
 

1 INTRODUCTION 

Nowadays, it is well-known that microorganisms play a key role in the deterioration of cultural 
heritage, as exemplified by the Altamira and Lascaux caves or the Tutankhamun’s tomb in 
Luxor’s famous Valley of the Kings, which were visibly and irreparably damaged over decades 
by the damp breath of large numbers of visitors flocking to see the boy king’s burial chamber or 
the often called “Sistine Chapel of Prehistoric Art” (Allemand & Bahn 2005, Saiz-Jimenez et al. 
2011). Until they were completely closed to the public, and carefully-crafted replicas were built 
nearby. 

Over the last years, infrared absorption and Raman scattering spectroscopies have become 
two of the main analytical techniques applied to items of cultural heritage due to their versatility 
and ability to provide information on the chemical nature of both organic and inorganic 
compounds (Bersani et al. 2008, Cappitelli et al. 2005, Egel and Simon 2013, Lindgren et al. 
2011, Manso & Carvalho 2009, Mysak et al. 2011, Naumann et al. 2005, Shahack-Gross et al. 
2014, Spring et al. 2008, Tomasini et al. 2012). In particular, micro-IR and micro-Raman are 
both non-destructive surface techniques that require no sample preparation, which have 
significantly improved the potential of vibrational spectroscopy and allow for the fast and 
reliable identification of mixtures of compounds. Thus, the constituent materials of a 
heterogeneous sample give rise to a specific spectral fingerprint, which can be properly 
interpreted, from an analytical chemistry point of view, with the help of appropriate spectral 
libraries or from the infrared/Raman spectra collected for reference compounds. 

The Raman spectrum of a sample may be often obscured by the strong fluorescence emission 
of the own specimen in the visible region of the electromagnetic spectrum, particularly when 
using laser excitations in the blue and green regions (400-520 nm). This problem can be 
overcome in many cases by using a near-infrared (NIR) excitation wavelength (typically upon 
laser excitation at 785 or 1064 nm). 

Applications of Raman and Infrared Spectroscopies to the 
research and conservation of subterranean cultural heritage 

C. Capel Ferrón  
SCAI of the University of Málaga, Spain 

S.E. Jorge Villar 
Área de Geodinámica Interna, University of Burgos, Spain; Spanish National Research Center for 
Human Evolution (CENIEH), Burgos, Spain 

F.J. Medianero Soto 
Escuela Taller Parque Guadalteba, Guadalteba County, Málaga, Spain 

J.T. López Navarrete 
Department of Physical Chemistry, University of Málaga, Spain 

V. Hernández 
Department of Physical Chemistry, University of Málaga, Spain 

ABSTRACT: Here we report on the applicability of infrared and Raman vibrational 
spectroscopies as useful techniques in the scientific research of the subterranean cultural 
heritage (such as wall paintings and archaeological objects found in prehistoric caves, mural 
paintings in churches and ancient catacombs, mummified bodies and human remains in ancient 
burials). We will also pay attention to the use of vibrational spectroscopies techniques in the 
investigation of the underground cultural heritage biodegradation caused by fungi and bacteria. 



When coupled to a microscope, a Raman instrument with a high spatial resolution (of even 
less than 1 m) is available. Raman microscopes exhibit a high signal-to-noise ratio and are 
ideal for characterizing in detail, in the laboratory, weak scattering samples, specific regions 
within a heterogeneous sample or object, the scientific study of artworks or archaeological tools, 
or the nondestructive analytical characterization of ancient materials showing signs of being 
degraded in their natural environments. All of this with the additional and major advantage that 
no chemical or mechanical pretreatment of the sample is necessary for the presentation of the 
specimen to the micro-Raman spectrometer (Adar et al. 2007, Casadio et al. 2010, Ernst 2010, 
Mahmoud 2013, Pelosi et al. 2013). Of particular relevance to the scientific research of 
biodegradation of artwork is the ability to obtain Raman spectra directly from specimens in their 
natural state of hydration, without further desiccation, provided that the weak Raman scatterings 
from glass and water will not strongly affect the observation of the Raman spectrum of the 
sample under study (Schiavon et al. 2013). This ability also makes Raman spectroscopy an 
useful analytical technique in Biology, Biochemistry, Medicine, Geology, Astrobiology, 
Paleontology and in many other fields of research (Amini et al. 2014, Chen et al. 2007, Edwards 
et al. 2012, Keating & Byrne 2013, Keiner et al. 2013, Kong et al. 2013, Steele et al. 2007, 
Stetten et al. 2008, Thomas et al. 2013, 2014). 

