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Abstract

Shape attributes, which are significant in various branches of archaeological research, are usually deduced from the study of
planar contours or cross sections. We present here a new approach to contour analysis, which enables us to quantify in a well-

defined way significant shape properties that are often used to describe artifacts e symmetry, deformation, roughness, etc. It is
meant to replace traditional, often impressionistic shape descriptions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The description and analyses of the shapes of artifacts
are basic to most archaeological studies. Commonly,
classifications of stone artifacts and ceramic vessels, for
example, rely mostly if not entirely on various attributes
of the shapes of these artifacts. In many cases, one can
obtain sufficient information about the objects by
considering their sections, profiles or projections on
selected planes. In this way, the description of the three
dimensional object is reduced to that of a planar curve.
Profiles of prehistoric stone artifacts and sections of
pottery are indeed the most common, but by no means
the only examples. In a previous paper published by our
group, we demonstrated how the application of mathe-
matical methods for the analysis of curves could be useful
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in typological classifications of ceramics [10]. Such
classifications may rely on the form of the entire shape
of the vessels, or on selected parts considered to be
significant for typological classification, such as rims,
handles, etc. In the current paper, we wish to extend this
idea, and to use similar methods for quantitative analyses
of specific shape attributes, which are often used to
describe characteristic features of archaeological interest,
and which cannot be derived from few measurements.
Our aim is to replace the vocabulary of descriptive terms,
with quantities which are unambiguously defined; to
quantify the intuitively appealing, yet imprecise, termi-
nology often found in archaeological publications.

As in Ref. [10] the approach here is based upon the
analysis of the curve as a whole. However, the method
presented there e the use of the curvature function e is
here extended to a family of similar functions, each
analyzing the curve in a different way. In all these
functions, the entire information about the curve is
stored, but each function emphasizes different features
by giving them more weight than others. The choice of
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one function over another is dictated by the specific
application/problem at hand. This is where archaeolog-
ical considerations and constraints come into play.

The shape attributes particularly addressed in this
paper are symmetry, roughness and deformation. These
are significant in many archaeological cases and are thus
employed here to demonstrate how the mathematical
methods can be applied for quantitative analysis. Yet,
we wish to emphasize that our approach is general in the
sense that it can be applied for quantifying many other
shape attributes of interest.

In the next sections we explain our approach and
illustrate it in several applications. We start the
discussion with a brief overview of some mathematical
concepts that are used to quantify line shape attributes.
We tried to provide a self-contained exposition, which is
aimed for readers with minimal mathematical back-
ground. The next step is to use these concepts to
quantify specific shape properties of the lines. Each of
these properties is discussed separately, and its archae-
ological relevance explicated by applying the analysis to
one or more specific archaeological case studies. Our
main goal here is to present the methods and their
potential applicability in archaeological research. We
therefore present only brief overviews of the archaeo-
logical context of each of these case studies, and do not
discuss the interpretations of the results.

2. Planar curves

A general way to define a curve in the plane is by
providing the coordinates of each point on the curve
ðxðsÞ; yðsÞÞ, where s denotes the arc-length along the
curve. As the parameter s changes, the point moves
along the line. In the applications that concern us here,
each artifact is represented by a single (connected) curve
of length L, which does not intersect itself. For such
curves, the coordinate functions are L-periodic func-
tions of s. (We follow the standard convention, that
while advancing on the curve in the direction of
increasing s, the interior is always to the left.) This
approach of looking at arc-length functions avoids the
problems of non-uniqueness besetting previous attempts
of parameterization of artifact-shapes by orthogonal or
polar coordinates, e.g. [9,23]. At first glance it appears
that this parameterization is uneconomical in as much as
two functions are needed to describe a single series of
points. However, the curve can be completely defined in
terms of either one of these functions (to be referred to in
the sequel as the representation function) from which the
two coordinate functions ðxðsÞ; yðsÞÞ can be computed
by standard means. The reason why this is possible is
illustrated in Fig. 1a.
It shows that the small increments of the arc-length ds
and of the coordinates increments along the curve, dx
and dy, are related by

ðdsÞ2 ¼ ðdxÞ2CðdyÞ2: ð1Þ

This relation, alongside the representation function
provides the two relations from which the two
coordinates can be computed. We shall use the following
representations, whose definitions are illustrated in
Figs. 1 and 2.

2.1. The Cartesian representation

As was explained above, the knowledge of xðsÞ
suffices to recover the curve. Writing dx ¼ ðdx=dsÞds,
Eq. (1) can be used to obtain dy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðdx=dsÞ2

q
ds.

This determines the curve, since now both increments dx
and dy are rendered in terms of ds. The Cartesian
representation is naturally called for in the description
of pottery profiles, where xðsÞ can be chosen as the
distance from the axis of cylindrical symmetry of the
vessel. A profile of a simple vessel and its Cartesian
representation are shown in Fig. 2a and b.

