Master Course in Energy Engineering

Academic Year 2020/2021

ADVANCED HEAT AND MASS TRANSFER

Syllabus

Instructor:	Gianfranco Caruso
Course Objectives:	This course is designed to introduce an intermediate and advanced study of the phenomena of heat and mass transfer, to develop methodologies for solving a wide variety of practical engineering problems, and to provide useful information concerning the performance and design of energy systems and processes. A deeper knowledge about momentum, heat and mass transfer in two-phase flows is also included. Weekly exercises will give the student practice in problem solving techniques and Self-Evaluation Tests
Prerequisites:	Basic elements of heat transfer, hydraulics, and thermodynamics (Applied Physics)
Web:	http://elearning2.uniroma1.it/course/view.php?id=4927
Learning Outcomes:	 Students completing this course are expected to: internalize the terminology and physical principles associated with heat and mass transfer; be able to identify pertinent transport phenomena for any process or system involving heat and mass transfer; be able to use requisite inputs for computing heat transfer and mass rates and/or material temperatures and species concentrations; explain the mechanisms for momentum transfer for flow inside ducts and around solid bodies and how these mechanisms influence heat and mass transfer. specify and explain the fundamental transport equations that describe steady- and unsteady-state heat and mass transfer and species of real processes and systems and to draw conclusions concerning process/system design or performance; identify and solve simple problems about two-phase flow and heat transfer.
Content:	Fundamental and energy units; Units conversion; Review on Thermodynamics; Thermo-physical and transport properties; Dimensionless Numbers; Conduction heat transfer - The heat

	equation; Steady heat conduction in special conditions and geometries; Transient conduction; Numerical Analysis of heat conduction; General conservation equations - Conservation of mass; Conservation of momentum; Conservation of energy; Radiation heat transfer; Two-phase flows: characteristic variables and properties; Two-phase flows: momentum and energy equations; Convection transfer - Boundary Layers; External Flows in forced convection; Internal flows: Friction and heat transfer in forced convection; Turbulent flows; Natural convection; Heat Exchangers; Two-phase flow regimes; Boiling: introduction - Bubble equilibrium, nucleation, dynamics; Pool boiling - The boiling curve; Subcooled and saturated flow boiling; Critical heat flux and Post dry-out heat transfer; Pressure drops in Two-phase flows; Condensation - The Nusselt's theory; Condensation inside and outside tubes; Condensation in the presence of noncondensable gases
<i>Reference text materials:</i>	 Course notes available on: <u>http://elearning2.uniroma1.it/course/view.php?id=4927</u> Other useful References: A Heat Transfer Textbook, 5th ed, John H. Lienhard - Available here: <u>https://ahtt.mit.edu/</u> Fundamentals of Heat and Mass Transfer, 7th Edition, by T.L. Bergman, A.S Lavine, F.P. Incropera and S. P. Dewitt. John Wiley and Sons, 2011 Convective Boiling and Condensation, 3rd Ed., by J.G. Collier and J.R. Thome. Oxford University Press, 1994.
Examination:	Two written examinations/quizzes during the semester (90 min long); Final oral examination (on request). Self-Evaluation Tests on the e-learning site (in class) The first Self- Evaluation Test (SET-0, at home) is mandatory.
Grading:	Mid- and End-Term examinations/quizzes (45%+45%, maximum mark 28). Final oral (not mandatory if tests result > 23, 20%, max added mark +3).