
Multiagent Systems
and Swarms

Sean Luke

Department of Computer Science
George Mason University

Washington, DC

My Current Multiagent Systems Problem

• Giacomo and Matteo, 5 years old

My Plan

• Lecture 1
Agents
Why Multiagent Systems are Hard
Communication and Coordination
Basic "Small" Multiagent Systems Topics (Game Theory, Voting, Auctions)
Example from Multiagent Reinforcement Learning

• Topics for Lectures 2 and 3: mostly my own research
Swarms
Multiagent Task Allocation
Multirobotics and Swarm Robotics
Scalable Multiagent Learning
Indirect Communication Methods
Agent-Based Modeling

An Agent	 	 (in Artificial Intelligence)

• An autonomous computational mechanism.

• Responsive. A mechanism which iteratively manipulates its
environment in response to feedback or sensor information it receives
from its environment. Engineers call this a closed loop system.

• Self-Contained. There is no person with joysticks controlling the agent.
(The agent has agency — it does things on its own).

• “Autonomous agent” is a redundant term.

• An autonomous robot is an agent whose environment is the physical world.

A Distributed System

• A system of processors.

• Your objective is to connect and program these processors to perform a task
much faster / better than a single processor could do it.

• You have lots of freedom in how you design the system architecture.

• A distributed system is typically optimistic (we’re going to do something
better than a single agent!)

• Parallel or cluster computing
Distributed ad-hoc wireless networks
Distributed sensor networks

A Multiagent System

• A distributed system of agents.

• The agents are autonomous: they're typically not under anyone's control. The
agents tend to interact with or coordinate with one another, and through
interaction, they mess each other up a lot.

• Agents do not have a full understanding of the world and restrictions on
communication prevent them from telling each other everything.

• Your task is to get the agents to solve a problem despite the agents stepping
on each other's toes.

• A multiagent system is pessimistic (how can I get the agents to solve this
problem at all?)

Multiagent Systems are Everywhere

• Nature
Multicellular organisms

Coevolving arms races

Swarms/flocks/schools of ants,
termites, gnats, bees, zombies,
fish, birds, cows, sheep, horses

Societies/packs of dogs, apes,
dolphins, lions, humans

• Engineering
Autonomous car traffic
Warehouse fulfillment robots
Micro-air vehicles (MAVs, or drones)
Social models of human behavior

DDOS attacks
Automated stock trading software
Distributed video game agents
Animated movies of killer robots

Why Multiagent Systems are Hard

• Multiagent systems are high dimensional.

• Large numbers of agents.

• Heterogeneous agents.

• Computationally sophisticated agents.

• High degree of agent interaction.

• High degree of agent communication or coordination.

• Agents with different goals: cooperative, competitive, etc.

• Hard to design for a high dimensional system.

• Multiagent systems scale poorly with centralized methods:

• Broadcast communication

• Centralized controllers

Why Multiagent Systems are Hard

• Multiagent systems are hard to predict.

• “Complexity” or “Emergent Behavior”

• A multiagent system is made up of agents, each with various behaviors, and
which interact in various ways. It is hard to predict the emergent
macrophenomena in some closed form.

• M(agents, behaviors, interactions, etc.) ��emergent macrophenoma

Why Multiagent Systems are Hard

• Multiagent Systems have difficult inverse functions.

• M(agents, behaviors, interactions, etc.) ��emergent macro-phenomena
This function exists (though it likely has no closed form): it's called a simulator!

• Mʹ(emergent macro-phenomena) ��agents, behaviors, interactions, etc.
This inverse function function does not exist. But we need it!

• I want my multiagent system to do a certain macro-phenomenon. What micro
behaviors should I use to do it? ¯_(�)_/¯ This is an inverse problem.

• Inverse problems are normally solved using optimization. Multiagent systems
are arbitrary, so their most common optimization approaches are
metaheuristics (genetic algorithms, etc.) and reinforcement learning.

Communication

• Global communication scales poorly (O(n2)) with number of agents

• Methods that fail quickly due to scaling issues:

• Broadcast (Blackboard), Star, Tree, High-Degree Graphs

• Dynamic agents (such as mobile robots) require rapid reconfiguration of
multi-hop architectures

• Ad-hoc wireless network routing tables (for example) are not designed to
be constantly revised.

Alternative Communication Methods

• Signaling
When I raise my hand, everyone get ready.
When I in a certain position, that you should kick to me.
Potentially Global Communication, but limited data

• Line-of-Sight Communication
Local Broadcast Communication
I can talk to my local neighbors only.
Multihop methods are hard with dynamic agents

• Indirect Communication
Leaving information in the environment for
other agents to discover. Post-It Notes,
Predators Marking Territory, Ant Pheromones.

• Conference
Every once in a while everyone gets together to trade notes.
Bee Waggle Dance. Global, but only occasional

Centralized Coordination

• Centralized coordination does not scale with number of agents (O(n))
Far too high a load on the centralized coordinator

• Centralized coordination is brittle
What if the centralized coordinator dies?

Local or Distributed Coordination

• Social Laws	 	 Everyone must drive on the right side of the road (in Italia)

• Local BehaviorsWhen I see a nearby person has the ball, I will get open.
 When I have the ball, I will wait until
 someone is open, then pass to them.

• Local-only coordination is very restricted
What if agent A in Parioli must work with
agent B in Trastevere? Who will coordinate
them?

[Most large multiagent systems assume no
 multihop communication at all!]

