Beeswax as Dental Filling on a Neolithic Human Tooth

Federico Bernardini¹*, Claudio Tuniz^{1,2}, Alfredo Coppa³, Lucia Mancini⁴, Diego Dreossi⁴, Diane Eichert⁴, Gianluca Turco⁵, Matteo Biasotto⁵, Filippo Terrasi⁶, Nicola De Cesare⁷, Quan Hua⁸, Vladimir Levchenko⁸

ARCHMAT Advanced Analytical Methods

Claudio Tuniz

Introduction

Dating methods

- Radiocarbon (¹⁴C)
- Radioberyllium (¹⁰Be/⁹Be)
- In-situ cosmogenic isotopes (¹⁰Be, ²⁶Al)
- Potassium-Argon (⁴⁰K-⁴⁰Ar)
- Uranium-series
- Luminescence (TL, OSL, ESR)
- Fission track dating
- Amino Acid Racemization
- Archeomagnetism dating

Microanalytical methods

- X-ray microtomography
- Ion beam analysis
- Neutron tomography
- X-ray microfluorescence
- x-ray diffraction
- Laser Ablation Inductively Coupled Plasma Mass Spectrometry

Exploration

- Geo-radar
- Laser scanning

Introduction

- Cathode rays
 - Discovered J. Hittorf 1869
 - Kathodestrahlen E. Goldstein, 1876
 - 'Corpuscles' 1897 (J.J. Thompson), negatively charged, ~1800 times lighter than hydrogen atom

Electrons

X-rays W C Roentgen 1895

'Uranium rays' H Becquerel 1896

'Radioactivity' P & M Curie 1898

Radiation passing through a magnetic field shows that massive, positively charged alpha particles are deflected one way, and less massive beta particles with their negative charge are greatly deflected in the opposite direction. Gamma rays, like light, are not deflected.

Basic equations of mass spectrometry

$$\frac{1}{2}mv^2 = zV$$
 Ion's kinetic E function of accelerating voltage (V) and charge (z).

$$F = mv^2 / R$$
 Centrifugal force
 $F = Bzv$
 $mv^2 / R = Bzv$ Balance

Combine equations to obtain:

 $m/z = B^2 R^2 / 2V$ Fundamental equation of mass spectrometry

Change 'mass-to-charge' (m/z) ratio by changing V or changing B.											
NOTE: if B, V, z constant, then: $R \propto \sqrt{m}$											

- beta particles (β) Rutherford 1898
- alpha particles (a) "
- gamma rays (y) Villard 1900

- neutrons J. Chadwick (1932)
- positrons C. Anderson (1932)
- muons J C Street & E C Stevenson (1937)

Victor Hess, 1912

Natural Radioactivity & Ionising Radiation

Radioactivity: Atomic nuclei spontaneously emit ionising radiation

lonising radiation: Particles or electromagnetic waves that can deposit energy creating free electrons and ions

Origin: terrestrial (U, Th, K-40, cosmogenic) and extraterrestrial (solar, galactic)

Every second, at least one muon, a particle like an electron but about 200 times heavier, crosses your body.

http://www.atral.com/U238.html

Rutherford, Soddy, 1908)

 $N(t) = N_0 e^{-\lambda t}$

N(t), number of radionuclides at time t

 N_o , number of radionuclides at t=0

 λ , decay constant.

The decay constant λ is related to the half life t_{1/2} by: $t_{1/2} = \frac{\ln 2}{\lambda}$

Determining Half Life

- $N = N_0 \exp(-\lambda t)$
- Solve for $N = N_0/2$
- No/2 = No exp($-\lambda t_{1/2}$)
- $\frac{1}{2} = \exp(-\lambda t_{1/2})$
- $-Ln(2) = -\lambda t_{1/2}$
- $t_{1/2} = Ln(2)/\lambda = 0.693/\lambda$

alpha radioactivity

beta radioactivity

gamma radioactivity

Nuclear reactions (Rutherford 1919)

${}^{4}_{2}He_{2} + {}^{14}_{7}N_{7} \longrightarrow {}^{17}_{8}O_{9} + {}^{1}_{1}H_{0}$

Dating methods

Radiometric dating

- 1905: Rutherford first to use U to measure age using helium accumulated in U-rich minerals; he obtains an age of 500 ka (but helium leaks ...only minimum age
- Boltwood measured lead in uranium minerals
- 1911: Arthur Holmes obtaines first U-Pb age of 370 Ma in rock from Norway
- Almost all dating now involves use of mass spectrometers (developed in 1940's)

Radioactive nuclide methods

- Radioactive decay, e.g. Radiocarbon dating
- Ingrowth radionuclide, e.g. Potassium-argon

Radiative dosimetry methods

- TL
- OSL
- ESR
- Fission track

Dating methods

Dating materials

Material Method	Wood/ Plants	Bones	Tooth Enamel	Shells	Egg Shells	Corals	Speleo- thems	Sediments	Surfaces	Obsidian Glass	Vokanic Minerals	Burnt Flint	Pottery
Dendrochronology	漸												
Radiocarbon	漸	漸	漸	漸	漸	漸	溪	☀					業
K/Ar & Ar/Ar											澌		
U-series	漸	漸	*	*	漸	Ӂ	漸	Ж			濑		
Fission Tracks										溗	溗		
Luminescence							溗	溗		₩	漸	漸	漸
ESR			濑	漸	*	☀	**				☀	漸	
Amino Acid		溗	漸	漸	漸								
Hydration										₩			
Cosmogenic Isotopes								Ж	☀				

well suited materials

results may sometimes be unreliable

Microanalytical methods

OPTICAL MICROSCOPY PHOTOGRAPHY ELECTRON MICROSCOPY INFRARED SPECTROMETRY X-RAY DIFFRACTOMETRY CHROMATOGRAPHY COLORIMETRY RADIOGRAPHY X-RAY FLUORESCENCE ANALYSIS **ENVIRONMENTAL WEATHERING** VISIBLE ULTRAVIOLET SPECTROMETRY DIGITISATION OF IMAGES COMBINED CHROMATOGRAPHY / MASS SPECTROMETRY MASS SPECTROMETRY THERMAL ANALYSIS MECHANICAL TESTING MATERIALS RAMAN SPECTROMETRY ATOMIC EMISSION SPECTROSCOPY DATING TECHNIQUES ATOMIC ABSORPTION SPECTROSCOPY NON-DESTRUCTIVE TESTING ION BEAM ANALYSIS SURFACE ANALYSIS TECHNIQUES SYNCHROTRON RADIATION EXAMINATION ATOMIC FORCE MICROSCOPY MOESSBAUER ANALYSIS **ACTIVATION ANALYSIS** MICROBIOLOGICAL ANALYSIS NUCLEAR MAGNETIC RESONANCE ANALYSIS OR IMAGING PHOTOGRAMMETRY OTHER TECHNIQUES

Relative frequency of use of techniques

