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ABSTRACT

An important feature of the Minoan culture is the pottery of Kamares style, that 
documents the Cretan cultural production between the first half of the 2nd millennium 
BC. This high level painted production, characterized by the combination of several 
diverse motifs, presents an enormous decorative repertoire. The extraordinary variety 
of combinations between elementary motifs according to a complex visual syntax 
makes interesting the automatic identification of the motifs, particularly upon pot-
sherds. A complete pipeline to accomplish this task is still a challenge to Computer 
Vision and Pattern Recognition. Starting from a digital image ROI identification, 
motif extraction, robust contour detection should be performed to obtain a bag of 
digital shapes. In a second phase each of the extracted shapes has to be classified 
according to prototypes in a database produced by an expert. The co-occurrence of 
the different shapes in a specimen will, in turn, be used to help the archaeologists 
in the cultural and even chronological setting.
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INTRODUCTION

In the past decades, the application of the computer science in the archaeological 
research, and especially in the field of prehistory, turned out from a simple auxiliary 
technology into a cognitive strategy influencing the approach to the ancient artifacts. 
Although the introduction of the database enhanced the possibility of dealing with 
large amount of text data, the problem of taking into account huge groups of visual 
data still remains unsolved. One common case that makes hard the initial steps of 
an archaeological study is for example the analysis of decorative repertoires of 
some prehistoric pottery classes that are characterized by the exuberant use of a 
multiplicity of motifs. The most complicated artistic production of the Mediterra-
nean prehistory is certainly the Kamares style pottery (Figure 1), flourished in Crete 
in the first half of the 2nd millennium, which main feature is to present a complex 
system of polychrome painted decoration with a rich decorative alphabet aimed to 
produce an endless variation of visual results. The highest number of vessels and 
potsherds available of this class all over Cretan territory and the fact that a complete 
framework for the Kamares decorative grammar and the associations ‘motif/ves-
sel/site/chronological layer’ is far from being understood, determined a stop in the 
cognitive progress of the Minoan civilization.

In this perspective Computer Vision and Pattern Recognition could provide a 
great support in automatically assisting the archaeologists in classification of Ka-
mares pottery fragments (Figure 2), especially considering that in many cases, the 
visual informations available are of several kinds, like watercolors, black and white 

Figure 1. Examples of Kamares style vessels (this image has been obtained as a 
collage from several public sources)
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and color photographs of unequal resolution and quality, pencil sketches and high 
quality digital photographs. Within the research program Archeomatica Project 
(IPLab, 2010) of the Catania University, devoted to the application of Computer 
Graphics and Image Processing techniques in the field of prehistoric archaeology 
(Stanco, Battiato, Gallo, 2011), a specific study for the developing of an automatic 
classification system of the Kamares simple decoration elements (Farinella, Stanco, 
Tanasi, 2008), (Guarnera, Stanco, Tanasi, Gallo, 2010) (Gallo, Stanco, Tanasi, in 
press) started under the inspiration of the Center of Cretan Archaeology (2010) of 
the Catania University, dealing with the Kamares pottery from Phaistos (Levi, 
Carinci, 1988), (Carinci, 1997).

The application of this research strategy on the available visual corpus of image 
data is the object of the research that we present in this chapter. The chapter is 
structured as follow: in Sections 1.2 we introduce the Kamares pottery. Section 1.3 
shows the proposed technique. In Section 1.4 a review of existing shape similarity 
techniques

Background: The Kamares Pottery

The Kamares style pottery represents the main artistic feature of the Minoan civi-
lization between the 20th and 17th century BC and its technical and stylistic level 
achieved was never equaled in the Aegean Bronze Age (Walberg, 1978), (Walberg, 
1983), (Walberg, 1987), (Walberg, 2001), (Knappett, 1999), (Zois, 1998). This class, 
with a large lifespan that covers the Protopalatial and Neopalatial periods, can be 
divided in four main phases related to the local chronology arranged by A. Evans 
(1921): Pre-Kamares or 1 (Middle Minoan IA), Early Kamares or 2 (Middle Minoan 

Figure 2. Selection of Kamares pottery sherds from Phaistos (courtesy of Prof. V. 
La Rosa)
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IB/IIA), Classical Kamares or 3 (Middle Minoan IIA/IIB/IIIA), Post-Kamares or 4 
(Middle Minoan IIIA/IIIB). Kamares ware is named for finds first identified at the 
end of 19th century in the Kamares cave sanctuary in Mount Ida, and its diffusion 
on the Cretan territory can be distinguished between the elegant production of the 
palatial centers of Knossos and Phaistos (Palatial Kamares) (Day, Wilson, 1998) 
and the less impressive creations of the provincial workshops of Eastern, Western, 
Central and Eastern-Central Crete (Provincial Kamares areas 1-4) as in Figure 3.