Hierarchical Coordination

• Scales well. No matter how large the hierarchy, every agent must coordinate
with at most N other agents.

• Global coordination. A top-level boss can
coordinate the entire group. If an agent
needs to coordinate with a
remote agent, he can do so via their
shared boss.

• Heterogenous. Hierarchies
can be organized into different groups
of similar agents, or into similar groups of different agents.

• Brittle. If a boss dies, his entire subhierarchy is disconnected.

Theory

• Most theory has concentrated on simple things:

• Typically 2 agents (often useless)	 	 	 (Game Theory) 		 	 or

• Independent agents, each with a voice (Auctions, Voting)
 Note: Kenneth Arrow died on Wednesday

• Theory in swarms has is limited and poor.

• Largely complexity, dynamical systems models. Things that don't help.

• There is a strong need for better theory. But it may be impossible!

Practice

• Small numbers (teams) of agents / robots
Computationally sophisticated agents, rich interactions, no communication
problems, heterogeneous
Example: RoboCup

• Large numbers (swarms) of agents / robots
Computationally trivial agents, limited and distributed interactions, no
communication or limited communication, almost always homogeneous
Example: Kiva Systems

• There are almost no examples of large numbers of heterogeneous
sophisticated robots with sophisticated interactions / communication.

• Modular Robots

• Agent-Based Models

Extensive-Form Games

• Agents Sean and Alberto are players playing a game (Chess?). The game will
an outcome for both Sean and Alberto. We'll call that a reward or payoff.

• Sean has a strategy. Let s be a game state: a current board configuration
where Sean is trying to determine what move to make. Let a ∈ As be the set
of actions a Sean can do in a given state s.

• Sean's strategy is some function f(s)➔ a This is a pure strategy.

• Alberto's strategy is some other function g(s)➔ a

• The set of pure strategies is countable (and finite if the set of actions and
states is finite). Why?

• Perhaps Sean makes random actions in a given state. Then his strategy is
f(s)➔ !s where !s is a probability distribution over As. The action a to
perform is selected under this distribution. This is a mixed strategy.

• The set of mixed strategies is uncountable. Why?

Normal-Form Games

• Pure strategies are deterministic. Since we can enumerate all of them, each
combination of Sean's pure strategy and Alberto's pure strategy result in a
specific reward for Sean and a specific reward for Alberto. We can
enumerate this in a table.

A B C D E F G H I

U

V

W

X

Y

Z

7 2 -1 3 6 14 3 9 2

8 9 -5 3 2 1.4 0 9 0

8 9 -2 -9 2.3 5 1.1 6 7

8 8 8 8 8 8 8 8 8

0 0 4 6 10 14 9.2 1 3

0 0 2.1 6 4 7 8 2 5

A B C D E F G H I

U

V

W

X

Y

Z

6 2.3 7 7 1.0 2 3 5 12

2 4 2 3 0.9 9 4 3 1.1

4 5 1 4 0 5 3 3 3

6 -3 65 6 0 2 -2 4 6

1 -5 9.1 5 0 0 0 0 0

3 6 3 3 0 9 10 2 3

Outcomes for Sean Outcomes for Alberto
Sean's Pure Strategy Sean's Pure Strategy

A
lb

e
rt

o
's

 P
u
re

 S
tr

a
te

g
y

Normal-Form Game Theory

• A mixed strategy is just a distribution over possible pure strategies! Why?

• If Sean and Alberto are following a mixed strategy then this table still
represents all possible combinations of pure strategies. The payoff of a
mixed strategy is the expected payoff given the distribution.

• In Normal Form, it's often convenient to think of Sean and Alberto as
selecting actions. A pure strategy always selects a specific action. A mixed
strategy selects an action under its distribution. Now the table consists of the
actions that Sean and Alberto can perform, and the payoffs are the payoffs
for those actions.

• Sean does action a. Alberto does action b. The pair <a, b> is called a joint
action. It's the action performed by the entire system.

Special Kinds of Games

• Some special games:	 	 S is Sean's outcome table, A is Alberto's

• Fully cooperative	 S = A

• Symmetric		 	 S = AT

• Constant Sum ∃ c ∀ i, j: Sij + Aij = c Competitive

• Zero Sum ∀ i, j: Sij + Aij = 0 Competitive

• In all four of these examples, there's no need for two tables! Why?

• General Sum Any game (Sij and Aij don't have any relationship)

• There can be >2 players. Then the table is >2-dimensional.

• Unless the players cannot communicate, >2 players could result in
collusion.

What Kinds of Games are These?

3 4 6
2 0 1
2 4 10

3 4 6
2 0 1
2 4 10

3 -4 6
-2 0 1
-2 -4 10

-3 4 -6
2 0 -1
2 4 -10

3 -4 6
-2 0 1
-2 -4 10

3 -2 -2
-4 0 -4
6 1 10

3 2 6
3 2 6
3 2 6

-3 -2 -2
-4 0 -4
6 1 10

Playing a Normal-Form Game

• One-Shot. Sean and Alberto independently pick strategies. Then they do
one action each and each receive a payoff. The Goal: how do I maximize my
expected payoff?

• Repeated. Sean and Alberto independently pick strategies. Then they do
one action each and receive a payoff. Then Sean and Alberto possibly
change their strategies. Then they again do an action each and both receive
a payoff. This repeats forever. The Goal: how do I adjust/adapt my
strategies over time to maximize my total expected payoff?

