
Integrazione non coerente Quadratica e Binaria per bersagli fluttuanti Sistemi Radar

Bersof en fluttur? on lenta (SW I e III) o viamente en prodite rispetto alla isrante Quando non poss effekting int coh? - con fluthuase" velice" (SWII e TV) - Trasmissine in agilité d'frequenza

SWRSW1 = 11 = 10/gr 10 = 1dB

1

Formula empirica di Shnidman (I)

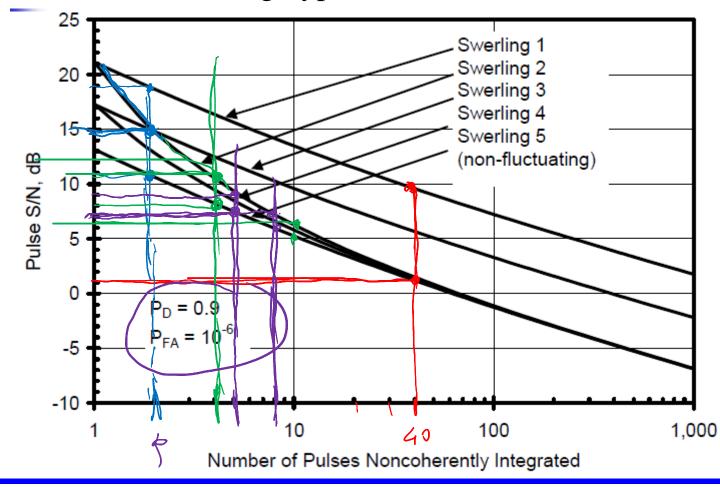
Prestazioni per l'Integrazione non coerente quadratica

 Shnidman has developed a set of empirical formulae that are quite accurate for most 1st order radar systems calculations:

$$K = \begin{cases} \infty & \text{Non-fluctuating target ("Swerling 0 / 5")} \\ 1, & \text{Swerling Case 1} \\ N, & \text{Swerling Case 2} \\ 2, & \text{Swerling Case 3} \\ 2N & \text{Swerling Case 4} \end{cases}$$

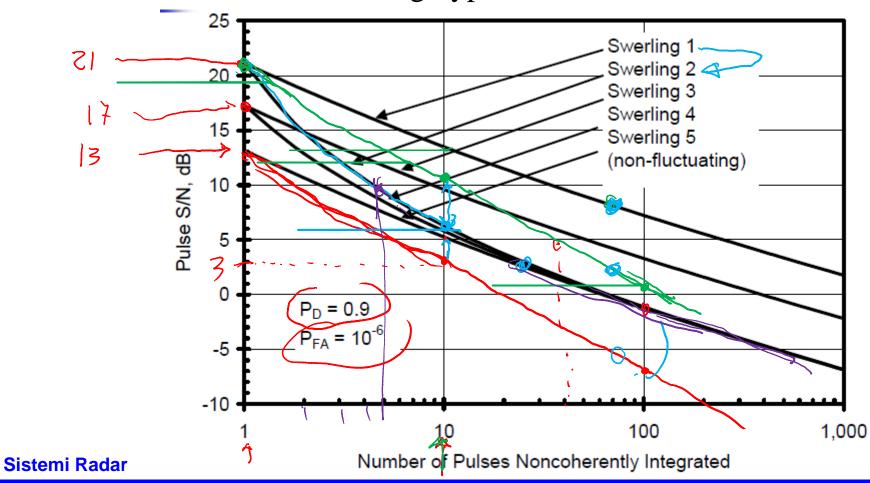
$$0 & N \le 40$$

$$\alpha = \begin{cases} 0 & N \le 40 \\ \frac{1}{4} & N > 40 \end{cases}$$


$$\eta = \sqrt{-0.8 \ln(4 P_{FA} (1 - P_{FA}))} + sign(P_{D} - 0.5) \sqrt{-0.8 \ln(4 P_{D} (1 - P_{D}))}$$

Formula empirica di Shnidman (II)