2.2. The polar representation

The polar coordinates, ðrðsÞ;4ðsÞÞ, give the distance r
of a point on the curve from the origin, and 4 is the
orientation of the radius vector with respect to the x-axis
(Fig. 1b). In this representation,

ðdsÞ2 ¼ ðdrÞ2Cr2ðd4Þ2 ð2Þ

so that the knowledge of rðsÞ determines the line.
Indeed, writing dr ¼ ðdr=dsÞds we obtain immediately

d4 ¼ ð1=rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðdr=dsÞ2

q
ds. This representation is
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Fig. 1. Curve and two of its representations: the Cartesian (a) and the

polar (b).
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Fig. 2. A profile of a cup (a) and its representations: Cartesian (b), tangent (c) and curvature (d).
convenient for measuring deviations from circular
shapes, since the representation of a circle is reduced
to a very simple form, r=constant, 4 ¼ 2pðs=LÞ. If the
curve to be discussed is convex, one could also describe
the curve by the function rð4Þ. This description cannot
be used for general curves since a line in the 4 direction
may intersect the curve at more than one point so that
rð4Þ is not uniquely defined. The latter representation
was used previously by several authors [9,23]. They
chose the center of gravity as the origin, and measured
rð4Þ at a discrete set of angles.

2.3. The tangent representation

At each point on the curve we draw the tangent
vector, which, by convention, points in the direction of
increasing s (see Fig. 2a). We denote by qðsÞ the
direction of the tangent vector with respect to a fixed
axis (for simplicity the axis can be chosen as the x-axis).
The tangent angle qðsÞ determines the curve since
dx ¼ cos qðsÞds and dy ¼ sin qðsÞds. The last relation
enables us to express the tangent angle in terms of the
Cartesian coordinates qðsÞ ¼ arctanððdy=dsÞ=ðdx=dsÞÞ.
Note that for closed curves, qðsÞ increases by 2p upon
a complete traversal of the curve. However, the function
DqðsÞ ¼ qðsÞ � 2pðs=LÞ is periodic and it will be used on
some occasions. An illustration is given in Fig. 2c. The
tangent representation was already used in Refs. [20,24],
but the advantages offered by considering the arc-length
to determine the position on the curve were not noticed.

2.4. The curvature representation

The curvature kðsÞ measures the rate of change of the
tangent angle: kðsÞ ¼ ðdq=dsÞ. An alternative definition
can be given in terms of the radius rðsÞ of the circle that
osculates the curve at the point s: kðsÞ ¼ 1=rðsÞ. The
advantage of this representation is that kðsÞ is large
where the line changes its direction in the most rapid
way, which are also the points of greatest interest in
many archaeological applications (see Fig. 2d). This
representation was discussed and used in several papers
[10,15,22,27].

Before closing this section, we would like to
emphasize an important property that is common to
all the representations listed above: each of them
provides the complete information about the curve
(excluding trivial shifts or rotation of the coordinate
axes). In other words, the curve and each of its
representations are in a one-to-one relation.

If the representations are all equivalent how does one
choose between them? The answer is to be found in the
nature of the specific features of the line that are of
interest in specific cases. The Cartesian and the polar
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representations provide the large-scale features of the
curve. A small indentation that only changes the curve
locally will appear as a small perturbation in these
representations. The tangent angle depends more
strongly on local features (it is defined as a ratio of
derivatives of the Cartesian coordinates), and hence,
local changes of the line will show up. The curvature
involves a higher derivative, and thus it is very sensitive
to local variations. The features of the line that provide
information on the gross properties of the curve will be
hardly shown. This is illustrated in Fig. 2, where the
small indentation at the bottom of the cup interior
(the vicinity of the largest s values) is hardly visible in
the Cartesian representation, but becomes a dominant
feature in the tangent and even more so in the curvature
representations. Thus, the selection of the representation
to be used is dictated by the particular application at
hand, and on the features of the curve which are of
relevance. The considerations that determine this choice
are illustrated below by few examples.

So far we treated the curves as if they are provided in
the form of continuous functions. In most applications,
however, the curves are rendered as discrete sets of
points (pixels, poly-lines of x,y measurements, etc.). In
Appendix we describe a convenient way to transcribe
the discrete data into a form where the formalism
presented above can be used.

3. Shape attributes of archaeological interest

In the present section, we address three different
shape attributes and define them in terms of one of the
representations listed above. To avoid abstract discus-
sion, we develop the concepts in close relation to real
archaeological applications.

