Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Facoltà di Farmacia e Medicina Anno Accademico 2015/2016

Dott. Giuseppe La Regina

"Tu, disperato pilota, frangi ora fra gli scogli la mia barca già stanca e squassata per tante tempeste! A te accanto, mio amore! Oh schietto farmacista! Efficace è la tua droga. Con questo bacio io muoio." W. Shakespeare. Giulietta e Romeo, Atto 5, Scena 3.

Cause dell'anfoterismo: dimensioni atomiche

- Le dimensioni atomiche hanno notevole importanza, nel senso che gli idrossidi anfoteri derivano spesso da cationi aventi piccolo raggio ionico ed alta carica.
- Tali piccoli cationi, infatti, esercitano una forza di attrazione molto intensa sugli atomi circostanti.
- Ciò ostacola la dissociazione dello ione OH⁻, cioè rende debole la base, e contemporaneamente favorisce l'addizione di altri ioni OH⁻, cioè rende possibile la formazione di idrossimetallati.

Cause dell'anfoterismo: dimensioni atomiche

- Così, ad esempio, lo ione Al³⁺ attrae la carica elettronica dalle molecole di acqua circostanti, facilitando la rimozione dei loro protoni e dando luogo all'idrossoalluminato Al(OH)₄.
- Ne consegue che il catione ha comportamento acido (cioè neutralizza le basi), mentre l'anione Al(OH)₄ è una base (cioè neutralizza gli acidi).
- Il cromo(III), che ha un raggio ionico poco diverso da quello dell'alluminio(III) (cioè di ~0,5 A), si comporta in modo analogo.

- Quando da un idrossido di un determinato elemento si stacca uno ione OH⁻, un elettrone, originariamente condiviso tra l'ossigeno e quell'elemento, passa esclusivamente all'ossigeno.
- Ciò può accadere solo se il legame tra l'ossigeno e l'altro elemento è già abbastanza polare, ossia, se quell'elemento ha una bassa elettronegatività.
- Ne consegue che gli idrossidi più basici sono quelli dei metalli alcalini e alcalino-terrosi.

- Altri idrossidi sono non soltanto più deboli, cioè meno dissociati, ma anche meno solubili.
- Quando l'ossigeno di un gruppo OH
 ha una forte carica negativa,
 una parte di questa passa sull'idrogeno.
- Sicchè l'atomo di idrogeno perde quasi completamente la possibilità di dissociarsi come protone.
- Pertanto, una base forte non può avere anche proprietà acide.

Cause dell'anfoterismo: elettronegatività del metallo

- D'altra parte quando l'ossigeno di un gruppo OH
 ha solo una debole carica negativa, l'idrogeno è facilmente dissociabile come protone ed il composto risulta acido.
- Inoltre, poiché il legame fra l'ossigeno e l'altro elemento non è molto polare, la separazione di un gruppo OH⁻ risulta difficile.
- Pertanto, un acido forte non può agire come base.
- Infine, quando il legame tra l'ossigeno e l'altro elemento è solo moderatamente polare, l'idrossido risulta avere proprietà anfotere.

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

- Infatti, gli idrossidi anfoteri possono essere solo debolmente acidi e debolmente basici.
- Da questo punto di vista, pertanto, si può far rientrare l'anfoterismo nella questione più generale delle proprietà acidobase dei composti.
- Pertanto, se si considera la tavola periodica degli elementi da sinistra a destra, passando dagli elementi metallici a quelli non metallici, si nota una completa inversione delle proprietà degli ossidi.

- Si passa così da ossidi nettamente basici ad ossidi nettamente acidi.
- Più esattamente, si nota che i metalli che formano ossidi o idrossidi anfoteri si trovano in una zona compresa fra gli elementi significativamente metallici (a sinistra della tavola) e quelli significativamente non metallici (a destra della tavola).
- Negli idrossidi anfoteri, tra il metallo e l'ossigeno vi è una differenza di elettronegatività troppo piccola perché gli idrossidi siano basi forti, ma troppo grande perché siano acidi forti.

- Nell'idrossido di cesio CsOH, la differenza di elettronegatività tra il cesio e l'ossigeno è abbastanza grande (3,5 – 0,7 = 2,8) sicchè esso è una base forte.
- Nel composto CIOH, invece, la differenza di elettronegatività è molto piccola (3,5-3=0,5) ed il composto risulta acido.
- Nell'idrossido di argento Ag(OH), la differenza di elettronegatività ha un valore intermedio (3,5 – 1,8 = 1,7).

