RadioTecnica e RadioLocalizzazione Sistemi e Sensori Radio

Pierfrancesco Lombardo

Telecomunicazioni

Comunicazioni si dividono in:

- **comunicazioni in senso stretto**: definizione di metodi e modalità per il trasferimento e la gestione della informazione prodotta da sorgenti;
- rilevamento: definizione di metodi e modalità per l'acquisizione dell'informazione su oggetti o sull'ambiente circostante ⇒ telerilevamento: l'acquisizione avviene senza contatto diretto.
- **localizzazione e sistemi di navigazione**: definizione di metodi e modalità per la misura della posizione di un utente e per identificare la direzione in cui moversi per raggiungere una posizione desiderata. ⇒ **radiolocalizzazione**: usando onde radio.

Sensori:

- **passivi**: attraverso un sistema di ricezione e elaborazione sono analizzati i segnali provenienti dalle emissioni degli oggetti di interesse (ad es. telecamere, radiometri, sonar passivi);
- attivi: gli oggetti di interesse vengono stimolati mediante trasmissione di segnali ⇒ i segnali riemessi dagli oggetti stessi in risposta a tali sollecitazioni sono ricevuti e elaborati dal sistema di rilevamento (ad es. radar, sonar attivi, lidar).

Programma del corso

<u>Parte I</u>: I Sistemi Radio per la localizzazione (Radiolocalizzazione)

- IL FUNZIONAMENTO DEL GPS
- SEGNALI E RICEVITORI GNSS
- IL FUNZIONAMENTO DEL RADAR
- RIVELAZIONE E MISURE RADAR
- IL RADAR DI IMMAGINE

Parte III: I Sensori Radio (La Radiotecnica)

- SCHEMI DI ARRARATI RICETRASMITTENTI)
- BLOCCHI COMPONENTI DELLA CATENA TX/RX
- PRESTAZIONE DEI BLOCCHI PRINCIPALI
- FORME D'ONDA e COMPRESSIONE
- I COLLEGAMENTI HERTZIANI
- L'EQUAZIONE RADAR
- FATTORI DI PERDITA

<u>Parte II</u>: Prestazioni dei Sistemi Radio (di radiolocalizzazione)

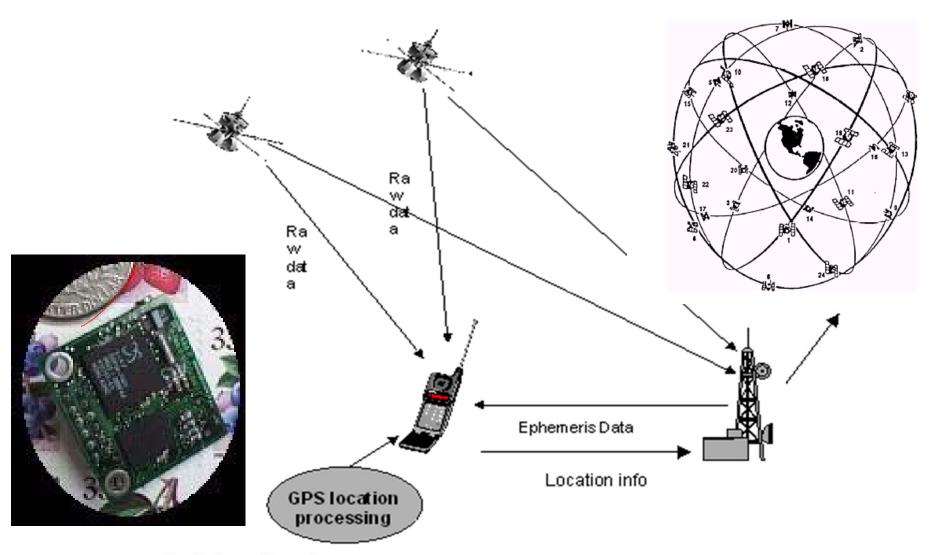
- ACCURATEZZA DI MISURA TEMPO E DISTANZA
- ACCURATEZZA MISURA DI ANGOLO
- ACCURATEZZA DI LOCALIZZAZIONE
- DISPONIBILITA', INTEGRITA', CONTINUITA'
- GPS DIFFENZIALE LOCALE E SU VASTA AREA
- GALILEO