3.1. Mirror (reflection) symmetry

A curve in the plane is symmetric under reflection if
there is a line (symmetry axis) that divides the curve into
two parts, which are mirror images of each other with
respect to the symmetry axis. If the objects one
investigates are not exactly symmetric, we would like
to find the best reflection axis for which one achieves the
minimal difference between one side and the reflection
image of the other side. The degree of [a]symmetry of
artifacts is often an attribute of interest in archaeology.
The value of the minimal difference from perfect
symmetry for a given object is taken as a measure of
the asymmetry. We illustrate the application of this
measure in two different contexts. The first is an
assemblage of Lower Paleolithic handaxes, which are
represented here by the outlines (projection) of their
plan-view boundaries. Line-drawings of handaxes plan-
view contours and their best symmetry axes are shown
in Fig. 3. The second example is a group of modern
ceramic flower-pots for which several profiles were
measured (see Fig. 5) and the symmetry axis was used
to identify the best rotation axis of each pot.

To define the asymmetry, it is helpful to consider first
a symmetric curve. The axis of symmetry intersects the
curve at two points s0 and s0CðL=2Þ. Points at a distance
Ds in front or behind s0 are mirror symmetric, and
therefore have equal curvatures:

kðs0 �DsÞ ¼ kðs0CDsÞ: ð3Þ

Equivalently, the change in the tangent angle between
the point s0 � Ds to the reflection point s0 is the same as
the change in the tangent angle from s0 to the symmetric
point s0CDs:

qðs0Þ � qðs0 �DsÞ ¼ qðs0CDsÞ � qðs0Þ: ð4Þ

Similar identities can be written for the Cartesian and
the polar representations. We shall discuss only the
tangent and the curvature representations because they
were used in the examples below.

For curves that are not perfectly symmetric, both
Eqs. (3) and (4) above will be violated. To proceed, one
must first choose the representation in which the
asymmetry is to be determined. If the archaeological
considerations assign more emphasis to the symmetric
arrangement of corners, indentations etc. the curvature
is preferred. If the general appearance of the line is more
important, one had better use the tangent representa-
tion. The best axis of symmetry and the value of the
asymmetry naturally depend on the representation. In the
sequel, we provide the asymmetry in both representa-
tions, though in the examples discussed here the tangent
angle was found more appropriate.

The symmetry axis is defined by the point s0 (and its
conjugate s0CðL=2Þ), for which either Eqs. (3) or (4) are
minimally violated. To this end we define the function
Akð~sÞ, which measures to what extent Eq. (3) is not

a b c

Fig. 3. Handaxes plan-view contours from ’Ubeidiya (a), Gesher Benot

Ya’aqov (b) and Ma’ayan Barukh (c) with their best symmetry axis

(dashed line). The asymmetry values are 0.00119, 0.00088 and 0.00029,

respectively.
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satisfied when a point ~s is assumed to be the symmetry
point,

Ak

�
~s
�
¼
Z L=2

0

�
k
�
~sCs

�
� k

�
~s� s

��2
ds: ð5Þ

Similarly, we define the extent by which Eq. (4) is
violated with respect to the point ~s by using the function

Aq

�
~s
�
¼
Z L=2

0

�
q
�
~sCs

�
Cq

�
~s� s

�
� 2q

�
~s
��2

ds: ð6Þ

The optimal reflection axis is determined by the point sk
at which AkðskÞ is minimal, or a point sq where AqðsqÞ is
minimal. The residual difference provides the deviation
of the shape from perfect symmetry e which is the
quantity we are after. We shall now turn to the examples.

3.1.1. Example 1: the degree of symmetry of
contours of handaxes

Our first example for an archaeological issue in which
symmetry is a significant shape property is the de-
scription and classification of handaxes. Handaxes first
appeared around 1.6e1.7 million years ago, were
gradually distributed over wide geographical extents,
and remained an important part of the hominids’ toolkit
till the end of the Lower Paleolithic. Since they were
produced for a very long period of time and can be
found throughout most of the Old World, their
description and classification are instrumental in ad-
dressing a large variety of issues. To a large extent such
studies are based on general morphological typology,
and analyses of specific shape attributes. Among the
latter, the degree of symmetry and the degree of
regularity of the contours of handaxes are considered
to be of particular relevance. It is commonly accepted
that the degree of symmetry generally increased over
time, while the degree of irregularity or roughness
decreased (see below). These chronological trends, in
turn, are often interpreted as resulting from, and thus as
manifestations of significant developments in human
cognitive, behavioral and technological capacities (e.g.
[16,35] and see also an overview in Ref. [32]). Yet,
despite their significance, available methods for the
characterization of handaxes are still based on tradi-
tional typologies (e.g. [6]) and/or metric measurements
(e.g. [29,30]). They fail to deal with these shape
properties in a quantitative way [32]. The general
methods proposed here are able to satisfy these needs.

