Synthetic Aperture Radar

Pierfrancesco Lombardo

Sistemi Radar

RRSN – DIET, Università di Roma "La Sapienza"

MTI extra – 1

Outline

SAR Basics

- SAR System parameters, range resolution and swaths
- Real Aperture Radar (RAR)
- Doppler Frequency approach to SAR
- Synthetic antenna approach to SAR

• SAR Focusing algorithms

- Range Cell Migration and focus parameter variation
- Range-Doppler Algorithm
- Chirp Scaling Algorithm
- Range Migration Algorithm

• SAR imaging modes

- Fundamental limitation of SAR
- Squinted SAR
- Spotlight SAR Inverse SAR

• Examples of advanced SAR applications

- Coherent Multichannel SAR/ISAR using multiple platforms
- Passive SAR and ISAR

Sistemi Radar

EUSAR 2012

Principles of SAR Image Formation

Sample image from ASI - Italian Space Agency (www.asi.it)

Sistemi Radar

Radar Antenna Beam

Example airborne SAR	
Wavelength (λ)	3.1 cm (X band)
Antenna $(d_a \times d_e)$	1.8 m × 0.18 m
Altitude	10 km
Off-nadir angle (α_0)	Adjustable 15° - 60°

airborne case

$$\psi_{e} = \frac{\lambda}{d_{e}} = \frac{0.031}{0.18} = 0.1722(rad) \rightarrow 9.87^{\circ}$$
$$\psi_{a} = \frac{\lambda}{d_{a}} = \frac{0.031}{1.8} = 0.01722(rad) \rightarrow 0.987^{\circ}$$

$$\psi_e = \frac{\lambda}{d_e} = \frac{0.0567}{1} = 0.0567(rad) \rightarrow 3.2487^{\circ}$$

$$\psi_a = \frac{\lambda}{d_a} = \frac{0.0567}{10} = 0.00567 (rad) \rightarrow 0.32487^{\circ}$$

Sistemi Radar

Radar Antenna Footprint

Air-borne SAR: ground range swath

RRSN – DIET, Università di Roma "La Sapienza"

MTI extra – 6

Azimuth antenna footprint

Radar pulses & range resolution

Range ambiguities

RRSN – DIET, Università di Roma "La Sapienza"

MTI extra – 9

Pulse compression and range resolution

RRSN – DIET, Università di Roma "La Sapienza"

Single pulse radar echo

Real Aperture Radar

RRSN – DIET, Università di Roma "La Sapienza"

MTI extra – 12

Real Aperture Radar (II)

Angle-Doppler frequency relationship

Doppler frequency bandwidth

Sistemi Radar

Frequency approach to SAR

Along-track resolution by Doppler

- **Doppler frequency resolution** (*Fourier Transform*)

$$\Delta f_{d} = \frac{1}{T_{oss}} = \frac{1}{N \cdot PRT} = \frac{PRF}{N}$$

$$\Delta f_{d} = \frac{1}{T_{oss}} = \frac{2}{\lambda} V \delta \sin \phi$$

$$\Delta f_{d} = \frac{1}{T_{oss}} = \frac{2}{\lambda} V \delta \sin \phi$$

$$\Delta f_{d} = \frac{1}{T_{oss}} = \frac{2V}{\lambda R_{y}} \delta x$$

$$\delta \sin \phi = \frac{\lambda}{2V} \Delta f_{d} = \frac{\lambda R_{y}}{2V} \frac{1}{T_{oss}} = \frac{\lambda R_{y}}{2V} \frac{PRF}{N}$$
N pulses at min PRF: FFT provides N Doppler filters
$$\delta \sin \phi \ge \frac{\lambda}{2V} \frac{2V}{N d_{a}} = \frac{1}{N} \frac{\lambda}{d_{a}} = \frac{\psi_{a}}{N}$$

$$\delta x \ge \frac{\lambda R_{y}}{2V} \frac{2V}{N d_{a}} = \frac{1}{N} \frac{\lambda}{d_{a}} R_{y} = \frac{D_{sy}}{N}$$

Sistemi Radar

Synthetic antenna principle

- By exploiting platform motion emulate "synthetic antenna array"

Sistemi Radar

Synthetic antenna principle (II)

- By exploiting platform motion emulate "synthetic antenna array"