Radar e sistemi localizzazione (I)

Tipologie di sistemi di localizzazione (bersagli cooperativi) & compiti relativi:

- Sistemi di navigazione satellitare

- Localizzare il moto del ricevitore (Stimare i parametri geometrici caratteristici: latitudine, longitudine, quota e vettore velocità)
- Tracciare il moto misurato (Stima della sequenza di posizioni e predizione)
- Trasmissione in broadcast porta ad ADS-B


- Sistemi di multilaterazione

- Rivelare la presenza di uno o più bersagli;
- Localizzare il bersaglio (Stimare i parametri geometrici caratteristici del bersaglio: distanza, angolo di azimuth, angolo di elevazione, velocità)
- Identificare il bersaglio (in base alle risposte)
- Tracciare il moto dei bersagli rivelati (Stima della sequenza di posizioni e predizione)

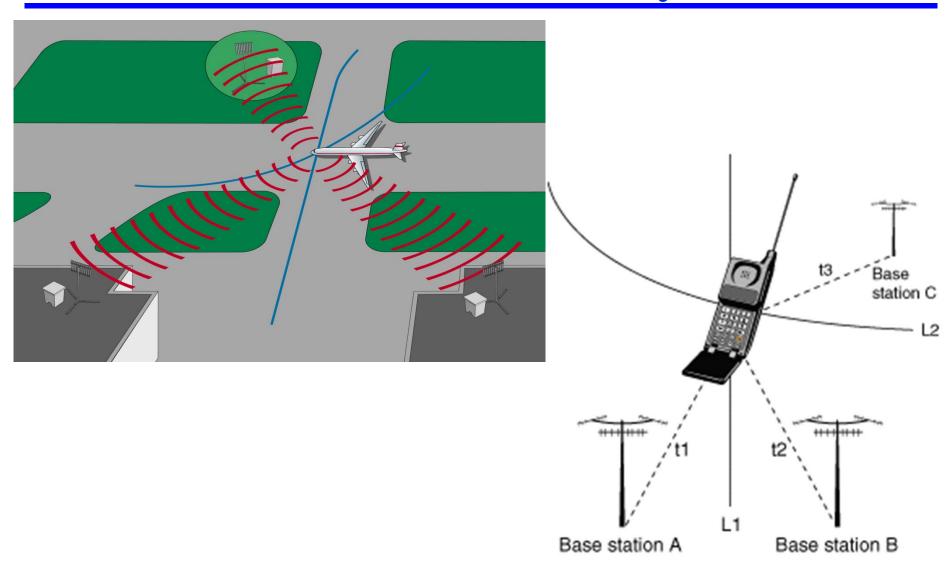
- Radar secondario:

- Rivelare la presenza di uno o più bersagli;
- Localizzare il bersaglio (Stimare i parametri geometrici caratteristici del bersaglio: distanza, angolo di azimuth, angolo di elevazione, velocità)
- Identificare il bersaglio (in base alle risposte)
- Tracciare il moto dei bersagli rivelati (Stima della sequenza di posizioni e predizione)

Classification of Localization Systems (II)

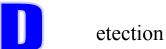
Classification of Localization Systems (III)

L'aereo / veicolo trasmette in "broadcast" la posizione GPS misurata a bordo e dati aggiuntivi ... una volta al secondo

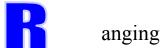


• ADS-B Message:

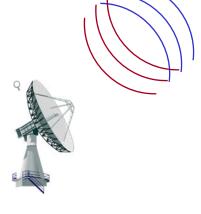
- Heading
- Altitude
- Intent
- Call sign
- Speed
- Distance
- Aircraft category