To test the hypothesis that handaxes became more
symmetric over time, we applied the method described
above for the analysis of the degree of symmetry of
handaxes from five contexts, which represent various
chronological stages in the Lower Paleolithic of the
Levant. These are, from earliest to the latest: ’Ubeidiya
(UB; n=number of objects =45) is a Lower Pleisto-
cene site that is currently dated to ca. 1.4 million years
ago (mya) [5]. Gesher Benot Ya’aqov (GBY; n=96) is
dated to between 0.8 and 0.7 mya [13,34]. The Acheulian
site of Ma’ayan Barukh (MB; n=50) is not well dated,
but it is fairly safe to argue that it is more recent than
both UB and GBY (e.g., [11,12]). Finally, two samples
from the Tabun cave, bed 90 and Layer E (denoted by
T90 and Te with n=45 and n=79, respectively). The Te

sample represents the final stage of the Lower Paleolithic
and it is dated to ca. 0.35 mya, or later [14,26]. No
absolute dates are yet available for bed 90 at the cave
but it is stratigraphically lower, and thus definitely older
than the Te sample.

The best symmetry axes and asymmetry values were
computed for all the samples using the tangent
representation and minimizing the asymmetry function
as given by Eq. (6). The resulting mean asymmetry
values and their variances are shown in Fig. 4. To test
our working hypothesis, the asymmetry values of the
studied samples were compared, and tested statistically
to identify any significant differences.

The results of the statistical analyses (using Tam-
hane’s T2 pair-wise multiple comparisons test) exhibit
statistically significant difference between the GBY and
MB samples and all other samples. The three other
samples, i.e. the UB and the two Tabun samples are not
significantly different from each other.

As for the question of time-related trends in the
asymmetry values: as can be clearly seen from the mean
values of this variable (Fig. 4), the asymmetry values
generally tend to decrease over time, i.e., handaxes
generally become more symmetric. However, this trend is
seen only among the UB, GBY and MB samples,
representing most of the time range of the Lower
Paleolithic, while the two Tabun samples, representing
the end of the period, exhibiting higher values than
could be expected considering their assumed ages,
deviate from this general trend. The differences between
the studied samples with respect to their asymmetry
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values are in some cases large and significant, while in
others less so. In any case, the differences between the
UB, GBY and MB samples, for which time-related
trends are claimed, are statistically significant.

Another observation is that the spread of the plan-
view asymmetry values generally decreases over time, as
demonstrated by the standard deviation values (Fig. 4).
Here again, the two samples from Tabun deviate from
this general trend. In conclusion, the working hypothesis
was generally confirmed by the analysis, yet the picture
emerging is more complex than a simple monotonic
increase in the degree of symmetry over time. It is beyond
our scope here to interpret these results (for more details
see [32]), but it is worth noting that the roughness of the
same assemblage, to be discussed below, follows a similar
trend. Moreover, the results presented here regarding the
degree of symmetry are very similar to those previously
published by two of us (and others coauthors) [33] and by
one of us [32]. The results in those studies were obtained
using different method for symmetry measurement,
namely the Continuous Symmetry Measure (CSM)
method [2,36], indicating that the measured degree of
symmetry is an intrinsic property, unrelated to the means
by which it is measured.

3.1.2. Example 2: the symmetry of two-sided
profiles of modern ceramic flower-pots

One of the main assumptions underlying traditional
analyses of ceramic profiles is that the vessels (especially
when wheel-made) are cylindrically symmetric about the
axis of revolution. Thus a single cross section suffices to
characterize the entire vessel (but for added features like
handles etc.). This assumption cannot be fully justified,
and this is apparent when computerizedmethods are used
to measure either the entire vessel, or several sections
thereof [17,25]. To define the mean profile it is imperative
to identify the axis about which the entire vessel is most
symmetric. If, as in the example discussed here, a profilo-
graph is used to digitize several entire (two-sided) cross

Fig. 5. A measured two-sided profile of a flower-pot, and the best

mirror-symmetry axis.
sections of the same vessel (see Fig. 5), the determination
of the rotation axis is reduced to the definition of the axis
of mirror symmetry of each of the two-sided profiles, and
later finding the mean over all the sections.

The asymmetry was determined in the curvature
representation (Eq. (5)), since here the rim and the base
carination are of special significance. After determining
the best symmetry axis, several other questions concern-
ing the assemblage of flower-pots could be addressed, in
particular, the degree of uniformity of each vessel and of
the assemblage as a whole (see Ref. [17]). The mean
asymmetry of each flower-pot was deduced and served
as a quantitative measure of its deformation.

The fact that all the pots studied here showed
a similar degree of asymmetry indicates a consistent
flaw in the production technique - possibly a premature
removal of the pots from the wheel.

There are many other examples in the archaeological
research in which symmetry is a significant attribute.
For instance, in a recent publication the authors
attempted to reconstruct an excavated Gothic spire
from its building blocks that were found scattered in the
site. After recording the cross sections of the compo-
nents, their relative alignment was determined by
computing the symmetry axis of each section, and
matching them in one direction [19].