Fine fabric, thrown on the wheel, sometimes with very thin bodies (2-3 mm like 
in the egg shell varieties), painted with polychrome pigments on dark background, 
the Kamares style has a vast assemblage of shapes and its distinctive feature is a 
huge repertoire of exuberant decorative motifs often resembling naturalistic atmo-
spheres (Figure 1). About the colors, the black slip which covers most of Kamares 
vessels has been identified as a clayish paint layer containing iron oxides of spinel 
type with a high content of potassium. It is produced by exposure to high tempera-
tures in a reducing atmosphere, thereby turning in into a black sintered layer. The 
red color consists of red ochre, which in contrast with the black slip does not contain 
potassium at all. As a result of the lower content of potassium, the red paint layer 
does not melt and turn into a sintered layer in a reducing atmosphere but it remains 

Figure 3. Map of Crete showing principal sites with Kamares style pottery (Wal-
berg, 1983)
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porous and turns bright red when exposed to oxidation. The white pigment is com-
posed by calcium silicate or talc depending on the chronological period of the 
production and of the production centre itself. In the decoration of large vessels of 
domestic type also a less elaborated and much lasting dark on light decoration 
system is used as it was found appropriate for vases which had to be strong and 
practical rather than attractive.

In a preliminary survey, seventy-four different shapes were identified including 
both the decorated and fine ware and domestic and specialized forms. During the 
four chronological phases, open and closed shapes are equally preferred and even 
if there is a general conservativeness in the use of the same formal typologies some 
specific tendencies for each phase can be defined (Figure 4).

For what concerns the decoration, the Kamares style is basically characterized 
by the application of thirty-one different core motifs (abstract, rectilinear, pictorial, 
pictorialized motifs) and patterns (stone, rock, sponge and metal surface patterns), 
each of them with several levels of varieties, composed together in order to obtain 
complex decorative syntaxes joined to create much more complicated composite 
designs.

In general the repertoire of core motifs maintains itself the same in both the main 
production districts, the Palatial and Provincial, and basically remains unaltered 
during all the chronological development, just with few elements peculiar for some 
phases. But it must be also considered that a core motif, even simple, can deeply 
change shape when transformed from a 2D sketch to a 3D design on the vessel 
body, when combined with copies of the same motif or joined with other motifs, 

Figure 4. Schematic shape taxonomy of the Kamares pottery repertoire (Walberg, 
1978)
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when elaborated or pictorialized and in relation to different chronological phases. 
As a result all this makes very hard, in some cases, the classification of each ele-
ment (Figure 5).

About the composition of decorative elements and its relation with the tectonic 
of the vessel, two different method can be identified. First is the unity decoration 
that depends on the shape of the vase and that can be circumcurrent, that means 
planned with regard to the whole vessel body and composed by encircling zones, 
facial, that means planned with regard only to one part of the vessel body as seen 
from a special angle, and zonal, that means composed by a system of decorated 
zones related to each other in order to create coherent designs. Second is the struc-
tural decoration that consists in separation of the vase into different parts and ac-
centuates the horizontal and vertical axes. In the both type of decoration a field 
division for the location of the motifs is applied, selecting different parts of the body 
vessels for the definition of the limits of the decorated area. In the field division the 
choice of the decoration strategy for the accessory parts of the vase, like rim, lip, 
handle, spout, is very peculiar of each period and production centre. It must be also 
considered that both the shapes and the decoration contain dynamic effects and the 
decoration cannot merely be described as a movement across a surface, as in the 
case of a static background. It must be described as a movement in the same direc-
tion or opposed to the movement inherent in the vessel shape. The dynamic effects 
of the vase and the decoration together create the overall effect, that can give, for 
example, the illusion of the contraction or expansion of some vessel parts. In the 
selection of the composition strategies it’s possible to find difference between the 
Palatial and Provincial production and to define tendencies from the Pre-Kamares 
to the Post-Kamares phases (Macgillivray, 1998).