RadioTecnica e RadioLocalizzazione

Classification of Localization Systems (I)



RADAR



The RADAR it is used to:

DETECT THE PRESENCE OF A TARGET AND MEASURE ITS DISTANCE

by means of e.m. waves

Nowadays a radar system is also able to:

- measure the target position (range, azimuth, height)
- measure target velocity
- recognize different target echoes
- construct maps of terrain

Possible applications:

- <u>surveillance</u>: Target detection & localization (e.g. airplanes, ships, etc.);
- <u>environmental monitoring</u>: earth resources monitoring, etc.

Radar e sistemi localizzazione (I)

Tipologie di radar primario (bersagli non cooperativi) & compiti relativi:

Radar di ricerca:

- Rivelare la presenza di uno o più bersagli;
- Localizzare il bersaglio (Stimare i parametri geometrici caratteristici del bersaglio: distanza, angolo di azimuth, angolo di elevazione, velocità)
- Identificare il bersaglio (Stimare caratteristiche che permettano di riconoscerlo: velocità, caratteristiche di riflessione, estensione geometrica, profilo, ecc...)
- Tracciare il moto dei bersagli rivelati (Stima della sequenza di posizioni e predizione)

Radar di tracciamento

Stima accurata e continua della sequenza di posizioni di uno specifica bersaglio

- Radar di navigazione & SMR

- Identificazione di bersagli in moto (lento) sulla superficie
- Analisi della superficie e del contesto ambientale

- Radar di immagine

 Formazione di immagini radar della superficie o di oggetti sfruttando tempi di integrazione lunghi

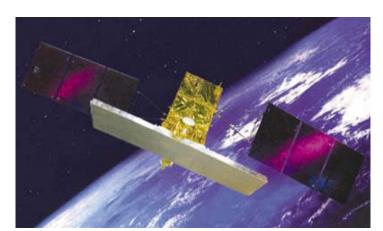

Classification of Radar Systems (I)

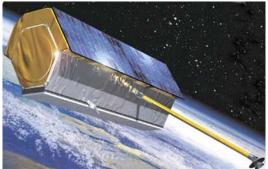
two main categories for SURVEILLANCE radars:

- Primary Radars
- → for non-cooperative targets; the radar elaborates the signal "unintentionally" reflected by the target
- Secondary Radars

→ for cooperative targets; the radar elaborates a signal "intentionally" transmitted by the target in response of a radar "interrogation"

secondary radar antenna primary radar antenna

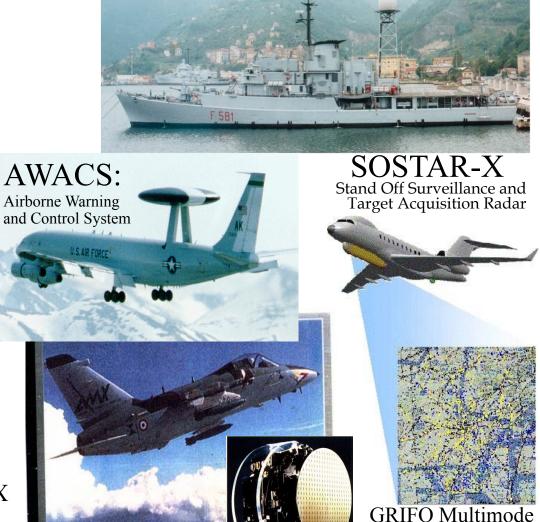




From: E. Giaccari, C.A. Penazzi - "A Family of Radars for Advanced Systems", Alta Frequenza, April 1989

Classification of Radar Systems (III)

- the platform on which they are mounted
- -Ground-Based (fixed/moving)
- -Ship-Borne
- -Air-Borne
- -Space-Borne/Space-Based