3.2. Roughness (regularity)

The terms ‘roughness’ and ‘regularity’, which are
often associated, are used in a rather ambiguous way in
the archaeological literature. Sometimes, they indicate
that the object is amorphous, and its shape deviates
from well-defined ‘classical’ forms (i.e. ‘ovate’, ‘tear-
drop’, etc.), while in other cases these terms are used to
differentiate artifacts with rough contours from those
having smoother ones. In this sense, ‘regularity’ is meant
as a measure of the variations in corners, edges and faces
[7, p. 411], or, simply a measure of directional changes
[8, p. 205] in the object surface’s (in three dimensions) or
contour (in two dimensions). In the present study, we
follow a similar definition of ‘regularity’ and refer to it
in the sequel as ‘roughness’ (see below).

The method used here to quantify the degree of
roughness of a given contour is based on the degree of
concavity of this contour. The intuition at the root of
this measure of roughness stems from the following
observations: the smoothest closed curves are convex.
Any further structure of the curve is associated with the
appearance of concave sections: the more there are the
more complex and rough the curve is. Thus, roughness
can be determined by the frequency and amplitude of
the transitions between convex and concave sections
along the curve. These transitions occur at inflection
points (Fig. 6). In terms of the curvature function
introduced above, the concavity can be defined as the
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sum of all the deflections along concave sections.
Formally,

C¼
Z L

0

jkðsÞj1� signðkðsÞÞ
2

ds ð7Þ

where k(s) is the curvature at point s along the contour.
It should be borne in mind that roughness is a relative

term, and it depends upon the scale at which it is defined
and measured. This is analogous to the well-known
question ‘how long is the coast of Britain?’ The answer
depends on the yardstick by which it is measured, or in
other words e depends upon the scale. A given line may
look relatively smooth at one scale, and rougher as the
resolution increases. Therefore, setting the scale at
which the roughness is to be measured is a prerequisite
in any quantitative assessment of its degree. The choice
of scale is dictated by archaeological considerations, and
may change when different properties are to be
addressed. In comparative studies, however, the same
scale should be used. It is convenient to set the scale by
assessing the size of an arc along the curve, within which
variations of the curvature are irrelevant and can be
smoothed away. The largest scale of length in our
problem is the circumference L. We define the length of
the yardstick to be of length L/Neff, where Neff is an
integer number. The fluctuations of the curve that occur
on an interval of smaller length are damped out. This
process is called smoothing and it is described in detail
in Appendix. In the sequel, when we say ‘‘the degree of
smoothing’’ we have in mind a specific choice of Neff.
The same curve can be observed at different smoothing
levels. As Neff is decreased, high-frequency oscillations
are ‘ironed’ out, and the resulting curve appears
smoother, and with a lower number of inflection points.
We shall turn now to the examples.

Fig. 6. Inflection points (S1,S2,S3), in a convex section (S1,S2) and in

a concave section (S2,S3).
3.2.1. Example 3: the roughness of the handaxes
The first example of an archaeological issue in which

roughness is a significant shape attribute is taken again
from the Lower Paleolithic handaxes. As already
mentioned, the degree of regularity or roughness of
handaxes is considered to have decreased over time [18],
although, as far as we know, this was never tested in
a quantitative way. The roughness analysis was per-
formed on the same handaxe samples described above.
To identify the desired scale at which handaxe
roughness should be measured, we chose a few typical
handaxes, on which significant variation in roughness
could be determined visually, and their smoothed
boundaries were compared at different levels. The
smoothing level that was deemed to best represent the
desired degree of roughness was the one that filtered out
all oscillations considered too small, but left those of
interest (Fig. 7).

Although there were few instances in which smooth-
ing at this level ‘ironed out’ local features that might
have been considered significant (see for example
Fig. 7a3), on average, this level seemed to be the most
appropriate, and the scale at which the roughness was
finally measured was Neff= 10.

Similarly to the symmetry analysis of handaxes, we
tested the hypothesis that handaxes became less rough
over time by comparing the five samples, with respect to

(a1)

(b1)

(a3) 0.239

(b3) 0.02

(a2) 0.527

(b2) 0.07

Fig. 7. Plan-view contours of handaxes from ’Ubeidiya (a1) and

Ma’ayan Barukh (b1) the original contours (solid lines) and the

smoothed contours at two different smoothing levels (a2&3, b2&3),

(dashed lines). The roughness values at each level are given below.
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their degree of roughness. The mean roughness values
and their variances are shown in Fig. 8.

Statistically significant differences were found be-
tween the UB and MB samples and all other samples
(using the Tamhane’s T2 pair-wise multiple comparison
test). The three other samples, i.e. the GBY and the two
Tabun samples are not significantly different from one
another.

