Il segnale Chirp ed i codici a fase quadratica

Pierfrancesco Lombardo

Sistemi Radar

RRSN – DIET, Università di Roma "La Sapienza"

CHIRP: linear frequency modulated signal

CHIRP: Time domain waveform (I)

CHIRP: Time domain waveform (II)

CHIRP: Time domain waveform (III)

$$S(f) \int_{-\infty}^{+\infty} ned_{+}(t) e^{\int_{-\infty}^{+\infty} \frac{B}{T} t^{2}} e^{\int_{-1}^{0} 2\pi ft} dt =$$

$$= \int_{-\infty}^{T/2} e^{\int_{-\infty}^{+\infty} \frac{B}{T} t^{2}} e^{\int_{-\infty}^{0} \frac{B}{T} t^{2}} dt =$$

$$= \int_{-1}^{-1} \frac{T}{T} \frac{B}{T} t^{2} e^{\int_{-\infty}^{0} \frac{T}{T} t^{2}} e^{\int_{-\infty}^{0}$$

CHIRP – 6

$$\underbrace{I}_{z} - \underbrace{f}_{B}^{T}$$

$$e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int e^{j\pi} \underbrace{E}_{T} \underbrace{t^{\prime 2}}_{z} dt'_{z}$$

$$-I_{z} - \underbrace{f}_{B}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{T(\frac{j}{2} - \frac{f}{B})}_{z} \underbrace{TB}_{z} \underbrace{t^{\prime 2}}_{z} dt'_{z}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{T(\frac{j}{2} - \frac{f}{B})}_{z} e^{j\pi} \underbrace{At'_{z}}_{z} dt'_{z}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{T}_{z} \underbrace{e^{j\pi}}_{z} dt'_{z}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{I}_{z} \underbrace{I}_{z} \underbrace{e^{j\pi}}_{z} dt'_{z}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{I}_{z} \underbrace{I}_{z} \underbrace{f}_{z}$$

$$= e^{-j\pi} \underbrace{I}_{B} \underbrace{f^{2}}_{z} \int \underbrace{I}_{z} \underbrace{I}_{z} \underbrace{f}_{z}$$

$$= e^{-j\pi} \underbrace{I}_{z} \underbrace{f}_{z}$$

 $Cor(\mathbf{P}^{c})$ 0 (- X' +P $(\times_1) + ((\times_2) + ($ Sistemi Radar

CHIRP: Frequency domain waveform (I)

RRSN – DIET, Università di Roma "La Sapienza"

Funzioni Coseno e Seno Integrale

CHIRP: Frequency domain waveform (II)

CHIRP: Frequency domain waveform (III)

Autocorrelazione del chirp (I)

Funzione di autocorrelazione del chirp (III)

Funzione di Ambiguità: Chirp con inviluppo rettangolare

Chirp approximation and sidelobes (I)

RRSN – DIET, Università di Roma "La Sapienza"

Pulse compression technique (I)

 $r(t) = e^{j2\pi \left(f_{p}t + \frac{B}{T}\frac{t^{2}}{2}\right)} rect_{T}(t)$ Received signal **Matched Filter** • g(t) **r(t)** H(f) $h(t) = \sqrt{\frac{B}{T}} e^{-j2\pi \left(-f_p t + \frac{B}{T} \frac{t^2}{2}\right)} rect_T(t)$ matched filter impulse response $\frac{|\overline{\mathbf{B}}|}{|\underline{\mathbf{B}}|} \frac{\operatorname{sen}\left[\pi \frac{\mathbf{B}}{T} (T - |\mathbf{t}|)\mathbf{t}\right]}{\pi \frac{\mathbf{B}}{T} \mathbf{t}}$ $g(t) = r(t) * h(t) = \int r(\tau)h(t-\tau)d\tau$ matched filter output $e^{j2\pi f_p t}$ $\sin x/x$ signal envelope: with -4dB aperture =1/B. \checkmark g(t) autocorrelation of the The pulse has been input signal ($f_d=0$). compressed to: ✓ for $f_d \neq 0$ mismatched filter $\tau_c = 1/B < T$

Pulse compression technique (III)

RRSN – DIET, Università di Roma "La Sapienza"

Pulse compression technique (IV)

Matched filter output : sidelobes

SAW pulse compression (I)

SAW pulse compression (II)