The overall effect of a Kamares vessel is sometimes completed by the application 
of an accessory decoration represented by incision, relief and applied plastic details 
or by the use of complementary embellishment techniques like the ripple, barbotine 

Figure 5. Schematic taxonomy and possible elaborations of some Kamares decora-
tive motifs (Walberg, 1978)



Automatic Classification of Decorative Patterns in the Minoan Pottery

192

and the trickle decoration. Finally, it must be noticed that differences can be find 
also within the same centre and in the same period because, besides the guidelines 
of this production, the essence of the style itself was strongly influenced by the 
creativity and aesthetic concept of the single artisan, that constantly elaborated the 
core motifs and experimented new ways of expression. As a result, the Kamares 
style is more than the simple combination of syntaxes of elementary motifs with 
different vessel type. It is a complicated interplay, carried out to the smallest detail, 
where every elements has an important part, especially in the Palatial production. 
The fact that each Kamares style product depends by many quantifiable variables 
(time, place, vessel shape, high number of probable composition of core decorative 
elements, colors and accessory decoration techniques) and just by one variable not 
quantifiable at all that is the unpredictable will of the artisan, it made quite impos-
sible for the archaeologists specialized in the Middle Minoan pottery to carry out a 
exhaustive study of the main features of this style, also because of the huge amount 
of data represented by millions of decorated potsherds.

The first study of classification of the Kamares pottery was carried out by G. Wal-
berg in 1978 and it was dedicated to the Palatial production of Phaistos and Knossos 
(Walberg, 1978), (Walberg, 1987) (Figure 3). In this work, the role of Phaistos, as 
the most important production centre and also the only site with a clear chronologi-
cal progression in the development of the production itself, was pointed out and 
a corpus of core motifs and patterns found there was published. Furthermore, the 
features characterizing the climax of the Kamares style were find between Middle 
Minoan IIA and Middle Minoan IIIA, within the phase named Classical Kamares. 
In 1983 a second reassessment of the Kamares materials from Provincial districts 
was carried out by the same author (Walberg, 1983), emphasizing analogies and 
differences between Palatial and Provincial production and trying to rebuild the 
decorative repertoire, as whole as possible, in order to enrich the main assemblage 
and obtain a complete study and classification of the Kamares pottery.

After the Walberg’s corpora, a large quantity of new Kamares vessels were 
found and published together with groups of pottery coming from old excava-
tions, in both cases often fragmented potsherds. This re-opened the problem for 
the archaeologists of dealing with a class of materials so variable present in huge 
amount of specimens. In particular the interpretation of the decorative motifs and 
syntaxes partially preserved on the sherds, in order to ascribe them to the repertoire 
of a specific workshop, trying to match the fragmentary information with a standard 
collection of visual references arranged by the scholars, has become the hardest 
part of the research.

Although the goal of an exhaustive classification of Kamares pottery’s produc-
tion is likely to be unobtainable with the present state of the art, Computer Vision 
and Pattern Recognition could provide a great support in automatically assisting 
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the archaeologists in the classification task. Our contribution illustrates a complete 
pipeline to automatically process these data.

The processing starts with the extractions of a clean representation of the decora-
tive designs. Our goal is to create a standardized database of “shapes” that could be 
successively automatically investigated with Pattern Recognition methods.

Iconographical Documentation Available

Besides the large amount of specimens available, another significant problem in 
an exhaustive study of the Kamares style pottery is dealing with an heterogeneous 
group of iconographical data. For the two most important Palatial production centers, 
Phaistos and Knossos, the documentation is basically composed by watercolors, 
black and white pictures, technical drawings in scale with front view and section 
and reconstructive unscaled perspective drawings. The best preserved vessels rep-
resenting the highest stylistic level of the Kamares style, in the editions of the two 
sites, were illustrated by unscaled watercolors carried out by E. Stafani, R. Oliva and 
Th. Fanourakis for Phaistos and D. Mackenzie for Knossos. In the reproduction of 
the complex Kamares painted decoration, each modern artist or technician at work 
was influenced by his own personal taste and this caused, in many cases, alteration 
and distortion of the original shape of the motifs and of the original scheme of the 
syntaxes.

