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Fundamentals of Biomedical Image Processing

Thomas M. Deserno

Summary. This chapter gives an introduction to the methods of biomedical image
processing. After some fundamental preliminary remarks to the terminology used,
medical imaging modalities are introduced (Sect. 1.2). Sections 1.3 and 1.4 deal
with low-level image processing and visualization, respectively, as far as neces-
sary to understand the following chapters. Subsequently, the core steps of image
analysis, namely: feature extraction, segmentation, classification, quantitative mea-
surements, and interpretation are presented in separate sections. On account of
its high relevance, the focus is on segmentation of biomedical images. Special seg-
mentation methods and techniques have been developed in the medical application
domain. Section 1.9 provides a brief summary of image communication. The elec-
tronic transmission and exchange of medical images will become more important in
future for multimedia applications such as electronic patient records in health telem-
atics and integrated care. Section 1.10 completes this chapter with an overview of
past, present, and future challenges to biomedical image processing.

1.1 Introduction

By the increasing use of direct digital imaging systems for medical diagnostics,
digital image processing becomes more and more important in health care. In
addition to originally digital methods, such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI), initially analogue imaging modalities
such as endoscopy or radiography are nowadays equipped with digital sensors.
Digital images are composed of individual pixels (this acronym is formed from
the words “picture” and “element”), to which discrete brightness or color val-
ues are assigned. They can be efficiently processed, objectively evaluated, and
made available at many places at the same time by means of appropriate
communication networks and protocols, such as Picture Archiving and Com-
munication Systems (PACS) and the Digital Imaging and Communications
in Medicine (DICOM) protocol, respectively. Based on digital imaging tech-
niques, the entire spectrum of digital image processing is now applicable in
medicine.
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Fig. 1.1. Modules of image
processing. In general, image
processing covers four main
areas: image formation,
visualization, analysis, and
management. The algorithms
of image enhancement can be
assigned as pre- and post-
processing in all areas
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1.1.1 Steps of Image Processing

The commonly used term “biomedical image processing” means the provision
of digital image processing for biomedical sciences. In general, digital image
processing covers four major areas (Fig. 1.1):

1. Image formation includes all the steps from capturing the image to forming
a digital image matrix.

2. Image visualization refers to all types of manipulation of this matrix,
resulting in an optimized output of the image.

3. Image analysis includes all the steps of processing, which are used for
quantitative measurements as well as abstract interpretations of biomedical
images. These steps require a priori knowledge on the nature and content of
the images, which must be integrated into the algorithms on a high level of
abstraction. Thus, the process of image analysis is very specific, and devel-
oped algorithms can be transferred rarely directly into other application
domains.

4. Image management sums up all techniques that provide the efficient
storage, communication, transmission, archiving, and access (retrieval) of
image data. Thus, the methods of telemedicine are also a part of the image
management.

In contrast to image analysis, which is often also referred to as high-level
image processing, low-level processing denotes manual or automatic tech-
niques, which can be realized without a priori knowledge on the specific
content of images. This type of algorithms has similar effects regardless of
the content of the images. For example, histogram stretching of a radio-
graph improves the contrast as it does on any holiday photograph. Therefore,
low-level processing methods are usually available with programs for image
enhancement.
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Fig. 1.2. Levels of abstraction. The general terms (left) are exemplified for a
panoramic radiograph of upper and lower jaws (right). At the pyramid’s top,
the dental status corresponds to an abstract scene analysis, which only contains
standardized information (existence and condition) on the tooth positions

1.1.2 Remarks on Terminology

The complexity of an algorithm, the difficulty of its implementation, or the
computation time required for image processing plays a secondary role for the
distinction between low-level and high-level processing methods. Rather, the
degree of abstraction of the a priori knowledge is important for this meaning.
Although the following definitions are not standardized in the literature, they
are used consistently within this book (Fig. 1.2):

• The raw data level records an image as a whole. Therefore, the totality of
all raw data pixels is regarded on this level.

• The pixel level refers to discrete individual pixels.
• The edge level represents the One-dimensional (1D) structures, which are

composed of at least two neighbored pixels.
• The texture level refers to Two-Dimensional (2D) or Three-Dimensional

(3D) structures. On this level however, the delineation of the area’s contour
(in three dimensions: the surface of the volume) may be unknown.

• The region level describes 2D or 3D structures with a well-defined bound-
ary or surface.

• The object level associates textures or regions with a certain meaning or
name, i.e., semantics is introduces on this level.

• The scene level considers the ensemble of image objects in spatial and/or
temporal terms. If 3D structures are imaged over the time, also Four-
Dimensional (4D) data is acquired.

From an iconic (concrete) to a symbolic (abstract) description of images, infor-
mation is gradually reduced. Methods of low-level image processing operate
on the raw data as well as on pixel, edge, or texture levels, and thus at a min-
imally level of abstraction. Methods of high-level image processing include
the texture, region, object, and scene levels. The required abstraction can be
achieved by increased modeling of a priori knowledge.
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1.1.3 Biomedical Image Processing

With these definitions, a particular problem in high-level processing of bio-
medical images is inherently apparent: resulting from its complex nature, it
is difficult to formulate medical a priori knowledge such that it can be inte-
grated directly and easily into automatic algorithms of image processing. In
the literature, this is referred to as the semantic gap, which means the dis-
crepancy between the cognitive interpretation of a diagnostic image by the
physician (high level) and the simple structure of discrete pixels, which is
used in computer programs to represent an image (low level). In the medical
domain, there are three main aspects hindering bridging this gap:

1. Heterogeneity of images : Medical images display living tissue, organs, or
body parts. Even if captured with the same modality and following a stan-
dardized acquisition protocol, shape, size, and internal structures of these
objects may vary remarkably not only from patient to patient (inter-subject
variation) but also among different views of a patient and similar views
of the same patients at different times (intra-subject variation). In other
words, biological structures are subject to both inter- and intra-individual
alterability. Thus, universal formulation of a priori knowledge is impossible.

2. Unknown delineation of objects : Frequently, biological structures cannot be
separated from the background because the diagnostically or therapeuti-
cally relevant object is represented by the entire image. Even if definable
objects are observed in biomedical images, their segmentation is problem-
atic because the shape or borderline itself is represented fuzzily or only
partly. Hence, medically related items often can be abstracted at most on
the texture level.

3. Robustness of algorithms : In addition to these inherent properties of med-
ical images, which complicate their high-level processing, special require-
ments of reliability and robustness of medical procedures and, when applied
in routine, image processing algorithms are also demanded in the medi-
cal area. As a rule, automatic analysis of images in medicine should not
provide wrong measurements. That means that images, which cannot be
processed correctly, must be automatically classified as such, rejected and
withdrawn from further processing. Consequently, all images that have not
been rejected must be evaluated correctly. Furthermore, the number of
rejected images is not allowed to become large, since most medical imag-
ing procedures are harmful and cannot be repeated just because of image
processing errors.

1.2 Medical Image Formation

Since the discovery of X-rays by Wilhelm Conrad Röntgen in 1895, medical
images have become a major component of diagnostics, treatment planning
and procedures, and follow-up studies. Furthermore, medical images are used
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Fig. 1.3. Medical imaging modalities. The body region (here: cervical vertebra)
appears completely different when altering the imaging modality

Name Symbol Mass Charge

Proton p 1 u +1 e
Neutron n 1 u 0 e
Alpha particle α 4 u +2 e
Electron β 0 u −1 e
Positron β+ 0 u +1 e
Photon γ 0 u 0 e

Table 1.1. Atomic particles. The given
values for mass and charge are only
rough estimates. The atomic mass unit
1 u = 1.660538782 · 10−27 kg.
The elementary charge
1 e = 1.602176487 · 10−19 C

for education, documentation, and research describing morphology as well as
physical and biological functions in 1D, 2D, 3D, and even 4D image data (e.g.,
cardiac MRI, where up to eight volumes are acquired during a single heart
cycle). Today, a large variety of imaging modalities have been established,
which are based on transmission, reflection or refraction of light, radiation,
temperature, sound, or spin. Figure 1.3 emphasizes the differences in image
characteristic with respect to the imaging modality. Obviously, an algorithm
for delineation of an individual vertebra shape that works with one imaging
modality will not be applicable directly to another modality.

1.2.1 Basic Physics

To understand the different nature of medical images and imaging modalities,
we need to recall some basic physics of matter. Roughly, all matter is build
from atoms, where a nucleus composed of protons and neutrons is surrounded
by a electron shell. Table 1.1 lists charge and mass of nuclear particles.

The number of protons determines the element number. In the equilibrium
state, the number of electrons equals the number of protons and there is no
external Coulomb field. However, the positions of the particles are not con-
stant. In particular, the electrons orbit the nucleus. According to the Maxwell
laws, accelerated (continuously changing its direction) charge induces electro-
magnetic radiation: the electron would lose energy gradually spiraling inwards
and collapsing into the nucleus.

Within the Bohr model of the atom, there are certain shells where an elec-
tron can orbit its nucleus without releasing electromagnetic radiation. These
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Fig. 1.4. Bohr model of the atom. The shells where
an electron can orbit the nucleus without releasing
electromagnetic radiation are numbered, and there is
a maximal number of electrons for each shell.
Sometimes, the shells are also referred to by letters k,
l, m, etc. The difference of energy between shells is
released as radiation when an electron changes its
position

+

–
–

k, n=1

l, n=2

m, n=3

shells are numbered n (Fig. 1.4) and allow for 2 · n2 electrons. The energy
of an electron En = (−13.6 eV) 1

n2 depends on the orbit number n, where
inner shells are energetically preferred and ionizing needs higher energy if an
electron of an inner shell is removed. The unit Electron Volt (eV) refers to the
kinetic energy of an electron after passing the acceleration voltage of 1.0 V.

1.2.2 Imaging Modalities

From the plenty of medical imaging modalities, we will focus on X-ray imaging,
CT, MRI, and ultrasound. However, optical modalities such as endoscopy,
microscopy, or photography are not less important.

X-Ray Imaging

According to the Bohr model, X-radiation – the term was initially introduced
by Röntgen – can be generated, for instance, if an electron from a higher shell
jumps over into a free position of an inner shell (Fig. 1.4). The discrete differ-
ence of energy ΔE is released as a photon (γ particle). ΔE is characteristic
to the numbers of shells and the element.

Technically, free positions in inner shells are produced from shooting elec-
trons to the atom. Figure 1.5 schematically shows an X-ray tube. The high
voltage between cathode and anode accelerates the electrons that are released
from a filament. Passing the acceleration voltage, these electrons are loaded
with kinetic energy. Hitting the target material, usually tungsten for skeletal
imaging and molybdenum for mammography, two types of interactions may
occur, i.e., the accelerated electron interacts with the:

• Nucleus, where the electron is slowed down by the Coulomb field of the
protons, and a photon is released with an energy equal to the loss of kinetic
energy of the electron (Bremsstrahlung).

• Shell, where the characteristic radiation is released as described above.

When X-radiation passes through matter, e.g., the human body we would
like to image, the X-ray photons again may interact with the nucleus or the
shell resulting in:
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Fig. 1.5. X-ray tube. The vacuum tube (A) houses cathode (B) and anode (C). A
current heats up the filament, releasing electrons (D), which are accelerated towards
the anode. Interacting with either the nucleus or the shell of the target material,
Bremsstrahlung and characteristic radiation are released (E), respectively

• Absorption: The photon is completely vanished giving all its energy to
the absorbing material. This effect is harmful and causes damage to living
cells, but it is required to obtain a contrasted image.

