frac{b_{1}}{2}s_{o}(t - C_{b}) \longrightarrow \text{ effetto della distorsione di fase;}$$

$$ECHI$$

$$APPAIATI$$

L'utilizzo di filtri reali anziché ideali comporta la presenza di un disturbo additivo dato dagli echi appaiati: tanto maggiore è $a_1 \& b_1$ tanto maggiore è l'ampiezza dell'eco, tanto minore è $C_a \& C_b$ (ripple lento) tanto più gli echi appaiati compaiono vicini al segnale utile \Rightarrow dalle specifiche di dinamica si può ricavare la massima distorsione ammissibile (valore massimo $a_1 \& b_1$).

Frequency domain weighting (I)

 To control sidelobes of the compressed waveform, amplitude weighting with appropriate tape functions can be used

Taking the Inverse Fourier Transform, we have in time domain

$$g(t) \cong \sqrt{BT} \text{ sinc } [\pi B t] \longrightarrow g(t) \cong \sqrt{BT} \text{ sinc } [\pi B t] * w(t)$$

Frequency domain weighting (II)

using appropriate taper function, allows to control sidelobes

Radiotecnica e Radiolocalizzazione

RRSN – DIET, Univ. di Roma "La Sapienza"

Analog vs. Digital domain operations

usually compression is applied in the sampled domain

• Starting from an approximately rectangular chirp spectrum (sampled in frequency at 1/T)

$$g(t_n) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} e^{+j\frac{2\pi}{T}kt_n} = \frac{\sin\left[\frac{\pi}{T}(N-1)t_n\right]}{\sin\left[\frac{\pi}{T}t_n\right]}$$
 Zeros of NUM: $t_n = \frac{kT}{N-1}$
Zeros of DEN: $t_n = kT$

which is the Inverse Fourier Transform of a rectangle in the frequency domain

$$g(t_n) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} w_k e^{+j\frac{2\pi}{T}kt_n} \quad \text{with} \quad w_k = W(\frac{k}{T})$$

Radiotecnica e Radiolocalizzazione

1 0

Compressed waveform quality parameters

 $\begin{cases} Side Lobe Level \\ SLL = \frac{Amplitude of the highest Side Lobe}{Main Beam Peak} \\ Side Lobe Ratio \end{cases}$

SLR=(SLL)⁻¹

Generally achieved at the expense of:

- Efficiency $\eta = \frac{\left(\sum_{k=0}^{N-1} w_k\right)^2}{N \sum_{k=0}^{N-1} w_k^2}$
- **3 dB resolution**

 $w_k \rightarrow$ taper coefficients

Taylor (1953):

- Symmetric weights yield lower sidelobes
- The sidelobe decay depends on the discontinuity in the aperture distribution and in its derivatives.
- A weight distribution with nonzero external elements (pedestal) is more efficient

Common used taper functions

	Efficiency	PSL (dB)	Main lobe width
	η		(w.r.t) 1/B.
Uniform	1	-13.3	0.89
Cosine	0.81	-23	1.19
Cosine squared (Hanning)	0.67	-32	1.44
Cosine squared on 10 dB pedestal	0.88	-26	1.08
Cosine squared on 20 dB pedestal	0.75	-40	1.28
Hamming	0.73	-43	1.30
Dolph Chebyshev	0.72	-50	1.33
Dolph Chebyshev	0.66	-60	1.44
Taylor n-bar=3	0.9	-26	1.05
Taylor n-bar=5	0.8	-36	1.18
Taylor n-bar=8	0.73	-46	1.30

Triangle (Bartlett) Window

- Main Beam width (between zero crossing) is twice that of the uniform window
- Zeros of order 2 in the Fourier Transform
- SLR≅26dB=2*13dB
- Decay SL ∝ 1/x² (-12dB/oct) (discontinuity in the first derivative)

$\cos^{\alpha}(x)$ Windows \rightarrow Hanning Window (α =2)

- It does not require extra memory and is controlled by a single parameter.
- Wide enlargement of the main lobe
- Low efficiency: η=0.67
- SLR=32dB
- SL Decay ∝ 1/x³ (-18dB/oct) (discontinuity in the second derivative)

Hamming Window

Dolph-Chebyshev Window

RRSN – DIET, Univ. di Roma "La Sapienza"

Dolph-Chebyshev Window (2)

For this reason, such taper function is not used in practice. The Taylor taper function is studied to solve such undesired feature, while keeping the nice properties of the Dolph-Chebyshev solution.

Taylor n-bar Window (2)