- In a pulse compression system, a very brief pulse consisting of a range of frequencies passes through a dispersive delay line (SAW expander) in which its components are delayed in proportion to their frequency.
- In the process the pulse is stretched; for example a 1ns pulse may be lengthened by a factor of 1000 to a duration of 1µs before it is upconverted amplified and transmitted.
- A constant amplitude waveform is produced in which the frequency increases or decreases linearly by ∆f over the duration of the pulse

SAW pulse compression (III)

- The echo returns from the target are down converted and amplified
- It is then passed through a pulse compression filter which is designed so that the velocity of propagation is proportional to frequency
- The pulse is compressed to a width $1/\Delta f$
- The compressed echo yields nearly all of the information that would have been available had the unaltered 1ns pulse been transmitted.
- The amount of signal-to-noise ratio (SNR) gain achieved is approximately equivalent to the pulse time-bandwidth product β. τ.
- Most pulse compression systems use surface acoustic wave (SAW) technology to implement the pulse expansion and compression functions
- The maximum β . τ product that is readily available is about 1000.

SAW pulse compression (IV)

Chirp approximation and sidelobes

 Chirp autocorrelation (matched filter output)

$$g(t) = \sqrt{\frac{B}{T}} \frac{\sin\left[\pi \frac{B}{T} (T - |t|)t\right]}{\pi \frac{B}{T} t}$$

approximated with

$$g(t) \cong \sqrt{\frac{B}{T}} \frac{\sin[\pi Bt]}{\pi \frac{B}{T}t} = \sqrt{BT} \sin c [\pi Bt]$$

which is the Inverse Fourier Transform of a rectangle in the frequency domain

$$G(f) = \sqrt{\frac{T}{B}} rect_B(f)$$

Frequency domain weighting (I)

 To control sidelobes of the compressed waveform, amplitude weighting with appropriate tape functions can be used

Taking the Inverse Fourier Transform, we have in time domain

$$g(t) \cong \sqrt{BT} \operatorname{sinc} [\pi B t] \longrightarrow g(t) \cong \sqrt{BT} \operatorname{sinc} [\pi B t] * w(t)$$

$$g(t) \cong \sqrt{BT} \left\{ (1-k) \operatorname{sinc} \left[\pi B t \right] + \frac{k}{2} \operatorname{sinc} \left[\pi B \left(t - \frac{1}{2B} \right) \right] + \frac{k}{2} \operatorname{sinc} \left[\pi B \left(t - \frac{1}{2B} \right) \right] \right\}$$

Sistemi Radar

RRSN – DIET, Università di Roma "La Sapienza"

$$\frac{1}{1,46+1,2} = \frac{1}{2,16-2,7} \xrightarrow{q_{16},6+1,2} \qquad (150)$$

$$r = 150 \text{ m}$$

$$r = \frac{c}{2B} \xrightarrow{r} B = \frac{c}{2r} = \frac{3 \cdot 10^{8} \text{ m/s}}{2 \cdot 150 \text{ m}} = 10^{6} \text{ Hz} = 10^{14} \text{ Hz}$$

$$\xrightarrow{r} = \frac{c}{2B} \xrightarrow{r} \frac{1}{2} \cdot 150 \text{ m} = 210 \text{ m}$$

$$r = \frac{c}{2B} \xrightarrow{r} B = \frac{c}{2} \xrightarrow{r} x \cdot 10^{6} \text{ Hz} = \frac{1}{2} \text{ mHz}$$

$$\xrightarrow{K} = \frac{1}{2} \xrightarrow{r} x = 2 \text{ m}$$
Sistemi Radar

Analog vs. Digital domain operations

usually compression is applied in the sampled domain

• Starting from an approximately rectangular chirp spectrum (sampled in frequency at 1/T)

$$g(t_n) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} e^{+j\frac{2\pi}{T}kt_n} = \frac{\sin\left[\frac{\pi}{T}(N-1)t_n\right]}{\sin\left[\frac{\pi}{T}t_n\right]}$$
 Zeros of NUM: $t_n = \frac{kT}{N-1}$
Zeros of DEN: $t_n = kT$

which is the Inverse Fourier Transform of a rectangle in the frequency domain

$$g(t_n) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} w_k e^{+j\frac{2\pi}{T}kt_n} \quad \text{with} \quad w_k = W(\frac{k}{T})$$