• Scattering: A secondary photon is produced, that might be coherent
(Thomson effect) or incoherent (Compton effect). Both effects lower the
Signal to Noise Ratio (SNR), since the secondary photon usually travels
in another direction and contributes to the image at a wrong location, and
scatter rasters from lead are used to filter the scattered radiation.

The absorption coefficient μ uniquely describes the material, and is mapped
to the gray scale for image display. In plain radiography, high-attenuating
material (e.g., bone) is displayed in white (see Fig. 1.3a) while in fluoroscopy,
the scale is inverted (see Fig. 1.3d), and the high-absorbing contrast agent is
displayed in black.

However, the absorption sums up along the path through the matter. In
particular, the absorption is described by an exponential function. In a first
approximation, the intensity I of radiation depends on the thickness d of
the imaged material I = I0e−µd. However, a human body is not made from
constant material μ ∼ μ(d), and furthermore, the absorption depends on
the photon’s energy μ ∼ μ(E). Since X-radiation cannot be obtained mono-
energetic (Bremsstrahlung), the absorption equation yields

I =
∫

I0(E)e−
∫

µ(z,E)dzdE (1.1)

The dependence of the absorption on the energy of the photon is obvi-
ous. Photons with low energy are more likely absorbed or scattered than
high-energetic photons. Consequently, the spectrum of X-radiation, which is
released from the X-ray tube, hardens when passing matter. This effect is
called beam hardening.

Computed Tomography (CT)

X-ray imaging produces summation images, where all attenuation coefficients
along the path are integrated. From a single image, one cannot determine the
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order of overlapping objects. This is different with CT, where the absorption
is determined in 3D for each volume element (voxel). For imaging, a volume
is acquired slice by slice, and each slice is reconstructed from several measures
in different angulation.

Although back projection or filtered back projection in k-space (spatial
frequency domain after Fourier transform) are nowadays used for image recon-
struction, we will explain the principle based on the arithmetic reconstruction
technique, which in fact was applied to the first CT machines. Suppose a slice
being divided into four pixels, and two parallel rays passing it in two differ-
ent directions (Fig. 1.6). This results in four independent equation (Fig. 1.6B)
allowing to compute the four absorption coefficients μij (Fig. 1.6E). To obtain
more rows and columns, the number of parallel rays and the number of
angles must be increased accordingly. Today, fan beam gantries are build
(Fig. 1.7), enabling continuous rotation of the imaging fan and continuous
longitudinal movement of the patient (spiral CT). Further speedup of acqui-
sition is obtained from scanners, where up to 64 lines of X-ray receptors are
mounted. From 1972, the acquisition time per slice has decreased about 105

(Table 1.2).

Fig. 1.6. Arithmetic CT
reconstruction. Two parallel X-rays
pass the slice in 90◦ and the measures
are recorded. (A) logarithm allowing
assignment of absorption coefficients
μ; (B) four linear equations are
obtained; (C) iterative solution;
(D) assignment; (E) inverse logarithm
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Year Resolution Gray scales Thickness Time

1974 80× 80 64 (6 bit) 10 mm 300 s
1984 256× 256 256 (8 bit) 5 mm 10 s
1994 512× 512 512 (9 bit) 0.8 mm 0.5 s
2004 1024× 1024 1024 (10 bit) 0.4 mm 0.005 s

Table 1.2. CT slice
parameters. Today, a 64 line
scanner rotates about three
times a second yielding up to
192 slices per second

Fig. 1.8. Precession [1]. A spinning
proton in a magnetic field (left) moves
like a gyroscope in the mass
gravitation field of the earth (right).
According to the Larmor theorem, the
precession frequency is determined by
the strength of the external magnetic
field

Magnetic Resonance Imaging (MRI)

Almost simultaneously to CT, MRI has been introduced to medicine. It is
based on electromagnetic effects of the nucleus. Since the human body consists
of about 70% water, we focus on hydrogen. Its nucleus is composed of only
one proton. As mentioned before, the particles forming the nucleus are contin-
uously moving. For hydrogen, this movement is a self rotation (spin), which
has a magnetic moment. As shown in Fig. 1.8, the magnetic moment is aligned
to an outer magnetic field, and precession ν is started.

To understand MRI, we need to regard a probation of tissue, which is
composed of billions of hydrogen atoms. In other words, we move from a
microscopic to a macroscopic view, where the spins sum up to a macroscopic
magnetic moment M . Suppose the external magnetic field Bz is directed along
the z-axis, the magnetic moments can align parallel or anti-parallel, where
the latter occurs slightly minor (six less in a million). Therefore, Mz > 0. In
addition, all precession is dephased (Mxy = 0).

The next component of MRI is a so called Radio Frequency (RF) impulse.
Such an impulse can excite the system of spinning protons if the electromag-
netic frequency equals the precession frequency. Depending on the amplitude
and time of excitement, M can be arbitrarily directed. In Fig. 1.9b, for exam-
ple, M has been turned into the (x, y)-plane; the corresponding RF impulse
is referred to as 90◦ impulse.

RF excitement is followed by exponential relaxation, where the system is
restoring its equilibrium state. The stored energy is released as signal (i.e., the
Free Induction Decay (FID) when measured in Fourier domain), which can
be detected and transformed to an image. However, the relaxation process is
complex, since two independent effects superimpose:
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Fig. 1.9. Excitement and relaxation [1]. Without excitement, M = Mz (a); a 90◦

RF impulse turns M = Mxy (b); dephasing (spin–spin relaxation) starts first,
continuously decreasing Mxy (c,d); spin–spin relaxation completed (e); dealign-
ment (spin–lattice relaxation) starts, steadily increasing Mz (f,g); relaxation
completed (h)

• spin–spin relaxation with relaxation time T2 affects the phase of the spins.
For water-based and fat-based tissues, T2 is in the 40 − 200ms and 10 −
100ms range, respectively.

• spin–lattice relaxation with relaxation time T1 affects the parallel vs. anti-
parallel alignment of spins. For water-based and fat-based tissues, T1 is in
the 0.4 − 1.2 s and 0.10 − 0.15 s range, respectively.

Therefore, spin–spin relaxation is almost completed before spin–lattice
relaxation is detectable. Relaxation is visualized in Fig. 1.9. After 90◦ impulse,
M = Mxy and Mz = 0. Note that Mxy rotates with precession frequency ν
in the (x, y)-plane. When T2-relaxation is completed (Fig. 1.9e), Mxy = 0 and
Mz = 0. The T1-relaxation is visualized in Fig. 1.9f–h. In Fig. 1.9h, the spins
gave back the energy they obtained from the RF pulse to the surrounding
lattice.

To obtain a high-quality relaxation signal, spin-echo sequences are applied,
where different RF impulses are induced, and readout of T1 and T2 is per-
formed in between. Therefore, spin-echo sequences are characterized by the:

• echo time TE determining half of the delay between a 90◦ and a 180◦ RF
impulse, and the

• repetition time TR denoting the rate of re-applying a 90◦/180◦ sequence.

Figure 1.10 emphasizes the differences in contrast and appearance depend-
ing on the echo sequence. In particular, a M0-, T1-, or T2-weighted MRI is
obtained if (TE � T2 and TR � T1), (TE � T2 and TR ≈ T1), or (TE ≈ T2

and TR � T1), respectively.
However, the theory we discovered so far does not allow us to obtain

such images because we do not have any spatial alignment with the signal
yet. This is obtained using gradient fields, which are superimposed to the
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Fig. 1.10. Forming MRI with spin-echo sequences. (Courtesy: Tony Stöcker, FZ
Jülich)

constant external field B. For instance, let us superimpose a gradient field in
x-direction: B = B0+BG(x), BG(x1) < BG(x2) ∀x1 < x2. Now, the Larmor
frequency of precession ν ∼ ν(x) is slightly shifted along the x-axis. Since the
induced RF impulse covers all frequencies, excitement results in the entire
probation, and from the frequency of the FID signal, the according slice can
be located. Another gradient, for instance in y-direction, allows for addressing
a line rather than a plane. As we have seen with CT reconstruction, capturing
signals from different lines through the volume finally allows voxel assignment.
Advantageous to CT, gradient fields in MRI can be generated with gradient
coils, where the current is adopted, and no mechanical rotation is required.
In fact, steering the gradient fields produces the noise of MRI devices, since
strong currents need to be turned on and off quickly.

Ultrasound

In contrast to CT and MRI, ultrasound is a medical imaging modality that
is based on reflection of sound waves. Depending on the transducer, 1D to
4D data is obtained. We start from the 1D case (signal), where a longitudinal
sound wave is traveling through the tissue of the human body. At transi-
tions between different matter (e.g., muscle and fat), the sound wave is partly
reflected and transmitted (refracted if the surface is not hit perpendicular).
In other words, the echo runtime indicates the distance between transducer
and tissue border while the echo strength is related to material properties.
More precisely, these sound-relevant properties of matter are described by the
speed of sound cs and the density ρ, yielding the acoustic impedance Z = cs ·ρ.
Interfacing two materials Z1 = Z0 and Z2 = Z0 + ΔZ, the reflection ratio r
and transmission ratio t are given by
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Table 1.3. Speed of sound in
matter. The acoustic
impedance Z = csρ computes
from density ρ and speed of
sound cs. All numbers refer
to body temperature of
37◦ centigrade

Material cs in m/s ρ in kg/m3 Z in kg/m2s

Bone 3,600 1.70 · 103 6.12 · 106

Marrow 1,700 0.97 · 103 1.65 · 106

Blood 1,570 1.02 · 103 1.61 · 106

Muscle 1,568 1.04 · 103 1.63 · 106

Water 1,540 0.99 · 103 1.53 · 106

Fat 1,400 0.97 · 103 1.36 · 106

Air 340 1.20 4.08 · 102

right ventricle

left ventricle left atrium

aorta

transducer

time
A mode B mode TM diagram

Fig. 1.11. Ultrasound visualization modes [2]. A section through the heart is drawn
schematically (left). From a simple sampling line, reflections of sound may be plot-
ted (i) according to their amplitude (A-mode), (ii) coded as dots with a gray scale
mapped to the amplitude (B-mode), which supports 2D images if a array of Piezo-
electric crystals is applied, and (iii) in their position over the time, to visualize
motion (TM diagram)

r =
√

I0

IA
=

Z2 − Z1

Z2 + Z1
=

ΔZ

2Z0 + ΔZ
and t = 1 − r ≈

{
1, if ΔZ � Z0

0, if ΔZ � Z0

(1.2)
where I0 and IR denote the intensity of the initial and reflected wave, respec-
tively. As we can see from Table 1.3, t ≈ 0 from air to water and soft tissue to
bone, while t ≈ 1 within the soft tissue. Therefore, a sonographic view behind
bony structures or through organs filled with air is almost impossible. Fur-
thermore, water-based gel must be used for air-free coupling the transducer
to the human body.

Furthermore, the sound intensity is attenuated from expansion. The atten-
uation increases linear with the sound frequency but spatial resolution requires
high frequency. Therefore, typical diagnostic scanners operate in the frequency
range of 2 − 18MHz trading-off spatial resolution and imaging depth.