- L'atomo di argento attrae gli elettroni dell'ossigeno abbastanza da non perdere facilmente lo ione OH⁻, ma non tanto da liberare facilmente lo ione H⁺.
- Dimodoché, se l'idrossido viene trattato con un acido forte, esso agisce da base, in quanto gli ioni H⁺ attraggono gli ioni OH⁻ abbastanza fortemente per formare H₂O:

$$AgOH + H^{\dagger} \longrightarrow Ag^{\dagger} + H_2O$$

Cause dell'anfoterismo: elettronegatività del metallo

 Se, invece, l'idrossido di argento viene trattato con una base forte si comporta da acido, cioè cede ioni H⁺:

AgOH
$$\longrightarrow$$
 AgO $^-$ + H $^+$

o meglio addiziona ioni OH⁻:

$$AgOH + OH^{-} \longrightarrow Ag(OH)_{2}^{-}$$

 Interessante è il caso di alcuni elementi che danno luogo a diversi ossidi e idrossidi, corrispondenti a differenti stati di ossidazione.

- Poiché per un dato elemento l'elettronegatività aumenta all'aumentare del numero di ossidazione, risulta che:
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione più bassi sono basici;
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione più alti sono acidi;
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione intermedi sono anfoteri.

N. di ossidazione	Ossido	Idrossido	Carattere	Colore
+2	MnO	$Mn(OH)_2$	base forte	bianco
+3	Mn_2O_3	$Mn(OH)_3$	base debole	bruno
+4	MnO_2	Mn(OH) ₄	anfotero	nero
+ 5	Mn_2O_5 (?)	$MnO(OH)_3 = H_3MnO_4$	acido debole	azzurro
+6	MnO_3	$MnO_2(OH)_2 = H_2MnO_4$	acido forte	verde
+7	Mn_2O_7	$MnO_3OH = HMnO_4$	acido fortissimo	violetto

Cause dell'anfoterismo: solubilità dell'idrossido

- Gli equilibri di dissociazione acida o basica degli ossidi e degli idrossidi anfoteri dipendono direttamente dall'equilibrio di dissociazione ionica dell'idrossido, cioè dal suo prodotto di solubilità.
- Gli atomi di ossigeno o i gruppi OH⁻ possono formare dei legami tra i cationi, detti *ponti di ossigeno*, che essendo abbastanza forti, conferiscono a molti di questi ossidi o idrossidi una struttura polimerica e quindi contribuiscono notevolmente alla loro insolubilità.

Cause dell'anfoterismo: solubilità dell'idrossido

- In pratica, gli ossidi e gli idrossidi che non si sciolgono in acqua, sono solubili negli acidi forti se hanno proprietà basiche, oppure nelle basi forti se hanno proprietà acide.
- Dimodoché si può riconoscere se un determinato composto è di natura acida o basica.
- Ad esempio, il biossido di silicio, SiO₂, non dà alcuna reazione con gli acidi, ma reagisce con gli alcali dando un silicato:

$$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$

Cause dell'anfoterismo: solubilità dell'idrossido

- Se gli ossidi e gli idrossidi non si sciolgono facilmente negli acidi o nelle basi, si può ricorrere alla fusione con ossidi acidi o basici.
- In ogni caso, l'insolubilità limita notevolmente il campo di pH in cui si possono osservare le proprietà acide o basiche.
- Inoltre, essa fa sì che tali proprietà appaiano molto spesso indebolite.
- Se un ossido è assolutamente insolubile può essere difficile stabilire se esso è di natura acida o basica.

Cause dell'anfoterismo: solubilità dell'idrossido

 Molto spesso, numerosi idrossidi vengono considerati non anfoteri soltanto perché sono molto poco solubili.

- E' inoltre da tener presente che il catione polarizza lo ione OH negli idrossidi (oppure lo ione O²⁻ negli ossidi).
- Anche questa polarizzazione, tuttavia, non può essere considerata da sola come causa dell'anfoterismo.
- Infatti, se si considera, ad esempio, la sequenza Zn-Cd-Hg, si osserva che:
 - l'idrossido di zinco è anfotero;
 - l'idrossido di cadmio non è anfotero;
 - l'idrossido di mercurio è debolmente anfotero.