Major technical advances over the last few years have resulted in smaller and easier to use 
infrared and Raman lightweight field-portable miniaturized spectrometers and interferometers of 
sufficient quality, opening up much wider application of infrared and Raman spectroscopy, 
particularly for adoption into field usage, than usual laboratory bench-top FTIR or Raman 
instruments. Nonetheless, portable or handheld Raman spectrometers produce data that usually 
are much noisier than what a high-quality bench-top spectrometer produces due to the shorter 
spectral acquisition time and lower number of averaged scans (Capel-Ferrón et al. 2014, 
Hernández et al. 2012, Jorge-Villar et al. 2011, Vandenabeele et al. 2014). 

 

 
Figure 1. Raman spectroscopic analysis performed by means of a portable instrument of (a) a prehistoric 
stone lamp and (b) a lithic instrument with traces of pigments. c. Portable Raman spectrometer equipped 
with an optical fiber and a head probe. d. Raman spectrum performed with a portable spectrometer. 
 

 
 



 
Figure 2. a and b. The well-known negative hand imprint and one of the several prehistoric finger 
paintings documented in many sites of the Ardales Cave (Guadalteba County, Málaga, Spain). c. In situ 
Raman analysis of a hind head. d. Raman analysis of the negative hand imprint (this rock painting is 
located near five meters above the ground floor). e. Two of us performing Raman measurements of the 
mineral pinkish pigment used to draw a finger painting in a wet wall of the Ardales Cave. 

2 PREHISTORIC ROCK ART, ETRUSCAN CATACOMBS AND FRESCOES 
 

Studying of wall paintings or frescoes in churches, historical buildings or ancient catacombs, in 
which sampling is not allowed, constitutes an evident example in which there is a need to bring 
the scientific Raman instrumentation to the cultural heritage site, in order to perform in situ 
noninvasive vibrational spectroscopic measurements, often in combination with other analytical 
techniques, such as XRF analysis. Examples of this approach are the in situ Raman 
spectroscopic study of San rock art in South Africa (Tournié et al. 2010); the analysis of antique 
Egyptian wall paintings in the tomb of Menna (Vandenabeele et al. 2009) and the Theban tomb 
TT277 near Luxor (Mahmoud 2013); the in situ noninvasive Raman microspectroscopic 
investigation of polychrome plasterworks in the Alhambra of Granada, Spain (Dominguez-
Vidal et al. 2012); the in situ non-destructive analysis, by making use of a suite of three 
different portable instruments, for carbon screening before sampling for dating prehistoric rock 
paintings in the Rouffignac-Saint-Cernin and Villars caves, both of them located in Dordogne, 
France (Beck et al. 2013, Lahlil et al. 2011); the archaeometric study of medieval wall paintings 
in a large group of rock hewn churches in Cappadocia, Turkey, dating back to a period between 
the sixth and ninth centuries (Pelosi et al. 2013); the micro-Raman spectroscopic and GC/MS 
analysis of wall paintings of the 19th century iconographer Dicho Zograph, in churches from 
Republic of Macedonia (Cukovska et al. 2012); or the 16th century wall paintings in the church 
of Agios Sozomenos in Galata, Cyprus (Nevin et al. 2008). 

Raman spectroscopy, in combination with other analytical techniques, has been also used to 
study the Etruscan art of wall painting, such as in the “Tomba della Quadriga Infernale” (4th 
before BC), in Sarteano, Siena, Italy (Pallecchi et al. 2009); on the Tomba dell’Orco in the 
Etruscan necropolis of Tarquinia, Lazio, Italy (Sodo et al. 2008): on Etruscan polychromes on 
architectural terracotta panels at present on display at the Villa Giulia Etruscan Museum in 
Rome (Bordignon et al. 2007); or on black powders found in three different types of bronze 
vessels at the Pompeii archaeological site (Canevali et al. 2011); as well as on powdered 



pigments found in bowls from the Pompeii archaeological site and some wall-painting 
fragments from the Vesuvian area, conserved in the National Archaeological Museum of Naples 
(Aliatis et al. 2010). Piovesan et al. (2011) also performed Raman spectroscopy, among a wide 
range of analytical methods, on 57 fragments of wall painting excavated from the Temple of 
Venus, Pompeii. 

