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Johann Carl Friedrich Gauss

Born:1777 Brunswick, Germany
Died: February 23, 1855, Gottingen, Germany

By the age of eight during arithmetic class he
astonished his teachers by being able to instantly
find the sum of the first hundred integers.

« Attended Brunswick College in 1792, where he
discovered many important theorems before even
reaching them in his studies

* Found a square root in two different ways to fifty
decimal places by ingenious expansions and
interpolations

« Constructed a regular 17 sided polygon, the first
advance 1n this matter in two millennia. He was
RadioTecnica e RadioLocalizzazione only 18 when he made the discovery
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Ideas of Gauss

» (Gauss was a mathematical scientist with interests in so many areas as a
young man including theory of numbers, to algebra, analysis,
geometry, probability, and the theory of errors.

» His interests grew, including observational astronomy, celestial
mechanics, surveying, geodesy, capillarity, geomagnetism,
electromagnetism, mechanism optics, and actuarial science.

* In 1805 Adrien-Marie Legendre published a paper on the method of least
squares. His treatment, however, lacked a ‘formal consideration of
probability and it’s relationship to least squares’, making 1t impossible to
determine the accuracy of the method when applied to real observations.

* Gauss claimed that he had written colleagues concerning the use of least
squares dating back to 1795
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Probabilistic error theory

 (Gauss

 Published ‘The theory of the Motion of Heavenly Bodies’ in 1809. He
gave a probabilistic justification of the method,which was based on the
assumption of a normal distribution of errors. Gauss himself later
abandoned the use of normal error function.

 Published ‘Theory of the Combination of Observations Least Subject to
Errors’ in 1820s. He substituted the root mean square error for
Laplace’s mean absolute error.

« Laplace Derived the method of least squares (between1802 and 1820)
from the principle that the best estimate should have the smallest ‘mean
error’ - the mean of the absolute value of the error.
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Treatment of Errors

Using probability theory to describe error
Error will be treated as a random variable
Two types of errors

Constant-associated with calibration

Random error
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Error Probability Density Function

* Gauss began his study by making two assumptions:
— Random errors of measurements of the same type lie within fixed limits

— All errors within these limits are possible, but not necessarily with equal
likelihood

We define the function ¢(X) with thesame meaningas a density function with

the followingproperties.
— The probability of errorslying within the interval(x, x +dx) is ¢(X)dx
—Smallerrorsare morelikely tooccur thanlarge ones
— Positiveand negativeerrors of the same maginitudeare equallylikely,@(X) = ¢(—X)
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Mean and Variance

Define k = j Xp(X)dx
In many cases assume k=0

Define mean square error as

m’ = Tx2¢(x)dx

If k=0 then the variance will equal m’
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2
Reasons for m

. m2 1s always positive and 1s simple.

» The function 1s differentiable and integrable unlike the absolute
value function.

* The function approximates the average value in cases where
large numbers of observations are being considered, and 1s
simple to use when considering small numbers of observations.
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Variance

If k#0 then variance equals m’—k’

Suppose we have independent random variables {e,€',e",...}
with standard deviation 1 and expected value 0. The
linear function of total errors is given by E = je+ 1'e'+...

K K
Now the variance of Eis givenas M?*=> ale’=> 4
i=1 i=1

This is assuming every error falls within 21 standard
deviations from the mean
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Gaussian pdf (I)

A random variable X is said to be normally distributed with mean p and variance
D . . B . . .
o* if its probability density function (pdf) is

| 1
fx(x)

(z — p)’°
—exp |————|, —00<z<o0o0.
V2o 20°

03

f(x)

The Normal or Gaussian pdf

Gaussian or Normal pdf, N(2, 1.5?%)

is a bell-shaped curve that is symmetric about
1
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Gaussian pdf (II)

The Gaussian pdf A (i, 0?) is completely characterized by the two parameters
i and o2, the first and second order moments, respectively, obtainable from the

pdf as

)

92 % o &
=305 = 2,05 =1)
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Gaussian pdf (I1I)

