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Secondary metabolism in fungi: does chromosomal
location matter?
Jonathan M Palmer1 and Nancy P Keller2,3
Filamentous fungi produce a vast array of small molecules

called secondary metabolites, which include toxins as well as

antibiotics. Coregulated gene clusters are the hallmark of

fungal secondary metabolism, and there is a growing body of

evidence that suggests regulation is at least, in part, epigenetic.

Chromatin-level control is involved in several silencing

phenomena observed in fungi including mating type switching,

telomere position effect (TPE), silencing of ribosomal DNA,

regulation of genes involved in nutrient acquisition, and as

presented here, secondary metabolite cluster expression.

These phenomena are tied together by the underlying theme of

chromosomal location, often near centromeres and telomeres,

where facultative heterochromatin plays a role in transcription.

Secondary metabolite gene clusters are often located

subtelomerically and recently it has been shown that proteins

involved in chromatin remodeling, such as LaeA, ClrD, CclA,

and HepA mediate cluster regulation.
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Introduction
For many years it has been known that chromosomal

location and histone modification have profound effects

on gene transcription in a variety of organisms from yeast to

humans. Filamentous fungi produce many bioactive small

molecules, or secondary metabolites, that range from

beneficial antibiotics to harmful toxins. Genes responsible

for the production of these secondary metabolites are

typically clustered and coregulated [1]. Interestingly, the

order and location of biosynthetic genes within a cluster is

important for their regulation. Additionally, secondary

metabolite gene clusters have a tendency to be located
www.sciencedirect.com
near the ends of chromosomes in areas termed subtelo-

meric [2��,3�] — a region where chromatin modifiers

impact transcription of these clustered genes. Here we

review the importance of location, both specific locations of

genes within a cluster, the chromosomal location of the

entire cluster itself, and putative epigenetic forces on the

genetic regulation of secondary metabolite gene clusters in

fungi. We offer a view that secondary metabolite clusters

are located in regions of facultative heterochromatin, which

can be silenced and activated by both canonical and novel

chromatin-mediated mechanisms.

Hallmarks of gene silencing in fungi
Eukaryotic organisms have evolved orchestrated mech-

anisms to regulate their large gene networks for proper

development and appropriate environmental responses.

In recent years, much interest has been focused on

epigenetic and small RNA regulation of gene expression.

Common to all eukaryotes, fungi possess several cellular

devices important in gene silencing and activation. Early

research in Saccharomyces cerevisiae identified the silent

mating type loci (HML/HMR), which subsequently

opened the door to an extensive body of work on pos-

itional effects in fungi as well as higher eukaryotes [4]. A

key finding from the S. cerevisiae work was that exogenous

genes were repressed when integrated at the silent mat-

ing type loci, thus indicating that repression was due to

positional effects [5]. The mating type switching

phenomenon has also been reported in fission yeast,

Schizosaccharomyces pombe, where repetitive border

elements facilitate the silencing effect [6].

An additional silencing mechanism is termed telomere

position effect (TPE). This phenomenon was first

reported in yeast and occurs when subtelomerically

located genes are repressed [7]. In fungi, TPE has been

demonstrated in S. cerevisiae [8], Sc. pombe [9], Candida
glabrata [10], Neurospora crassa [11], and recently, Asper-
gillus nidulans ([12�], Palmer et al., unpublished results).

The extent of TPE is variable at the 32 yeast telomeres

[13], but generally extends 20 kb indicating several hun-

dred genes are regulated by TPE [14].

A commonality in the above instances of positional silen-

cing of gene expression is the involvement of chromatin-

level control, commonly termed the histone code, where

residues on the histone tails are modified, which in turn

results in alterations of chromatin structure [15]. Chro-

matin can exist in two states: euchromatin is transcrip-

tionally active and characterized by low nucleosome

density, while heterochromatin is transcriptionally silent
Current Opinion in Microbiology 2010, 13:431–436
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Table 1

Selected examples of chromatin-level control affecting aspects of fungal development.