Several scientific papers have been published so far on the Raman characterization of 
prehistoric rock art, and most of them by combining both on-site investigations with further 
analyses of micro-samples in the laboratory (de Faria et al. 2011, Gomes et al. 2013, Goodall et 
al. 2009, Hernanz et al. 2008, 2010, 2012, Iriarte et al. 2013, Jezequel et al. 2011, Lofrumento et 
al. 2011, Mas et al. 2013, Ravindran et al. 2013). However, the requirements for the portable 
Raman instrumentation when dealing with prehistoric rock art are even more stringent that the 
analysis of wall paintings in churches, ancient buildings or catacombs, provided that constraints 
of weight and access to electrical power are typically more larger and difficult in the former 
case. Moreover, inside the prehistoric caves, the ground surface is not usual flat, and the use of a 
tripod, to mount the headprobe of the mobile Raman spectrometer, is not so easy in this 
situation. In addition, the sample of interest may be located on a rock face several meters above 
the ground, thus creating additional problems not only related to the carriage of the Raman 
instrumentation from the “parking area” into the prehistoric cave, but also to bringing the 
headprobe of the mobile Raman spectrometer into near contact with the specimen for exact 
positioning and fine focusing, and quite often lacking of the desired help of a sufficiently stable 
scaffolding. 

Some authors have even designed, constructed and developed their own specific 
instrumentation for the scientific diagnosis of art objects, such as a mobile Raman-XRF 
apparatus developed by Andrikopoulos et al. (2006) with the aim of its non-destructive 
application to old master paintings, providing both Raman and XRF spectra from the same spot 
on the surface of the specimen under study. The experimental validation of such a mobile 
Raman-XRF instrument was performed on an experimental icon painted with traditional 
Byzantine techniques, as well as on minute samples from a post-Byzantine icon. Or the helium 
jet aimed directly at the laser spot of a 785 nm portable Raman spectrometer, developed by 
Ruvalcaba-Sil et al. (2013) to ensure the safe study of sensitive works of art and other types of 
fragile materials. The system, denoted as HERAS (Helium Raman System), simply consisted of 
a pinhole collimator, coupled to a helium line and a gas mass flux control, being finally tested 
on an original XVI painting of Baltasar de Echave Orio at the National Museum of Art in 
Mexico City. As in the preliminary tests on pyroxylin, vermilion and ochre paint references and 
some pigment samples, the small burns that can be caused by the 785 nm laser beam on the 
surface of the specimen under analysis without such a helium jet, were fully avoided in all 
cases. 

Figure 3. Prehistoric mobile (a) and fixed lamps (b and c) found in the Ardales Cave (Guadalteba County, 
Málaga, Spain). 



 
Figure 4. a. Photographs of the six lithic tools exhumed along 2011 in two karst sites of the Guadalteba 
County (Málaga, Spain) : (1) 1628-Silex-LP-perfil-2011-bulk; (2) 1765-AD-2-11-bulk; (3) 225-230-CP-
3-46-artefact-3- bulk; (4) 1431-2011-CP-R-S-P1-bulk; (5) Point-492-AD-4-11-2-CapaR-bulk; (6) 1430-
2011-CP-R-S-P1-bulk. b. FT-Raman spectra of the whole series of lithic tools subject of study and 
comparison between the FT-Raman profiles collected for the 1628- Silex-LP-perfil-2011-bulk and 1765-
AD-2-11-bulk specimens at different spots on their surface. 