A time-related trend can be seen in the mean plan-
view roughness values (Fig. 8). These values generally
decrease over time, i.e. the contours of the handaxes in
their plan-view generally become less rough. However, as
in the case of the symmetry values, this trend is seen only
among the UB, GBY and MB samples, while the two
Tabun samples, exhibiting higher values than could be
expected (considering their assumed ages), deviate from
this general trend. The same time-related trend can be
seen in the spread of the plan-view degree of roughness,
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as expressed by the standard deviation values (Fig. 8),
with the two Tabun samples, once again, deviating from
this trend. The consistency of the trends revealed in the
analyses of the symmetry and the roughness of the
samples probably is of archaeological significance and
possible interpretations are discussed elsewhere [32].

3.2.2. Example 4: roughness analysis of phytoliths
Another issue in which we tried to test the

applicability of our method of defining the concept of
‘‘roughness’’ is altogether different e the taxonomy of
phytoliths. The analysis of phytoliths is becoming an
increasingly important tool in archaeological research.
The study of these microfossil plant remains can
contribute significant information regarding the botan-
ical remains at archaeological sites, especially at those
sites in which phytoliths are the only plant remains
found at excavations. These in turn are important
for addressing questions regarding paleo-environment,
paleo-economy etc. One of the main problems in
phytoliths studies, however, is their taxonomic classifi-
cation. This classification is based on the morphology of
the phytoliths, and many attempts have been made to
define shape attributes which can be used to distinguish
between phytoliths of various taxa (e.g. [4]). T. Ball, for
example, presented several morphological variables
which can be used to distinguish between wheat and
barley phytoliths [3]. We applied the methods described
here, in cooperation with T. Ball, to look for morpho-
logical variables that can be used to distinguish between
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Fig. 9. Frequency distributions of concavity values of wheat and barley.
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these two taxa. The preliminary results of this study are
presented below.

The roughness of two sets of SEM images of wheat
and barley phytoliths was measured in the same way as
that of the handaxes, although the scale at which the
phytoliths were measured was Neff= 40.

The frequency distributions of the two types are given
in Fig. 9. The Kruskal-Wallis test (used here because the
distributions are non-normal) indicated that the differ-
ence between the two types is significant (!0.05). It can
be therefore concluded that the degree of roughness (or
‘concavity’) can be used to clearly distinguish between
the wheat and barley phytoliths.

Ball et al. [3] mentioned a similar variable e
‘convexity’ as one of the shape attributes that can be
used to distinguish between the wheat and barley
phytoliths. Our ‘concavity’ and their ‘convexity’ varia-
bles are similar but not identical. The convexity is the
ratio between the convex perimeter of the curve and the
entire perimeter. This definition, however, is not
sensitive to the roughness introduced by the magnitude
of the concave sections. Thus very shallow concave
sections will have the same effect as very deep ones (if
they are in the same length), and will contribute the
same value to the overall convexity of the shape. The
concavity, on the other hand, distinguishes between
shallow and deep concave sections of the same lengths
and their relative contribution to the final value will be
different.

3.3. Deformations

Many artifacts, such as wheel-produced ceramics, are
intended to be axially symmetric. Therefore, the
boundaries of their intersections by planes that are
perpendicular to the axis of rotation should be perfect
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Fig. 10. (a) Two horizontal sections of the jug shown on the left in

Fig. 11. (b) The leading 10 Fourier coefficients (scaled by r0) of the

sections shown in (a).
circles (we shall use the term ‘‘horizontal sections’’ for
these sections). However, these ideally symmetric objects
may suffer deformations when still on the wheel, or
during the drying and firing stages. As a result the afore-
mentioned sections will deviate from perfect circles. The
introduction of accurate measuring devices such as 3D
scanning cameras [21,28,31] has made 3D representa-
tions of pottery available. Using these data, it is now
possible to deduce the deformations of wheel-produced
pottery. A systematic study of these deformations may
reveal the technological flaws that induced them, and
might possibly be used to characterize workshops
methods and production patterns.

A quantitative measure of the deformations can be
obtained by using the polar representation of the curves
that are the boundaries of the horizontal sections.
Fig. 10a shows the curves obtained by measuring two
horizontal sections of a jug using a 3D camera. The jug
in question is a closed and complete vessel and therefore
the 3D camera provided only the horizontal section of
its exterior surface. As can be seen in Fig. 10 (to be
explained below), the curves are certainly not the ideally
expected concentric circles.