Given a real number =, € R, the probability that the random variable X ~
N (p, 0%) takes values less or equal z, is given by

i Ta Ta 1 r— )2
PriX <z.} = / f(x)dz = / ———— exp [——(1 fl) ] dzx,
— 00 — 00 \"j QTO 20'“

represented by the shaded area

0.98p

0.6

0.4

Probability evaluation using pdf
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Gaussian pdf (IV)

To evaluate the probability in (1.4) the error function, er f(x), which is related
with A(0, 1),
| 1 " 2 /9 , ,
erf(r) =— | exp ¥ /“dy (1.5)
vam Jo

plays a key role. In fact, with a change of variables, (1.4) may be rewritte
05 —erf(c==2) for z. < p

PriA < 2,1 =
0.5+ erf( —‘1"1;“ ) for x,>pu

1
0.5 /
g o
)
-0.5 /
. [ IE——
-3 -2 -1 0 1 2 3
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Gaussian pdf (V)

complementary Error Function

The complementary error function is defined as

erfcx = 1—erfx

Erf X + ErfC)J

..........................

_ _ _ _ _ Superposition of the Error and complementary Error Functions
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Gaussian pdf (VI)

In various aspects of robotics, in particular when dealing with uncertainty in
mobile robot localization, it is common the evaluation of the probability that a

random variable Y (more generally a random vector representing the robot loca-
tion) lies in an interval around the mean value . This interval is usually defined
in terms of the standard deviation, o, or its multiples.

Using the error function, (1.5),the probability that the random variable X lies
in an interval whose width is related with the standard deviation, is

Pri{|X —ul <o} = 2.erf(1) =0.68268
)

X —p|l <20} = 2.erf(2) =0.95452
X —pul <30} = 2.erf(3)=0.9973

-

In other words, the probability that a Gaussian random variable lies in the in-
terval [u — 30, p + 30] is equal to 0.9973.
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Gaussian pdf (VII)

Probability of X taking values in the interval [ — o, p+ o], p =2,06 =15
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Gaussian pdf (VIII)

Another useful evaluation is the locus of values of the random variable X
where the pdf is greater or equal a given pre-specified value K, i.e.,

1 (x—pu)?®] _ .. (x—p)2
——exp |————| 2 K, &= ——— <K
V2To 20° 204
with K = — In(v/2mo K). This locus is the line segment
w | n—ovVK <z <pu+ovKD
“ [
/ \
I" "I
:" "".
S YA R —
/ ; : "".
.'"I. : 'I‘\.
, -\

J iS gr C ‘ : C C f
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Gaussian Random Vector (1)

A random vector X = [X;. X5. ... X,,]7 € R"™ is Gaussian if its pdf is
p
| 1 1 = |
i, - i e o Wi D
fx(x) CORENE exp{ 2(1 mx) X (x— mx)
where

e my = FE(X) is the mean vector of the random vector X,
e Yy = E[(X — mx)(X —myx)7] is the covariance matrix,
e n = dimX is the dimension of the random vector,
also represented as
X ~N(mx,Xx).
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Gaussian Random Vector (1)

The mean vector my is the collection of the mean values of each of the random
variables X,

Xi mx,
Xs mx,
my = F _ =
I X, i | my, |

The covariance matrix is symmetric with elements,

¥y = ok =
i E(X) —mx, 2 E(Xy—mx, )(Xo—mx,) ... E(X;—mx,)(X,—mx,) i
E(Xs —myx,)(X; —my,) E(Xs5 — m_\'j_)'2 oo E(Xg—mx,)(Xn—mx,)
| E(X,, —mx.,.)(X1 —mx,) i E(X, —mx,)? |

The diagonal elements of X are the variance of the random variables X; and the
generic element X;; = E(X; — mx, )(X; — mx, ) represents the covariance of the
two random variables X; and X;.
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Gaussian Random Vector (111)

When studying the localization of autonomous robots, the random vector X
plays the role of the robot’s location. Depending on the robot characteristics and
on the operating environment, the location may be expressed as:

e a two-dimensional vector with the position in a 2D environment,

e a three-dimensional vector (2d-position and orientation) representing a mo-
bile robot’s location in an horizontal environment,

e a six-dimensional vector (3 positions and 3 orientations) in an underwater
vehicle

When characterizing a 2D-laser scanner in a statistical framework, each range
measurement is associated with a given pan angle corresponding to the scanning
mechanism. Therefore the pair (distance, angle) may be considered as a random
vector whose statistical characterization depends on the physical principle of the
sensor device.