• Stochastic. Sean and Alberto independently pick strategies. Then they do
one action each and receive a payoff, and the game changes as a result of
the joint actions done. This new game (called a state) has different actions
and payoffs, and was chosen from a distribution based on the actions they
chose. This process continues forever. Now a "strategy" is a collection of
strategies, one for each game we might encounter. The Goal: how do I
adjust/adapt my strategies over time to maximize my total expected payoff?

Equilibria

• An equilibrium is a convergence point in a repeated or stochastic game.

• Nash Equilibrium. Sean has strategy S right now. Alberto has strategy A. If
Sean stays with S, Alberto has no reason to switch to any other strategy Aʹ
because it wouldn't increase Alberto's outcome. Likewise, Sean will not
change if Alberto stays with A because it won't improve Sean's outcome.
The pair <S, A> is a Nash Equilibrium.

• There can be many Nash Equilibria.

• John Nash proved: if Sean and Alberto are using mixed strategies, there
always exists a Nash Equilibrium in the game.

• This is not the case if Sean and Alberto are restricted to pure strategies
(though it is often true).

Equilibria

• What is this game called? You have played it many times.

• What is the Nash Equilibrium (using mixed strategies)?

• What is the Nash Equilibrium in
this cooperative game?

0 1 -1
-1 0 1
1 -1 0

0 -1 1
1 0 -1
-1 1 0

-1 0
-3 -2

-1 -3
0 -2

10 5 4
5 7 6
4 6 8

• How about this one?
(And what is this called?)

The Prisoner's Dilemma

•

• Tit for Tat
First Time: Cooperate
Thereafter: Do whatever the other agent did last time

• What if there is noise the game?

• Tit for Two Tats
First Time: Cooperate
Thereafter: Defect only if the other agent has defected twice in a row

Cooperate Defect
Cooperate

Defect
-1 0
-3 -2

Cooperate Defect
Cooperate

Defect
-1 -3
0 -2

Pathologies in Repeated Cooperative Games

• Miscoordination

• The Gift of the Magi

• A fundamental problem in multiagent systems

• Relative Overgeneralization

1 -10
-10 1

10 0 0
0 5 6
0 6 7

-10 1
1 -10

-10 -1
-1 -10

Generalizations to Large Numbers of Agents

• The El Farol Problem and the Tragedy of the Commons
In Santa Fe there is a bar called the El Farol. It is supposed to be very cool.
After a workshop at the Santa Fe Institute, all the participants want to go to a
cool bar. They all have heard about El Farol. But if they all go to El Farol, it
stops being cool. What can we do?

• Cooperative/Competitive Games
What would a payoff table look like for Soccer? Agents cooperate to form a
team which competes against another team of cooperating agents.

• Coalition Formation
You have a large number N of agents. An agent's actions are to join a
coalition with another agent. After the agents have acted, each belongs to a
coalition. The payoff function is based on which coalition an agent has joined
and which other agents are in that coalition at the moment. Agents can
abandon a coalition and move to another one. What is does a Nash
Equilibrium mean in this context?

Voting (Social Choice)

• Plurality Voting (particularly "First Past the Post" Voting)
Each agent can cast only one vote. Whoever has the most votes wins.

• Approval Voting
Each agent can cast many votes, but only one vote per candidate.
Whoever has the most votes wins.

• Borda Count
Each agent ranks all the candidates 1...n . A candidate gets n-1 points every
time he was ranked #1, n-2 points every time he was ranked #2, and so on,
down to n-n=0 points every time he was ranked #n. The candidate with the
most points wins.

• Instant Runoff Voting
Each agent ranks all the candidates. ITERATE: If a candidate has the majority
of #1 ranks, he wins. Otherwise the candidate ranked last is eliminated. [And
repeat]. Eventually someone must win.

Arrow's Theorem

• There are N candidates for office x, y, z, ...
Each agent i has ranked the candidates in a total ordering. His ranking
function a >i b says that candidate a is preferred to candidate b.

• We want a social welfare function which selects from the candidates based
on the preferences of the agents. Three desirable properties of this function:

• Pareto Optimality. If every agent prefers a to b, then the function will
always pick a over b.

• Independence of Irrelevant Alternatives (IIA). If the function picks a
over b, it will continue to do so even if some agent changes his mind about
how he ranks some other candidate c.

• No Dictatorship. There is no agent whose ranking controls the function
regardless of the other agents preferences.

• There does not exist a social welfare function with all three of these
properties, for >2 candidates.

Single-Good Auctions

• English Auction Open Outcry: People repeatedly bid for an item, until no
one wants to bid any higher. The winner is the person who bid the highest.

Japanese Open Outcry: The auctioneer keeps raising the price until only one
person is still willing to pay that price. That person is the winner.

Dutch Open Outcry: The auctioneer starts with a high price and then starts
lowering it. An agent can stop the process whenever he wants: he becomes
the winner and pays that price.

First Price Sealed Bid: Everyone submits a secret bid. Whoever bid the
highest is the winner.

Second Price Sealed Bid, or Vickrey Auction: Everyone submits a secret
bid. Whoever bid the highest is the winner, but the price he pays is the bid of
the second highest bidder.

• The Blue auctions cause n agents to bid their true valuation v of the product.
The Red auctions optimally cause n agents to bid less than this! v (n+1)/n

Other Auctions

• Multi-Good Auctions: Multiple copies of an item available simultaneously

• Dutch Open Outcry: The auctioneer starts with a high price and then
starts lowering it. An agent purchase an item whenever he wants, and can
purchase multiple items. When all the items have purchased, the buyers
pay the price of the last purchase.