Technically, a piezoelectric crystal is used to convert an electrical signal
into a mechanical movement, and the deformation of the crystal is coupled
into the body. Then, the same transducer is used to detect the echos. There
are several options to form an image from this pulse-echo signal (Fig. 1.11):

• A-mode: In amplitude mode, the echo intensity is plotted on the screen as
a function of depth;
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Fig. 1.12. B-mode sector scan [2]. An
array of transducers is used to scan a
sector. In B-mode, reflections at tissue
borders are displayed within a
fan-shaped aperture, which is typically
for medical ultrasound. Turning the
transducer array perpendicularly
allows for imaging cone-shaped
volumes

• B-mode: In brightness mode, the echo intensity is coded with gray scales.
This allows composing an array of transducers simultaneously scanning
a plane through the body (Fig. 1.12). Parallel and sector scanners are
available;

• TM-mode: Time motion diagrams visualize movements of sound-reflecting
tissue borders. This mode offers functional rather than morphological
inspection;

• M-mode: In motion mode, a sequence of rapidly acquired B-mode scans
is displayed as moving picture. This is the most common mode in clinical
ultrasound;

• D-mode: The doppler mode makes use of the doppler effect (i.e., a shift in
frequency that occurs if the source of sound, the receptor, or the reflector
is moved) in measuring and visualizing blood flow. Several visualization
modes are used:
– Color Doppler : The velocity information is presented as a color-coded

overlay on top of a B-mode image;
– Continuous Doppler : Doppler information is sampled along a line

through the body, and all velocities detected at each point in time
are presented (on a time line);

– PW Doppler : Pulsed-wave Doppler information is sampled from only a
small sample volume (defined in the 2D B-mode image), and presented
on a time line;

– Duplex: Color and (usually) PW Doppler are simultaneously displayed.

1.2.3 Digitalization

Digital image processing implies a discrete nature of the images. Regardless
whether a film-based radiograph is digitized secondarily with a scanner, or
the device primarily delivers a digital pixel (voxel) matrix, digitization effects
alter the image. Digitization applies to both the definition (sampling) and the
value range (quantization).
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Fig. 1.13. Quantization. A lateral chest radiograph is shown with 6 bit, 3 bit, and
2 bit, which equals 64, 8, and 4 different gray scales in panel (a), (b), and (c), respec-
tively. Disregarding saturation effects occurring within bone and air, the difference
between 8 bit and 7 bit representation results in white noise (d,e). Panel (d) shows
the histogram-optimized difference image, and (e) a centered Region of Interest
(ROI) of 100 × 100 pixel

Quantization

Quantization refers to the digitization of the value range. We need to deter-
mine the maximal number of gray scales for every image. Usually, 8 bit and
24 bit are chosen for gray scale and full color images, respectively, allowing 256
different values in each band. In medicine, radiography or CT usually delivers
12 bit = 4,096 different values. If we assume a continuous brightness, quan-
tization always worsen the image quality. The alteration can be modeled as
additive noise, and the SNR of our digital image is improved by an increased
number of gray scales.

Quantization noise is visualized in Fig. 1.13. With printing, we do not see
any differences between 8 bit, 7 bit, or 6 bit quantization. If the number of gray
scales becomes small, artefacts are apparent (Fig. 1.13b,c). Subtracting the
7 bit representation from the original 8 bit image illustrates the quantization
noise (Fig. 1.13d,e).

Sampling

Sampling refers to the digitization of the definition range. According to the
linear system theory, an analogue signal can be unambiguously represented
with a discrete set of samples if the sampling rate exceeds two times the high-
est frequency occurring in the image (Nyquist theorem). Shannon’s popular
version of the sampling theorem states [3]:

If a function x(t) contains no frequencies higher than fb Hz, it is com-
pletely determined by giving its ordinates at a series of points spaced
t = 1

2fb
seconds apart.

Once the sampling theorem is satisfied, we cannot improve the image qual-
ity adding more pixels, which is contrarily to the effects of quantization. In
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Fig. 1.14. Sampling. Artefacts from sub-sampling are visible if the printer resolution
is smaller than the pixel scale. In panel (b), the first partial pixel effects should be
notable

Fig. 1.15. Moiré pattern. This pattern is obtained from radiographing a lead grid.
The spatial resolution of the entire X-ray imaging chain, disregarding whether it
ends analogously or digitally, is measured by the distance from the center to that
radius where individual lines can be differentiated. Furthermore, a four leaf clover
can be seen in the center although it is neither with the lead lamella nor the squared
pixel grid

spatial discretization, increasing the number of samples beyond the Nyquist
rate only increases the file size of raw data, but not the information coded
in it.

Figure 1.14 emphasizes the loss of information that results from applying
an insufficient number of pixels for image acquisition. For instance, the spon-
gious structure of the jaw bone disappears (Fig. 1.14c–e). Furthermore, gray
scales are obtained misleadingly indicating a different material. For instance
at the border of the implants, pixel values with μ of bone are obtained. In
CT imaging, this partial pixel effect is also known as partial volume effect,
see Sect. 1.8.1.

Similar to insufficient quantization, subsampling suppresses information
in the digital image representation. In contrast to quantization, information
is falsely added to an image if the sampling theorem is not fulfilled. Partial
effects are one example. More important are aliasing effects. In 2D imaging,
Moiré patterns are obtained whenever a regular structure mismatches the grid
(Fig. 1.15).
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1.3 Image Enhancement

Low-level methods of imaging processing, i.e., procedures and algorithms
that are performed without a priori knowledge about the specific content
of an image, are mostly applied to pre- or post-processing of medical images
(Fig. 1.1). Therefore, the basic methods of histogram transforms, convolu-
tion and (morphological) filtering are mostly disregarded unless required
for further understanding of this text (see the list of related textbooks on
page 49). As a special preprocessing method for medical images, techniques
for calibration and registration are briefly introduced.

1.3.1 Histogram Transforms

Point operations (pixel transforms) are based on the histogram of the image.
Modifying the pixel values, all pixels are transformed independently from
their positions in the image and their immediate neighborhood. Therefore,
these type of transform is also referred to as point operation.

Histogram

The histogram shows the frequency distribution of pixel values (e.g., gray
scales) disregarding the certain positions where the gray scales occur in the
image. Simple pixel transforms can be defined using a histogram. For example,
through the stretching of gray scales, the contrast of an image is improved
(Fig. 1.16). After determining the histogram, upper and lower bounds are

a

0 50 100 150

h(g)

200 255

b c

Fig. 1.16. Histogram stretching. A ROI is taken in the area of the temporomandibu-
lar joint from an intra-oral radiograph (a). Resulting from under-exposure, the
spongy bone structure is displayed quite poorly. The associated histogram (b) is
only narrow occupied (red). By stretching the histogram, the columns are linearly
pulled apart (blue) and the contrast of the transformed radiograph is increased (c)
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Old New pixel value Old New pixel value
Gray Red Green Blue Gray Red Green Blue

0 0 0 0 ... ... ... ...
1 1 0 2 246 254 244 239
2 2 0 3 247 255 245 243
3 3 0 5 248 255 245 244
4 4 1 7 249 255 246 246
5 5 1 9 250 255 247 248
6 5 2 12 251 255 249 250
7 5 2 14 252 255 251 252
8 5 3 16 253 255 251 253
9 5 4 18 254 255 253 254
... ... ... ... 255 255 255 255

Table 1.4. Look-up table for
pseudo coloring. For each value
in the range of the input
image, the lookup table holds a
value from the range of the
output image. The color
palette shown here is used for
pseudo coloring keeping the
original brightness progression
of the input image [4]

a b c d

Fig. 1.17. Pseudo coloring [4]. X-ray image of a pelvic bone metastasis after radio-
therapy (a); pseudo-colored image of (a) using the corner colors of the RGB cube
(b), colors of constant brightness (c), and colors with continuous brightness pro-
gression obtained from a spiral around the gray diagonal of the RGB cube (d). The
arrow indicates local contrast enhancement

located, and a linear transform is applied that maps the lower bound to zero
and the upper bound to the maximal gray scale (i.e., 255 for 8 bit images).
If the histogram of the initial image does not contain all possible gray scales,
the gray scale distance between neighbored pixels is enlarged, which results
in an enhanced contrast.

Look-Up Table (LUT)

Technically, computation of histogram transforms is based on a Look-Up Table
(LUT). For all pixel values, the lookup table contains a new value, which can
also originate from another range of values. The example in Table 1.4 assigns
each gray scale with a triple for Red, Green, and Blue (RGB). This transform
is called pseudo coloring, and it is frequently used in the biomedical domain
to enhance local contrast (Fig. 1.17). Computer graphic boards may limit the
number of gray scales to 256 (8 bit), but offer 2563 = 16,777,216 colors. Special
algorithms are recommended for the pseudo coloring in the medical context.
In other words, pseudo coloring allows presentation of data, where the range
of values exceeds the length of the RGB cube’s edges without reducing the
information as it would result from windowing.
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Fig. 1.18. Convolution templates. The sliding average (a) and the binomial low-
pass filter (b) cause a smoothing of the image. The binomial high-pass filter (c),
however, increases contrast and edges, but also the noise in the image. The templates
(a) to (c) must be normalized to make sure that the range domain of values is not
exceeded. The contrast filter (d) is based on integer pixel values. The convolution
with (d) is therefore easy to calculate. The anisotropic templates (e) and (f) belong
to the family of Sobel operators. Eight Sobel masks can be generated by rotation
and mirroring for direction-selective edge filtering (see Fig. 1.24)

1.3.2 Convolution

In contrast to point operations (histogram transforms), the considered pixels
are combined with the values of their neighborhood when discrete filtering
is applied. The underlying mathematical operation, i.e., convolution, can be
characterized with the help of so-called templates (Fig. 1.18). A template is
a mostly small, squared mask of usually odd lateral length. This template is
mirrored along two axes (hence, the name “convolution” is commonly used)
and positioned in one corner of the input image. The image pixels under the
mask are named kernel1. Each pair of corresponding pixel values of template
and kernel are multiplied and then summed up. The result is registered at the
position of the mask’s center pixel in the output image. Then, the template is
shifted row by row and column by column to the next positions on the input
image, until all the positions have been visited, and thus, the output image
has been calculated completely.

The pixel values of the template determine the effect of the filter. If only
positive values are used in the template, basically a (weighted) averaging is
calculated in the local neighborhood of each pixel (Fig. 1.18a,b). The resulting
image is smoothed and appears with reduced noise. However, the sharpness
of edges is also reduced. If the template is composed of positive and nega-
tive coefficients, the contrast in the image is intensified, and the edges are
highlighted (Fig. 1.18c–f). Anisotropic (i.e., not rotationally symmetric) tem-
plates also have a preferred direction (Fig. 1.18e,f). Hereby, the contrasts can
be direction-selectively strengthened.