3 FUNERARY ARTEFACTS, MUMMIFIED BODIES AND ANCIENT BURIALS 
 

FTIR spectroscopy has been applied to the analysis of pathological and non-pathological human 
remains for determining burial duration of skeletal remains, which is one the most important 
aspects of forensic anthropology, using the crystallinity index and carbonate-phosphate index as 
a means of distinction between recent and archaeological, anthropological bone samples. 
Tuberculosis and syphilis infected human bones from different burial environments were also 
analyzed by means of the same FTIR-based method to see if changes in crystallinity interfere 
with the process of burial dating (Nagy 2008). In a similar way, Raman microspectroscopy with 
785 nm laser excitation has been also used to study dynamic chemical changes in turkey bone 
tissues during short burial intervals, between 12 and 62 days. The results of this Raman 
spectroscopic study indicated that chemical changes upon burial of turkey bone fragments, due 
to soil bacteria, are time-dependent in a scale of days, and mainly reflect the collagen structural 
conformational changes taking place in the so-called “amide I spectral region”. Thus illustrating 
the potential use of Raman spectroscopy as a fast, non-destructive and reliable method for 
estimating the burial duration of bones for forensic purposes (McLaughlin & Lednev 2011). 
Later on, the same authors published a second article in which they again made use of Raman 
spectroscopy to discriminate bone samples originating from four different species (bovine, 
porcine, turkey and chicken). The treatment of the collected spectral data, using partial least 
squares discriminate analysis (PLS-DA) with leave-one-out cross-validation, resulted in the 
successful discrimination of bones from various animal species, without no overlap between 
groups (McLaughlin & Lednev 2012). 

Reiche et al. (2004) reported on the in situ Raman spectroscopic investigation of the 
adorning gemstones on the reliquary Heinrich’s Cross from the treasury of Basel Cathedral. On 
the other hand, a collaboration between the Getty Conservation Institute Museum Research 
Laboratory and the Getty Museum Antiquity Conservation Department has been recently 
carried out on the J. Paul Getty Museum’s mummy 91.AP.6 dating to the first century (and 
known by the name “Herakleides” from a painted inscription on the feet of its shroud), to 
answer questions about the traditions surrounding Romano-Egyptian mummification, about the 
preparation and use of Roman pigments, and about the long term preservation of this object and 
other like it. Preliminar results of this study have revealed considerable information regarding 
the materials, fabrication, and rituals used to create and preserve this mummy. Herakleides 
belongs to a small group of similar Romano-Egyptian mummies known collectively as “red-
shroud mummies” due to their comparable decorative schemes and because they are painted  
from head to toe with the pigment red lead, Pb3O4, as the major phase, and a minor phase, 



Pb2SnO4, of lead tin oxide. Lead isotopes ratios were found to match the mixed lead sources 
typically associated with Rio Tinto, Spain (a site extensively mined for silver during the first 
century AD). Lead tin oxides does not occur naturally, and its incidental occurrence within the 
sample indicated that the material was heated under oxidative conditions at temperatures in 
excess of 650 ºC (Svoboda & Walton 2007, Walton & Trentelman 2009). 

Gniadecka et al. (1997) carried out a Raman spectroscopic study on 500-year-old mummified 
skin samples obtained from four mummies found in Qilakitsoq in Greenland, dating from AD 
1475 (± 50 years) and being the oldest preserved bodies in the Artic region. In this case, the 
analysis was performed by means of a bench-top FT-Raman spectrometer, with NIR laser 
excitation at 1064 nm. The spectra of the different mummified skin samples were all very 
similar, but distinctly different from those of fresh and freeze-dried contemporary skin 
specimens. Particularly in the Raman spectra of the ancient skin, the amide I (1640-1680 cm-1) 
and amide III (1220-1290 cm-1) bands displayed a very low intensity, indicating loss of protein 
and/or changes in the secondary protein structure. Previously, Williams et al. (1995) performed 
Raman spectroscopy of the 5300-year-old skin of the late Neolithic man (the Alpine ‘Iceman’, 
also known as Ötzi) whose body was preserved by freeze-drying in a glacial field on the border 
of Italy and Austria. The Raman data suggested that the keratin component of stratum corneum 
was degraded while the conformation of the lipids was still intact. The results of these two 
Raman studies were also in agreement with the Raman study performed on 1000-year-old skin 
samples from mummified bodies of the Chiribaya culture at the Southern Peruvian desert, what 
implied that most changes in the molecular structure of the human skin (represented mainly by 
collagen) take place in a relatively short time interval during the natural mummification process. 
Although the Raman spectra of the Peruvian mummies suggested an increased lipid content in 
lightly pigmented skin compared to contemporary skin and the skin of the mummies preserved 
in ice, likely due to embalming, by which means a better preservation is achieved (Gniadecka et 
al. 1999). 