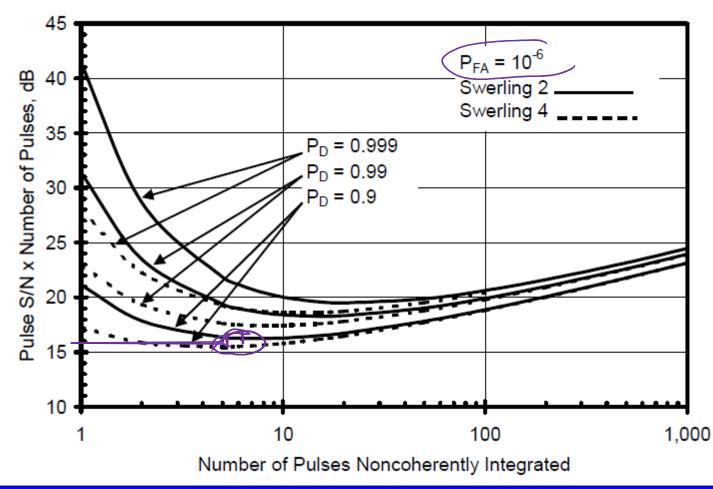
$$\begin{split} X_{\infty} &= \eta \Bigg(\eta + 2 \sqrt{\frac{N}{2}} + \Bigg(\alpha - \frac{1}{4} \Bigg) \Bigg) \\ C_{1} &= \Big(\Big(\Big((17.7006 \, P_{D} - 18.4496 \big) P_{D} + 14.5339 \Big) P_{D} - 3.525 \Big) / \, K \Big) \\ C_{2} &= \frac{1}{K} \Bigg(e^{27.31 \, P_{D} - 25.14 \big)} + \Big(P_{D} - 0.8 \Big) \Bigg(0.7 \, ln \bigg(\frac{10^{-5}}{P_{FA}} \bigg) + \frac{\big(2 \, N - 20 \big)}{80} \bigg) \Bigg) \\ C_{dB} &= \begin{cases} C_{1} & 0.1 \leq P_{D} \leq 0.872 \\ C_{1} + C_{2} & 0.872 \leq P_{D} \leq 0.99 \end{cases} & C &= 10^{\frac{C_{dB}}{10}} \\ SNR(natural \, units) &= \frac{C \, X_{\infty}}{N} & SNR(dB) = 10 \, log_{10}(SNR) \end{split}$$


Integrazione Quadratica - bersagli fluttuanti (I)

Plots of S/N vs. Number of Pulses and Swerling Type

Integrazione Quadratica - bersagli fluttuanti (I)

Plots of S/N vs. Number of Pulses and Swerling Type

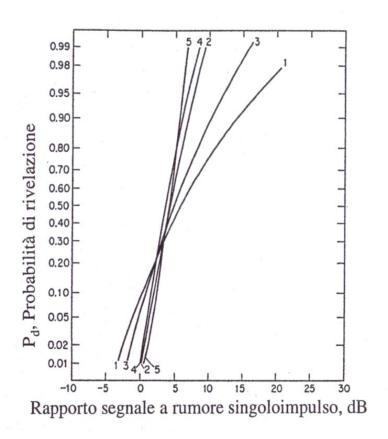

Integrazione Quadratica - bersagli fluttuanti (II)

Noncoherent-Integration Features

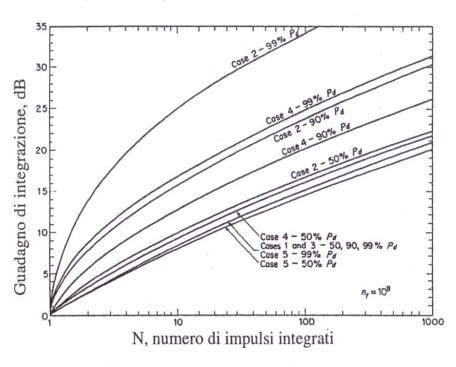
- Advantages Of Noncoherent Integration
 - Easier To Implement Than Coherent Integration
 - Requires Much Less Accuracy In Knowledge Of Radial Velocity
 - Can Provide Better Performance Against Fluctuating Targets
- For Correlated Target Signals (Swerling 1,3 and 5)
 - S/N Decreases More Slowly Than 1 / n
 - More Energy Needed Than With a Single Pulse or Coherent Integration
- For Fluctuating Target Signals (Swerling 2 and 4)
 - S/N Initially Decreases More Rapidly Than 1 / n
 - Produces Values of n Where NCI Requires Less Energy Than a Single Pulse or Coherent Integration