Our purpose here is to provide a quantitative measure
of these deformations. The points on the curve are
specified by their polar coordinates ðrðsÞ;4ðsÞÞ. For
convex curves (and when the origin is in the interior)
4ðsÞ is a monotonic function of the arc-length s, and one
can describe the curve by the function rð4Þ [9,23]. It is
customary to use the Fourier coefficients of rð4Þ

x̂n ¼
1

2p

Z 2p

0

d4 cos n4 rð4Þ; ŷn ¼
1

2p

Z 2p

0

d4 sin n4 rð4Þ

to define the nth deformation parameter and associated
phase by

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2
nCŷ2n

q
; an ¼ arcsin

�
x̂n

rn

�
:

The deformation parameters are determined in an
unambiguous way when we choose the origin such that
the coefficients x̂1 and ŷ1 vanish. For simple shapes, this
choice is equivalent to setting the origin at the center of
gravity of the curve. The parameter r0 is the mean
radius, and it serves to set the scale (size) of the section.
The first non-trivial coefficients

�
x̂2; ŷ2

�
or equivalently

ðr2;a2Þ determine the parameters of the ellipse which fits
the curve best: r2=r0 is proportional to the eccentricity
and a2 is the tilt angle of the main axes of the ellipsoid
relative to the coordinate axes. The higher order
parameters provide information on deformations on
smaller scales. When the curve is not convex, 4ðsÞ is not
necessarily monotonic, and therefore one has to define
the Fourier transform in another way, which coincides
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Fig. 11. Left: two similar wheel-made jugs from the market of Vienna. Right: a plan view of a jar where the four regions used in the current study is

indicated.
with the definition above for convex curves. This can be
simply done by changing the integration variable so that

x̂n ¼
1

2p

Z L

0

ds
d4

ds
cos n4ðsÞ rðsÞ;

ŷn ¼
1

2p

Z L

0

ds
d4

ds
sin n4ðsÞ rðsÞ:

Once this modification is introduced, the rest follows in
the same way as in the discussion of the convex case.
Fig. 10b shows the values of 10 scaled Fourier co-
efficients rn=r0 for the sections shown in Fig. 10a.

To demonstrate the potential value of the study of
deformations in the archaeological context we discuss
below a case study in which the deformation of the
horizontal sections can yield information relevant to the
manufacturing process of the ceramic vessels.

3.3.1. Example 5: deformations of contemporary
wheel-made jugs

Two contemporary but traditionally-produced wheel-
made jugs were scanned by a 3D scanner, which
provides a complete three dimensional digital represen-
tation of the studied object, from which the horizontal
sections at various heights were computed [1,31]. This
detailed information was used to determine various
quantities that are relevant to the shape of the objects
and their deviations from cylindrical symmetry [25].

Here we shall only discuss the information provided
by the 10 leading Fourier coefficients computed for 45
different horizontal sections for each of the jugs. Even
though the two jugs look rather similar, their averaged
scaled Fourier coefficients rn=r0 are quite different, as
can be seen in Fig. 12; the right hand jug is more
deformed than the one on the left.

The detailed investigation to be discussed below
reveals that the deformation is not uniform along the
jar, which indicates that different parts underwent
different types of stress and pressure before the final
shape was set. To reach this conclusion we analyzed the
deformations by dividing the 45 horizontal sections into
4 groups (Fig. 11 right): (1) the neck (upper 8 horizontal
sections); (2) the shoulder (the next 7 sections); (3) the body
(the next 25 sections); and (4) the base (the lowest 5
sections). Some horizontal sections include the handle.
Therefore, in all sections we used the points on the 180 �

arc opposite the handle. The mean scaled Fourier
coefficients for each group were computed, and they are
shown in Fig. 13. The body of the two jars is the closest to
perfect circles. This implies that the deviations from
perfect symmetries were not caused by external pressure
such as induced by e.g., too crowded packing of the kiln.
The deformation pattern of the two jars is different. The
right hand jug is more deformed as far as the neck and
shoulders are concerned, although its base is less
deformed than the base of the other jug. On the other
hand, the base of the left hand jug is more deformed than
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Fig. 12. The mean scaled Fourier coefficients for the two jugs averaged

over the entire height.
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Fig. 13. The normalized Fourier coefficients for the separated parts of the two jugs.
the one on the right jug (although on a smaller scale).
Previous analysis showed that the most significant
deformation of the neck is probably due to the
attachment of the handle, which was pressed onto the
still soft neck and deformed it. The difference between the
two neck deformations can be explained by the applica-
tion of stronger force when the potter attached the handle
to the right hand jug. Such action would break the
circular symmetry of the vessel, but would preserve the
mirror symmetry about the linewhich crosses through the
handle (see Ref. [25] for further details).

Even if the potter produced similar vessels, as can
be suggested by the low deformation values of the body,
he deformed them in different ways while he added
decoration, handles or removed them to be dried
elsewhere. The deformations of the shoulder regions are
probably due to thematerial tensions which is expected in
places where the surface is of highest curvature.