Developmental aspect Organism Phenotypic description Reference

Nitrate and proline

utilization

Aspergillus nidulans Nitrate and proline genes are clustered [50,51]

Inducing/repressive conditions alter nucleosome positioning

in promoter and histone H3 acetylation patterns

Adhesion Candida glabrata Adhesins important pathogenicity factors in C. glabrata [52]

Adhesins are produced by telomerically located EPA genes

EPA genes regulated by TPE and HDAC’s

Growth and

Reproduction Defects

Neurospora crassa Severe growth defects in null mutants of the H3K9

methyltransferase and heterochromatin protein 1

[53,54]

Aspergillus fumigatus Null mutant of H3K9 methyltransferase shows impaired

growth and delayed asexual development

[55]
and contains densely packed nucleosomes. Heterochro-

matin that can become activated under particular circum-

stances is sometimes referred to as facultative

heterochromatin as illustrated by developmentally timed

gene expression in Drosophila [16]. Histone tail residues

that are hyperacetylated and methylated at lysine 4 of

histone 3 (H3K4) are associated with gene transcription

and euchromatin, while hypoacetylation and methylation

of lysine 9 of histone 3 (H3K9) are associated with gene

silencing and heterochromatin [17]. These generalities

are not rigid, however, as H3K4 methylation is also

associated with silencing in yeast subtelomeric and rDNA

regions [18]. A few examples of chromatin-mediated

control affecting aspects of development in fungi are

listed in Table 1.

Regulation of secondary metabolite gene
clusters in fungi
An unexpected finding upon inspection of several fungal

genomes was the presence of vast numbers of secondary

metabolite gene clusters [19]. Although most remain

undefined, research on select gene clusters is quite robust

and serves to illustrate several important points on the

regulation of secondary metabolite gene clusters. The

reader is directed to recent reviews detailing nonheter-

ochromatic regulatory mechanisms employed to regulate

these clusters [1,19–21]. Briefly, many clusters contain

cluster specific transcription factors, often C6 zinc binuc-

lear cluster proteins such as AflR for aflatoxin (AF)/ster-

igmatocystin (ST) biosynthesis in Aspergillus spp. [22] or

Tri6 for trichothecene biosynthesis in Fusarium spp. [23]

that function to activate biosynthetic genes in their

respective cluster. Secondary metabolite clusters are also

activated, and sometimes shut down, in response to a

variety of environmental stimuli that include but are not

limited to light, pH, carbon source, nitrogen source, ROS,

and temperature (Figure 1) [24]. Environmental stimuli

are translated to the nucleus through signal transduction

cascades, such as the mitogen activating protein kinase

(MAPK) cascade and the cAMP mediated PkaA cascade

[25–29] and have been linked to activation of specific
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broad domain regulator factors including CreA (carbon

metabolism), AreA (nitrogen metabolism) and PacC (pH

sensor) [1].

The first hint that locality of secondary metabolite genes

plays a role in their regulation came from characterization

of one of the biosynthetic enzymes of the AF cluster in

Aspergillus parasiticus, where localization of the ver-1 gene

outside of the AF cluster resulted in 500-fold lower

expression than ver-1 located inside the cluster [30].

Similarly, the AF biosynthetic enzyme nor-1 was not

expressed when located at two different positions outside

of the AF cluster, which led to the conclusion that

positional effects are important for expression of AF

biosynthetic genes [31]. Insight into a mechanism con-

trolling positional regulation of AF genes came with the

discovery of LaeA, a global regulator of secondary metab-

olism in filamentous fungi ([32–35], Tudzynksi et al.,
unpublished results). Recently, LaeA has been shown

to be part of the velvet complex, consisting of LaeA–VeA–
VelB, that functions to regulate development and sec-

ondary metabolism in response to light [36��]. LaeA

regulation of gene clusters was found to be location

dependent as placement of aflR outside of the ST cluster

removes it from LaeA regulation, and conversely, place-

ment of noncluster gene in the ST cluster puts it under

LaeA control [37].