Cause dell'anfoterismo: polarizzazione

- Tale irregolarità dipende anche dalla stabilità del reticolo cristallino formato dall'ossido di mercurio.
- Bisogna, inoltre, aggiungere che, mentre l'idrossido di zinco è anfotero, l'idrossido di manganese Mn(OH)₂ non lo è.
- Questa differenza di comportamento si spiega probabilmente con il fatto che il potere polarizzante dei cationi bivalenti dei sottogruppi B è più forte di quello di un catione come Mn²⁺ che deriva da un elemento situato al centro della I serie di transizione e che ha il livello d occupato solo a metà.

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

- In generale, si può dire che, per un determinato idrossido, i 2 equilibri di dissociazione acida e di dissociazione basica si possono avere contemporaneamente se la polarizzazione dello ione OH⁻ da parte del catione non è né troppo forte né troppo debole.
- Se tale polarizzazione è troppo forte si ha solo il comportamento acido, mentre se è troppo debole si ha solo il comportamento basico.

- Pertanto è possibile distinguere 3 tipi di ossidi:
 - 1) gli *ossidi ionici*, in cui l'ossigeno è scarsamente polarizzato e che risultano basici;
 - 2) gli *ossidi covalenti*, in cui l'ossigeno è molto polarizzato e che hanno un comportamento acido;
 - 3) ossidi anfoteri, in cui l'ossigeno è più o meno polarizzato, costituiti da reticoli molecolari covalenti indefinitamente estesi oppure da reticoli ionici a bassa coordinazione.

- Si può aggiungere che, quando la concentrazione degli ioni OH
 è estremamente elevata, anche alcune sostanze che
 normalmente non sono affatto acide possono formare complessi
 e passare in soluzione.
- Ad esempio, anche l'idrossido di bario, Ba(OH)₂, che è una base molto forte è alquanto più solubile nell'idrossido di sodio concentrato che non in quello diluito.

Ossidanti e riducenti

- Ossidazioni sono tutte le reazioni che avvengono con perdita di elettroni.
- Ad esempio, la reazione tra zinco e cloro, che dà cloruro di zinco secondo l'equazione:

$$Zn + Cl_2 \rightarrow ZnCl_2$$

è una reazione di ossidazione in quanto lo zinco, passando da Zn a Zn²⁺ perde 2 elettroni:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

Ossidanti e riducenti

- Analogamente, riduzioni sono tutte le reazioni che avvengono con guadagno di elettroni.
- Ad esempio:

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

 Una sostanza per ossidarsi, cioè per cedere elettroni, richiede un reagente, detto ossidante, che acquisti quegli stessi elettroni, cioè che subisca una riduzione.

Ossidanti e riducenti

- Pertanto, ogni reazione di ossidazione avviene contemporaneamente ad una reazione di riduzione; la reazione complessiva si chiama reazione di ossido-riduzione.
- Gli elettroni assorbiti dall'ossidante sono in numero eguale a quelli del riducente.
- Ciò appare chiaro se si scrive ogni reazione di ossido-riduzione separando le 2 equazioni parziali.
- Ad esempio, la reazione tra cloruro di stagno(II) e cloro si può schematizzare come segue:

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Ossidanti e riducenti

$$\operatorname{Sn}^{2+} \to \operatorname{Sn}^{4+} + 2e^{-}$$
 $\operatorname{Cl}_2 + 2e^{-} \to 2 \operatorname{Cl}^{-}$
 $\operatorname{Sn}^{2+} + \operatorname{Cl}_2 \to \operatorname{Sn}^{4+} + 2\operatorname{Cl}^{-}$

 Dall'esempio si evince che una perdita di elettroni equivale ad un aumento del numero di ossidazione e, analogamente, un acquisto di elettroni equivale ad una diminuzione del numero di ossidazione.

Ossidanti e riducenti

• In generale chiamando *Ox* la forma ossidata e *Red* la forma ridotta, si ha:

$$Ox + ne^- \xrightarrow{riduzione} Red$$

- La forma ossidata e la forma ridotta che intervengono in ciascuno di tali equilibri costituiscono una coppia di ossidoriduzione o sistema redox.
- Le varie coppie redox si indicano scrivendo prima la forma ossidata e poi quella ridotta: Cl₂/2Cl⁻, Fe³⁺/Fe²⁺, ecc.

Ossidanti e riducenti

- Se la forma ossidata di una coppia ha molta tendenza a prendere elettroni, si dice che è un ossidante forte.
- In tal caso, l'equilibrio è molto spostato verso la forma ridotta, che risulta quindi la forma più stabile (es., Cl₂ ← 2Cl⁻).
- Viceversa, se la forma ossidata ha poca tendenza a prendere elettroni, si tratta di un ossidante debole.
- In tal caso, l'equilibrio è spostato verso la forma ossidata e la forma ridotta è poco stabile (es., I₂ => 2I⁻).