1.3.3 Mathematical Morphology

Another approach to filtering is adapted from the mathematical morphology.
Although morphologic operators can also be defined for gray scale images,
1 In the literature, “mask”, “kernel”, and “template” frequently are used as syno-

nyms.
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Binary image Template Skeleton

Erosion ClosingDilatation Opening

Fig. 1.19. Binary
morphology. The binary
pattern is outlined in red.
The small circle marks the
center pixel in disk-shaped
template with radius 1

morphologic filtering is principally performed on binary input images, i.e.,
each pixel is assigned either TRUE or FALSE. According to a general convention,
the white pixels in the binary image indicate relevant segments and the black
pixels indicate the background. For printing, however, this assignment may be
inverted. The binary template, which is also referred to as structural element
(structuring element, structel, strel), is associated to the binary image using
logical operations, in particular:

• erosion (based on logical AND of structel and binary image),
• dilation or dilatation (based on logical OR of structel and binary image),
• opening (erosion followed by dilatation using the same structel),
• closing (dilation followed by erosion using the same structel), and
• skeleton (e.g., by erosion with various structels).

As it can be seen in Fig. 1.19, the erosion reduces the size of a segment, and
the dilation leads to its enlargement. The opening removes small details on
the outline of segments or the background, without affecting the total size of
relevant regions. The closing is able to remove holes in the interior of a region
and smooth its contour. Here, the size of the segment is roughly maintained,
too. The skeleton is a path with thickness of one pixel, which is located in the
middle of the segment.

Binary morphology is applied frequently in medical image processing, for
instance to clean up shapes after pixel-based segmentation (see Sect. 1.6.1).
Gray scale morphology is simply a generalization from 1 bit (binary) images
to images with multiple bits per pixel, where MIN and MAX operations replace
the AND and OR operations of binary morphology, respectively.

1.3.4 Calibration

If the physician intents to take quantitative measurements from an image, a
careful calibration of the imaging modality is required. Both, geometry (spatial
domain) and brightness or color intensity (value domain) must be adapted
to the modality. Calibration is device-specific but disregards the biological
content captured, and thus, it is part of low-level processing methods. While
reading a radiograph, calibration is made unconsciously by the radiologist.
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a b

Fig. 1.20. Geometric distortion and brightness variation [5]. By endoscopic exam-
inations, barrel distortions are often generated, which must be corrected before the
image can be analyzed quantitatively. In addition, the boundary areas in the video
appear darker and blurred. Image (a) is generated with a rigid laryngoscope, which is
used for the examination of the larynx. Image (b) is taken with a flexible endoscope
for nasal laryngoscopy. Both endoscopes are used in clinical routine. Microscopy and
other optical methods may produce similar artifacts

However, it must be explicitly implemented for computerized image analysis
and measurements.

Geometric aberrations (distortions) have the consequence, that relevant
structures of the same size are displayed depending on the position within the
image. In the biomedical sciences, the positioning of the imaging device must
not affect any measurements. For example in endoscopy, resulting from the
optical devices in use, so called barrel distortions are originated (Fig. 1.20).
Even in simple planar radiography, the objects, which are far away from the
image plane, appear larger than those, which are located close to the imaging
device. This must be kept in mind whenever geometric measurements in digital
X-rays are taken and displayed to the physicians: point distances in digital
images can be converted into length measurements only if a fixed scale is
assumed, which is often not fulfilled.

In the same way, the absolute assignment of the pixel values to physical
measurements usually is problematic. For example in X-ray imaging, the linear
correspondence of brightness values to the accumulated absorption coefficient
of the imaged structure is possible, if an aluminum (step) wedge with known
X-ray absorption properties is placed beside the object. In digital video record-
ing, white balancing must be performed such that the color values corresponds
with reality. However, different illumination of the same scene may still alter
the captured colors.

1.3.5 Registration

Often, an absolute calibration of examination procedures is not possible or
only limitedly feasible. Then, registration can be used to achieve an approx-
imation of two or more images such that at least a change in measured
dimensions can be quantified. For example, an acute inflammation turns tissue
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registration contrast adjustment

subtraction segmentation

follow-up

reference

Fig. 1.21. Unimodal Registration. In dental implantology, reference and follow-up
images are taken at various points of time. Geometric registration with subsequent
contrast adjustment enables pixel-by-pixel subtraction. In the subtraction image,
bone destruction is clearly emphasized and can be segmented easily on the pixel
level of features (red)

into a reddish color. Under treatment, the absolute redness of the tissue is less
interesting than its relative change as compared to the findings of previous
recordings.

Unimodal Registration

This term refers to the relative calibration of images that have been acquired
with the same modality. For instance, images that have been taken from the
same patient but at different points of time are adjusted in order to quantify
the course of the disease. As in the field of calibration, we differ between
geometric registration and color or contrast adjustment, if the registration is
performed in the spatial domain or the value range, respectively. Figure 1.21
illustrates the diagnostic potential of registration in dental implantology. After
registration, the appraisal of the status of peri-implant bone is significantly
simplified by the subtraction of recall and follow-up recordings.

Multi-Modal Registration

The images to be compared are captured with different modalities. For exam-
ple, a 3D rigid registration is illustrated as the movement of the hat on the
head. Especially in neurology, these methods have a crucial meaning. Since
tumor resection in the brain must be executed very carefully, in order to avoid
damage of neighbored brain areas, functional and morphological brain images
are registered to plan the procedure. While morphology can be adequately
represented in MRI or CT data, function of brain areas is frequently local-
ized using Positron Emission Tomography (PET) or Single Photon Emission
Computed Tomography (SPECT). Thus, multi-modal registration of func-
tional and morphological data provides valuable additional information for
diagnosis and therapy (Fig. 1.22).
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Fig. 1.22. Multi-modal registration
and fusion [6]. 1. Row : T1-weighted
MRI of a 66 year old subject with
right parietal glioblastoma; 2. Row :
Corresponding PET layers after
multi-modal registration; 3. Row :
Fusion of registered layers to support
intervention planning; 4. Row : The
fusion of MRI with PET of the
sensorimotor-activated cortex area
proves that the relevant area is out of
focus

Table 1.5. Taxonomy of 3D visualization methods. Triangulation for surface-based
rendering is described in textbooks on computer graphics. The marching cube
approach is described in the text. As a simple example of surface-based direct vol-
ume rendering methods, depth shading visualizes the length of rays passing through
the volume until they hit the surface. Integral shading codes the sum of voxel values
along the ray as gray scale. It is therefore frequently used to obtain radiograph-like
images based on CT data

Concept Surface-oriented method Volume-oriented method

Surface reconstruction Triangulation Cuberille approach
and rendering Marching cube

Direct volume rendering Depth shading Integral shading
Depth gradient shading Transparent shading
Gray gradient shading Maximum projection

1.4 Image Data Visualization

Under the concept of image visualization, we had summarized all the trans-
forms which serve the optimized output of the image. In medicine, this includes
particularly the realistic visualization of 3D data. Such techniques have found
broad applications in medical research, diagnostics, treatment planning and
therapy. In contrast to problems from the general area of computer graph-
ics, the displayed objects in medical applications are not given implicitly
by formal, mathematical expressions, but as an explicit set of voxel. Con-
sequently, specific methods have been established for medical visualization.
These methods are based either on a surface reconstruction or on a direct
volume visualization, and lighting and shading are also regarded (Table 1.5).
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1.4.1 Marching Cube Algorithm

The marching cube algorithm was specifically developed for surface recon-
struction from medical volumes. Here, the voxel is no longer interpreted as a
cube of finite edge length but as a point. It is equivalent to a point grid for
visualizing volumes. In this volume, a cube is considered with four corners
in each of the two adjacent layers. Utilizing symmetry, the complex prob-
lem of surface production is reduced to only 15 different topologies, which
can be calculated most efficiently since the polygon descriptions that belong
to the basic topologies can be stored in a lookup table. Similar to the pro-
cess of spatial convolution, the cube is positioned successively at all points
in the volume dataset (marching). After completion of the marching cube
algorithm, a segmented volume is transformed into a triangulated surface.
However, the surface is build from a very large number of triangles, which
may be reduced significantly by heuristic procedures without any discernible
loss of quality. Reducing the number of elements to be visualized supports
real-time visualization of the volume.

1.4.2 Surface Rendering

To generate photo-realistic presentations of the volume surface, the lighting
is simulated analog to natural scenes. According to the lighting model by
Phong, ambient light is created through overlapping of multiple reflections,
diffuse scattering on non-shiny surfaces, and direct mirroring on shiny surfaces.
While the intensity of the ambient light remains constant in the scene for all
surface segments, the intensities of diffuse and speckle reflections depend on
the orientation and characteristics of surfaces as well as their distances and
directions to the light source and the observing point of viewing.

Without shading, one can recognize the initial triangles. This is a nasty
artifact in computer graphics. Therefore, various strategies for shading have
been developed to improve significantly the visual impression. For instance,
the Gouraud shading results in smooth blunt surfaces, and the Phong shading
also provides realistic reflections. In newer applications, transparencies are
also modeled to glance at encapsulated objects. Moreover, textures or other
bitmaps on the surfaces can be projected to reach a more realistic impression
of the scene.

1.4.3 Volume Rendering

Direct volume visualization is abstained from preliminary calculation of the
object surface. The visualization is based directly on the voxel data and,
therefore, possible without any segmentation. This strategy allows visualiza-
tion of medical 3D and 4D data by radiologists for interactive localization
of pathological areas. The volume is processed either along the data layers
(back-to-front or front-to-back) or along an imaginary light ray. Based on
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the observer position, rays will be pursued through the volume (ray-tracing).
Hereby, the recursive follow-up of secondarily reflected rays is also possible
(ray-casting). Although quite realistic visualizations can be provided to the
observer, problems arising from the discrete nature of pixel topology (see
above) have led to a multitude of algorithmic variants.

In general, parameters are extracted from voxel intensity along the rays
and applied as gray or color value at the corresponding position in the view-
ing plane. This procedure is also referred to as shading. By the methods
of the surface-based shading, light source and image plane are placed on
the same side of the object, while the volume-oriented procedures radio-
graph the entire object according to X-ray imaging, i.e., the object is located
between light sources and the observation (Table 1.5). Combining direct vol-
ume with surface-based approaches, amazingly realistic scenes can be created
(Fig. 1.23).

liver

Fig. 1.23. 3D-visualization with Voxel–Man [7]. This 3D model of the internal
organs is based on the Visible Human data. The Voxel–Man 3D-Navigator provides
unprecedented details and numerous interactive possibilities (left). Direct volume
rendering and surface-based visualization of segmented objects are combined with
integral shading (right)
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1.5 Visual Feature Extraction

In Fig. 1.1, feature extraction is defined as the first stage of intelligent (high
level) image analysis. It is followed by segmentation and classification, which
often do not occur in the image itself, i.e., the data or pixel level, but are
performed on higher abstraction levels (Fig. 1.2). Therefore, the task of fea-
ture extraction is to emphasize image information on the particular level,
where subsequent algorithms operate. Consequently, information provided on
other levels must be suppressed. Thus, a data reduction to obtain the char-
acteristic properties is executed. The schema in Fig. 1.1 is greatly simplified
because many connections between the modules were left out on behalf of
readability. So for example, cascades of feature extraction and segmentation
at various levels of abstraction can be realized gradually, before classification
is eventually performed at a high level of abstraction. Just before classifica-
tion, a step of feature extraction that is based on the region level is often
performed as well.