Howell Edwards, Professor in Molecular Spectroscopy at the University of Bradford, has 
been very active in the applications of Raman spectroscopy to chemical problems in diverse 
areas of art history and archaeology, forensic science, extremophiles and astrobiology (Edwards 
2004). For instance, he and his collaborators performed a comprehensive Raman spectroscopic 
study of several pigments from ancient Egyptian funerary artefacts dating from the 17th 
Dynasty to the Graeco-Roman period, representing some 2000 years of Egyptian history, and 
using different laser excitation wavelengths. The artefacts included sarcophagi, coffin lids, 
shroud covers and mummy face-masks (Edwards et al. 2004). Edwards et al. (2007a) performed 
Raman spectroscopy on natron, a naturally occurring evaporitic mineral deposit from the Wadi 
Natrun, used in the mummification ritual in ancient Egypt, which involved the evisceration of 
the corpse and its desiccation using natron. Edwards and collaborators also applied Raman 
spectroscopy, with near-infrared laser excitation at 1064 and 785 nm, on specimens from human 
remains exhibiting unusual preservation excavated from a seventh century stone cist burial at 
Towyn y Capel in Anglesey, UK (Edwards et al. 2007b), and on an intact  Bronze Age log 
coffin found in 1834 in a tumulus at Gristhorpe, North Yorkshire, UK, fashioned from the 
hollowed-out trunk of an oak tree, which was found to contain a well-preserved skeleton stained 
black from the oak tannins, wrapped in an animal skin and buried with a range of grave 
artefacts, including a bronze dagger, flints and a bark vessel (Edwards et al. 2010, Melton et al. 
2010).  

4 ÖTZI, THE “TYROLEAN ICEMAN”: AN UNPRECEDENTED ARCHAEOLOGICAL 
DISCOVERY 
 
Ötzi, also referred to as the “Alpine Iceman”, is the well-preserved natural mummy of a man 
who lived about 5300 years ago, and who was discovered in late summer 1991 by two German 
hikers in the Schnalstal glacier, Ötztal Alps, on the border between Austria and Italy. He is 
Europe’s oldest natural human mummy found until now, and the exhaustive multidisciplinary 
research performed on his body and belongings, which are displayed in the South Tyrol 
Museum Archeology in Bolzano, has attracted widespread attention and offered a new picture 
of Chalcolithic Europeans (Bahn & Everett 1993, Barfield 1994). The exceptional preservation 



of this prehistoric corpse was possible thanks to its location in an almost horizontal gully in 
which it remaining motionless, frozen to the ground in cold ice, after his violent death at an age 
of approximately 40-50 years. Ötzi was endowed with a unique archaeological collection of 
several exceptionally preserved items of clothing and equipment, and his finding constitutes one 
of the most sensational archaeological discoveries ever and is a real breakthrough for the 
archaeological and paleoanthropological sciences. After numerous radiological studies during 
ten years, an arrowhead lodged within the mummy’s left shoulder region was finally discovered 
(Gostner et al. 2002). Researchers were even able to obtain, by means of multislice CT scan 
technology, detailed images of the damage caused to the blood vessel by the arrowhead (Pernter 
et al. 2007). The re-appraisal of the former radiological examinations of the Tyrolean Iceman 
using modern instrumentation finally allowed for the exact identification of the stomach, and to 
the finding that it was not empty, as initially thought, but well-filled, thus shedding new light on 
the scenario leading to his violent death (Gostner et al. 2011). Geneticists also sequenced his 
DNA, finding that modern inhabitants of the Mediterranean’s Corsica have the most similar 
sequences (Keller et al. 2012). 