Ossidanti e riducenti

- Se la forma ridotta è molto poco stabile, cioè se ha molta tendenza ad ossidarsi, allora si parla di forte riducente.
- Ad esempio, la coppia Na⁺/Na è costituita da una forma ossidata molto stabile (Na⁺) e da una forma ridotta facilmente ossidabile (Na); quindi il sodio è un forte riducente.

Ossidazione e Riduzione Serie dei potenziali normali

- Poiché l'ossidazione consiste in un trasferimento di elettroni, il potere ossidante o riducente viene espresso con una grandezza fisica, nota come potenziale redox (E) espresso in volt (V).
- Il potenziale che ha una coppia quando la concentrazione della forma ossidata, [Ox], è uguale alla concentrazione della forma ridotta [Red], si chiama potenziale normale (E⁰).
- Per le sostanze gassose la pressione deve essere pari a 1 atm; le sostanze poco solubili devono essere presenti come corpo di fondo.

Serie dei potenziali normali

Serie dei potenziali normali (T = 25 °C; pH = 0)

			AND DESCRIPTION OF THE PROPERTY OF THE PROPERT
$F_2/2F^-$	2,85 volt	$Fe(CN)_{6}^{3-}/Fe(CN)_{6}^{4-}$	0,50 volt
$S_2O_8^{2-}/2SO_4^{2-}$	2,00	Cu^{2+}/Cu	0,34
H_2O_2/H_2O	1,77	As^{3+}/As	0,25
PbO_2/Pb^2 +	1,75	Bi^{3} +/ Bi	0,23
HBiO ₃ /Bi ^{3 +}	1,70	Sn^{4+}/Sn^{2+}	0,15
MnO_4^-/Mn^2	1,52	Sb ³⁺ /Sb	0,10
Au^{3+}/Au	1,40	$2H^{+}/H_{2}$	0,00
$\text{Cl}_2/2\text{Cl}^-$	1,36	Pb^{2+}/Pb	-0.13
Ce^{4+}/Ce^{3+}	1,30	$\operatorname{Sn}^{2+}/\operatorname{Sn}$	-0,14
$Cr_2O_7^{2-}/2Cr^{3+}$	1,30	Cd^{2+}/Cd	-0,40
MnO_2/Mn^{2}	1,28	Cr^{3+}/Cr^{2+}	-0,40
$O_2/2H_2O$	1,23	Fe ²⁺ /Fe	-0,44
$\mathrm{Br_2/2Br}^-$	1,00	$CO_2/C_2O_4^{2-}$	-0,5
NO_2^-/NO	0,99	S/S^{2-}	-0,60
NO ₃ ⁻ /NO	0,96	$\mathbb{Z}n^{2}$ + $\mathbb{Z}n$	-0,76
Ag^+/Ag	0,81	Al^{3+}/Al	-1,66
Hg^+/Hg	0,80	Mg^{2+}/Mg	-2,37
$Fe^{3} + /Fe^{2} +$	0,77	Na ⁺ /Na	-2,70
AsO_4^{3-}/AsO_3^{3-}	0,60	Cs ⁺ /Cs	-2,90
$I_2/2I^-$	0,54	Li ⁺ /Li	-3,04

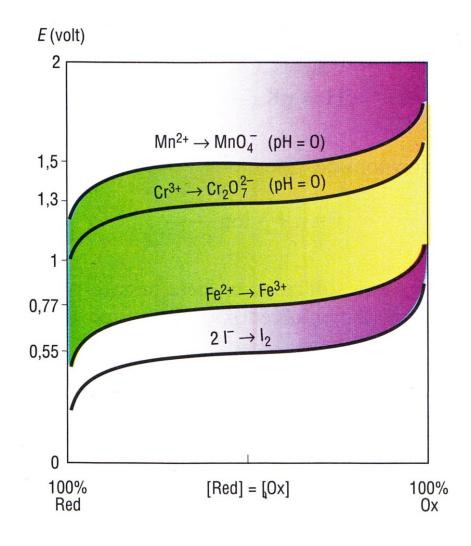
Serie dei potenziali normali

biossido di piombo ioduro solfato ferroso permanganato bicromato cloruro di stagno(II) acido nitrico concentrato stagno ione solfuro cloro solfiti (SO₂) bromo acqua ossigenata zinco iodio magnesio

Ossidazione e Riduzione Serie dei potenziali normali

- In chimica analitica, le reazioni di ossido-riduzione hanno una grande importanza.
- Inoltre, molte reazioni di ossido-riduzione avvengono con cambiamenti di colore caratteristici.
- Ad esempio, il manganese(II) che è di colore rosa può ossidarsi a ione MnO₄²⁻, che è verde, o anche a ione MnO₄⁻, che è di colore violetto; lo ione CrO₄²⁻ che è giallo, può essere ridotto a ione Cr³⁺, che è di colore verde, ecc.