Although the precise function of LaeA remains enig-

matic, several studies link LaeA activity with chromatin

modifications. Recent data illustrate that mutations in

Aspergillus histone modifying genes activate silent or

poorly expressed gene clusters and, significantly, can

partially remediate loss of secondary metabolite pro-

duction in DlaeA strains (Table 2). Three deletion

mutants that produce increased levels of secondary

metabolites target the H3K9 residue including HdaA, a

histone deacetylase (HDAC) [38,39], HepA (heterochro-

matin protein 1) and ClrD (H3K9 methyltransferase)

[40��]. The latter two mutations resulted in decreased

H3K9 methylation inside ST cluster, which corresponded
www.sciencedirect.com
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Figure 1

A proposed model for chromatin-mediated control of secondary metabolite gene clusters. Secondary metabolite gene clusters are often flanked by

repetitive elements (REs) and located in subtelomeric regions of the genome. The epigenetic marks of H3K4 methylation (H3K4-CH3) and general

histone acetylation have been shown to be associated with active gene transcription [17]. Thus, histone acetyltransferases (HAT) and the H3K4

methylation protein complex (COMPASS) are involved in initiation of transcription through RNA polymerase II (Pol II) [18]. Environmental stimuli are

translated by signal transduction cascades, including but not limited to MAPK and PkaA, to trigger production of secondary metabolites [19]. These

signals work independently and dependently through the LaeA containing velvet complex [25,26]. On the other hand, in several eukaryotic systems

heterochromatin protein 1 has been shown to bind H3K9 methylation (H3K9-CH3) and is associated with gene silencing. In Aspergillus nidulans, null

mutants of the H3K9 methyltransferase (ClrD) and heterochromatin protein 1 (HepA) result in derepression of the ST gene cluster [40��]. Currently, the

genetic components involved in initiation of heterochromatin at secondary metabolite gene clusters is unknown, RNAi-mediated heterochromatin

formation could function this way as well as DNA binding repressors.
to increased ST production. In the same study, ChIP

analysis showed that secondary metabolite deficient

DlaeA strains contain increased H3K9 methylation in

the ST cluster [40��]. Furthermore, HDAC inhibitors
Table 2

Genes involved in chromatin-mediated control of secondary metaboli

Gene Function Secondary metabolism p

hepA Heterochromatin protein 1 DhepA results in increas

clrD H3K9 methyltransferase DclrD results in increase

in DlaeA background

hdaA Histone deacetylase DhdaA results in increas

ST/PN in DlaeA backgro

cclA H3K4 methyltransferase

(part of COMPASS complex)

DcclA resulted in produ

laeA Unknown DlaeA results in loss of

increased H3K9 methyla

a ST = sterigmatocystin, PN = penicillin, and TQ = terrequinone A.
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have been reported to increase secondary metabolite

production in several fungi [38,41�]. Finally, again sup-

porting a role for chromatin-level control, the order in

which AF biosynthetic genes are transcribed mirrors
sm in Aspergillus nidulans.

henotypea Reference

ed production of ST [40��]

d production of ST, partial remediation of ST [40��]

ed production of ST and PN. Partial remediation of

und

[38]

ction of secondary metabolites from cryptic clusters [43��]

several secondary metabolites (ST, PN, TQ) and

tion in the ST cluster

[37,40]
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increased histone H4 acetylation patterns in the AF

cluster [42�]. While these results confirm that histone

modifications are directly linked with secondary metab-

olite cluster activation, it remains unclear if LaeA directly

or indirectly modifies chromatin structure. It has long

been speculated that LaeA could directly change chro-

matin structure through methylation of histones [32,37],

however, a substrate for methylation by LaeA remains to

be identified.