Sistemi Radar

1 0

Compressed waveform quality parameters

Sistemi Radar

aperture

Common used taper functions

			η) <) 9015	
		Loss =	SU	\propto	
		Efficiency	PSL (dB)	Main lobe width	$ (-3d]^{=}$
		η		(w.r.t) 1/B.	
>	Uniform	(1)	-13.3	0.89	0,89/B
70	Cosine	0.81	-23	1.19	. , 0
Ø	Cosine squared (Hanning)	0.67	-32	1.44	
v	Cosine squared on 10 dB pedestal	0.88	-26	1.08	
~	Cosine squared on 20 dB pedestal	0.75	-40	1.28	$\boldsymbol{\times}$
0	Hamming	0.73	-43	1.30	×
	Dolph Chebyshev	0.72	-50	1.33	\times
	Dolph Chebyshev	0.66	-60	1.44	
	Taylor n-bar=3	0.9	-26	1.05)	\sim
	Taylor n-bar=5	0.8	-36	1.18	
	Taylor n-bar=8	0.73	-46 ,	1.30	
			\setminus /		

Sistemi Radar

250B 1

398B

Triangle (Bartlett) Window

- Main Beam width (between zero crossing) is twice that of the uniform window
- Zeros of order 2 in the Fourier Transform
- SLR≅26dB=2*13dB
- Decay SL $\propto 1/x^2$ (-12dB/oct) (discontinuity in the first derivative)

$\cos^{\alpha}(x)$ Windows

$$w_k = \cos^{\alpha} \left[\frac{k}{N-1} \pi \right]$$
 $k = -\frac{N-1}{2}, ..., -1, 0, 1, ..., \frac{N-1}{2}$

As α increases, the windows become smoother and the pattern shows increased SLR and faster falloff of the SL, but with an increase width of the ML.

$\cos^{\alpha}(x)$ Windows \rightarrow Hanning Window (α =2)

$\cos^{\alpha}(x)$ Windows \rightarrow Hanning Window (α =2)

- It does not require extra memory and is controlled by a single parameter.
- Wide enlargement of the main lobe
- Low efficiency: η=0.67
- SLR=32dB
- SL Decay ∝ 1/x³ (-18dB/oct) (discontinuity in the second derivative)

Hamming Window (1/2)

The Hamming weights are a modified version of the Hanning weights:

$$\begin{cases} w_k = \frac{1}{2} + \frac{1}{2} \cos\left[\frac{2k}{N-1}\pi\right] & k = -\frac{N-1}{2}, ..., -1, 0, 1, ..., \frac{N-1}{2} \\ g(t_n) = \left\{\frac{1}{2}D(x) + \frac{1}{4}\left[D\left(x + \frac{\pi}{N}\right) + D\left(x - \frac{\pi}{N}\right)\right]\right\} \end{cases}$$

It is obtained by modifying the coefficients of the combination of D(x) functions to achieve a better SL cancellation

$$\begin{cases} w_k = \gamma + (1-\gamma) \cos\left[\frac{2k}{N-1}\pi\right] & k = -\frac{N-1}{2}, \dots, -1, 0, 1, \dots, \frac{N-1}{2} \\ g(t_n) = \left\{\gamma D(x) + \frac{1}{2}\left(1-\gamma\right) \left[D\left(x+\frac{\pi}{N}\right) + D\left(x-\frac{\pi}{N}\right)\right]\right\} \end{cases}$$

Cancellation of the first sidelobe is for $\gamma = 0.543478261$. in practice, it is used

$$y=0.54: \quad \lim_{k \to \infty} \left\{ w_k = 0.54 + 0.46 \cos\left[\frac{2k}{N-1}\pi\right] \quad k = -\frac{N-1}{2}, ..., -1, 0, 1, ..., \frac{N-1}{2} \\ g(t_n) = \left\{ 0.54D(x) + \frac{1}{2} 0.46 \left[D\left(x + \frac{\pi}{N}\right) + D\left(x - \frac{\pi}{N}\right) \right] \right\} \right\}$$

Sistemi Radar

RRSN – DIET, Università di Roma "La Sapienza"

Hamming Window (2/2)

Blackman Windows

• Hanning and Hamming taper functions belong to the "raised cosine" family •Both are special cases of the <u>Blackman windows</u> (windows function of (N+1)/2 parameters) with only γ_0 and γ_1 non-zero coefficients :

$$w_{k} = \sum_{m=0}^{(N-1)/2} \gamma_{m} \cos\left(\frac{2\pi}{N-1}mk\right) \qquad \sum_{m=0}^{(N-1)/2} \gamma_{m} = 1 \qquad k = -\frac{N-1}{2}, ..., -1, 0, 1, ..., \frac{N-1}{2}$$

Difficulties with the family of windows:

- The choice of parameters to achieve the desired waveform characteristics is difficult (complex inversion)
- Often the characteristics are not adequate in terms of resolution and efficiency.