It must be also considered that the draftsmen working in Crete in the first half 
of the XX century, had different formation and artistic education. For the repro-
duction of the Phaestian Kamares, E. Stefani, chosen by the director L. Pernier for 
the documentation of the excavation, was an architect. Decades later, D. Levi, new 
head of the expedition, chose R. Oliva and Th. Fanourakis, two painters strongly 
influenced by his archaeological point of view. Otherwise at Knossos, a large part 
of the graphical documentation, including the watercolors, was carried out by D. 
Mackenzie (Momigliano, 1999), that was an archaeologist, second in charge after 
A. J. Evans, head of the mission. In this case he demonstrated a more straight and 
scientific method of depicting artistic features (Mackenzie, 1906).

Furthermore, the fact that the documentation of Kamares vessels from Knossos 
dated back to 1921-1935 (Evans, 1921) while that of Phaistos was performed in 
1935-1951 and 1976 (Pernier, 1935), (Pernier, Banti, 1935), (Levi, 1976), it deter-
mined different choices in the reproduction strategies, like different line thickness or 
colors, due to the changing taste of the time (Figure6). Finally, another misleading 
problem in the interpretation of the Kamares pottery from Knossos come also from 
the reconstructive drawings, where in many cases the hypothesis of the missing part 
of a motif or of a decorative outline was denied by the subsequent findings.
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In this paper the results achieved working basically on the visual archive pro-
vided by Walberg’s corpora (Walberg, 1983), (Walberg, 1987) will be discussed.

KAMARES SHAPE ANALYSIS: SYSTEM OVERVIEW

The automated system that we are building to assist the archaeologist in assessing 
similarities among the Kamares findings follows a general pipeline that could be 
easily adapted to other similar case studies. As in most Computer Vision applica-
tions the idea is to go from the raw data (pixels) to a symbolic representation of 
the image content. These information may, in turn, be fed to an intelligent system 
that assists the experts in formulating and checking working hypotheses about the 
scenes captured in the original images.

More specifically for the present case study the system starts with digitalized 
format of a pictorial representation of a vase or of a sherd. Figure 7 shows the 
successive steps performed. The digital data are the input of a contour extraction 
algorithm. Please, notice that in this way we are disregarding any 3D information: 
perspective deformation, and occlusions together with noise and artifacts due to 
low resolution are simply ignored at this stage.

Contour extraction produces a collection of contours: some of them are not 
relevant for our application and should be filtered out (Gonzalez, Woods, 2006), 
(Gonzalez, Woods, Eddins, 2009), (Moore, 1968). We choose to ask the interventa-

Figure 6. Watercolors of Kamares style pottery and potsherds: (a) Phaistos 1935 
drawings by E. Stefani (Pernier, 1935); (b) Phaistos 1976 drawings by R. Oliva 
(Levi, 1976); (c) Knossos 1935 drawings by D. Mackenzie (Mackenzie, 1906)
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tion of the expert for this Region Of Interest (ROI) identification task because of 
the occurrence of cases like those reported in Figure 8. In the Figure several occur-
rences of the “raquet” decorative pattern are shown. It is clear that the isolation of 
this complex motif is the product of an informed semantic choice and that this 
expert choice is not easily mimicked with a fully automatic approach.

ROI identification most commonly reduces the set of contour shapes to examine. 
Even so Kamares decorative motifs are reduced by this step into a smaller but yet 
complex set of elementary shapes. Figure 9 shows several instances of the pattern 
that are obtained after ROI selection. Observe that in some case it is more convenient 

Figure 7. The complete pipeline of the proposed technique

Figure 8. Examples of occurrences of the “raquet” motif in different vases
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to refer to the “flattened” version of the motifs whenever these, manually produced 
by an expert draftsman, are available. These lucky cases reduce the problems due 
to 3D distortion and occlusion but introduce in the pipeline the bias of the drafts-
man.

The proposed system deals with simpler shapes one at each time. They are ana-
lyzed by the shape analyzer and reduced to a set of numerical and geometrical in-
variants. These invariants are the final features that the matching module of the 
system considers for search and similarity retrieval into a reference shape database.