The above examples refer quantities, (e.g., robot position, sensor measure-
ments) that are not deterministic. To account for the associated uncertainties, we
consider them as random vectors. Moreover, we know how to deal with Gaussian
random vectors that show a number of nice properties; this (but not only) pushes

_ _ _us to consider these random variables as been governed by a Gaussian distribution.
RadioTecnica e RadioLocallizzazione
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2D Gaussian Random Vector (I)

be a second-order Gaussian random vector, with mean,
X my
EZ|=E| L |=]
} my

2
T‘ N ! 0-‘\' CT-\. }. ]

and covariance matrix,

2
oxy Oy

where 0% and o3 are the variances of the random variables X and Y and o yy is
the covariance of X and Y, defined below.

The covariance oxy of the two random variables X andY is the

number

oxy = E[(X —mx)(Y — my)]
wheremyx = E(X) andmy = E(Y).
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2D Gaussian Random Vector (II)
Oxy E(XY)—mxE(Y)—myE(X)+ mxmy
E(XY) - E(X)E(Y)

E(X)—mxmy.

o The correlation coefficlent of the variables X and Y is defined as

, oxy
"l
' T x Oy 2 :
XYY v o Ox POXx Oy
£l — 2
| | PoOx0Oy Ty
pl < 1. Oxy| < Ox0Oy.

For this second-order case, the Gaussian pdf particularizes as, with z = [z y|" €

fRQ ,

1 1 .
() 23 T
f(2) = ———=exp|—z[z—mxy—my|E [z —mx y—my
2/ dety 2 | | ]
| [ 1 ( (r — mx _)"3 2p(x —mx )(y — my) N (y —my ]2
= . - exp |— a7 — = —_ —
2Tox Oy \,.""l — p-’ 2(1 - P ) T Tx Oy Ty
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2D Gaussian Random Vector (III)

Two random variables X andY are called independent if the joint pdf, f(x.vy)
equals the product of the pdf of each random variable, f(x), f(y), i.e,

flz,y) = f(z)f(y)

In the case of Gaussian random variables, clearly X and Y are independent
when p = (. This issue will be further explored later.

Two random varibles X andY are called uncorrelated if their covariance is
zero, 1.e.,

oxy = E[(X —mx)(Y —my)| =
which can be written in the following equivalent forms:
p=0, E(XY)=E(X)E(Y)

If two random variables X and Y are independent, then they are
uncorrelated, i.e.,

flz,y) = f(z)f(y) = E(XY)=F(X)E(Y)

but the converse is not, in general, true.
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2D Gaussian Random Vector (IV)

Variance of the sum of two random variables Ler X and Y be two
random variables, jointly distributed, with mean mx and my and correlation

coefficient p and let

Z=X+4Y.

Then,
E(Z)=mz =EX)+ E(Y) =mx + my
‘Tf’ = E[(‘Z — mz)")')] - rr{ + 2pox0Y + n'{)

Variance of the sum of two uncorrelated random variables
Let X andY be two uncorrelated random variables, jointly distributed, with

mean my and my and let

Z=X+Y.