• Position Auctions: Bidders bid for a rank position. For example, bidders for
keyword ads from Google each place a bid to display an ad. We assume
earlier ads on the page are more desirable. Ads appear first-to-last in the
order of bids (highest to lowest).

• Generalized Second Price Sealed Bid: The highest bidder pays the price
of the second-highest bid, the second-highest bidder pays the price of the
third-highest bid, and so on. Used by Google AdWords

• Combinatorial Auctions: Many different things being sold, you can bid on
combinations of items. Requires nontrivial combinatorial optimization to solve.

Q-Learning with a Model

• Markov Decision Process (MDP)
Set of states s � S
Set of actions a ��A
 (can differ by state, but to keep it simple we'll assume
 every state has the same set of actions)
Reward Function R(s, a)
Transition Function T(s, a, sʹ) or P(sʹ | s, a)

• The reward and transition functions are the model

• The agent wishes to maximize his utility, that is, the expected total reward
over the lifetime of the agent.

• We wish to learn an optimal policy π*(s) ➔ a that tells us what action to do in
a given state so as to maximize his utility.

Q-Learning with a Model

• Q-Learning
Q*(s,a) is the utility the agent should expect to receive if he starts in state s
 and does action a first, and then makes optimal moves from then
 on (that is, from then on he follows policy π*)

• If we have the function Q*(s,a), we can compute π*:

 π*(s) = argmaxa Q*(s,a)

• So to learn π* we will learn Q*(s,a). We do this with bootstrapping.

1.	 Start with a wrong Q*(s,a)
2.	 For every possible state and every possible action, update Q*(s,a) to
	 more closely reflect the reward received R(s,a)

3. Also for every possible state and every possible action, and every
 possible new state sʹ, update Q*(s,a) to be more similar to the best of
 Q*(sʹ, ...), averaged over the various possible sʹ. Why?

Q-Learning with a Model

Algorithm 123 Q-Learning with a Model
1: R(S, A) reward function for doing a while in s, for all states s 2 S and actions a 2 A
2: P(S0|S, A) probability distribution that doing a while in s results in s0, for all s, s0 2 S and a 2 A
3: g cut-down constant . 0 < g < 1. 0.5 is fine.

4: Q⇤(S, A) table of utility values for all s 2 S and a 2 A, initially all zero
5: repeat

6: Q0(S, A) Q⇤(S, A) . Copy the whole table
7: for each state s do

8: for each action a performable in s do

9: Q⇤(s, a) R(s, a) + g Âs0 P(s0|s, a)maxa0 Q0(s0, a0)
10: until Q⇤(S, A) isn’t changing much any more
11: return Q⇤(S, A)

That is, we start with absurd notions of Q⇤, assume they’re correct, and slowly fold in rewards
until our Q⇤ values don’t change any more. This notion is called bootstrapping, and it may seem
crazy but it’s perfectly doable because of a peculiarity of Q-learning made possible by Markovian
environments: the Q-learning world has no local optima. Just one big global optimum. Basically
this is an obsfucated way of doing hill-climbing.

Q-Learning as Reinforcement Learning The algorithm just discussed is an example of what is
known in engineering and operations research circles as dynamic programming. This isn’t to be
confused with the use of the same term in computer science.174 In computer science, dynamic
programming is an approach to solve certain kinds of problems faster because they can be broken
into subproblems which overlap. In engineering, dynamic programming usually refers to figuring
out policies for agents in Markovian environments where the transition probability P and reward
function R are known beforehand.

From an artificial intelligence perspective, if we have P and R, this isn’t a very interesting
algorithm. Instead, what we really want is an algorithm which discovers Q⇤ without the help of
P or R, simply by wandering around in the environment and, essentially, experiencing P and R
first-hand. Such algorithms are often called model-free algorithms, and reinforcement learning is
distinguished from dynamic programming by its emphasis on model-free algorithms.

We can gather Q⇤ without P or R by discovering interesting facts from the environment as
we wander about. R is easy: we just fold in the rewards as we receive them. P is more complex
to explain. We need to replace the Âs0 P(s0|s, a) portion of Equation 1. This portion added in the
various Q⇤(s0, a0) according to how often they occur. Instead, now we’ll just add them in as we
wind up in various s0. Wander around enough and the distribution of these s0 approaches P(s0|s, a).

So: we’ll build up an approximation of Q⇤, based on samples culled from the world, called Q.
The table is initially all zeros. As we’re wandering about, we perform various actions in states,
transitioning us to new states and triggering rewards. Let’s say we’re in state s and have decided to
perform action a. Performing this action transitioned us to state s0 and incurred a reward r. We
then update our Q table as:

174Actually there’s a historical relationship between the two: but it’s a long story. Suffice it to say, the engineering usage
predates the computer science usage by quite a bit.

186

Model-Free Q-Learning

• We don't know P(sʹ | s, a), so we can't average over various sʹ any more.

• We don't know R(s, a)

• How can we still learn Q*(s,a)?

• We will learn an estimate of Q*(s,a) called Q(s,a). This is done as the agent
wanders through the world and experiences rewards and transitions. It adds
them into Q(s,a) as it discovers them.

1.	 Start with a wrong Q(s,a)

2. The agent performs an action a in state s, receiving some reward r and
 transitioning to state sʹ

3. Update Q(s,a) to reflect a little bit of the reward r and a little bit of the
 best Q(sʹ,...)

• This more or less averages in all the rewards to form the Q(s,a) 	 (important!)