1.5.1 Data Level

Data-based features depend on the joint information of all pixels. Therefore,
all transforms manipulating the whole matrix of an image at once can be
regarded for data feature extraction. The most famous example of a data
feature transform is the Fourier transform, which describes a 2D image in
terms of frequencies, according to their amplitude and phase. Furthermore,
the Hough, wavelet or Karhunen-Loève transforms provide possibilities of data
feature extraction (see list of textbooks on image processing on page 49). These
methods are not in the focus of research in biomedical image processing. In
fact, these procedures are rather adapted from technical areas into medical
applications.

1.5.2 Pixel Level

Since pixel-based features depend on the values of individual pixels, all point
operations that have been defined in Sect. 1.3 can be regarded as feature
extraction on the pixel level. Another example was already presented in
Fig. 1.21, namely, the arithmetic combination of two images. The subtraction
of reference and recall images after appropriate registration in both spatial
and value ranges enforce local changes in the images as characteristic pixels.

1.5.3 Edge Level

Edge-based features are defined as local contrast, i.e., a strong difference of
(gray scale or color) values of adjacent pixels. Thus, the discrete convolu-
tion introduced in Sect. 1.3 can be used with appropriate templates for edge
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Fig. 1.24. Edge extraction using the
Sobel operator. The X-ray image
(center) was convolved with the eight
direction-selective Sobel templates.
The strong contrasts on the edges of
metallic implants are further
strengthened by binarization of the
edge images. An isotropic edge image
is obtained if, e.g., the maximum at
each pixel position is chosen from the
eight direction-selective sub-images
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extraction. All masks for high-pass filtering amplify edges in an image. The
templates of the so called Sobel operator (Fig. 1.18) are particularly suited for
edge extraction. Figure 1.24 exemplarily presents the result of the orientation-
selective Sobel masks when applied to a dental radiograph. The edges of
the metallic implants are clearly highlighted. An isotropic Sobel-based edge
image is achieved, e.g., by a linear or maximum combination of the eight
sub-images.

1.5.4 Texture Level

Textural features have been used in medicine for a long time. In textbooks
on pathology one can read many metaphors to describe texture, such as a
cobblestone-shaped mucosal relief, onion-like stratification of subintima, or
honeycomb-structured lung tissue. As intuitive as these metaphors are for
people, as difficult is their computational texture processing, and a variety of
procedures and approaches have been developed.

Texture analysis attempts to quantify objectively the homogeneity in a
heterogeneous but at least subjectively periodic structure (see the spongious
bone structure in Fig. 1.18c as an example). In general, we can distinguish:

• structural approaches that are based on texture primitives (textone, tex-
ture element, texel) and their rules of combinations and

• statistical approaches that describe texture by a set of empirical parame-
ters.

1.5.5 Region Level

Regional features are used primarily for object classification and identification.
They are normally calculated for each segment after the segmentation process.
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The most important parameters to be mentioned here are:

• localization-descriptive measurements such as size, position, and orienta-
tion of the major axis and

• delineation-descriptive measures such as shape, convexity, and length of
the border.

Since the degree of abstraction on the region level is rather high as com-
pared to the previous levels, a priori knowledge has already been largely
integrated into the image processing chain. Therefore, universal examples can-
not be specified. In fact, the definition of regional feature extraction is strongly
dependent on the respective application (see Sects. 1.5.5 and 1.6.3).

1.6 Segmentation

Segmentation generally means dividing an image into connected regions. With
this definition, the production of regions is emphasized as the pre-stage of
classification. Other definitions accentuate the various diagnostically or ther-
apeutically relevant image areas and, thus, focus the most common application
of medical imaging, namely, the discrimination between healthy anatomical
structures and pathological tissue. By definition, the result of segmentation
is always on the regional level of abstraction (cf., Fig. 1.2). Depending on the
level of feature extraction as an input to the segmentation, we can method-
ically classify pixel-, edge-, and texture- or region-oriented procedures. In
addition, there are hybrid approaches, which result from combination of single
procedures.

1.6.1 Pixel-Based Segmentation

Pixel-based procedures of segmentation only consider the gray scale or color
value of current pixels disregarding its surroundings. It should be noted that
pixel-based approaches are not segmentation procedures in the strict sense
of our definition. Since each pixel is considered only isolated from its neigh-
borhood, it cannot be ensured that actually only connected segments are
obtained. For this reason, post-processing is required, e.g., by morphologic
filtering (see Sect. 1.3.3). Most pixel-based procedures use thresholds in the
histogram of an image and employ more or less complex methods to determine
this threshold. Furthermore, statistical methods for pixel clustering are used.

Static Thresholding

If the assignment of pixel intensities is well known and constant for a certain
type of tissue, static thresholds are applicable. A static threshold is indepen-
dent of the individual instance in a set of similar images. For example, bone or
soft tissue windows in the CT can be realized (Fig. 1.25) with static thresholds
on the Hounsfield Unit (HU).
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Fig. 1.25. Static thresholding [5].
Pixel-based segmentation in CT relies
on Hounsfield Units (HU), which
allow the definition of windows for
different types of tissue: bone
[200 . . . 3,000], water [−200 . . . 200],
fat [−500 · · · − 200], or air
[−1, 000 · · · − 500]

air fat water boneair fat water bone

Adaptive Thresholding

Globally adaptive thresholds result from analyzing each individual image
entirely. They are exclusively used in this image. The well-known method
of Otsu is based on a simple object vs. background model. The threshold
in the histogram is determined such that the two resulting classes minimize
the intra-class variance of gray scale values, while the inter-class variance is
maximized. For example in skeletal radiography, bone, soft tissue and back-
ground can be seen, but the actual mean gray scale of this tissue classes may
vary with respect to illumination and exposure parameters. By adopting the
threshold to the image, the Otsu segmentation is able to balance this variation
in imaging.

Using locally adaptive thresholds, the threshold is computed not only for
each image individually, but also for each region within an image. In the
extreme case, an individual threshold is determined for every pixel posi-
tion (i.e., pixel-adaptive). This is particularly necessary if the simple object
to background assumption is globally invalid because of continuous bright-
ness gradients. For example, due to the irregularity of optical illumination,
the background in microscopy imaging of cell cultures (Fig. 1.26a) runs from
light shades of gray (top right) to dark shades of gray (bottom left), where
also the gray scale values of the cells are located. A global threshold deter-
mined with the dynamic procedure of Otsu (Fig. 1.26b) does not separate
the cells from backgrounds, although the global threshold had been deter-
mined image-individually. The locally adaptive segmentation (Fig. 1.26c) leads
to a significantly improved result, but isolated block artifacts appear. These
artifacts can be avoided only by pixel-adaptive thresholding (Fig. 1.26d).

Clustering

Pixel clustering is another way of pixel-based segmentation. This statistical
method is particularly suitable if more than one value is assigned to each pixel
and regarded in the segmentation process (e.g., color images). Figure 1.27
illustrates the iso-data clustering algorithm (also referred to as k-means clus-
tering) in a simple 2D case. All pixel values are registered as data points in
the 2D feature space. Initialized by the number of segments to be obtained,
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Fig. 1.26. Dynamic thresholding in microscopy [8]. The microscopy of a cell culture
(a) was segmented using a global threshold (b), locally adaptive (c) and pixel-
adaptive (d). According to morphological post-processing for noise reduction and a
connected components analysis, the final segmentation is shown in (e)
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Fig. 1.27. Iso-data pixel clustering. The iterative iso-data algorithm for pixel clus-
tering is exemplified in a 2D feature space. The number of clusters is given a priori.
After arbitrary initialization, the data points are assigned to the nearest cluster
center. Then, the positions of the centers are recalculated and the assignment is
updated until the process finally converges. The final location of cluster centers is
not affected by their initial position. This may only have impact to the number of
iterations

the initial cluster centers are arbitrarily placed by the algorithm. Then, the
following two steps are repeated iteratively until the process converges:

1. Each data point is aligned to the closest cluster center.
2. Based on the current assignment, the cluster centers are recalculated.

It can be proven mathematically that the resulting cluster centers are
independent of initial positions, which may only impact the number of itera-
tions and hence, the calculation time. However, either a fixed distance metrics
(e.g., Euclidean (geometric) distance) or a data-adaptive metrics (e.g., Maha-
lanobis distance) must be selected, which certainly impacts the clustering
result. Also, the predefined number of cluster centers is an important param-
eter. If the application domain does not allow to determine the number of
segments a priori, pixel clustering can be performed for a different number
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of centers and the residual error of the computed model can be analyzed to
determine the appropriate number of centers.

Post-Processing

Segments obtained from pixel-based analysis usually are incoherent and highly
noisy (see Fig. 1.25 or Fig. 1.26b). Therefore, post-processing is required. Noisy
structures can be effectively reduced with methods of mathematical morphol-
ogy. While a morphologic opening removes spread parts from the segments,
holes are closed by morphologic closing (see Sect. 1.3.3). The connected com-
ponents algorithm provides each separated segment with a unique reference
number. In the segmentation of the cell image (Fig. 1.26a); clustering provides
a rough cluster of “cells”, which is separated from the “background”, although
many individual cells are shown separately in Panel 1.26(d). After morpholog-
ical post-processing and connected components analysis, cells are separated
and colored (labeled) differently according to their segment number. Now,
they can be further processed as independent objects (Fig. 1.26e).

1.6.2 Edge-Based Segmentation

This type of segmentation is based on the abstract level of edges and tries
to capture the objects due to their closed outline in the image. Hence, edge-
based segmentation procedures are only used for such problems, where objects
are represented as clearly defined boundaries. As described in Sect. 1.1.3, this
occurs rather seldom when biological tissue is imaged. One of these special
cases is a metallic implant, which is displayed in a radiograph.

In general, the image processing chain for edge-based segmentation is com-
posed of edge extraction and edge completion. Edge extraction is usually
obtained by edge-based feature extraction, as described in Sect. 1.5.3, such as
generated with the Sobel filter (see Fig. 1.24). The next steps of processing
are binarization, to obtain only edge pixels and non-edge pixels, morphologi-
cal filtering to reduce noise and artifacts, and, finally, a skeleton of the edge
is computed. Tracing and closing of binary contours are the main tasks of
the edge-based segmentation. Almost exclusively, heuristic methods are used.
For example, one can search along differently directed rays to find connecting
pieces of a contour. This procedure aims at bridging local gaps on the edge
profile.

Livewire Segmentation

In practice, edge-based segmentation is often realized semi-automatically. By
the interactive livewire segmentation, the user clicks onto or near by the edge
of the Object of Interest (OOI), and the computer determines the exact edge
location based on local gradients. Then, the computer calculates a cost func-
tion, which again is based on local gradients. For all paths (wire) to the current



1 Fundamentals of Biomedical Image Processing 31

position of the cursor, the path with the lowest cost is displayed in real time
(live) as the cursor is moved manually. Therefore, the metaphor “livewire”
is commonly used to refer to this interactive method of segmentation. If the
cursor moves far from the object, the contour is lost but if the cursor is placed
near to the contour again, the cost function ensures that the wire snaps back
to the desired object. Finally, the user must provide only a few support-
ing points by hand and can directly verify the correctness of segmentation
(Fig. 1.28). Application of such procedures can be found at computer-assisted
(semi-automatic) segmentations in layers of CT data, e.g., to produce a model
for surgical intervention planning. Guided by the cost function, the segmen-
tation result (delineation) is independent of the user placing the supporting
point (localization).