The reason to deal with the elementary simpler shapes instead that with the set 
of contours in a ROI has the following motivations:

• Algorithms that deal with simple contours and extract suitable invariants 
from them are much better understood and robust at the actual state of art;

• A ROI represents a complex figurative “proposition” composed of simpler 
elementary shapes. Unfortunately, the “order of reading” of such complex 
visual structures is not linear. Indeed it is not easy to “read” those drawing in 
a canonical un-ambiguous way.

Shape Similarity Measures

To apply the technique presented in this paper is necessary a contour line representa-
tion of the motifs. Hence, a decorative pattern is previously translated into a digital 
sequence of consecutive points on a raster plane.

Several issues about resolution and standardization of these rasterized contours 
arise. Going from digital images to digital shapes is far from being an easy task: 
different media (water colors, photos and hand drawn schematic lines) require dif-
ferent methods of contour extraction and present different algorithmic challenges. 
Once the pictorial data have been translated into a more abstract “contour shape” 

Figure 9. Kamares potteries and relative decorations
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representation it is possible to apply to them the shape similarity measures pre-
sented below. The idea is to present the shape database with a “query” which rep-
resents a decorative element that the archaeologist wishes to recognize. The answer 
to the query is an estimate of the similarity distance between the query shape and 
the shapes in the database. In this chapter we present different shape similarity al-
gorithms: contour flexibility technique (Xu, Liu, Tang, 2008), Shape Context (Be-
longie, Malik, Puzicha, 2002), logo recognition into document images (Shen, 
Jin,Chang, Wu, 2005), Procrustes methods (McNeill, Vijayakumar, 2006), and 
Circular Blurred Shape Model descriptor (Escalera, Fornes, Pujol, Escudero, 
Radeva, 2010).

Notice that even if the published ideas in shape recognition are overabundant 
in the present scientific literature most of them are relative to complex vision tasks 
where one wishes to recognize real objects that move and deform within a complex 
real environment. This is not the case for our application where the most common 
deformations observed are affine distortions, noise, irregularities, lacunae, and non 
linear scaling.

Shape Matching using Shape Context

Belongie et al. in 2002 propose a correspondence-based shape matching method 
using shape contexts (Belongie et al., 2002). Shape matching using shape contexts 
is an improvement to traditional Hausdorff distance based methods. It extracts a 

Figure 10. (a) Figure interpretation by the archaeologist. (b) Figure interpretation 
by the computer scientist. The same color indicates the same symbol.
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global feature, called shape context, for each corresponding point. The matching 
between corresponding points is then the matching between the context features. 
In this approach an object is treated as point set and it is assumed that the shape 
of the object can be captured by a finite subset of its points, for example sampled 
uniformly from the external contour. These points do not need to be key-points such 
as inflection points, cusps, extrema of curvature, etc., and can be derived from edge 
pixels found by a simple edge detector, whose output is a set P of n points P = {p1, 
p2, …, pn}, pi ∈ R2.

The shape context considers the set of n-1 vectors originating from a point to 
all other sample points on a shape, which expresses the configuration of the whole 
shape with respect to the reference point. Since shapes may vary from an instance 
to another in the same category, the full set of vectors is too detailed and does not 
guarantee robustness. The distribution over relative position is a more robust and 
compact description, hence for each point pi on the shape, a coarse histogram hi of 
the relative n-1 coordinates is computed:

h k q p q p bin ki i i( ) #{ : ( ) ( )}= ≠ − ∈  (1.1)

The length r and orientation θ of the vectors (q- pi) are quantized to create a 
histogram map which is the shape context used to represent the point pi. To make 
the histogram more sensitive to the location of nearby points than to the location 
of points farther away, these vectors are mapped into a log-polar space representa-
tion (Figure11). Shape contexts are distribution represented as histograms: it is 
hence possible to use the χ2 test statistic to define the cost of matching two points. 
Consider two shapes P and Q. A point pi on the first shape and a point qj on the 
second shape, Ci j = C(pi, qj) denotes the cost of matching the two points in exam, 

where C p q
h k h k

h k h ki j
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and hi(k), hj(k) denote the K - bin normal-

ized histogram respectively at pi and qj. Given the set of costs Ci j between all pairs 
of points pi of P and qj. of Q, the total cost of matching H C p qi ii