COSMO-SkyMed

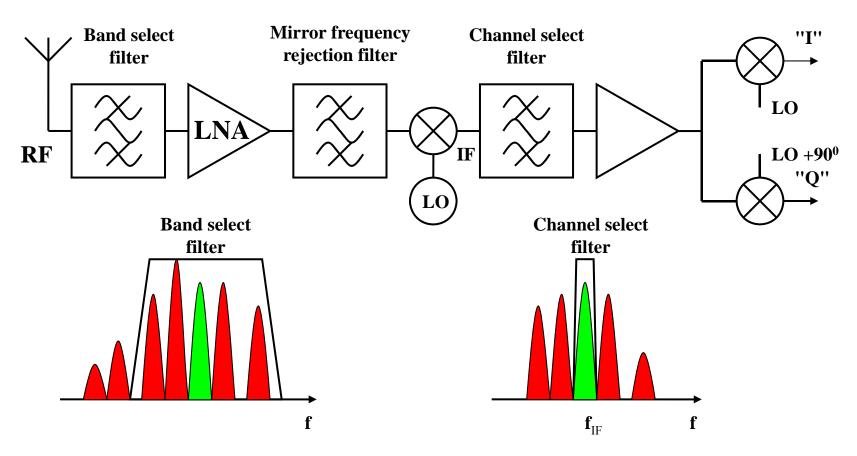
TerraSAR-X

RadioTecnica e Ratpli/otvocatijazdazide/spa

EMPAR

Courtesy of FIAR Radar

intro Kadio Tecnica e Localizzazione- 11


Elementi comuni (I)

- Rivelazione:

- Radar primario: riconoscere la presenza di forma d'onda nota (forma d'onda trasmessa) con
 - Ampiezza e fase di ricezione ignote (dipendenti dalla riflessione sulla superficie del bersaglio e distanza)
 - Ritardo ignoto (dipendente dalla distanza del bersaglio);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)
- Radar secondario: riconoscere la presenza di forma d'onda nota (forma d'onda trasmessa) con
 - Ampiezza e fase di ricezione ignote (dipendenti dalla distanza e fase di ritrasmissione del transponder)
 - Ritardo ignoto (dipendente dalla distanza del bersaglio);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)
- Sistema di multilaterazione : riconoscere la presenza di forma d'onda nota con
 - Ampiezza e fase di ricezione ignote (dipendenti dalla distanza e fase di ritrasmissione del transponder)
 - Ritardo ignoto (dipendente dalla distanza del bersaglio);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)
- Sistema di navigazione satellitare : riconoscere la presenza di una forma d'onda nota (attesa da uno specifico satellite) con:
 - Ampiezza e fase di ricezione ignote (dipendenti dalla distanza e fase di ritrasmissione del transponder)
 - Ritardo ignoto (dipendente dalla distanza del bersaglio);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio e posizione del satellite)
- Sistema di comunicazione (mobile)- acquisizione : riconoscere la presenza di una forma d'onda nota (pattern di inizializzazione atteso) con:
 - Ampiezza e fase di ricezione ignote (dipendenti dalla distanza e fase di ritrasmissione del transponder)
 - Ritardo ignoto (dipendente dalla distanza del bersaglio);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)

La Radio-Tecnica

Lo schema del ricevitore è elemento fondamentale e comune

Sistema: elementi comuni e specificità (Ia)

	Comune	Specifico
Forme d'onda	- Necessaria tolleranza alla Doppler -Bassi lobi laterali -forme d'onda per lavorare vicini alla saturazione (massimizzazione di potenza)	 impulsato vs. CW (radar vs. comunicazioni e nav. Sat) impulsi base semplici (radar secondario, multilaterazione, comunicazioni) compressione di impulso per diminuire potenza trasmessa ACF stretta (radar primario) ACF ciclica stretta (navigazione satellitare) Necessità di controllare PRF di sequenze (radar primario e Nav sat)
Gestione della dinamica	- Tenere i dinamica tutti i segnali	 - Dinamiche estremamente alte al variare del range (radar primario e secondario) - dinamica dominata dal clutter prima di cancellazione e da target & noise dopo (radar primario) - Dinamiche estremamente limitare (navigazione satellitare) - Variazione potenzialmente significativa della dinamica con il range, con impossibilità di discriminare su base tempi, ma una via (Comunicazioni) - loop aperto vs. loop chiuso - diverso numero di bit in ricezione a seconda delle applicazioni