Model-Free Q-Learning

Q(s, a) (1� a)Q(s, a) + a(r + g max
a0

Q(s0, a0)) (2)

Notice that we’re throwing away a bit of what we know so far, using the 1� a trick — we
saw this before in Ant Colony Optimization (in Section 8.3) and in Estimation of Distribution
Algorithms (in Section 9.2.1) — and roll in a bit of the new information we’ve learned. This new
information is set up in what should by now be a familiar fashion: the reward r plus the biggest Q
of the next state s0. Notice the relationship to Equation 1. The revised algorithm is then:

Algorithm 124 Model-Free Q-Learning
1: a learning rate . 0 < a < 1. Make it small.
2: g cut-down constant . 0 < g < 1. 0.5 is fine.

3: Q(S, A) table of utility values for all s 2 S and a 2 A, initially all zero
4: repeat

5: Start the agent at an initial state s s0 . It’s best if s0 isn’t the same each time.
6: repeat

7: Watch the agent make action a, transition to new state s0, and receive reward r
8: Q(s, a) (1� a)Q(s, a) + a(r + g maxa0 Q(s0, a0))
9: s s0

10: until the agent’s life is over
11: until Q(S, A) isn’t changing much any more, or we have run out of time
12: return Q(S, A) . As our approximation of Q⇤(S, A)

How does the agent decide what action to make? The algorithm will converge, slowly, to the
optimum if the action is picked entirely at random. Alternatively, you could pick the best action
possible for the state s, that is, use p⇤(s), otherwise known as argmaxa Q⇤(s, a). Oh that’s right, we
don’t have Q⇤. Well, we could fake it by picking the best action we’ve discovered so far with our
(crummy) Q-table, that is, argmaxa Q(s, a).

That seems like a nice answer. But it’s got a problem. Let’s go back to our cockroach example.
The cockroach is wandering about and discovers a small candy. Yum! As the cockroach wanders
about in the local area, nothing’s as good as that candy; and eventually for every state in the local
area the cockroach’s Q table tells it to go back to the candy. That’d be great if the candy was
the only game in town: but if the cockroach just wandered a bit further, it’d discover a giant pile
of sugar! Unfortunately it’ll never find that, as it’s now happy with its candy. Recognize this
problem? It’s Exploration versus Exploitation all over again. If we use the best action a that we’ve
discovered so far, Q-learning is 100% exploitative. The problem is that the model-free version of the
algorithm, unlike the dynamic programming version, has local optima. We’re getting trapped in a
local optimum. And the solution is straight out of stochastic optimization: force more exploration.
We can do this by adding some randomness to our choices of action. Sometimes we do the best
action we know about so far. Sometimes we just go crazy. This approach is called e-greedy action
selection, and is guaranteed to escape local optima, though if the randomness is low, we may be
waiting a long time. Or we might do a Simulated Annealing kind of approach and initially just do
crazy things all the time, then little by little only do the best thing we know about.

Last, it’s fine to have a be a constant throughout the run. Though you may get better results if
you reduce a for those Q(s, a) entries which have been updated many times.

187

Multiagent Reinforcement Learning (MARL)

• Multiple agents playing a repeated or stochastic normal-form game.

• Each agent is trying to learn what its best strategy is.

• Algorithms are designed for different combinations of:

• Cooperative vs. General-Sum

• Repeated vs. Stochastic Games

• Independent Learner vs. Joint-Action Learner

• Independent Learner: a player is told his reward only.

• Joint-Action Learner: a player is told his reward, and also what action
the other player did.

• Self-Play: the algorithm knows it's playing against copies of the same
algorithm.

Independent Learning of Pure Strategies in
Repeated or Stochastic Games

• [Remember that a pure strategy is just an action. A mixed strategy is a
distribution over actions from which an action is chosen.]

• A game is a state.

• When in game state s the action does action a and receives a reward r from
R(s, a). He also transitions to a new game state sʹ. He is trying to learn the
optimal pure strategy (action) for each game. That is, he's trying to learn π(s).
To do this he can maintain Q(s,a) as

• Q(s, a) <- (1-α)Q(s,a) + α(r + Ɣmaxaʹ Q(sʹ, aʹ))
• In a repeated game there is only one state, so we have R(a), π(), and Q(a).

So we have

• Q(a) <- (1-α)Q(a) + α r

• This is (more or less) just averaging the rewards. Will this be a problem?

!

!"#

!"$

!"%

!"&

' !

!"#

!"$

!"%

!"&

'

!%!!

!$!!

!#!!

!

#!!

A

B

ij

reward(i,j)

C

Cooperative Independent-Learner Repeated Games
Repeat: 1. N agents (here N=2) each decide on an independent action
 2. All agents receive the same reward based on their joint action
 3. Agents do not know what actions the other agents took
Goal: agents try to adapt to the good rewards.

Relative Overgeneralization [Wiegand 2000]

Sets get trapped in local suboptima
surrounding Nash Equilibria in the
the joint space.

With Liviu Panait, Keith Sullivan, and Ermo Wei [GECCO 2006, JMLR 2008, 2015]

Lenient Multiagent Reinforcement Learning

Â
j

reward(A, Jj) < Â
j

reward(B, Jj)

max

j
reward(A, Jj) > max

j
reward(B, Jj)

Relative Overgeneralization is a Very Common Problem
And almost completely unstudied!