Variazione del potenziale con la concentrazione


 Il potenziale di ossido-riduzione varia con la concentrazione degli ioni secondo la relazione di Nernst:

$$E = E^0 + \frac{0,06}{n} \log \frac{[Ox]}{[Red]}$$

dove n è il numero degli elettroni scambiati, E^0 il potenziale normale di ossido-riduzione.

 Dalla formula di Nernst si vede che anche variando notevolmente il rapporto [Ox]/[Red] il potenziale non varia molto.

Variazione del potenziale con la concentrazione

Tamponamento redox

- Le soluzioni che contengono contemporaneamente un ossidante ed il riducente coniugato permettono di fissare praticamente il potenziale di ossidoriduzione ad un valore determinato.
- Esiste del resto una evidente analogia fra la formula di Nernst

$$E = E^0 + \frac{0.06}{n} \log \frac{[Ox]}{[Red]}$$

e la formula delle soluzioni tampone:

$$pH = pK_A + log \frac{Cs}{C_A}$$

Tamponamento redox

 Ad esempio, il bismuto(III) reagisce con lo ioduro di potassio, formando un complesso arancione, secondo la reazione:

$$Bi^{3+} + 4I^- \Longrightarrow BiI_4^-$$

- Quando si ricerca il bismuto con questa reazione, tutti gli ossidanti degli ioduri interferiscono perché liberano iodio.
- Per evitare queste interferenze si esegue la reazione in ambiente riducente, cioè per esempio, in presenza di un eccesso di ipofosfito ($E^0 H_3PO_3/H_3PO_2 = -0.6 V$).

Reazioni di ossidoriduzione

- Se il potenziale di un sistema 1) è superiore a quello di un sistema 2), si può costruire una pila in cui l'ossidante 1) ossida il riducente 2).
- Ad esempio, per le coppie Ce⁴⁺/Ce³⁺ e Fe³⁺/Fe²⁺ i potenziali sono:

$$ECe^{4+}/Ce^{3+} = 1,30 + 0,06 \frac{[Ce^{4+}]}{[Ce^{3+}]}$$
 (1)

$$EFe^{3+}/Fe^{2+} = 1,30 + 0,06 \frac{[Fe^{3+}]}{[Fe^{2+}]}$$
 (2)

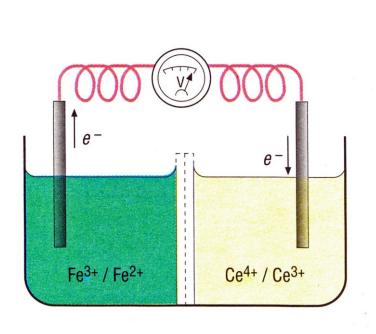
Reazioni di ossidoriduzione

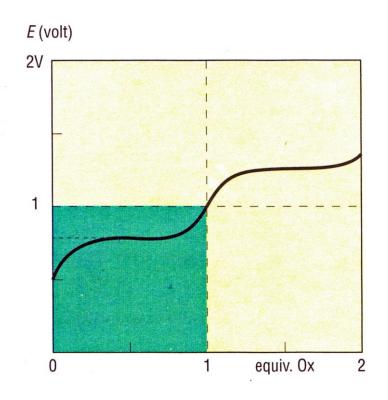
- Si può quindi allestire una pila costituita da un recipiente (cella) diviso in 2 scomparti da un setto poroso, il quale permette il passaggio dell'elettricità ma impedisce che le 2 soluzioni si possano mescolarsi.
- Nelle 2 soluzioni sono immersi 2 conduttori (elettrodi) di un metallo inerte (platino), collegati tra loro da un apparecchio di misura.
- Tale pila si indica:

$$(Pt)/Fe^{3+}/Fe^{2+}//Ce^{4+}/Ce^{3+}/(Pt)$$

Reazioni di ossidoriduzione

• In essa avviene la reazione:

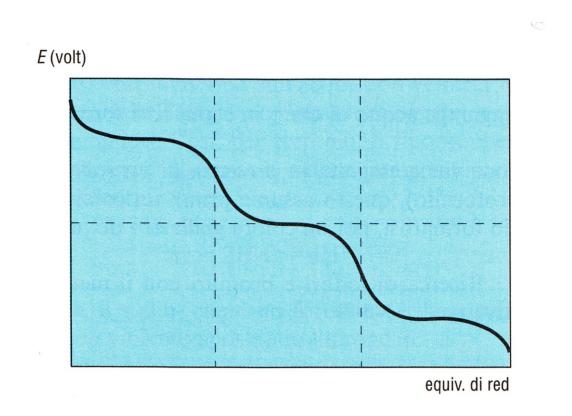

$$Fe^{2+} + Ce^{4+} \implies Fe^{3+} + Ce^{3+}$$


cioè si ha l'ossidazione del ferro (II) a ferro (III).

Tale reazione procede sino a quando si ha:

$$ECe^{4+}/Ce^{3+} = EFe^{3+}/Fe^{2+}$$

Reazioni di ossidoriduzione



Reazioni di miscele redox

- Quando una miscela di ossidanti viene trattata con un riducente,
 è l'ossidante più forte quello che viene ridotto per primo.
- Analogamente, quando una miscela di più riducenti viene trattata con un ossidante, è il riducente più forte quello che viene ossidato per primo.
- In altri termini, la reazione che avviene per prima è quella che corrisponde alla più grande differenza di potenziale.

Reazioni di miscele redox

Reazioni di miscele redox

Si considerino le coppie redox degli alogeni:

$$CI_{2}/2CI^{-}$$
 $E^{0} = 1,36 \text{ V}$
 $Br_{2}/2Br^{-}$ $E^{0} = 1 \text{ V}$
 $I_{2}/2I^{-}$ $E^{0} = 0,5 \text{ V}$

 Se una soluzione contenente ioduri e bromuri viene trattata lentamente con acqua di cloro, si ossida prima lo ioduro, che è il riducente più forte; poi si ossida il bromuro.

Reazioni di miscele redox

Inizialmente lo ioduro si ossida a iodio secondo la reazione:

$$2l^{-} + Cl_2 \rightarrow l_2 + 2Cl^{-}$$

In un secondo tempo lo iodio si ossida formando ICI₃ e HIO₃:

$$I_2 + 3CI_2 \rightarrow 2ICI_3$$

$$ICI_3 + CI_2 + 3H_2O \rightarrow HIO_3 + 5HCI$$

 Continuando ad aggiungere acqua di cloro, il bromuro si ossida a bromo:

$$2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^-$$

Reazioni di miscele redox

- Infine, se si aggiunge acqua di cloro in eccesso, si forma il composto BrCI.
- Se la reazione viene eseguita in presenza di un solvente organico (benzene, cloroformio), questo assume prima un colore violetto dovuto allo iodio formatosi, poi un colore giallastro dovuto al bromo.

Conseguenze della velocità delle reazioni redox

- Non sempre gli ossidanti ed i riducenti reagiscono con velocità sufficiente per scopi analitici.
- Infatti, alcuni ossidanti, nonostante il loro elevato potenziale di ossidazione, agiscono tanto lentamente da risultare praticamente inerti.
- Analoghe considerazioni possono essere altresì fatte per taluni riducenti.

Conseguenze della velocità delle reazioni redox

- In altri termini, in alcuni casi accade che, nonostante la notevole differenza di potenziale tra le 2 coppie, la reazione di ossidoriduzione procede più o meno lentamente.
- Del resto, la serie dei potenziali normali permette di prevedere se una determinata reazione è possibile, e permette anche di calcolarne la costante di equilibrio, ma non dà alcuna informazione sulla velocità con cui la reazione avviene, cioè sulla velocità con cui l'equilibrio stesso viene raggiunto.