Sistema: elementi comuni e specificità (Ib)

	Comune	Specifico
Gestione oscillatori e sincronizzazione		 - senza sincronizzazione (Radar secondario, radar di navigazione & SMR) - sincronizzazione tramite aggancio di fase (comunicazioni e navigazione satellitare) - sistema a catena coerente, ma requisiti di fase molto critici per cancellazione (radar primario)
Antenna	Reiezione disturbi indesiderati angolarmente	 -Antenne strette ed a lobi bassi (radar vs. comunicazioni e nav. Sat) - creazione di nulli in antenna per eliminare interferenze (radar, comunicazioni e nav. Sat) - antenne a fascio largo (GNSS e alcuni sistemi di comunicazione)
Potenza trasmessa	Dipendente dal range operativo	 necessità di alte potenze (o soluzioni anternative con lunghe integrazioni) per compensare decadimento con R4 (radar primario) Medie potenze per compensare decadimento con R2 (radar secondario, comunicazione, nav sat)
Frequenza di lavoro	Ottimizzata per distanze e contenimento dei disturbi	 - bande L o S, a bassa attenuazione di propagazione (radar ricerca , radar secondario, nav sat, MLAT, comunicazioni long range) - Banda X (radar di inseguimento) - Agilità di frequenza per reiezione disturbi (radar di ricerca, inseguimento, comunicazioni) - possibilità di scegliere entro una certa zona per reiezione disturbi (comunicazioni)

Elementi comuni (II)

- Localizzazione (stima di distanza e frequenza Doppler):

Radar primario:

- Ritardo ignoto (distanza del bersaglio);
- Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)

Radar secondario:

- Ritardo ignoto (distanza del bersaglio);
- Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)

Sistema di multilaterazione :

- Ritardo ignoto (distanza del bersaglio, a meno di tempo di trasmissione);
- Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)

Sistema di navigazione satellitare :

- Ritardo ignoto (distanza del bersaglio, a meno di tempo di trasmissione);
- Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio e posizione satellite)
- Sistema di comunicazione (mobile)- acquisizione : riconoscere la presenza di una forma d'onda nota (pattern di inizializzazione atteso) con:
 - Ritardo ignoto (dipendente dalla distanza del trasmettitore, utile per sincronizzazione);
 - Frequenza Doppler ignota (dipendente dalla componente radiale della velocità del bersaglio)

Sistema: elementi comuni e specificità (II)

	Comune	Specifico
Forme d'onda	- accuratezza di stima	 forme d'onda a banda larga per risoluzione (radar primari, SMR, rada di immagine, radar di navigazione) accuratezza ma non risoluzione (navigazione satellitare) alti SNR o lunghe integrazioni per accuratezza di stima PRF (bassa per ricerca, alta per tracking, continua=alta PRF per GNSS) Risoluzione di ambiguità in distanza (radar primari)
Sottosistema- Antenna		 - antenna a fascio stretto o antenna monopulse (radar primario e secondario) - antenna con fascio mltio stretto (SMR) - antenna monopulse (radar di inseguimento) - antenna a fascio molto largo (navigazione satellitare, MLAT) - antenna a fascio largo o molto largo (Comunicazioni) - Fasci in elevazione per stima di angolo

Prestazioni radiolocalizzazione satellitare

- i sistemi di navigazione globale: GPS, GLONASS e Galileo

- descrizione del sistema
- i segnali ed i codici usati per il posizionamento
- tecniche di stima stima distanza (accuratezza)
- schema di ricevitore GNSS (analisi di dettaglio)
- tecniche di elaborazione con il codice e con la fase