Record expected rewards using the Mean over Multiple Joint Actions
Gets trapped in suboptimal Nash Equilibria due to Relative Overgeneralization

Record expected rewards using the Maximum over Multiple Joint Actions
Highly susceptible to noise (the maximum reflects outliers)

Lenient Multiagent Reinforcement Learning

State
1

10 / 12 5 / -65 8 / -8

5 / -65 14 / 0 12 / 0

5 / -5 5 / -5 10 / 0

End
< any, any >

State
1

11 -30 0

-30 7 6

0 0 5

End
< any, any >

A B C
A
B
C

Agent 1

Ag
en

t 2

A B C
A
B
C

Agent 1
Ag

en
t 2

The LMRL2 Algorithm: be Lenient
Early on, make more random actions, and be lenient to other agent’s poor
choices. That is, record expected rewards using the maximum.

Later on, make actions largely based on the expected best rewards, and
record expected rewards using the mean.

Degree of lenience and randomness is determined by a temperature
schedule much like simulated annealing.

Lenient Multiagent Reinforcement Learning

State
1

10 / 12 5 / -65 8 / -8

5 / -65 14 / 0 12 / 0

5 / -5 5 / -5 10 / 0

End
< any, any >

State
1

11 -30 0

-30 7 6

0 0 5

End
< any, any >

A B C
A
B
C

Agent 1

Ag
en

t 2

A B C
A
B
C

Agent 1
Ag

en
t 2

• Q(a) Initially minimum possible reward.
 Note it's not Q(s,a) why?

• T(a)	 	 	 	 	 Per-action temperature, initially MaxTemp

WEI AND LUKE

4. The LMRL2 Algorithm

In (Panait et al., 2006b, 2013) we demonstrated a lenient learning algorithm, LMRL, for repeated
games with independent learners, comparing it favorably to the FMQ algorithm (Kapetanakis and
Kudenko, 2002) for variations of the Climb and Penalty games (Claus and Boutilier, 1998). We
begin here with a slight modification of the algorithm, LMRL2, which is the degenerate case (for
repeated games) of the full LMRL2 algorithm for stochastic games. We will then extend it to the
stochastic game scenario.

LRML2 is a modified version of Q-learning which maintains per-action temperatures which are
slowly decreased throughout the learning process. An action’s temperature affects two things. First,
it affects the degree of randomness of action selection: with high temperatures, action selection is
largely random, and with low temperatures, action selection is greedily based on the actions with the
highest Q-values. To do this, LRML2 applies a temperature-based Boltzmann Selection common
in other algorithms in the literature. However, when the average temperature drops below a certain
minimum temperature, and LRML2’s action selection will suddenly become purely greedy. This
minimum temperature was originally added to avoid floating point overflows common in Boltzmann
Selection; but we have found that it also is beneficial for nearly all games.

Second, temperature affects the lenience of the algorithm: high temperatures cause LRML2 to
be lenient, and so only mix rewards into Q-values if they are better than or equal to the current
Q-value. With a low temperature LRML2 mixes all rewards into the Q-values no matter what.
Unlike action selection, lenience is not affected by the minimum temperature bound.

Repeated Games LRML2 for repeated games relies on the following parameters. Except for q
and w , all of them will be fixed to the defaults shown, and will not be modified:

a 0.1 learning rate
g 0.9 discount for infinite horizon

d 0.995 temperature decay coefficient
MaxTemp 50.0 maximum temperature

MinTemp 2.0 minimum temperature
w > 0 action selection moderation factor (by default 1.0)
q > 0 lenience moderation factor (by default 1.0)

The a and g parameters are standard parameters found in Q-learning, and their values here are
typical settings from the literature. The parameters MaxTemp, d , and MinTemp are also generally
constants. The parameter w determines the degree to which temperature affects the randomness of
the Boltzmann action selection. In all cases but two (discussed later) we set this to 1.0. Finally
and crucially, the q parameter determines the degree to which temperature affects the dropoff in
lenience. This parameter is the primary, and usually only, parameter which must be tuned, as
different problems require different amounts of lenience.

LMRL2 maintains two tables: Q, a table of Q-values per action a, and T , a table of temperatures
per-action. Initially 8a:

Q(a) initialize(a) CSee discussion below
T (a) MaxTemp

8

LMRL2 for Repeated Games

LENIENT LEARNING

In lenient learning, the choice of initial Q values is important to the operation of the algorithm.
Consider if 8a : Q(a) = 0 initially. What if a game consisted only of negative rewards? The lenient
learner, at least during its high-temperature period, would refuse to merge any of them into the
Q-values because they are too small. We have two strategies for initializing Q:

• Initialize to Infinity 8a : Q(a) = •. This signals to LMRL2 to later reinitialize each Q
value to the first reward received. Furthermore, as long as one or more action has an infinite
Q-value, LRML2 will only select among such actions. This forces the algorithm to try every
action at least once initially in order to initialize them. The disadvantage of this initialization
approach is that if the game has stochastic rewards, and first reward received is high, LMRL2
will be locked to this high reward early on.

• Initialize to Minimum 8a : Q(a) = the minimum possible reward over any action the game.
The disadvantage of this approach is that it requires that LMRL2 know the minimum reward
beforehand.