Conseguenze della velocità delle reazioni redox

- In molti casi, è possibile accelerare tali reazioni con il riscaldamento, con un opportuno catalizzatore, oppure variando il pH, ecc.
- Esempio 1. L'acqua può agire come ossidante :

$$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$$
 E = 0,00 + 0,06log[H⁺]

o come riducente

$$2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$$
 E = 1,23 + 0,06log[H⁺]

Conseguenze della velocità delle reazioni redox

- Tali reazioni, tuttavia, sono tanto lente che, in assenza di catalizzatori, l'azione dell'acqua è praticamente trascurabile.
- Solo gli ossidanti ed i riducenti molto forti agiscono sull'acqua con velocità notevole; pertanto tali sostanze nell'acqua non possono esistere, oppure esistono solo per brevissimo tempo.
- Così, ad esempio, il fluoro, che è l'ossidante più forte, in presenza di acqua si riduce a ione F⁻ liberando ossigeno:

$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

Conseguenze della velocità delle reazioni redox

 Analogamente, il sodio, che è un fortissimo riducente, reagisce con l'acqua in modo violento liberando idrogeno:

$$2Na + 2H_2O \rightarrow 2Na^+ + 2OH^- + H_2$$

- Esempio 2. L'ossigeno, pur avendo un elevato potenziale di ossidazione, agisce in molti casi tanto lentamente da risultare praticamente inerte.
- Ad esempio, l'ossigeno atmosferico ossida i sali di ferro(II) a ferro(III), abbastanza rapidamente in ambiente alcalino, ma solo lentamente in ambiente acido:

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Conseguenze della velocità delle reazioni redox

$$4Fe^{2+} + O_2 + 8OH^- + 2H_2O \rightarrow 4Fe(OH)_3$$
 (reazione veloce)
 $4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$ (reazione lenta)

- Esempio 3. Gli ioni NO_3^- e NO_2^- a pH = 0 hanno potenziali redox quasi uguali (0,96 e 0,99 V, rispettivamente).
- Tuttavia, l'acido nitroso agisce da ossidante molto più rapidamente dell'acido nitrico; quest'ultimo ossida rapidamente solo quando è concentrato o in presenza di riducenti molto forti.

Conseguenze della velocità delle reazioni redox

 Esempio 4. L'acido solforico agisce da ossidante secondo la reazione:

$$SO_4^{2-} + 2H^+ \longrightarrow H_2O + SO_2 + \frac{1}{2}O_2$$

- Tale reazione decorre con velocità tanto maggiore quanto maggiore è la concentrazione dell'acido.
- L'acido solforico diluito risulta assolutamente inerte.
- Delle proprietà ossidanti dell'acido solforico concentrato si profitta per la ricerca di ioduri e bromuri:

Conseguenze della velocità delle reazioni redox

$$2H_2SO_4 + 2NaI \rightarrow SO_2 + I_2 + 2H_2O + Na_2SO_4$$

$$2H_2SO_4 + 2KBr \rightarrow SO_2 + Br_2 + 2H_2O + K_2SO_4$$

cioè si libera iodio e bromo, riconoscibili dal colore, violetto il primo, rosso-bruno il secondo.

- Esempio 5. I riducenti agiscono in generale più rapidamente in ambiente alcalino che non in ambiente acido.
- Un esempio è l'ossidazione degli arseniti ad arseniati:

$$AsO_2^- + 4OH^- \rightarrow AsO_4^{3-} + 2H_2O + 2e^-$$
 (reazione veloce)

$$AsO_2^- + 2H_2O \rightarrow AsO_4^{3-} + 4H^+ + 2e^-$$
 (reazione lenta)

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Conseguenze della velocità delle reazioni redox

- E' interessante, inoltre, notare che le reazioni in cui avviene semplicemente uno scambio di elettroni (es., $Fe^{3+} \longrightarrow Fe^{2+} + e^{-}$) sono generalmente molto più veloci delle reazioni in cui la struttura degli ioni subisce una notevole modificazione (es., $MnO_4^- \to Mn^{2+}$).
- In alcuni casi, la velocità con cui un sistema redox reagisce con un altro può essere accelerata dalla presenza di un opportuno catalizzatore, che abbia un *potenziale intermedio* fra quelli dei 2 sistemi reagenti e che reagisca rapidamente in entrambi i sensi.

Conseguenze della velocità delle reazioni redox

 Trattando una soluzione di KI con H₂O₂ in presenza di amido si ha la reazione:

$$2I^{-} + 2H_{2}O_{2} + 2H^{+} \rightarrow 2H_{2}O + I_{2}$$

e l'amido si colora in azzurro.

- Questa reazione in ambiente acido avviene rapidamente, ma nelle soluzioni neutre e diluite avviene molto lentamente.
- In quest'ultimo caso, la presenza di FeSO₄, che gisce come catalizzatore a potenziale intermedio, rende la reazione più veloce.