Then,
0 0

)
0z = 0x T 0y
i.e., if two random variables are uncorrelated, then the variance of their sum

equals the sum of their variances.
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2D Gaussian Random Vector (V)

E(X)~0. E(Y)~0, f'rx-' G -1, p=0 E(X)=0, E{(Y)=0, Gl-l 5, ﬁy-' 5, p=0

Tix.y)

EPQ)=0, E(Y)=0, Gx' 1, (-.Y..z 5, p=0 E(X)=0, E(Y)=D f’»x-." a,~1.0, p=0

fixy)
fixy)
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1. E(Y)=2 15 [ 0
E-1LEM-LoyiioyrlipAal E)=1, E(V)=2, 0,15 0,15 p=-0.4

2D Gaussian

Vector (VI) g—— Bl

L gt gyt e EQO=1. E(Y)}=2. o, =15 o, ~1.5 p-02

=
- =
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= =
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2D Gaussian Random Vector (VII)

Locus of constant probability

Similarly to what was considered for a Gaussian random variable, it is also useful
for a variety of applications and for a second order Gaussian random vector, to

evaluate the locus (r. y) for which the pdf is greater or equal a specified constant,
]\-; , Le.,

(N I - | , -1 Tl < 2
(1,y) : —F—=exp |zl —mx y—my|X |t —mx y—my| | = Ky
2m v dety ‘

which is equivalent to

r \ ) P I o )?l i p -
{I.I.y.ri‘_r"h'l_\' y — my | X . ' . ] ';-.I\}
| y — my

K = —2In(2rK{VdetY).

with
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2D Gaussian Random Vector (VI1II)

0os abd

(T oms 4

oo 0834

A

Locus of (z.y) such that the Gaussian pdf is less than a constant
K for uncorrelated Gaussian random variables with my = 1, my = 2 - a)
ox = 0y = lb) ox = 2. Ty = l,C) ox = 1. Ty = 2
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2D Gaussian Random Vector (I1X)

004 Q04+,

03 -4 DD«

0I5~ 100«

qLocus of (z,y) such that the Gaussian pdf is less than a constant K c)
for correlated variables . my =1, my =2, ox = 1.5, oy =2-2a) p=0.2,b) S

P = ()T C) P = —0.2, d) p= —-0.7
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2D Gaussian Random Vector (X)

The locus in (2.16) is the border and the inner points of an ellipse, centered in
(my, my). The length of the ellipses axis and the angle they do with the axis =
and y are a function of the constant &', of the eigenvalues of the covariance matrix

¥ and of the correlation coefficient. We will demonstrate this statement in two
different steps. We show that:
1. Case 1 -if ¥ in (2.16) is a diagonal matrix, which happens when p = 0, i.e.,
X and Y are uncorrelated, the ellipse axis are parallel to the frame axis.
2. Case 2 - if ¥ in (2.16) is non-diagonal, i.e, p # 0, the ellipse axis are not
parallel to the frame axis.

In both cases, the length of the ellipse axis is related with the eigenvalues of
the covariance matrix ¥ in (2.3) given by:

l . . i ‘ ‘ %\ ‘ ‘ 'y

Moo= g lok otk — o +a0kad?|,  @17)
1T 0 9 g 9 10 9 9 -)-

Ao = 5 [ox + oy —y/ (ox — oy )* +doxoyp°| - (2.18)
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2D Gaussian Random Vector (XI)

Case 1 - Diagonal covariance matrix
When p = 0, i.e., the variables X and Y are uncorrelated, the covariance

matrix is diagonal,
w_|ox O
71 0 oy

and the eigenvalues particularize to \; = 0% and Ay = o7-. In this particular case,
illustrated in Figure 2.5, the locus (2.16) may be written as

. ,‘) p .‘)
: , r—my)” y —my)” =
{(.r.,l/,) I { ‘ x) -+ Y - Y < [\}

) ] £
(T.\— ("TY

‘ - (z—my)? (4 — my)?
(z,y) : —— .)'\' + Y - .,” <1;.
' Koy, Koy

or also,
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2D Gaussian Random Vector (XII)

e x-axis with length 2oy K

ellipse that is the border of the locus
e y-axis with length 20y VK.