- le prestazioni: accuratezza, affidabilità, integrità, disponibilità

- effetto di ionosfera, troposfera, multipath e possibili correzioni
- valutazione delle prestazioni

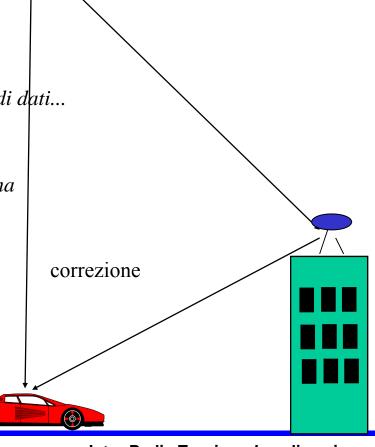
- il GPS differenziale

- principio di funzionamento
- schema di una stazione di riferimento
- il protocollo RTCM
- valutazione degli errori in modalità differenziale

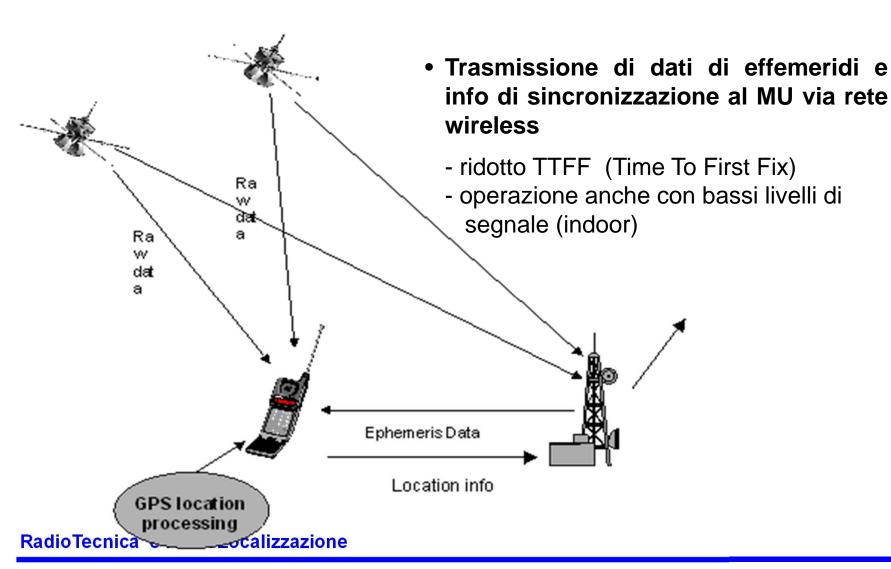
- le tecniche di "augmentation"

- WAAS ed EGNOS
- l'evoluzione verso Galileo

Le stazioni differenziali


• Installazione prevista:

- ricevitore GPS: con capacità RTCM


- distribuzione in rete su TCP-IP: software di selezione e trasmissione del flusso di dati...

- accesso iniziale da pagina WEB illustrazione, registrazione ed accesso al sistema

- terminale utente e software relativo sviluppo di software client tcp...

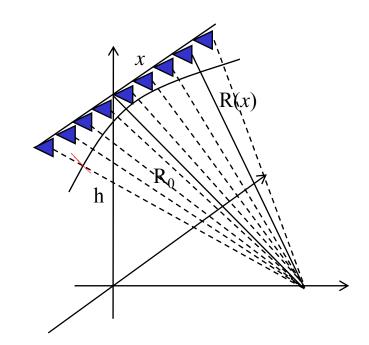
Assisted -GPS

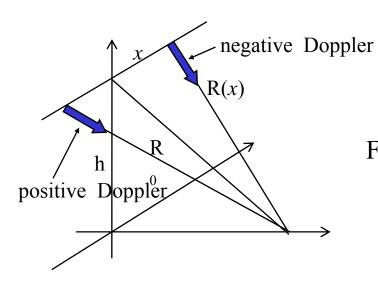
Assisted -GPS

• Ad oggi è la soluzione più affidabile e con prestazioni migliori, anche se ha impatto sia sul MU che sulla infrastruttura di rete