We will by default initialize to the minimum possible reward in the game.
LMRL2 then iterates for some n times through the following four steps. First, it computes a

mean temperature T . Second, using this mean temperature it selects an action to perform. Third, it
performs the action and receives a reward resulting from the joint actions of all agents (all agents
perform this step simultaneously and synchronously). Fourth, it updates the Q and T tables. This
iteration is:

1. Compute the mean temperature as: T meana T (a)

2. Select a as follows. If T < MinTemp, or if maxa Q(a) = •, select argmaxa Q(a), breaking ties
randomly. Otherwise use Boltzmann Selection:

(a) Compute the action selection weights as: 8a : Wa e
Q(a)
wT

(b) Normalize to the action selection probabilities as: 8a : Pa Wa
Âi Wi

(c) Use the probability distribution P to select action a.

3. The agent does action a and receives reward r.

4. Update Q(a) and T (a) only for the performed action a as:

Rand random real value between 0 and 1

Q(a)

8
><

>:

r if Q(a) = • (initialization was to infinity)

(1�a)Q(a)+ar else if Q(a) r or (Rand < 1� e
�1

qT (a))

Q(a) else

T (a) dT (a)

5. Go to 1.

Note that each action has its own separate temperature which is decreased only when that action
is selected. This allows LMRL2 to keep temperatures high for actions which have not been visited
much and still require lenience and exploration, while permitting other actions to cool down.

9

Lenient Multiagent Reinforcement Learning

State
1

10 15

1020

State
3

0 5

010

State
2

-10 -5

-100
< a, a >

< b, b >

State
4

-20 -15

-20-10

< a, b >
< b, a >

< b, b >

< a, b >
< b, a >

< a, a >

< a, b >
< b, a >

< b, b >

< a, b >
< b, a >

< b, b >

< a, a >
< a, a >

State
2

2 / 0 4 / 0

2 / 01 / -1

State
1

2 / 0 4 / 0

2 / 01 / -1

State
3

4 / 0 6 / 0

4 / 02 / 0

State
4

8 / 0 16 / 0

8 / 04 / 0

State
13

10 / -10 20 / 0

10 / -1020 / 0

State
11

8 / -8 16 / 0

8 / -816 / 0

State
12

9 / -9 18 / 0

9 / -918 / 0

State
10

7 / -7 14 / 0

7 / -714 / 0

State
9

6 / -6 12 / 0

6 / -612 / 0

State
8

5 / -5 10 / 0

5 / -510 / 0

State
7

4 / -4 8 / 0

4 / -48 / 0

State
6

3 / -3 6 / 0

3 / -36 / 0

State
5

32 / -32 32 / 28

32 / -3232 / 28

End

< any, any >

< any, any >

< any, any >

< any, any >

< any, any >

< any, any >

< any, any >

< any, any >

< any, any >

< a, a >

< a, a >

< a, b >
< b, a >

< b, b >

< b, b >

< a, b >
< b, a >

< a, b >
< b, a >

< b, b >

< b, b >

< a, a >

< a, a >

< a, b >
< b, a >

State
1

0.5 0.6

0.6 0.7

State
2

0 1
0.5 0

< a, a > 10%
< a, b > 10%
< b, a > 10%
< b, b > 90%

< a, a > 90%
< a, b > 90%
< b, a > 90%
< b, b > 10%

< a, a > 10%
< a, b > 10%
< b, a > 10%
< b, b > 90%

< a, a > 90%
< a, b > 90%
< b, a > 90%
< b, b > 10%

• Q(s,a)		 	 	 	 Initially minimum possible reward.

• T(s,a)		 	 	 	 Per-state, per-action temperature, initially MaxTemp

WEI AND LUKE

Stochastic Games In stochastic games, the agents are at any particular time in some state s; and
after performing their joint action, receive a reward r and transition to some new state s0. Accord-
ingly, the extension of LMRL2 to stochastic games is largely the same as the repeated game version,
except that the Q(a) and T (a) tables are modified to include the current state s: that is, they are now
defined as Q(s,a) and T (s,a) respectively.

The iteration is largely the same, except in how Q(s,a) and T (s,a) are updated. First, Q(s,a) is
updated in standard Q-learning style to incorporate both the reward and expectation of future utility,
as r+ g maxa0 Q(s0,a0). However, if not all actions have been explored in s0, then maxa0 Q(s0,a0) will
still be infinite, in which case it is ignored and Q(s,a) just incorporates r.

Second and more interestingly, not only do we decrease T (s,a), but we also fold into it some
portion t of the mean temperatures found for s0. t is a new constant, fixed like a to 0.1. The idea is
as follows: in many games (particularly episodic ones), early states are often explored much more
than later states, and thus cool down faster. We want to keep these early states hot long enough
that propagation of future rewards from the later states will inform the Q-values of the early states
before they are set in stone as the temperature falls. To do this, we take some of the temperature s0

of the later state and back it up into s.
Because stochastic games can terminate, we wrap the entire process in an outer loop to

repeatedly play the game:

Parameters:

a 0.1 learning rate
g 0.9 discount for infinite horizon
t 0.1 temperature diffusion coefficient

d 0.995 temperature decay coefficient
MaxTemp 50.0 maximum temperature

MinTemp 2.0 minimum temperature
w > 0 action selection moderation factor (by default 1.0)
q > 0 lenience moderation factor (by default 1.0)

Initially 8s,a:

Q(s,a) initialize(s,a) CSee Previous Discussion
T (s,a) MaxTemp

Repeat:

1. Current state s initial state.

2. Repeat until the current state s is the end state (if any):

(a) Compute the mean temperature for current state s as: T (s) meana T (s,a)

