ARCHMAT Advanced Analytical Methods

Claudio Tuniz

Radiocarbon

Outline

- Introduction
- Principles of radiocarbon dating
- AMS ¹⁴C analysis
 - Chemical procedures
 - AMS measurement
 - Calculation of radiocarbon ages
- How to obtain a calendar age

Dating methods

OSL, ESR, 234U/230Th

14C

K/Ar Tracce fiss. 10Be/26AI

Tuniz Manzi Caramelli - The science of human origins, Laterza, 2013, Left Coast Press, USA, 2014

Tuniz Manzi Caramelli - The science of human origins, Laterza, 2013, Left Coast Press, USA, 2014

Radiocarbon dating

Carbon isotopes in nature (modern) :

¹²**C**: 98.89% ¹³**C**: 1.11% ¹⁴**C**: 1.2 x 10⁻¹⁰%

The **radiocarbon method** is based on the rate of decay of ¹⁴C, which is formed in the upper atmosphere through the effect of cosmic (thermal) neutrons upon ¹⁴N (78% of the atmosphere consists of N_2) via the reaction:

(7.5 kg ¹⁴C /yr)

"Curve of Knowns" [Arnold and Libby 1949]

The Nobel Prize in Chemistry 1960 to Willard F. Libby "for his method to use carbon-14 for age determination in archaeology, geology, geophysics, and other branches of science".

Radiocarbon dating

1950's: further measurements on Egyptian samples of known age point to radiocarbon dates younger than expected ... trust historical data or radiocarbon dates?

1960: ^{14}C in tree rings show ^{14}C fluctuations up ± 5% over last 1500 years

1958: de Vries s 'wiggles' identified. Also long term fluctuations.

Difference between expected and measured 14C content in tree-rings

1960-1980 "Second Radiocarbon Revolution:" Calibration

- Calibration of ¹⁴C time scale: Distinguishing "real (solar, sidereal) time" and "¹⁴C time"
- Bristlecone pine / ¹⁴C data: First detailed continuous tree ring- » based data set documenting ¹⁴C offsets over last 7000 yrs.
- Long-term anomaly: maximum Holocene offset about 10% or ~800 years at about 7000 BP
- Shorter-term anomalies: "De Vries effects" multi-millennial and multi-century oscillations in ¹⁴C time spectrum

Conventional Radiocarbon Age: Definition

Stuiver and Polach (1977) Reporting of ¹⁴C Data.

Radiocarbon

- 1. Use Libby half-life (5568 years)
- 2. Use 0.95 NBS Oxalic Acid I [or standards with known relationship] to define "zero" age ¹⁴C count rate
- 3. Use A.D. 1950 as 0 BP
- 4. Normalize ¹⁴C activity to common δ^{13} C value = -25.0 ‰
- 5. Uncalibrated defines "radiocarbon time" expressed in "14C years"

Detect radiation

Count atoms

Modern sa	Modern sample, 1% precision		
10 ⁴ decays	10 ⁴ counts		
1g C	1 minute		
1000 minutes	100 μg use		

AMS advantages over decay counting

Large machines (size is getting smaller)

High efficiency

Shorter counting time

Small mass (contamination)

Sample Type	Examples	Decay counting	AMS
Charcoal		2 – 5 g	50 – 200 mg
Wood		5 – 10 g	50 – 100 mg
Marine shell (carbonates)		10 – 20 g	30 - 60 mg
Plant products	Paper, textitles, seeds, grains	5 – 10 g	50 – 100 mg
Animal products	Bone, tusk, ivory, teeth	100 – 500 g	500 – 2000 mg
	Skin, hair	50 – 300 g	50 – 100 mg
Sediment	Peat, soil organics	10 g	10 – 500 mg

Datable materials and their sample size requirements for ¹⁴C analysis

Pre-treatment

Pre-treatment

Extraneous carbon is removed

Pre-treatment

Extraneous carbon is removed

Specific component is isolated

Carbon isolation

Graphitisation

Graphitisation

high-energy primary galactic proton

(2) Surface production

T = Exposure dating

¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl T_{1/2} ∼ 5 ka - 1.5 Ma

Accelerator Mass Spectrometry

What is AMS

- ultra-sensitive analytical technique to identify and count rare atoms of long-lived radionuclides produced by cosmic rays in the atmosphere and at Earth's surface using a ion-beam accelerator at an unprecedented sensitivity of 1:10⁻¹⁵ after elimination of all molecular, isotopic and isobaric interferences
 - 1. extract atoms from sample
 - 2. place sample in a negative ion-source
 - 3. accelerate ions to high energies (millions of volts)
 - 4. reject backgrounds with magnetic and electrostatic deflectors
 - 5. identify and count radioisotope via mass, energy & nuclear charge

ANTARES

AMS 60 sample wheel

Ion-source injector

Low-energy

High-energy

Beam-lines

Energy loss rate in gas detector

dE/dX = f(Z, M)