\sigma_X \sqrt[K)

4
1

s e e e g e e

|

—
-—

Locus of constant pdf: ellipse with axis parallel to the frame axis
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2D Gaussian Random Vector (XIII)

Case 2 - Non-diagonal covariance matrix
When the covariance matrix X is non-diagonal, the ellipse that bor-
ders the locus has center in (my, my ) but its axis are not aligned with the

coordinate frame. In the sequel we evaluate the angle between the ellipse axis and
those of the coordinate frame. With no loss of generality we will consider that
my = my = [, i.e., the ellipse is centered in the coordinated frame. Therefore,
the locus under analysis is given by

, , |z .
{{.r.y) [z y]B [ . ] < ]\}

where ¥ is the matrix As it is a symmetric matrix, the eigenvectors
corresponding to distinct eigenvalues are orthogonal.
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2D Gaussian Random Vector (XIV)

When ox # Oy

the eigenvalues are distinct, the corresponding eigenvectors are
orthogonal and therefore X has simple structure which means that there exists a
non-singular and unitary coordinate transformation 7" such that

Y=TDT"

where
T=|vy | vu|, D=diag()\, o)

and v1, vo are the unit-norm eigenvectors of ¥ associated with A\; and As.

{(.r.y_] |z y]TD_]T-I [ ; ] < [\'}.
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2D Gaussian Random Vector (XYV)

Denoting
w - I
wo Y

and given that 77 = T, it is immediate that

-
| . § 1A O wy | .
(wy,wy) : |wy wo) [ 0 A ] [ W ] < K

that corresponds, in the new coordinate system defined by the axis w; and w»,
to the locus bordered by an ellipse aligned with those axis. Given that »; and v
are unit-norm orthogonal vectors, the coordinate transformation defined
corresponds to a rotation of the coordinate system (x, ¥ ), around its origin by an
angle

/

| 200 v Oy T T
-] _/. J X OY) i P > i\ v
oy 5 tan 5 ) 4= O < 1 X 0}
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2D Gaussian Random Vector (XVI)

we ws
4 | 1 ) -
(wy,w9) : — +—— <1

that corresponds to an ellipse having

f
f
i

e wjy-axis with length 2/ K A,

e wy-axis with length 2/ K A\

RadioTaenica & Radislscalizzzions Ellipses non-aligned with the coordinate axis = and y.
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Error Ellipsoid (I)

Let X be a n-dimensional Gaussian random vector, with
X ~N(myx,Xx)

and consider a constant, 1 € R. The locus for which the pdf f(x) is greater or

equal a specified constant K ,i.e.,

1 1 R
{J' : CSREDILE exp —3[.17 = m._\-]TZ}l [z — m_\-]] > ]\1} (4.1)

—

which is equivalent to
{.l' o — m.,\-]TZ;—l [z —mx] < K} (4.2)

with K = —21In((27)"/2K;|%| 1/2) is an n-dimensional ellipsoid centered at the
mean my and whose axis are only aligned with the cartesian frame if the covari-
ance matrix X is diagonal. The ellipsoid defined by (4.2) is the region of minimum
volume that contains a given probability mass under the Gaussian assumption.

RadioTecnica e RadiolLocalizzazione

RRSN - DIET, Universita di Roma “La Sapienza” Gaussian RV & Error Ellipse — 37



Error Ellipsoid (1I)

When in (4.2) rather than having an inequality there is an equality;,
{‘1' ) [J' —_ m‘\-]T:{.l [.L‘ — m_\-] = [\'}
this locus may be interpreted as the contours of equal probability.
Definition 4.1 Mahalanobis distance 7he scalar quantity
}T

[.r — My ZK—I [tl' — m‘\-] =K

is known as the Mahalanobis distance of the vector x to the mean myx.
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Error Ellipsoid (I111)

The Mahalanobis distance, is a normalized distance where normalization is
achieved through the covariance matrix. The surfaces on which K is constant are
ellipsoids that are centered about the mean my, and whose semi-axis are VK
times the eigenvalues of Xy, as seen before. In the special case where the ran-
dom variables that are the components of X are uncorrelated and with the same
variance, i.e., the covariance matrix ¥ is a diagonal matrix with all its diagonal
elements equal, these surfaces are spheres, and the Mahalanobis distance becomes
equivalent to the Euclidean distance.
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Error Ellipsoid (IV)