1.6.3 Region-Based Segmentation

As an advantage of region-based segmentation, only connected segments are
produced, and morphological post-processing is avoided. There are agglom-
erative (bottom-up) and divisive (top-down) approaches. All approaches are
based on a certain distance or similarity measure to guide the assignment
of neighbored pixels or regions. Here, plenty of methods are used. Easiest,
one can compare the mean gray value but complex texture measures (see
Sect. 1.5.4) are often used, too.

Fig. 1.28. Edge-based interactive livewire segmentation [9]. The user marks a start-
ing point with the cursor (yellow) on the border between white and gray matter (a).
The connection to the current cursor position is denoted with red, cf. (b) to (e).
Depending on the cursor position, the contour can also jump between very different
courses (d, e). So, the user can interactively place an appropriate fix point. The
fixed curve segment is shown in blue, cf. (e) to (g). In this example, only five points
are manually marked to achieve a complete segmentation (h)
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Agglomerative Algorithm

Region growing, in 3D also referred to as volume growing, is a well known
example of an agglomerative procedure. Starting from seed points, which may
be placed either automatically or manually, neighbored pixels are iteratively
associated to the growing areas if the distance measure is below a certain
threshold. This process is iterated until no more merges can be carried out.
From this qualitative description, the variety and sensitivity of the parame-
ters of such procedures are already clear. Special influence on the result of
agglomerative segmentation has:

• the number and position of seed points,
• the order in which the pixels or voxels are iteratively processed,
• the distance or similarity measure applied, and
• the threshold used to guide merging.

Therefore, agglomerative algorithms for segmentation often are affected
by small shifts or rotations of the input image. For instance, if x- and y-axis
of the image matrix are transposed, the result of segmentation is different
regarding size and shape of OOI, which is an unwanted effect in medical
image processing.

Divisive Algorithm

The divisive approach somehow inverts the agglomerative strategy. By split-
ting, the regions are iteratively subdivided until they are considered suf-
ficiently homogeneous in terms of the chosen similarity measure. As an
advantage, seed points are not required anymore, because the first split is
performed throughout the whole image. As a drawback, the dividing lines are
usually drawn horizontally or vertically, and this arbitrary separation may
separate the image objects. Therefore, split is unusually performed as a self
standing segmentation procedure, but rather combined with a subsequent
merging step (split and merge). Another drawback of divisive segmentation
procedures is the resulting wedge-formed boundary of objects, which may
require post-processing such as contour smoothing.

1.6.4 Over- and Under-Segmentation

A fundamental problem of pixel- and region-based segmentation is the dual-
ism between over- and under-segmentation. For a definition of these terms,
we rely on the general model of the image processing chain (see Fig. 1.1).
Here, segmentation is regarded as a pre-stage for classification, in which the
extracted image segments are assigned to their semantic meaning. This can
take the form of automatically assigning concrete terms for the segments (for
example, the organ “heart” or the object “TPS implant screws” or, more
abstract, a “defect” or an “artifact”).
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In any case, the segment should be related directly to an object, if an
automatic classification is desired. In this context, under-segmentation occurs
if resulting segments are composed from parts of several objects. Analogously,
over-segmentation is obtained if a particular object is disintegrated into several
segments or parts of segments. The big problem with segmentation of medical
images is that over- and under-segmentation usually occur simultaneously.

Hierarchical Algorithm

Hierarchical procedures are one of the concepts to deal with the dualism
between over- and under segmentation. Starting on a lower resolution of the
image, where it is represented with a small number of pixles only, the chance
of splitting objects into more than one segment is decreased. Then, the exact
outline of each segment is reconstructed on higher resolutions, where more
details are contained (Fig. 1.29).

Hybrid Algorithm

In the practice of medical image processing, hybrid approaches of segmenta-
tion have come to the greatest importance. Here, one is trying to combine the
advantages of individual (usually edge- and region-based) algorithms without
maintaining their disadvantages.

For example, the watershed transform extends an agglomerative, regional
segmentation procedure with edge-based aspects of segmentation. Indeed, it
is based on the very intuitive analogy of the image with a topographic sur-
face: the gray levels of the pixels correspond to the altitude of the relief. In

Fig. 1.29. Hierarchical region merging. The skeletal radiograph of the hand (a)
has been segmented at various levels of resolution, cf. (b) to (d). The initial step
is obtained with the watershed transform (see Sect. 1.6.4). Depending on the size
of the objects, they can be localized in the appropriate level (e), approximated by
ellipses (f), or visualized as nodes in a graph (g)
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hydrology, a catchment basin relative to a body of water (e.g., a river or an
ocean) is defined as a region where water from rain drains downhill into this
reference body, whereas the watershed lines (also known as water parting or
divide) separate different drainage basins. Similarly, a catchment basin sur-
rounded with watershed lines can be defined for every regional minimum in the
image. In general, the image gradient is taken as the topographic surface, so
as the catchment basins to correspond to connected and homogeneous regions
(structures of interest), and watershed lines to lie on higher gradient values.

The so-called classical watershed transform takes into account all regional
minima of the image to compute a primitive catchment basin for each one.
As natural images contain many regional minima, in general, too many basins
are created. The image is over-segmented (see, for example, Fig. 1.29b). How-
ever, over-segmentation can be reduced by filtering the image and, therefore,
decreasing the number of minima.

On the other hand, when applied to segmentation of medical images, the
watershed transform especially has the following advantages:

• From the region-based idea of the flooding process, contiguous segments
are determined inherently.

• From the edge-based approach of the watersheds, the objects are exactly
delineated.

• The problem of under-segmentation is avoided, since the merging of smaller
pools is prevented by the watersheds.

1.6.5 Model-Based Segmentation

State of the art methods for model- or knowledge-based segmentation involve
active contour models and deformable templates as well as active shape and
active appearance models.

Active Contour Model

Active contour models apply edge-based segmentation considering region-
based aspects and an object-based model of a priori knowledge. In the medical
application domain, so called snake and balloon approaches are applied for
segmentation of 2D and 3D image data and the tracing of contours in 2D
image and 3D image sequences, i.e., 3D and 4D data, respectively. The con-
tour of the objects, which is usually closely modeled, is presented by individual
nodes, which are – in the simplest case – piecewise connected with straight
lines forming a closed polygon. For the nodes, a scalar quality measure (e.g.,
energy) is calculated and optimized in the local environment of the nodes.
Alternatively, adjusted forces are determined that directly move the nodes.
The iterative segmentation process completes at minimal energy or if an opti-
mum balance of forces was found. Thus, the potential of this approach is kept
in the choice of capable quality criteria (e.g., energy) or forces.
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Snake

In 1988, Kass et al. have introduced classical snake approach [10]. It models
an internal and an external quality criterion, both as undirected energy. The
internal energy results from a predefined elasticity and stiffness of the contour,
which is high in places of strong bends or on buckling. The external energy
is calculated from an edge-filtered image. The external energy is small, if the
contour runs along edges. The idea behind this approach is an edge-based
segmentation combined with the a priori knowledge that biological objects
rarely have sharp-bending boundaries. With an optimal weighting of energy
terms, the contour course is primarily determined by the information of edges
in the image. However, if the object’s contour is partially covered or incom-
pletely captured, the internal energy ensures an appropriate interpolation of
the region’s shape.

So simple this approach has been formulated verbally, so difficult it is
to implement. During the iteration, the number of nodes must be constantly
adjusted to the current size of the contour. Furthermore, crossovers and entan-
glements of the moving contour must be avoided. The classical snake approach
also requires an already precisely positioned starting contour, which often
must be defined interactively. Then, the two steps of segmentation, i.e., local-
ization and delineation are performed again by man and machine, respectively.
This concept was also applied in the first publications of this segmentation
method. For a contour tracking of moving objects in image sequences, the
segmentation of image at time t serves as initial contour of iteration in image
t + 1. After a single initialization for the image t = 0, the procedure runs
automatically. Hence, fluoroscopy and endoscopy are suitable modalities for
the application of the snake approach to track the shape of moving objects.

Balloon

Balloons are based on forces rather than energies. Besides the internal and
external force, an inner pressure or suction is modeled, which lets the contour
continuously expand or shrink. Figure 1.30 shows the inflation movement of
a balloon to segment the cell membrane, which is visualized by the synaptic
boutons of contacting dendrites in a microscopy of a motoneuron. Although
segmentation is done without an accurate initial contour, in the course of
iteration the balloon nestles onto the real contour of cell membrane. Another
advantage of the balloon model is that this concept is directly transferable
into higher dimensions (Fig. 1.31).

Other Variants

In recent developments of active contour models, it is attempted to incor-
porate further a priori knowledge, e.g., in the form of anatomical models.
Prototypes of the expected object shapes are integrated into the algorithm:
In each iteration, the distance of the current object shape to a suitable selected
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Fig. 1.30. Balloon segmentation of motoneuron cell membrane [11]. The frames
show the balloon at different iterations. By touching the cell membrane, the strong
image forces prevent further movement of the active contour. In this application, the
internal forces correspond physically to a membrane. This is clearly recognizable at
the “adhesion border” of the balloons reaching the dendrites (bottom left)

prolapse

Fig. 1.31. Segmentation with a 3D balloon model [12]. The CT of a spine (left)
was segmented with a 3D balloon. In the surface-based rendering after automatic
segmentation, the prolapse is clearly visible (right). The visualization is based on
Phong shading (see Sect. 1.4.2)

prototype is modeled as an additional force on the node. With those exten-
sions, a “break out” of the active contour model is prevented also for long
passages of the local object boundary without sufficient edge information.

The complex and time-consuming parameterization of an active contour
model for a specific application can be based on manual and also automatic
reference segmentations. For the latter approach, different combinations of
parameters are determined and the segmentation is performed for all cases.
All resulting segmented contours are compared with the appropriate reference
contour, a priori defined as the ground truth of the training data. Then, that
set of parameters with the best approximation of the reference contour is
selected automatically.

Active Shape Model

In the biomedical sciences, OOIs such as bones or organs often have a sim-
ilar form or projected shape that may vary between individuals or different
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points of time. Therefore, a probabilistic model may be applied to explain the
shape variation. Segmenting an image imposes constraints using this model
as a prior. Usually, such a task involves:

1. registration of the training examples to a common pose,
2. probabilistic representation of the variation of the registered samples, and
3. statistical inference between the model and the image.

Introduced by Cootes et al. in 1995, active shapes aim at matching the model
to a new image [13]: for probabilistic representation (Step 2), the shapes are
constrained by the Point Distribution Model (PDM) allowing variation only in
ways that have been seen in the training set of labeled examples. For statistical
inference (Step 3), a local neighborhood in the image around each model
point is analyzed for a better position. Alternating, the model parameters are
updated to best match to these newly determined positions, until convergence
is reached.

Similar to active contour models, each training shape is represented by a
set of points, where each point corresponds to a certain landmark. To form a
feature vector xi, all landmark coordinates are concatenated. A mean shape x̄
and its covariance matrix S from N training sets is obtained by

x̄ =
1
N

N−1∑
i=0

xi and S =
1
N

N−1∑
i=0

(xi − x̄)(xi − x̄)T (1.3)

The Principle Component Analysis (PCA) is applied for dimension reduc-
tion computing normalized eigenvectors and eigenvalues of S across all train-
ing shapes. The base Φ of eigenvectors φ represents the principle modes of
variation, and the eigenvalues λ indicate the variance per mode. The prior
model is generated from the t largest eigenvalues. Now, any shape x may be
approximated by x ≈ x̄ + Φν, where the weighting vector ν is determined
minimizing a distance measure in the image, e.g., the Mahalanobis distance.