Unfocused SAR Processing scheme

Longer T_{oss} = longer pulse sequence \rightarrow Higher Doppler frequency resolution

Longer T_{oss} = longer pulse sequence \rightarrow Higher Doppler frequency resolution

Maximum observation time for point target

Slow-time Chirp signal from point target

Slow-time Chirp signal from point target (II)

- Chirp signal in the slow time t_a

$$S(t_a) = rect_{T_{obs}}(t_a) e^{-j\pi \beta_{t_a} t_a^2}$$
$$T_{obs} = \frac{\lambda}{d_a} \frac{R_y}{V} \qquad \beta_{t_a} = \frac{2V^2}{\lambda R_y}$$

- Chirp signal in the along-track space domain $x = V t_a$

$$s(x) = rect_{D_{sy}}(x) e^{-j\pi\beta x^{2}}$$
$$D_{sy} = \frac{\lambda}{d_{a}}R_{y} \qquad \beta = \frac{2}{\lambda R_{y}}$$

Sistemi Radar

Focused SAR

To exploit long T_{oss} we can think in terms of:

- Compress the chirp signal in the slow time t_a domain

→ Resolution in slow time
$$\delta t_a = \frac{1}{B_d} = \frac{d_a}{2V}$$

$$\Rightarrow \text{ Resolution in along-track range} \qquad \delta x = V \delta t_a = \frac{d_a}{2}$$

 Compensate for the liner frequency modulation + narrow Doppler filter at zero Doppler using the whole T_{oss}

$$T_{oss} = \frac{D_{sy}}{V} = \frac{\lambda}{d_a} \frac{R_y}{V}$$

$$\delta x = \frac{\lambda R_y}{2V} \Delta f_d = \frac{\lambda R_y}{2V} \frac{1}{T_{oss}} = \frac{\lambda R_y}{2V} \frac{1}{\frac{D_{sy}}{V}} = \frac{\lambda R_y}{2V} \frac{1}{\frac{\lambda}{d_a} \frac{R_y}{V}} = \frac{\frac{\lambda}{d_a}}{\frac{\lambda}{d_a} \frac{R_y}{V}}$$

- To achieve high resolution -> Small-sized ANTENNA appears better !

Sistemi Radar

Synthetic antenna principle (II)

- By exploiting platform motion emulate "synthetic antenna array"

-For long sequence of pulses, to steer in direction ϕ , compensating a linear phase term is not enough: SECOND ORDER TERM is needed \rightarrow Quadratic phase of the Fresnel area

Range variation of aperture and slope (I)

Range variation of aperture and slope (II)

The maximum resolution does not vary with range

Note: compression filter length and filter parameter (beta) vary from N to F
 → a different slow-time filter must be applied for every fast-time sample

Sistemi Radar

focused SAR Processing scheme (II)

frequency domain SAR processing scheme

Radar-point target range varies with slow-time

Range cell migration (RCM)

RCM compensation

Hyperbolic shaped (approx. quadratic) range cell migration appears unless range resolution is coarse enough

For the sample airborne SAR case (using worst case Far range distance)

 $\delta_R > \frac{\lambda^2 R_y}{8 d_a^2} = 3.5 m$

If higher rage resolution is required, it is necessary to compensate the point target migration through range bins

Note:

- **1)** Range Cell Migration shape is range dependent $! \rightarrow$ different compensation from N to F
- 2) For targets at same range and different along-track displacement RCM compensation is different → Compensation in time domain must be repeated continuously in slow-time

Sistemi Radar

RCM compensation (II)

Spotlight Mode SAR

Spotlight Mode SAR steers the real antenna toward the scene center to exceed the limit on the synthetic aperture of the stripmap mode

Sistemi Radar

ScanSAR Mode

ScanSAR Mode acquisition are performed by using the same azimuth antenna steering of the stripmap mode, but switching the beam in elevation after each burst to cover a wider swath

Sistemi Radar

Avoidance of Range Ambiguities: $1/PRF > 2 S_R/c$ Avoidance of Azimuth Ambiguities: $PRF > 2v/\lambda$ *Antenna beamwidth AZ

Range Swath: $S_R = \psi_e R_o / \cos \alpha = \lambda / d_e R_o / \cos \alpha$ Antenna beamwidth AZ $\psi_a = \lambda / d_a$