• SiRF per Nokia ed Ericsson:
A-GPS con ridotto consumo di potenza (batterie)
dimensioni limitate (per integrazione in MU)

http://www.sirf.com

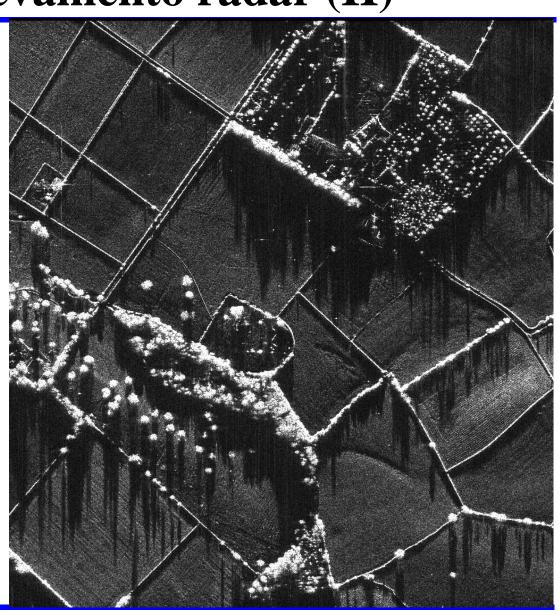



 Lucent e Qualcomm dichiarano interesse in A-GPS come soluzione di lungo termine

Il principio di formazione delle immagini SAR

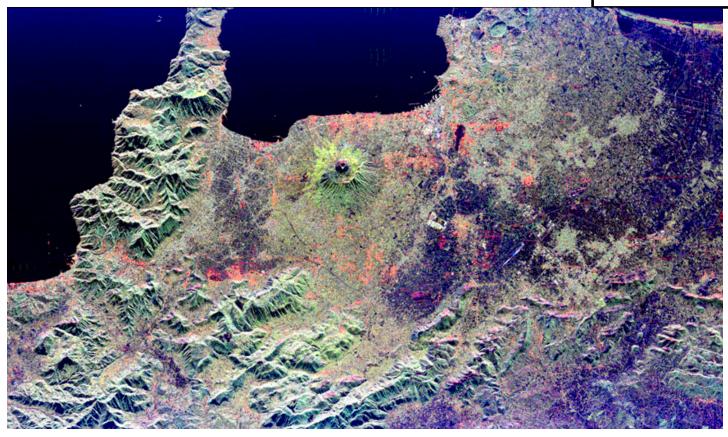
Radar ad Apertura Sintetica

Synthetic Aperture Radar (SAR)


Frequenza Doppler funzione del tempo

Sistema di telerilevamento radar (II)

ESEMPIO: Radar di immagine da aereo


High-resolution (<1 m) DRA X band image of typical rural scene British Crown Copyright 1997/DERA

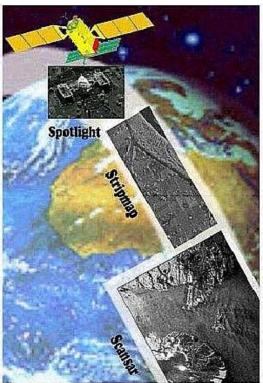
From: C.J. Oliver, S. Quegan, "Understanding Synthetic Aperture Radar Images", Artech House, 1998

Sistema di telerilevamento radar (III)