Chromosomal location of secondary
metabolite gene clusters
As mentioned earlier, methylation of H3K9 is associated

with heterochromatin, while methylation of H3K4 is

more commonly associated with euchromatin and tran-

scription. However, the COMPASS complex, which

methylates H3K4 in yeast, is also associated with homo-

thallic mating type silencing, ribosomal DNA silencing,

and subtelomeric gene expression in this fungus [18].

Paralleling these observations, it was shown that a mutant

defective in a component of the COMPASS complex

activates silent secondary metabolite clusters in A. nidu-
lans [43��]. These studies led to the discovery of the gene

clusters responsible for producing emodin, F9775A/

F9775B, and monodictyphenone in addition to shedding

light on genome mining techniques leading to discovery

of cryptic gene clusters [43��,44,45]. Moreover, these

advances have led to ‘‘chemical epigenetic mining’’

where incorporation of exogenous acetylase/methylase

inhibitors or activators have led to identification of novel

fungal metabolites [41�,46,47��,48]. These data suggest

that cryptic or silent secondary metabolite gene clusters

are located in regions of facultative heterochromatin and

can be turned on when chromatin structure is changed.

In the human pathogen Aspergillus fumigatus, null mutants

of LaeA display reduced pathogenicity in murine models

of invasive aspergillosis [35,49]. An interesting feature of

the LaeA regulon was revealed by microarray analysis in

A. fumigatus, which suggested there was a tendency for

LaeA regulated secondary metabolite clusters to be

located in subtelomeric regions [3�]. This observation

was recently substantiated by expression profiling in A.
fumigatus, which revealed subtelomeric regions, including

toxin genes, were highly up regulated when exposed to

the murine lung compared to normal laboratory growth

[2��]. There is striking overlap between secondary metab-

olite clusters regulated by LaeA and the subtelomeric

regions differentially regulated upon exposure to the

murine model [2��]. Taken together, these data imply

that subtelomeric location of secondary metabolite clus-

ters may be important for their genetic regulation and

biological function.

A conserved feature of subtelomeric DNA sequences,

including secondary metabolite gene clusters, is the pre-

sence of repetitive elements (REs) composed of active
Current Opinion in Microbiology 2010, 13:431–436
transposable elements or transposon relics. Because

active transposons have the potential to be disruptive

in the genome, organisms employ complex regulatory

mechanisms to limit their expression, such as RNAi-

mediated heterochromatin formation [6]. A possible role

for transposon regulation of a subtelomeric gene clusters

was recently reported for the penicillin (PN) gene cluster

[12�]. The PN cluster consists of only three genes and is

located �30 kb from the telomere of chromosome VI.

Disruption of large areas of repetitive DNA sequences

resulted in mutants producing significantly less PN.

Characterization of one area, a 3.7 kb repeat termed PbIa

(penicillin boundary element Ia) containing two transpo-

sons/transposon relics, showed its removal decreased PN

production, whereas control strains harboring marker

gene insertions to either side of PbIa had no effect on

PN production. Subsequent trans-complementation

experiments were unable to restore PN production. In

contrast, deletion of the HDAC HdaA in the DPbIa

background was able to restore production of PN,

suggesting that a transposon mechanism of secondary

metabolite cluster expression could involve localized

chromatin modifications [12�].

Conclusions
This review highlights work suggestive of epigenetic regu-

lation of secondary metabolite gene clusters in filamentous

fungi. Recently there has been an increase in the number of

examples of gene cluster regulation mediated by chroma-

tin remodeling enzymes, including chemical epigenetic

approaches. These studies reveal the importance of pos-

itional effects, both location effects within a cluster and

chromosomal location effects on cluster regulation. Future

studies are warranted to tease out the molecular mechan-

isms of epigenetic regulation. Interesting questions remain

to be answered: which happens first — chromatin remo-

deling leading to transcription factor activation or transcrip-

tion factor binding leading to chromatin remodeling? Does

RNAi have a role in chromatin-mediated regulation of

secondary metabolism? What role do repetitive elements

that flank gene clusters have in regulation? Does LaeA

directly or indirectly modify chromatin structure?
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