The differences between the jugs were noticed only
through the Fourier deformation analysis and could
hardly be traced by eye. Their measurements, which are
possible with the use of high-resolution 3D devices, may
provide the archaeologists with valuable information
regarding the technology of ceramics.

4. Concluding remarks

Our main purpose in the current paper was to
introduce to the archaeological audience several math-
ematical methods for the description of closed curves,
and to demonstrate how these methods can be applied
for the analyses of various shape attributes that are
considered to be significant for archaeological research.
The mathematical methods, briefly outlined in part II,
allow the reduction of the entire information about the
curves to single functions. Each of these functions is
sensitive to different properties of the curve, thus
emphasizing different features. Choosing the most ap-
propriate function to the nature of the curves under
study and to the specific archaeological problem at
hand, one can then use these functions for quantitative
analyses of various shape attributes of interest. Exam-
ples from the archaeological realia for such attributes
were provided in part III. It was demonstrated how
specific shape attributes, such as symmetry, roughness
and deformation, can be measured using these func-
tions. The advantage of quantitative analyses of such
attributes is self-evident. Moreover, the approach
presented in this paper is general and sufficiently
versatile in the sense that it can be used to describe
any curve of interest (under the limitations mentioned
above), and many other shape attributes can be
quantitatively analyzed using methods such as those
described here.
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Appendix

In practical applications, the information about the
curve to be analyzed is provided in a form of a list of
coordinates ðxi; yiÞ; i ¼ 1;.;N of points on the curve. If
the input for analysis is a raster image (e.g., a scan) these
would be the outer pixels of the object in the image, and in
a vector representation (e.g., a profilograph connected to
an AutoCAD system) they would be the direct (x,y)
coordinates measured by the system. The discrete
representation must be converted into a smooth function
so that the formulae presented in the preceding sections
can be used. Since in many applications the curves are
closed, theFourier interpolation is a natural candidate for
the required transformation, although it can also be used
with small modifications for curves that are not closed.

Assuming that the coordinates are provided in an
ordered way (that is, the point denoted by the index i lies
on the curve between the points i� 1 and iC 1), we can
compute the arc-length difference between successive
points by

dsiC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiC1 � xiÞ2CðyiC1 � yiÞ2

q
:

The arc-length to the point i is computed by
si ¼

P
i
j¼1 dsj, where the reference point from which the

arc-length is measured is the point with index i=1. If
the arc-length intervals dsi vary from point to point, it is
convenient to shift the points along the curve so that the
arc-length differences are constant and equal L/N where
L is the length of the entire line. This is achieved by
interpolating the coordinate vectors. At the end of this
process we obtain the new coordinate vectors ðxi; yiÞ of
equidistant points on the curve. Denoting the discrete
Fourier transform of the vectors xi and yi by ðx̂ðxÞn ; ŷðxÞn Þ
and ðx̂ðyÞn ; ŷðyÞn Þ (respectively), n ¼ 1;.;N, we obtain the
curve in the form

xðsÞ ¼ x̂
ðxÞ
0 C

PN
n¼1

�
x̂ðxÞ
n sin

2pn

L
sCŷðxÞn cos

2pn

L
s

�

yðsÞ ¼ x̂
ðyÞ
0 C

PN
n¼1

�
x̂ðyÞ
n sin

2pn

L
sCŷðyÞn cos

2pn

L
s

�
:

ðA:1Þ

The wavelength of the nth term in the above
expansion is L/n, and hence, as n increases, finer details
of the function are resolved. The finest details usually
reflect the numerical noise introduced by the errors in
the measurement of the original coordinates, the
roughness introduced by the use of rectangular pixels
in raster representation of the image, the truncation of
least-significant digits by the computer, etc. Thus,
further smoothing is called for. Smoothing is also
required in certain applications when the quantity of
interest depends in an intrinsic way on the scale at which
it is observed. This point was discussed when we
introduced the definition of ‘‘roughness’’ in terms of
the concavity. We introduced the smooth version of the
data by replacing the Eq. (A.1) by

xðsÞ ¼ x̂
ðxÞ
0 C

PN
n¼1

wn

�
x̂ðxÞ
n sin

2pn

L
sCŷðxÞn cos

2pn

L
s

�

yðsÞ ¼ x̂
ðyÞ
0 C

PN
n¼1

wn

�
x̂ðyÞ
n sin

2pn

L
sCŷðyÞn cos

2pn

L
s

�
:

ðA:2Þ

where the weights wn ¼ 1=ð1Cexp½1Cðn�NeffÞ=D�Þ are
chosen such that wnz1 for n!Neff, and wn/0 as n
increases beyond Neff. The transition occurs in a gradual
way on an n interval of size D. Thus, the value of Neff

determines the smoothing level: details on the scale
smaller than L/Neff are neglected at this smoothing level.
(In the analysis reported here we chose Neff= 10, 40 and
D ¼ 2.)
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