Integrazione Quadratica - bersagli fluttuanti (III)

Plots of n S/N vs. Number of Pulses NCI



Integrazione Quadratica - bersagli fluttuanti (IV)


NCI Detection Examples

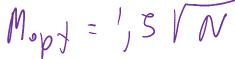
P_D	0.99	0.99	0.99	0.99	
P _{FA}	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	
n	1	10	1,000	100 x 10*	
Swerling	2	2	2	1/2	
Pulse S/N	31.4 dB	8.4 dB	-6.1 dB	-11.6 dB	
Relative Energy	1.0	0.05	0.18	0.05	
	* 10 Groups of 100 Coherently-integrated Pulses				

Integrazione Quadratica - bersagli fluttuanti (V)

Integrazione incoerente

Portata radar

definita su σ_{av} , tenendo conto delle fluttuazioni e del guadagno di integrazione



$$R_{\text{max}} = \left[\frac{E_t G A_e \sigma_{av}}{(4\pi)^2 L k T_0 F S N R^* L_f / \gamma} \right]^{1/2}$$

Integrazione Binaria - bersagli fluttuanti (VI)

Cumulative Detection (CD) Probability

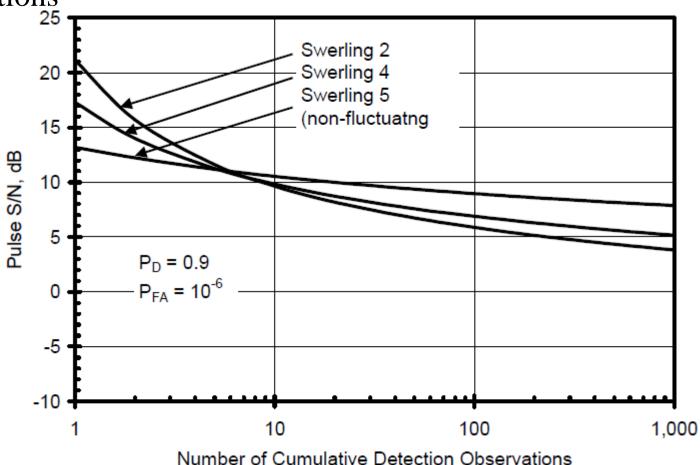
Cumulative Detection Involves

- Transmitting and Receiving a Series of n Pulses
- Detection Is Declared If at Least One Return Exceeds the Threshold
- Special Case of m Out of n Detection (Binary Integration)
- False-Alarm Probability for Each Observation, P_{FAO}, adjusted

$$P_{FAO} = P_{FA} / n$$

Single-observation Detection Probability, P_{DO}, Given by

•
$$P_{DO} = 1 - (1 - P_D)^{1/n}$$

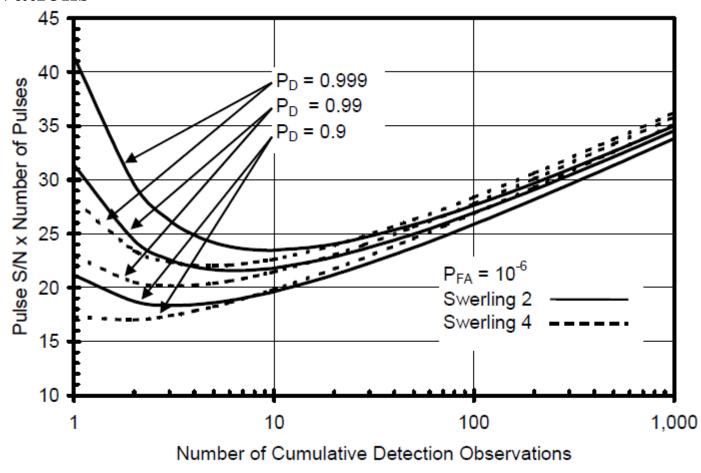

- Calculated Using Single-pulse or Integrated Dwell Techniques
- Overall P_D given by