Mummified skin is extremely resistant to decomposition. External influences or the action of 
microorganisms, however, can degrade the connective tissue and lay the subjacent tissue open. 
To determine the degree of tissue preservation in mummified human skin and, in particular, the 
reason for its durability, Janko et al. (2010) extracted skin samples from three sites of Ötzi, in 
order to investigate the structural integrity of its main protein, type I collagen, by means of 
atomic force microscopy and Raman spectroscopy. Both methods indicated that the 
ultrastructure and molecular structure of the 5300-year-old glacier mummified collagen were 
preserved extremely well. Raman spectroscopy revealed spectra that were characteristic of type 
I collagen, and the amide I (1667 cm-1) and amide III (1245-1270 cm-1) Raman features 
indicated that the collagen molecules retained their helical conformation. The loss of interstitial 
water resulted in a more densely packed structure of the fibrils and the generation of additional 
cross-links within the collagen. No evidence for collagen degradation was found that could have 
been caused by freeze-thaw cycles, microorganisms or other biological influences. The 
AFM/Raman results also supported the theory that the Tyrolean Iceman was covered by snow 
and ice immediately after his violent death. 

Later on, the same scientists discovered what appeared to be intact red blood cells (RBCs) in 
tissue samples from a wound that one Ötzi’s hand suffered, as well as the arrow wound to the 
chest (Janko et al. 2012). The same authors wrote in their scientific report: “It was initially 
assumed that the blood had disintegrated owing to autolysis within the corpse”. Autolysis is the 
process where oxygen, which is especially abundant within oxygen-carrying red blood cells, 
reacts with and fragments the proteins that comprise cells. The morphological and molecular 
composition of the blood corpuscle was verified by atomic force microscopy and Raman 
spectroscopy. The cell size and shape approximated those of healthy, dried, recent RBCs. 
Raman spectra of the ancient corpuscle revealed bands that are characteristic of haemoglobin. 
Additional vibrational modes typical for other proteinaceous fragments, possibly fibrin, 
suggested the formation of a blood cot. The Raman band intensities, however, were 
approximately an order of magnitude weaker than those of recent RBCs. This fact pointed to a 
decrease in the RBC-specific metalloprotein haemoglobin and, thus, to a degradation of the 
cells. Together, the AFM and Raman data confirmed that Ötzi’s red blood cells were preserved 
for more than 5300 years and gave the first insights into their degradation (Janko et al. 2012). 

5 BIODEGRADATION OF SUBTERRANEAN CULTURAL HERITAGE 
 

The paintings from Tomba della Scimmia and Tomba del Colle (or Tomba Casuccini), both in 
Tuscany, are representative of the heavy bacterial colonization experienced in most Etruscan 
necropolises (Diaz-Herraiz et al. 2013, 2014). Nugari et al. (2009) have also reported on the 
biodeterioration of mural paintings in rocky habitats like the Crypt of the Original Sin, Matera, 
Italy (Nugari 2009). Herrera et al. (2009) reported on the combined use of molecular biology 
and physico-chemical techniques for surface analysis and materials characterization in regards 
to the study of biodeterioration and weathering effects on cultural property. 

The nature of black stains in Lascaux Cave, France, has been studied by means of surface-



enhanced Raman spectroscopy (Martin-Sanchez et al. 2012). Raman spectroscopy was also 
performed in Marcus Lucretius House, Pompeii, to investigate the nature and distribution of 
carotenoids in brown patinas from a deteriorated wall painting (Maguregi et al. 2012). -Raman 
mapping also allowed to unequivocally identify, at high spatial resolution and in cross-sections, 
the two common forms of the calcium oxalate fims, namely whewellite and weddellite, which 
are often observed on the surfaces of several ancient monuments (Conti et al. 2012). Oxalate 
film formation is a pathology that frequently also occurs in mural paintings, and which may 
result from the concomitant action of microorganisms and environmental conditions (Rosado et 
al. 2013).An innovative Raman gas spectrometry was introduced in 2013 for the rapid and 
nonconsumptive online quantification of CO2 and O2 in situ in the headspace of the bacterial 
culture, aiming at investigating the respiratory activity of carbonate-precipitating Anthrobacter 
sulfonivorans, isolated from the recently discovered Herrenberg Cave in the Thuringian Forest, 
Germany, which offers a unique opportunity to study an undisturbed and unexplored microbial 
population, which developed in the total absence of light (Keiner et al. 2013, Rusznyák et al. 
2012). 
 

 
Figure 5. a. Outside overall view of the Circular Mausoleum in Necropolis of Carmona (Seville, Spain). b 
and c. In situ Raman analysis in the Necropolis of Carmona. d and e. Cyanobacterial/algal biofilms 
causing biodegradation in the Circular Mausoleum. 
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