Z protons, Mass of nucleus

Gas ionization chamber

Counting atoms... rather than decays

1 hair (>90% keratin)

- Keratin --- (42%) -->1 mg C = 5 x 10^{19} 12 C atoms $5 x 10^7$ 14 C atoms
- $^{14}C \beta -> ^{14}N$ 1 β decay/hour
 - AMS $6 \times 10^{5} \, {}^{14}C atoms/hour$
- (*) human hair acquired from 4 grave lots had to be combined in the first dating of human hair (from the egyptian pre-dynastic site of Nagoda)
 [Lybby, 1955]

Radiocarbon age

Conventional Radiocarbon Age

- Radiocarbon ages are reported in years before present (BP) which, by international agreement, is before AD 1950.
- Laboratories use an agreed standard for the modern reference level of ¹⁴C, and a half-life of 5,568 years for ¹⁴C.
- Radiocarbon ages are corrected for isotopic fractionation, using either an estimated value or a mass-spectrometric measurement of the ¹³C/¹²C ratio of a subsample.
- Conventional radiocarbon ages are NOT corrected for past variations in the ¹⁴C content of the atmosphere, nor for any regional or reservoir effects. This must be done separately.

Radiocarbon calculations

Conventional Age = - τ ln F = - 8033 ln (A_{SN} / A_{ON})

 A_{SN} measured activity of the sample corrected for fractionation $A_{0N}\,$ standard modern activity corrected for fractionation and F ($A_{SN}\,/\,A_{ON})$ is the measured "fraction of modern" for a sample S

The fact that the conventional age is calculated with an incorrect half-life is rectified when conventional ages are converted to calibrated ages

Radiocarbon calibration

- The calibration curve is based on dendrochronologically-dated tree rings for the period 0-12,400 cal yr before present (BP, with 0 BP being AD 1950).
- For the remaining period 12,400-26,000 cal yr BP, the curve is derived from independently dated marine samples such as foraminifera and corals.
- A new internationally-ratified calibration curve (IntCal09) covering the whole radiocarbon timescale (~50,000 cal yr) has been produced by the IntCal Working Group.

Radiocarbon calibration

Tuniz Manzi Caramelli - The Science of Human Origins 2014

AMS ¹⁴C/¹²C results ± 0.5% this means radiocarbon age error is ± 40-50 years

Calibration

The last 2,000 years for 14C calibration

IntCal04 Calibration curve - Last 500 yrs

Year (AD)

cal BP

IntCal04 Calibration curve - Last 500 yrs

cal BP

Age errors and microgram C mass effects

Precision vs radiocarbon age

1 mg, modern ¹⁴C level ∆(¹⁴Cage) = <u>8033*∆F</u> F

for $\Delta F/F = 0.5\% \rightarrow \Delta(^{14}Cage) = 40$ years

Need ~50,000 ¹⁴C atoms

For older samples precision decreases

40 ± 1 ka ¹⁴C age

Radiocarbon age limit vs sample size

'dead' ¹⁴C

Chemical processing contamination from modern ¹⁴C sources

tree-rings,

ancient air

corals

glacial deposits,

Applications of ¹⁴C :

dating & tracing

archeology

Radiocarbon dating

Direct dating of Early Upper Paleolithic human remains from the Mladeč Caves in Moravia (Czech Republic) Eva Maria Wild et al., *Nature* 435 (19 May 2005) 322

Radiocarbon dating

Sampled areas for ¹⁴C measurements at VERA

Red Deer Cave, China A new human species?

D. Curnoe, Plos, 2012

Radiocarbon charcoal from endocranial cavity 11,580 ± 255 cal. yr BP (ANSTO)

Radiocarbon calibration from 23,000 to 47,000 years BP (before present) E. Bard et al., A Better Radiocarbon Clock, Science 303 (2004) 178

Site locations and final boundary age ranges for Mousterian and Neanderthal sites.

T Higham et al. Nature **512**, 306-309 (2014) doi:10.1038/nature13621

Atmospheric ¹⁴C for the bomb-pulse period

high-energy primary galactic proton

(1) Atmospheric production

¹⁰Be

Produced by spallation reactions of primary cosmic rays on N and O

Beryllium-10 Dating

¹⁰Be/⁹Be age Sahelanthropus tchadensis 6.8 - 7.2 Ma

Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad

Anne-Elisabeth Lebatard*[†], Didier L. Bourlès^{†‡}, Philippe Duringer[§], Marc Jolivet[¶], Régis Braucher[†], Julien Carcaillet[∥], Mathieu Schuster*, Nicolas Arnaud[¶], Patrick Monié[¶], Fabrice Lihoreau**, Andossa Likius^{††}, Hassan Taisso Mackaye^{††}, Patrick Vignaud*, and Michel Brunet^{*‡,‡‡}

PNAS | March 4, 2008 | vol. 105 | no. 9