Figure 1.32 shows an application of the active shape method for bone
age assessment. The BoneXpert R© method2 robustly detects carpal bones and
phalanges as well as epiphysis using active shapes.

1.7 Classification

According to the general processing chain (see Fig. 1.1), the task of the clas-
sification step is to assign all connected regions, which are obtained from the
segmentation, to particularly specified classes of objects. Usually, region-based
features that sufficiently abstract the characteristics of the objects are used to
guide the classification process. In this case, another feature extraction step
is performed between segmentation and classification, which is not visualized

2 Visiana Ltd, Holte, Denmark, http://www.bonexpert.com
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Fig. 1.32. Active shape segmentation of hand
radiopraph. BoneXpertR© detects relevant bones and
measures distances, geometry and sizes to compute
skeletal maturity. Although in this example the first
metacarpal bone is misaligned, the automatically
suggested bone age, which is computed over several
regions, lies within the range of human inter-observer
variation

in Fig. 1.1. These features must be sufficiently discriminative and suitably
adopted to the application, since they fundamentally impact the resulting
quality of the classifier.

For all types of classifiers, we can differ supervised (trained), unsupervised
(untrained) and learning classification. For example, pixel clustering, which
has been already introduced for pixel-based segmentation, is an unsupervised
classification process (see Fig. 1.27). As a goal, individual objects are divided
into similar groups. If the classification is used for identification of objects, the
general principles or an exemplary reference must be available, from which the
ground truth of classification can be created. The features of these samples are
then used for parameterization and optimization of the classifier. Through this
training, the performance of the classifier can be drastically improved. How-
ever, supervised object classification is always problematic, if the patterns
that are classified differ remarkably from the trained patterns. In such cases,
the training set does not sufficiently reflect the real world. A learning classifier
has advantages here, because it changes its parameterization with each per-
formed classification, even after the training phase. In the following, however,
we assume a suitable set of features that are sufficiently characteristic and
large set of samples.

The classification itself reverts mostly to known numerical (statistical) and
non-numerical (syntactic) procedures as well as the newer approaches of Com-
putational Intelligence (CI), such as neural networks, evolutionary algorithms,
and fuzzy logic. In general, the individual features, which can be determined
by different procedures, are summarized either to numerical feature vectors
(also referred to as signature) or abstract strings of symbols. For example, a
closed contour object can be described by its Fourier-descriptors as a feature
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vector, or by means of basic line items such as “straight”, “convex”, and
“concave” forming a symbol chain.

1.7.1 Statistic Classifiers

Statistical classification regards object identification as a problem of the sta-
tistical decision theory. Parametric procedures for classification are based on
the assumption of distribution functions for the feature specifications of the
objects, and the parameters of the distribution functions are determined from
the sample. Non-parametric methods, however, waive such model assump-
tions, which are sometimes unobtainable in biomedical image processing. A
common example of such a non-parametric statistical object classifier is the
Nearest Neighbor (NN) classifier. All features span the feature space, and each
sample is represented by a point in this feature space. Based on the signature
of a segment, which has not been included in the training and now is assigned
to its nearest neighbor in feature space, the segment is classified to the asso-
ciated class of the assigned feature vector. The k-Nearest Neighbor (k-NN)
classifier assigns the majority class from the k nearest neighbors in feature
space (usually, k = 3 or k = 5). An example of the k-NN classifier is given in
Fig. 1.33.

1.7.2 Syntactic Classifiers

In symbol chains, it is neither useful nor possible to define distance measure-
ments or metrics and to evaluate the similarity between two symbol chains,
such as used for feature vectors. An exception of this statement is given with
the Levenshtein distance, which is defined as the smallest number of modi-
fications such as exchange, erase, or insert, required to transform a symbol
chain into another.

The syntactic classification is therefore based on grammars, which can
possibly generate an infinite amount of symbol chains with finite symbol
formalism. A syntactic classifier can be understood as a knowledge-based
classification system (expert system), because the classification is based on a
formal heuristic, symbolic representation of expert knowledge, which is trans-
ferred into image processing systems by means of facts and rules. If the expert
system is able to create new rules, a learning classifier is also realizable as a
knowledge-based system.

It should be noted that the terms “expert system” or “expert knowl-
edge”, however, are not standardized in the literature. Therefore, “primitive”
image processing systems, which use simple heuristics as implemented distinc-
tion of cases to classification or object identification, are also referred to as
“knowledge-based”.
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Fig. 1.33. Identification of dental fixtures [14]. An implant is shown in the intra-
oral radiograph of the lower jaw (a). For feature extraction, the image is binarized
with a local adaptive threshold (b). The morphological filtering (erosion) separates
individual areas (c) and eliminates interference. In this example, three regions were
segmented (d). Further processing is shown for the blue segment. After its fade-
out, the gap of morphological erosion is compensated by a subsequent dilation (e),
and the result is subtracted from the intermediate image (b). Any coordinate of blue
segment from (d) identifies the corresponding region, which can be extracted now (g)
and aligned into a normal position using the Karhunen-Loève transform. Geometric
dimensions are determined as region-based features and stored in a feature vector
(signature). As part of the training, the reference measures of different implant types
have been recorded in the feature space. The classification in the feature space is
done with the statistical k-NN classifier (i), which identifies the blue segment reliably
as Branemark implant screw (j)

1.7.3 Computational Intelligence-Based Classifiers

As part of the artificial intelligence, the methods of CI include neural net-
works, evolutionary algorithms and fuzzy logic. These methods have their
examples in biological information processing. Although they usually require
high computational power, they are frequently used in biomedical image pro-
cessing for classification and object identification. Thereby, all the procedures
have a mathematical-based, complex background.

Neural Network

Artificial neural networks simulate the information processing in the human
brain. They consist of many simply constructed basic elements (i.e., neu-
rons), which are arranged and linked in several layers. Each neuron calculates
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the weighted sum of its input excitations, which is mapped over a nonlinear
function (i.e., characteristic curve) to the output. The number of layers, the
number of neurons per layer, the network’s topology, and the characteristic
curve of the neurons are predefined within the network dimensioning step.
On the one hand, heuristics are usually applied rather than methodological
derivations. On the other hand, the individual weights of the excitements are
identified numerically during the training of the network. Then, the network
remains unchanged and can be used as a classifier.

Evolutionary Algorithm

Evolutionary algorithms are based on the constant repetition of a cycle of
mutation and selection following the Darwinian paradigm of the survival of the
fittest. Genetic algorithms work on a number of individuals (the population).
The crossing of two randomly selected individuals and afterwards the mutation
changes the population. A fitness function evaluates the population in terms of
their goodness to problem solution. Although the selections are equipped with
a random component, fit individuals are frequently selected for reproduction.
Evolutionary algorithms can solve complex optimization problems amazingly
well, but for object classification, they are less successfully used than other
methods.

Fuzzy Algorithm

The idea of fuzzy logic is to extend the binary (TRUE or FALSE) computer
model with some uncertainty or blur, which exists in the real world, too.
Many of our sensory impressions are qualitative and imprecise and, therefore,
unsuitable for accurate measurements. For example, a pixel is perceived as
“dark”, “bright” or even “very bright”, but not as a pixels with the gray
scale value “231”. Fuzzy quantities are based mathematically on the fuzzy
set theory, in which the belonging of an element to a set of elements is not
restricted to the absolute states TRUE (1) or FALSE (0), but continuously
defined within the entire interval [0..1].

Beside classification, applications of fuzzy logic in biomedical image pro-
cessing can be found also for pre-processing (e.g., contrast enhancement),
feature extraction (e.g., edge extraction, skeleton), and segmentation.

1.8 Quantitative Measurements and Interpretation

While the visual appraisal by experts is qualitative and sometimes subject to
strong inter- as well as intra-individual fluctuations, in principle, a suitable
computer-aided analysis of biomedical images can deliver objective and repro-
ducible results. First of all, this requires a precise calibration of the imaging
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modality. Furthermore, partial (volume) effects of the imaging system and
particularities of the discrete pixel topology must be taken into account and
handled accordingly to ensure reliable and reproducible measurements.

Quantitative measurement is focused on automatic detection of objects as
well as their properties. Image interpretation steps further towards analyzing
the order of individual objects in space and/or time. It may be understood in
the sense of analyzing an abstract scene that corresponds to the ambiguous
goal of developing a “visual sense for machines”, which is as universal and
powerful as that of humans.

1.8.1 Partial Volume Effect

The digitalization of the local area or volume of a pixel or voxel, respectively,
always yields an averaging of the measured value in the appropriate field.
For example in CT, a voxel containing different tissue is assigned a certain
Hounsfield value that results from the proportional mean of the individual
Hounsfield values of the covered tissue classes. Thus, a voxel containing only
bone and air preserves the Hounsfield value of soft tissue and, thus, may dis-
tort quantitative measurements. In general, this partial (volume) effect occurs
in all modalities and must be accounted appropriately for any automatic
measurement (see Fig. 1.14).

1.8.2 Euclidean Paradigm

The common paradigms of the Euclidean geometry do not apply in the dis-
crete pixel domain. For example, the discrete representations of two straight
lines may not join in a common pixel although the lines are crossing. Fur-
thermore, different neighborhood concepts of discrete pixel’s topology have
remarkable impact on the result of automatic image measurements. In partic-
ular, the areas identified in region growing may be significantly larger if the
8-neighborhood is applied, i.e., if eight adjacent pixels are analyzed instead of
the four direct neighbors (4-neighborhood).

1.8.3 Scene Analysis

The fundamental step of image interpretation is to generate a spatial or tem-
poral scene description on the most abstract level (symbolic image description,
see Fig. 1.2). A suitable form of representation is the attributed relational
graph (semantic web), which can be analyzed at different hierarchy levels (see
Fig. 1.29, right). Therefore, the considered grid matrix of pixels (iconic image
description, see Fig. 1.2) so far is inappropriate for image interpretation.

The primitives of the graph (node) and their relationships (edges) must
be abstracted from the segmented and identified objects or object parts in
the image. So far, only a few algorithms can execute this level of abstrac-
tion. Examples for the abstraction of primitives are given by the numerous
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approaches to shape reconstruction: Shape-from-shading, -texture, -contour,
-stereo, etc. Examples for the abstraction of relationships can be found at the
depth reconstruction by trigonometric analysis of the projective perspective.
Recently, considerable progress has been achieved in symbolic image analysis
in the fields of industrial image processing and robotics. Because of the special
peculiarities of the biomedical imagery (see Sect. 1.1.3) the transfer of these
approaches into health care applications and medical image processing is only
sparingly succeeded so far.

1.8.4 Examples

We will now discuss some examples for image measurements. For instance
in Fig. 1.33, geometrical features are used for the automatic classification of
implant systems. The feature measures are extracted on the abstract level of
regions. Frequently, further measures are extracted after object identification,
which use the information of the certain object detected, i.e., they operate
on the level of objects. In Fig. 1.33i, we can use the knowledge that the blue
segment corresponds to a Branemark implant to parameterize a special mor-
phological filter that is adapted to the geometry of Branemark implants and
count the number of windings of the screw.