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Ossidazione e Riduzione Serie elettrochimica dei metalli

- Dalla serie dei potenziali normali si può ricavare la seguente serie elettrochimica dei metalli più comuni:
 - oro, argento, mercurio, rame, arsenico, antimonio, (idrogeno), piombo, stagno, cadmio, ferro, zinco, alluminio, magnesio, sodio.
- In questa serie, i metalli sono ordinati secondo la loro crescente tendenza ad ossidarsi, che è piccola per l'oro, l'argento ed il mercurio e grande per l'alluminio, il magnesio ed il sodio.

Serie elettrochimica dei metalli

- Una conseguenza di ciò è lo spostamento reciproco dei metalli dai rispettivi sali.
- Infatti, ogni metallo sposta, cioè precipita, quelli che lo precedono, dalle soluzioni dei loro sali.
- Ad esempio, il ferro precipita il rame dalle soluzioni dei sali di rame.
- Questa reazione viene talvolta utilizzata per la separazione del rame(II) dal cadmio(II).

Ossidazione e Riduzione Serie elettrochimica dei metalli

- La soluzione, acidificata con HCI, viene trattata con un piccolo eccesso di ferro in polvere.
- Il rame precipita come *cemento*, cioè in forma metallica finemente suddivisa, mentre il cadmio resta in soluzione.
- A sua volta, il rame sposta il mercurio dai sali di mercurio; tale reazione viene utilizzata per la ricerca del mercurio.
- Un filo di rame immerso in una soluzione contenente un sale di mercurio(I) o (II) si ricopre di un sottile strato di mercurio metallico di colore grigio argenteo.

Dott. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

- La posizione dell'idrogeno nella serie elettrochimica spiega il comportamento dei vari metalli con gli acidi.
- L'attacco di un metallo, cioè la sua dissociazione, è una reazione di ossidazione.
- In acido cloridrico 1N (pH = 0) si solubilizzano solo i metalli che seguono l'idrogeno nella serie dei metalli e lo fanno tanto più facilmente quanto più sono riducenti.
- Ad esempio, nel caso del ferro si ha:

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

Attacco dei metalli

• I metalli molto riducenti (alcalini, alcalino-terrosi, ecc.) vengono ossidati persino dagli ioni H⁺ dell'acqua; ad esempio:

Ba +
$$2H_2O \rightarrow Ba(OH)_2 + H_2$$

 Al contrario, i metalli nobili si sciolgono solo negli acidi ossidanti, come l'acido nitrico; ad esempio:

$$3Ag + 4HNO_3 \rightarrow 3AgNO_3 + NO + 2H_2O$$

L'acido nitrico agisce come ossidante secondo la reazione:

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$$

Attacco dei metalli

con un potenziale E^0 = 0,95 V a pH = 0 (per l'acido nitrico concentrato si assume il valore empirico E \approx 1,4 V).

- Anche H₂SO₄ e HClO₄, concentrati e caldi, agiscono da ossidanti;
 altri ossidanti sono: Br₂/HCl, ClO₃-/HCl, HCl/HNO₃.
- La miscela costituita da HCI (3 volumi) e HNO₃ (1 volume) viene chiamata acqua regia ed è particolarmente usata per sciogliere l'oro e altri metalli nobili.

- Per alcuni metalli l'attacco può risultare impedito a causa della passivazione oppure della sovratensione di idrogeno.
- La passivazione consiste nella formazione di uno strato di ossidato poco solubile, che impedisce l'ulteriore attacco.
- Ad esempio, il cromo non si scioglie in HNO₃ ed il piombo non si scioglie in H₂SO₄ a causa della formazione di Cr₂O₃ e PbSO₄, rispettivamente.

- La sovratensione di idrogeno è il fenomeno per cui l'idrogeno su vari metalli presenta una tensione di ossidoriduzione minore (cioè più negativa) di quella calcolata.
- Il fenomeno, causato da un'inerzia dello svolgimento gassoso, rende in pratica alcuni metalli alquanto "più nobili".
- Ad esempio, lo zinco ($E^0 = -0.7 \text{ V}$), se è molto puro, non si scioglie facilmente in HCI (le impurezze, agendo da catalizzatori, possono favorirne la dissoluzione).

- Altre cause che possono modificare profondamente la velocità di attacco dei metalli sono lo stato di suddivisione ed il grado di purezza.
- Generalmente una finissima suddivisione del metallo favorisce l'attacco.
- Un'elevata purezza in molti casi favorisce l'attacco, ma in qualche caso (es., zinco) lo ostacola.