Dolph-Chebyshev Window (1/3)

It provides the maximal resolution for assigned sidelobe (costant) level!

The design is based on the properties of the Chebyshev polynomials :

For a window of N elements, a polynomial with order n=N-1 is used (N-1 zeros). The oscillating part of the polynomial is used for the sidelobes, while the main lobe is mapped in the region x>1.

Dolph-Chebyshev Window (2/3)

Dolph-Chebyshev Window (3/3)

For this reason, such taper function is not used in practice. The Taylor taper function is studied to solve such undesired feature, while keeping the nice properties of the Dolph-Chebyshev solution.

Taylor n-bar Window (1/4)

This is a trade-off between Dolph-Chebyshev taper function with constant RSL and the uniform weights with 1/x sidelobe decay.

Starting point

$$\begin{cases} F(u) = \cosh\left[\pi\sqrt{A^2 - u^2}\right] & u \le A \\ F(u) = \cos\left[\pi\sqrt{u^2 - A^2}\right] & u \ge A \end{cases}$$

- u=2x/π
- Pattern with constant level sidelobes
- There is a transition in the main lobe at u=A between the hyperbolic function and the trigonometric function
- Zeros at $\rightarrow z_n = \pm \sqrt{A^2 + (n 1/2)^2}$
- SLR= $F(0)=(1/\pi)\cosh A$

Strategy

Using this ideal pattern, there are still spikes at the window borders \rightarrow an approximate pattern is used where:

- The first \overline{n} sidelobes are maintained at a constant level
- The pattern zeros are moved to achieve a 1/u behavior in the sidelobe level region far from the main beam

Taylor n-bar Window (2/4)

New $\begin{cases} z_n = \pm \sigma \sqrt{A^2 + (n - 1/2)^2} & 1 \le n \le \overline{n} \\ z_n = \pm n & n \ge \overline{n} \end{cases} \qquad \sigma = \frac{\overline{n}}{\sqrt{A^2 + (\overline{n} - 1/2)^2}} \end{cases}$ Zeros:

Taylor n-bar Window (3/4)

Taylor n-bar Window (4/4)

Rete di Taylor: coefficienti

4.
$$w_{Toy}(+) \simeq \sum_{m=-\infty}^{\infty} F_m w_0(+-\frac{m}{B})$$

where

$$F_0 = 1$$
, $F_m = 0$ for $|m| \ge \overline{n}$
and
 $F_m = E_m$

$$W_{Tay}(f) = W_0(f) \left[1 + 2\sum_{m=1}^{n-1} F_m \cos 2 \pi m \frac{f}{B} \right]$$

(REFS. 39,42,43)

TABLE 10.9	Taylor (Coefficients F _m *	
------------	----------	-------------------------------	--

Design sidelobe ratio, dB	-30	35	-40	-40	-45	-45	-50
ñ	4	5	6	8	8	10	10
Main lobe width, -3 dB	1.13/ B	1.19/B	1.25/B	1.25/B	1.31/B	1.31/B	1.36/B
F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9	0.292656 -0.157838(-1) 0.218104(-2)	0.344350 -0.151949(-1) 0.427831(-2) -0.734551(-3)	0.389116 -0.945245(-2) 0.488172(-2) -0.161019(-2) 0.347037(-3)	0.387560 -0.954603(-2) 0.470359(-2) -0.135350(-2) 0.332979(-4) 0.357716(-3) -0.290474(-3)	0.428251 0.208399(-3) 0.427022(-2) -0.193234(-2) 0.740559(-3) -0.198534(-3) 0.339759(-5)	0.426796 -0.682067(-4) 0.420099(-2) -0.179997(-2) 0.569438(-3) 0.380378(-5) -0.224597(-3) 0.246265(-3) -0.153486(-3)	0.462719 0.126816(-1) 0.302744(-2) -0.178566(-2) 0.884107(-3) -0.382432(-3) 0.121447(-3) -0.417574(-5) -0.249574(-4)

 $F_0 = 1$; $F_{-m} = F_m$; floating decimal notation: -0.945245(-2) = -0.00945245.