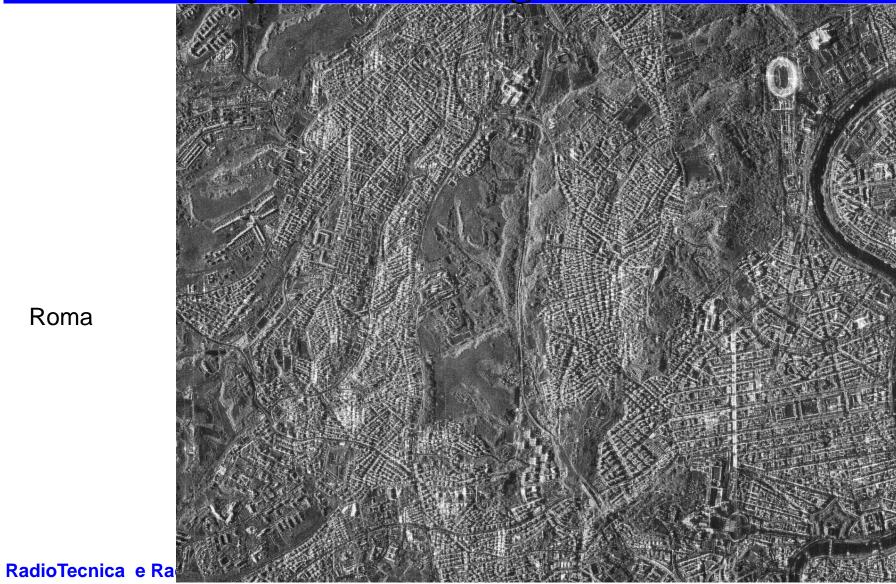
ESEMPIO: Radar di immagine da space shuttle

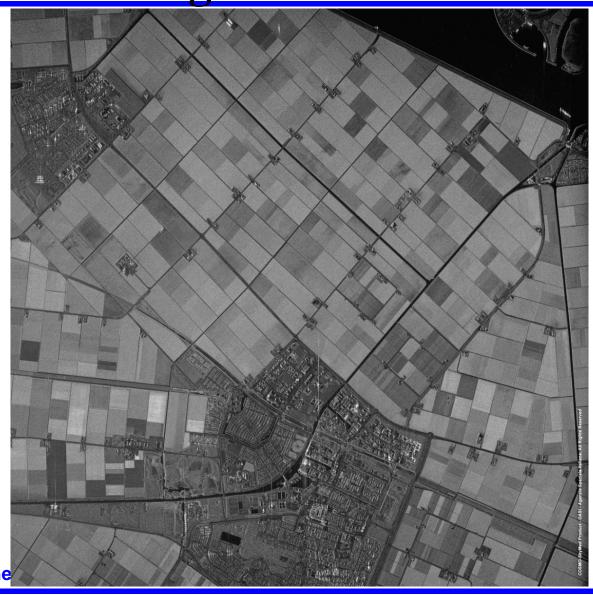
SIR-C immagine polarimetrica del Vesuvio

From: NASA/JPL Imaging


Radar Home Page http://southprt.jpl.nasa.gov

Cosmo-SkyMed


- Costellazione di 4 satelliti (orbita circolare eliosincrona) per l'osservazione della Terra.
- Tempo di rivisita minimo inferiore alle 12 ore.
- Sensori SAR in banda X (\approx 9.6 HHz), antenna a Phased Array (5.7 m x 1.4 m).
- Molteplici modalità operative (fino a 1 m di risoluzione cross-range).


COSMO-SkyMed: immagini

Roma

COSMO-SkyMed: immagini

Flevoland (Olanda) Spotlight-2 acquisition (1m resolution)

Organizzazione corso

Materiale didattico: https://elearning2.uniroma1.it/course/view.php?id=5161

- Slides lezione
- capitoli di testi di riferimento consigliati
- esercizi & test (circa ogni 1-2 settimane)

Esame:

Prova scritta: 3 esercizi (1 su GNSS, 1 su radiotecnica, 1 su radar) (30%)

Prova orale: 3 domande (1 su GNSS, 1 su radiotecnica, 1 su radar) (70%)

Esercizi sottomessi e test:

-valgono il 30% del voto e sostituiscono la prova scritta.