Another example of object-based image measurements is given in Fig. 1.34.
The result of balloon segmentation of a cell membrane (see Fig. 1.30) is
labeled automatically with local confidence values based on model assump-
tions (Fig. 1.34a). These values indicate the contour segment belonging to
a cell membrane and thus a classification via fuzzy logic (see Sect. 1.7.3).
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Fig. 1.34. Quantification of synaptic boutons on a cell membrane [15]. The cell
membrane was segmented with a balloon (see Fig. 1.28). Analyzing the impact of
internal vs. external forces at a certain vertex, local confidences can be determined
to fuzzily classify the affiliation of the contour section to the actual cell membrane
(a). The cell contour is extracted, linearized, normalized, and binarized before the
occupation of the cell membrane with synaptic boutons of different sizes is analyzed
by morphological filtering (b). The confidence values are considered for averaging
the occupation measure along the cell membrane (c)
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Fig. 1.35. Scheme of automatic image interpretation. The panoramic radiograph
contains all relevant information of a dental chart. The symbolic description of
the scene is obtained with a semantic network. Despite its already considerable
complexity, the shown part of the network represents only the marked ROI. In the
dental chart, information is coded differently. The teeth are named in accordance
with the key of the Fédération Dentaire Internationale (FDI): the leading digit
denotes the quadrant clockwise, the second digit refers to the number of the tooth,
counting from inside to outside. Existing teeth are represented by templates, in
which dental fillings, crowns and bridges are recorded. The green circle at tooth 37
(say: three, seven) indicates a carious process

To increase robustness and reliability of measurements, the confidence values
are accounted for an averaging of quantitative measures along the contour,
which are extracted, linearized, normalized, and morphologically analyzed
(Fig. 1.34b), such that finally a reliable distribution statistics of connecting
boutons according to their size is obtained (Fig. 1.34c).

Figure 1.35 displays exemplarily the automatic extraction of a dental chart
based on image processing of a panoramic radiograph. It clearly shows the
immense difficulties, which have to be faced by the automatic interpretation of
biomedical images. Initially, the segmentation and identification of all relevant
image objects and object parts must succeed, so that the semantic network
can be built. This includes the instances (“tooth 1”, “tooth 2”, etc.) of the
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previously identified objects (e.g., “teeth”, “crown”, “filling”). The interpre-
tation of the scene based on the network must be carried out in a further, not
less difficult step of processing. Thus, all teeth must be named according to
their position and shape. Then, crowns, bridges, fillings, and carious processes
can be registered in the dental chart. However, the automation of this process,
which can be accomplished by dentist in a few minutes, is not yet possible
automatically with sufficient robustness.

1.9 Image Management

Introductorily, we have summed with the term “image management” all image
manipulation techniques, which serve the effective archiving (short and long
term), transmission (communication) and the access (retrieval) of data (see
Fig. 1.1). For all three points, the specifics in medical applications and health
care environments have led to specific solutions, which are briefly introduced
in the following sections.

1.9.1 Archiving

Already in the seventies, the invention of CT and its integration with clin-
ical routine has involved the installation of the first Picture Archiving and
Communication System (PACS), which main task is the archiving of image
data. The core problem of archiving medical images is the immensely large
volume of data. A simple radiography with 40 × 40 cm (e.g., a chest X-ray)
with a resolution of five line pairs per millimeter and 10 bit = 1,024 gray
levels per pixel already requires a storage capacity of more than 10MB. Dig-
ital mammography, which is captured with high resolution on both breasts
in two views results in about 250MB of raw data for each examination. Ten
years ago, radiography, CT, and MRI accumulated in a university hospital
to already about 2TB of image data each year (Table 1.6). This estimate
can easily increase tenfold with the resolution-increased novel modalities such
as spiral CT and whole-body MRI. For instance in Germany, according to
relevant legislations, the data must be kept at least for 30 years. Therefore,
efficient storage, retrieval, and communication of medical images have required
effective compression techniques and high speed networks. Due to noise in
biomedical images, lossless compression usually has a limited effect of com-
pression rates of two or three. Only in recent years, feasible hybrid storage
concepts have become available. Storage of and access to medical image data
is still of high relevance.

1.9.2 Communication

With increasing digitization of diagnostic imaging, the motto for medical infor-
mation systems, i.e., to provide “the right information at the right time and
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Table 1.6. Volume of medical image data [5]. The data is taken from the Annual
Report 1999 of the University Hospital of RWTH Aachen University, Aachen, Ger-
many (about 1,500 beds). The data is based on the Departments of (i) Diagnostic
Radiology, (ii) Neuroradiology, (iii) Nuclear Medicine, and (iv) Dentistry, Oral and
Maxillofacial Surgery for a total of 47,199 inpatient and 116,181 outpatient images.
Services (such as ultrasound, endoscopic or photographic) from other departments
were excluded. For modalities of nuclear medicine, 20 slices per study are assumed.
For comparison, the total number of analyses performed in the central laboratory
of the Institute for Clinical Chemistry and Pathobiochemistry was estimated with
an average of 10 measured values per analysis with highest precision of 64 bit. But
still, the annual image data volume is about 10,000 times larger

Modality Resolution Range [bit] Size per Units in Total per
Spatial [pixel] image [MB] year 1999 year [GB]

Chest radiography 4000 × 4000 10 10.73 74,056 775.91
Skeleton radiography 2000 × 2000 10 4.77 82,911 386.09
CT 512 × 512 12 0.38 816,706 299.09
MRI 512 × 512 12 0.38 540,066 197.78
Other radiography 1000 × 1000 10 1.19 69,011 80.34
Panoramic and skull 2000 × 1000 10 2.38 7,599 17.69
Ultrasound 256 × 256 6 0.05 229,528 10.11
Dental radiography 600 × 400 8 0.23 7,542 1.69
PET 128 × 128 12 0.02 65,640 1.50
SPECT 128 × 128 12 0.02 34,720 0.79
Σ 1,770.99

For comparison
Laboratory tests 1 × 10 64 0.00 4,898,387 0.36

the right place,” is projected to the field of medical image processing. Hence,
image communication is the core of today’s PACS. Image data is not only
transferred electronically within a department of radiology or the hospital,
but also between widely separated institutions. For this task, simple bitmap
formats such as the Tagged Image File Format (TIFF) or the Graphics Inter-
change Format (GIF) are inadequate, because beside the images, which might
have been captured in different dimensions, medical meta information on
patients (e.g., Identifier (ID), name, date of birth, . . .), the modality (e.g.,
device, parameters, . . .) and organization (e.g., investigation, study, . . .) must
also be transferred in a standardized way.

Since 1995, the communication is based on the Digital Imaging and Com-
munications in Medicine (DICOM) standard. In its current version, DICOM
includes:

• structural information about the contents of the data (“object classes”),
• commands on what should happen to the data (“service classes”), and
• protocols for data transmission.

DICOM is based on the client-server paradigm and allows the coupling of
PACS in Radiology Information System (RIS) or Hospital Information Sys-
tems (HIS). DICOM incorporates existing standards for communication: the
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International Organization for Standardization (ISO) Open System Inter-
connection (OSI) model, the Transmission Control Protocol (TCP) Internet
Protocol (IP), and the Health Level 7 (HL7) standard. Full DICOM com-
pliance for imaging devices and image processing applications is achieved
with only a few supported object or service classes, since other DICOM
objects, which are not relevant for the current device, simply are handed over
to the next system in the DICOM network. The synchronization between
the client and server is regularized by conformance claims, which are also
specified as part of the DICOM standard. However, the details of imple-
mentation of individual services are not specified in the standard, and so
in practice, vendor-specific DICOM dialects have been developed, which can
lead to incompatibilities when building PACS. In recent years, the Inte-
grating the Healthcare Enterprises (IHE) initiative became important. IHE
aims at guiding the use of DICOM and other standards such that complete
inter-operability is achieved.

1.9.3 Retrieval

In today’s DICOM archives, images can be retrieved systematically, only if
the patient name with date of birth or the internal system ID is known.
Still, the retrieval is based on alphanumerical attributes, which are stored
along the image data. It is obvious that diagnostic performance of PACS
is magnified significantly if images would be directly available from similar
content of a given example image. To provide the Query by Example (QBE)
paradigm is a major task of future systems for Contend-Based Image Retrieval
(CBIR). Again, this field of biomedical research requires conceptually different
strategies as it is demanded in commercial CBIR systems for other application
areas, because of the diverse and complex structure of diagnostic information
that is captured in biomedical images.

Figure 1.36 shows the system architecture of the Image Retrieval in Med-
ical Applications (IRMA) framework3. This architecture reflects the chain of
processing that we have discussed in this chapter, i.e., registration, feature
extraction, segmentation, classification of image objects towards the tip of
the pyramid (see Fig. 1.2), which is the symbolic interpretation respective
scene analysis. In IRMA, the image information that is relevant for retrieval
is gradually condensed and abstracted. The image bitmap is symbolically
represented by a semantic network (hierarchical tree structure). The nodes
contain characteristic information to the represented areas (segments) of the
image. Its topology describes the spatial and/or temporal condition of each
object. With this technology, radiologists and doctors are supported similarly
in patient care, research, and teaching.

3 http://irma-project.org
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Fig. 1.36. System architecture of the IRMA framework [16]. The processing steps
in IRMA are shown in the middle column. Categorization is based on global fea-
tures and classifies images in terms of imaging modality, view direction, anatomic
region, and body system. According to its category, the image geometry and con-
trast are registered to a reference. The abstraction relies on local features, which
are selected specifically to context and query. The retrieval itself is performed effi-
ciently on abstracted and thus information-reduced levels. This architecture follows
the paradigm of image analysis (cf. Fig. 1.1). The in-between-representations as pre-
sented on the left describe the image increasingly abstract. The levels of abstraction
(cf. Fig. 1.20) are named on the right side

1.10 Conclusion and Outlook

The past, present, and future paradigms of medical image processing are
composed in Fig. 1.37. Initially (until approx. 1985), the pragmatic issues of
image generation, processing, presentation, and archiving stood in the focus
of research in biomedical image processing, because available computers at
that time had by far not the necessary capacity to hold and modify large
image data in memory. The former computation speed of image processing
allowed only offline calculations. Until today, the automatic interpretation of
biomedical images still is a major goal. Segmentation, classification, and mea-
surements of biomedical images is continuously improved and validated more
accurately, since validation is based on larger studies with high volumes of
data. Hence, we focused this chapter on image analysis and the processing
steps associated with it.

The future development is seen in the increasing integration of algorithms
and applications in the medical routine. Procedures in support of diagnosis,
treatment planning, and therapy must be easily usable for physicians and,
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processing [17]. Until now,
formation, enhancement,
visualization, and
management of biomedical
images have been in the
focus of research. In future,
integration, standardization,
and validation are seen as
major challenges for routine
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therefore, further standardized in order to ensure the necessary interoperabil-
ity for a clinical use.
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6. Wagenknecht G, Kaiser HJ, Büll U. Multimodale Integration, Korrelation
und Fusion von Morphologie und Funktion: Methodik und erste klinische
Anwendungen. Rofo. 1999;170(1):417–6.
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