•
$$P_D = 1 - (1 - P_{DO})^n$$

Integrazione Binaria - bersagli fluttuanti (VII)

Plots of S/N vs. Number of CD

Observations


Integrazione Binaria - bersagli fluttuanti (VIII)

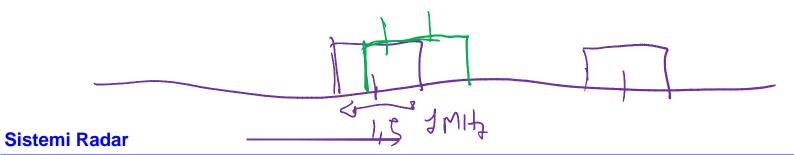
Cumulative Detection Features

- Advantages of Cumulative Detection
 - Easy to Implement
 - Range-walk Compensation Not Needed
 - Can Provide Good Performance Against Fluctuating Targets
- For Fluctuating Target Signals (Swerling 2 and 4)
 - S/N Initially Decreases More Rapidly Than 1 / n
 - Produces Values of n Where CD Requires Less Energy Than a Single Pulse or Coherent Integration
- Not Effective Against Non-fluctuating Targets
 - With Correlated Returns, All Will Likely Be Either Detected or Not Detected
 - Threshold Increase Increases S/N Needed

Integrazione Binaria - bersagli fluttuanti (IX)

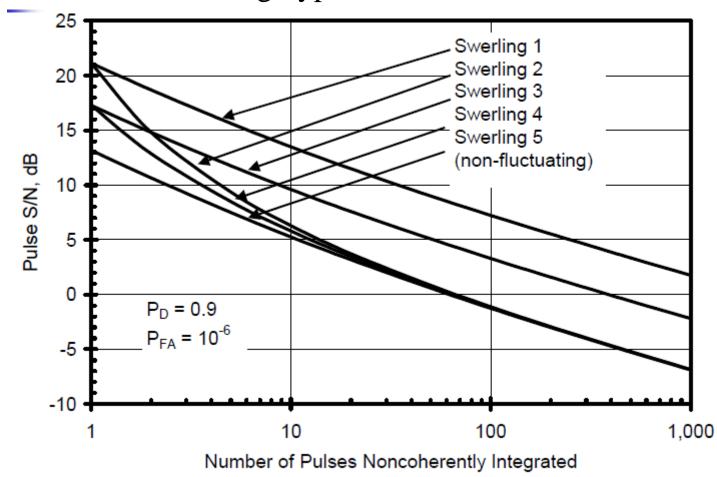
Plots of n S/N vs. Number of CD Observations

Integrazione Binaria - bersagli fluttuanti (X)


Cumulative-Detection

\mathbf{P}_{D}	0.99	0.99	0.99	0.99	
P _{FA}	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	
n	1	10	1,000	100 x 10*	
Swerling	2	2	2	1/2	
Pulse S/N	31.4 dB	11.8 dB	4.6 dB	-8.2 dB	
Relative Energy	1.0	0.11	2.09	0.11	
	* 10 Groups of 100 Coherently-integrated Pulses				

Integrazione Binaria - bersagli fluttuanti (XI)


Detection Comparison

	SP	CI	NCI	CD
\mathbf{P}_{D}	0.99	0.99	0.99	0.99
P_{FA}	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶
n	1	10	10	10
Swerling	1 or 2	1	2	2
Pulse S/N	31.4 dB	21.4 dB	8.4 dB	11.8 dB
Relative Energy	1.0	1.0	0.05	0.11
	I			

Integrazione Quadratica - bersagli fluttuanti (I)

Plots of S/N vs. Number of Pulses and Swerling Type