(b) Select a as follows. If T (s)< MinTemp, or if maxa Q(s,a) = •, select argmaxa Q(s,a),
breaking ties randomly. Otherwise use Boltzmann Selection:

i. Compute the action selection weights in current state s as: 8a : Wa e
Q(s,a)
wT (s)

10

LMRL2 for Stochastic Games

LENIENT LEARNING

Repeat:

1. Current state s initial state.

2. Repeat until the current state s is the end state (if any):

(a) Compute the mean temperature for current state s as: T (s) meana T (s,a)

(b) Select a as follows. If T (s)< MinTemp, or if maxa Q(s,a) = •, select argmaxa Q(s,a),
breaking ties randomly. Otherwise use Boltzmann Selection:

i. Compute the action selection weights in current state s as: 8a : Wa e
Q(s,a)
wT (s)

ii. Normalize to the action selection probabilities in current state s as: 8a : Pa Wa
Âi Wi

iii. Use the probability distribution P to select action a.

(c) The agent, in current state s, does action a, receives reward r, and transitions to new
state s0.

(d) Update Q(s,a) and T (s,a) only for the performed action a as:

Rand random real value between 0 and 1

R
(

r if maxa0 Q(s0,a0) = •
r+ g maxa0 Q(s0,a0) else

Q(s,a)

8
><

>:

R if Q(s,a) = • (initialization was to infinity)

(1�a)Q(s,a)+aR else if Q(s,a) R or (Rand < 1� e
�1

qT (s,a))

Q(s,a) else

T (s,a) d ⇥
(
(1� t)T (s,a)+ tT (s0) if s0 is not the end state (if any)
T (s,a) else

(e) s s0

If we defined a repeated game as consisting of an initial state s which always transitions to the
end state as s0, this algorithm degenerates to the repeated version of LMRL2 discussed earlier.

5. Comparison with Other Methods

We begin with a comparison of LMRL2 against six other independent-learner algorithms in self-play
in several cooperative test problems. The algorithms are standard (classic) Q-Learning, Distributed
Q-Learning, Hysteretic Q-Learning, WoLF-PHC, SOoN (Swing between Optimistic or Neutral),
and FMQ. The different techniques use a variety of parameters and have several action selection
methods as options. We note that WoLF-PHC is a general-sum algorithm rather than strictly a
cooperative one, and that FMQ can only be applied to repeated games. In a MARL context, standard
Q-Learning is sometimes known as Decentralized Q-Learning. We briefly discuss all except for
standard Q-Learning below.

11

Results
Two measures (“Complete” and “Correct”), shown as Complete / Correct
LMRL2 is always in the top tier for either Complete or Correct, often both.
LMRL2 requires you to tune only a single parameter.

Lenient Multiagent Reinforcement Learning

WEI AND LUKE

Test Problem LMRL2 Q-Learning Distributed Q Hysteretic Q WoLF-PHC FMQ
Boutilier 10000/10000 10000/10000 10000/10000 10000/10000 9998/ 9998

Common Interest 9971 9942 2080 9990 9968
Gradient 1 *8407/10000 8609/ 8695 9999/ 9999 9925/ 9926 2329/ 2335
Gradient 2 548/ 9997 2430/ 5995 0/ 1266 157/ 5609 5147/ 5897

Heaven and Hell 9991/10000 8289/ 9942 10000/10000 9848/10000 9954/10000
RO 1 †9368/10000 3350/ 3350 10000/10000 10000/10000 1943/ 2280
RO 2 9999/10000 2/ 514 9258/ 9258 9897/10000 2/ 512
RO 3 7332/ 7332 5337/ 5337 2272/ 2272 2737/ 2737 2769/ 2769

Climb 9999 1661 10000 10000 387 9956
Climb-PS 9930 1820 2821 7454 391 9857
Climb-FS 9016 1763 3874 2558 676 3894

Penalty 9999 9997 10000 10000 9951 10000
* With a = 0.05 this value rose to 9207. This changed the ranking of “complete” results such that LMRL2 moved

from worse than Q-Learning to better than Q-Learning (both statistically significant differences).
† With a = 0.05 this value rose to 9750, but did not change any ranking.

Table 4: Complete/Correct solution counts among methods on various test problems. Boldface val-
ues indicate methods which were not statistically significantly different with the highest-
performing method for a given problem. Note that in the Common Interest, Penalty, and
various Climb games, correct solutions are by definition complete.

We ran each technique 10,000 times, and compared differences in complete or correct solution
counts. Statistical significance was verified using the Marasquilo procedure for c2. We used p =
0.05 for the entire experiment, Bonferroni-corrected to p = 0.0026315789 per problem.

5.4 Results

Table 3 summarizes the rank order among the methods and statistically significant differences. Table
4 shows the actual results.

• LMRL2 fell in the top statistical significance tier for “complete” nine times, three times more
than the next-best method (Distributed Q-Learning).

• LMRL2 fell in the top statistical significance tier for “correct” all twelve times, five times
more than the next-best method (Hysteretic Q-Learning).

• LMRL2 was uniquely statistically significantly best in RO 1, Climb-PS, and Climb-FS.

• The Gradient 2 game proved very challenging to all methods. Yet WoLF-PHC, which often
failed in other games, was statistically significantly best at Gradient 2 in “complete”. LMRL2
underperformed WoLF-PHC on Gradient 2 in “complete”, but outperformed it (and all others)
in “correct”.

• Changing a improved LMRL2 twice, and once statistically significantly, but not by much.

• All methods easily solved the Boutilier game.

16