Confronto reti di pesatura

FIG. 10.16 (a) Taper coefficient and pedestal height versus peak sidelobe level. (b) Compressed-pulse width versus peak sidelobe level. (c) SNR loss versus peak sidelobe level.

Distorsioni lineari (I)

Effetto delle distorsioni • Il sistema reale sarà affetto da distorsioni (non sarà esattamente uguale a quello ideale): tutte le distorsioni di sistema possono essere sintetizzate in un filtro distorcente posto in cascata al filtro adattato ideale:

• Nell'ipotesi di piccole distorsioni la $H_d(f)$ può essere sviluppata in serie arrestandosi al primo termine

$$H_{d}(f) = A(f)e^{jB(f)} \rightarrow \begin{cases} A(f) = 1 + a_{1}\cos(2\pi C_{a}f) \\ e^{jB(f)} = e^{jb_{1}\sin(2\pi C_{b}f)} \cong 1 + jb_{1}\sin(2\pi C_{b}f) \end{cases}$$

- a₁: valore di picco della componente di ampiezza;
- b₁: valore di picco della componente di fase;
- C_a: frequenza ripple di ampiezza;

C_b: frequenza ripple di fase;

Distorsioni lineari (II)

• Il segnale di uscita distorto è dato da:

$$s_{o}^{d}(t) = s_{o}(t) + \frac{a_{1}}{2}s_{o}(t + C_{a}) + \frac{a_{1}}{2}s_{o}(t - C_{a}) \longrightarrow \text{ effetto della distorsione di ampiezza;}$$

$$s_{o}^{d}(t) = s_{o}(t) + \frac{b_{1}}{2}s_{o}(t + C_{b}) - \frac{b_{1}}{2}s_{o}(t - C_{b}) \longrightarrow \text{ effetto della distorsione di fase;}$$

$$ECHI$$

$$APPAIATI$$

L'utilizzo di filtri reali anziché ideali comporta la presenza di un disturbo additivo dato dagli echi appaiati: tanto maggiore è $a_1\&b_1$ tanto maggiore è l'ampiezza dell'eco, tanto minore è $C_a\&C_b$ (ripple lento) tanto più gli echi appaiati compaiono vicini al segnale utile \Rightarrow dalle specifiche di dinamica si può ricavare la massima distorsione ammissibile (valore massimo $a_1\&b_1$).

Chirp approximation and sidelobes (II)

Codici di Barker

Sono codici binari di lunghezza N, caratterizzati da Funzione di AutoCorrelazione (ACF) con lobi laterali in modulo ≤ 1/N

• Esistono solo poche sequenze con queste caratteristiche:

Lunghezza N	codice	PSR (dB)	ISLR (dB)
2	+ -	6,0	3,0
2	++	6,0	3,0
3	++-	9,5	6,5
3	+-+	9,5	6,5
4	++-+	12,0	6,0
4	+++-	12,0	6,0
5	+++_+	14,0	8,0
7	++++-	16,9	9,1
11	++++-	20,8	10,8
13	+++++-+-+	22,3	11,5

ACF del codice di Barker da 13

Rispetto ad impulso non modulato τ_p :

- Energia trasmessa BT=n=13 volte superiore
- risoluzione in tempo uguale
- risoluzione in Doppler BT=n=13 volte superiore
- (zona cieca BT=n=13 volte più larga)

Rispetto ad impulso non modulato $T=n\tau_p$:

- Energia trasmessa uguale
- 13 risoluzione in tempo BT=n=13 volte migliore
 - risoluzione in Doppler uguale
 - (zona cieca uguale)

Codice Polifase di Frank (I)

- Usando M valori di fase
- Numero di elementi N=M²
- Costruito dalle righe della matrice quadrata:

$$\phi_{pq} = \frac{2\pi}{M}(p-1)(q-1)$$
 $p,q = 1, \dots, M$

- **Per N=16**

Codice Polifase di Frank (II)

RRSN – DIET, Università di Roma "La Sapienza"

Codice Polifase di Frank (III)

Table 8.5 The Autocorrelation Sequence of a 16-Bit Frank Code

Codice Polifase di Frank (IV)

RRSN – DIET, Università di Roma "La Sapienza"

Codici Polifase P3 e P4 (I)

Codice P3

Codice P4

Codici Polifase P3 e P4 (III)