For decision making purposes (e.g., the field-of-view, a validation gate), and
given my and Xy, it is necessary to determine the probability that a given vector
will lie within, say, the 90% confidence ellipse or ellipsoid given by (4.3). For
a given K, the relationship between K and the probability of lying within the

ellipsoid specified by K is, [3],

n=1; Pr{x inside the ellipsoid} = —\%TT + 2erf(VK)

n=2; Pr{xinside the ellipsoid} =1 — ¢ %/

n=3; Pr{x inside the ellipsoid} = —\/% + 2er f(VK) — \/g\/rc"‘ﬁ
(4.4)
where n is the dimension of the random vector. Numeric values of the above
expression for n = 2 are presented in the following table
Probability K

90% 1.386
60% 1.832
— 70% 2408
80% 3.219
90% 4.605

For a given K the ellispoid axis are fixed. The probability that a given value of
the random vector X lies within the ellipsoid centered in the mean value, increases

RadioTecnica e RadioLc¢ With the increase of K.
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Derivation of Error Probability (I)

Result 4.1 Given the n-dimensional Gaussian random vector X, with mean my
and covariance matrix Yx , the scalar random variable K defined by the quadratic
form

lx — n'z_\-}TEK-l zc—my| =K (4.5)

has a chi-square distribution with n degrees of freedom.

Proof: see, p.e., in [1].

The pdf of K in (4.5), i.e., the chi-square density with n degrees of freedom

is, (see, p.e., [1])

1 >
f(k) = —4——k™2 exp~

|-
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Derivation of Error Probability (11)

The probability that the scalar random variable, K in (4.5) is less or equal a
given constant,

Pr(K < x2) = Prile —ma] S - mx] <2} =p

is given in the following table where n is the number of degrees of freedom and
the sub-indice p in \f) represents the corresponding probability under evaluation.

nix 3.995 \%.99 \3.975 \(2).95 \%.sm \3.7.—3 \%.50 \3.2.5 \tzj 10 \5.05
1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039
2 10.6 9.21 7.38 599 461 LAt 1.39 0575 0.211 0.103
3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352
4 14.9 13.3 11.1 949 7.78 5.39 3.36 1.92 1.06 0.711

From this table we can conclude, for example, that for a third-order Gaussian
random vector, n = 3,

Pr{K <6.25} = Pr{[z — mx|"X7 [z — mx] < 6.25} = 0.9
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Example (I)

Consider a mobile platform, moving in an environment and let P € R? be the
position of the platform relative to a world frame. P has two components,

P=|¥]

The exact value of P is not known and we have to use any particular localization
algorithm to evaluate P. The most common algorithms combine internal and
external sensor measurements to yield an estimated value of P.

The uncertainty associated with all the quantities involved in this procedure,
namely vehicle model, sensor measurements, environment map representation,
leads to consider P as a random vector. Gaussianity is assumed for simplicity.

Therefore, the localization algorithm provides an estimated value of P, denoted

as P, which is the mean value of the Gaussian pdf, and the associated covariance
malrix, i.e.,

P~ N(P,Xp)
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Example (1I)

At each time step of the algorithm we do not know the exact value of P, but we
have an estimated value, P and a measure of the uncertainty of this estimate,
given by X.p. The evident question is the following: ~Where is the robot?”, i.e.,
"What is the exact value of P "7 It is not possible to give a direct answer to this
question, but rather a probabilistic one. We may answer, for example: "Given P
and L p, with 90% of probability, the robot is located in an ellipse centered in P
and whose border is defined according to the Mahalanobis distance ". In this case
the value of K in (4.5) will be K = 4.61.

Someone may say that, for the involved application, a probability of 90% is
small and ask to have an answer with an higher probability, for example 99%.
The answer will be similar but, in this case, the error ellipse, will be defined for
K =9.21, ie. the ellipse will be larger than the previous one.
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