( ) ( , )( )p p=∑  has 
to be minimized, with the constraint of one-to-one matching. The matching of two 
shapes then is done by matching two context maps of the shapes, which is a matrix-
based matching. It minimizes the total cost of matching between one context matrix 
and all the permutations of another context matrix. To reduce the matching overhead, 
the shortest augmenting path algorithm for the matrix matching is used. When the 
number of sample points is not equal on the two shapes, the matching is done add-
ing dummy nodes to the smaller point set, with a constant matching cost of εi. Since 
all measures are taken with respect to points on the object, invariance to translation 
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is intrinsic to the definition of the descriptor. The use of histograms makes shape 
context insensitive to small deformations, non linear transformation occlusions and 
presence of outliers. Additional robustness to outlier can be added not allowing 
points labeled as outlier to contribute to any histogram. The above definition of 
shape context is not invariant to rotation, which can be obtained using a relative 
frame instead of the absolute frame described, e.g., treating the tangent vector at 
each point as the positive x-axis.

Hierarchical Procrustes Matching

Hierarchical Procrustes Matching (HPM) (McNeill, Vijayakumar, 2006) is a seg-
ment-based shape matching algorithm that approximates the perceptual similarity 
between two shapes by matching progressively smaller boundary segments. The 
denomination makes reference to a mythological character that used to stretch or 
cut his guests to make them fit to his bed. Corresponding regions of shapes often 
appear at slightly different scales and positions and matching algorithms must 
be flexible to adjust these variations. Simple global point methods (McNeill, Vi-
jayakumar, 2005), (Zhang, Zhang, Krim, Walter, 2003) and non linear approaches 
(Bookstein,1997), (Sebastian, Klein, Kimia, 2003) suffer from presence of smooth 
deformation and may produce a large discrepancy between a perceived difference 
and its numerical estimation. HPM avoids this by matching in a global to local 
direction. Longer segments that have been matched provide initial matches for the 
shorter segments, which can then slide and stretch/contract in order to find the best 
matches at this smaller scale.

Figure 11. The log polar maps of the contest of two different points in the contour 
of a shape
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Given two objects represented by n 2D points: U = (U1, …, UN)N and V = (V1, 
…, VN)N ∈ RN×2 this approach normalizes the boundary length of the polygon as-
sociated with V and then transforms U to match V. Each point is represented as a 
complex number Vn = (xn,yn) → xn + i yn = wn ∈ C. Then, V→ w and U → z ∈ C N. 
After centering w and z so that w znn

N

nn

N

= =∑ ∑= =
1 1

0 , the Procrustes Dis-
tances (PD) between U and V is given by

d U V w w w zz w z z Np( , ) ( * ( * * ) / * ) /= −  (1.2)

In order to compute HPM is necessary to compute the Global Procrustes Match-
ing (GPM) that find the best correspondence between U and V with the smallest 
PD among the N valid correspondences that respect the cyclic order of the indices. 
This initial correspondence is in turn refined using a vector that is one half of V and 
finding the smallest PD with each “half” of U. The matched segments at this length 
provide initial estimates for matching at the successive scale that can be performed 
recursively. The shape similarity of U and V is the weighted sum of scores at each 
length, where the weight is related to the segments length. Let Sl denote the sum 
of PDs over the matched segments at a fixed length l. The asymmetric similarity 
of U and V is given by

d U V w d U V w sF p l l
l

( , ) ( , )
, , .

≡ +
=
∑100

50 25 12 5 

 (1.3)

where the wl are constant weights, 100 is the boundary length, and 50, 25 and 12.5 
are length of segmentswhen we divide the boundary. Since dF(U, V) ≠ dF(V, U), the 
symmetric similarity is given by

D U V d U V d V UF F F( , ) ( , ) ( , )≡ +  (1.4)

In order to consider the average confidence with which each segment match is 
selected, the PDs are normalized by making the average PD equal to 1, and then 
apply HPM as normal. This is also known in literature as Normalized Procrustes 
Distances.
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Shape Matching by Contour Flexibility

It this Section we briefly report the main ideas about contour flexibility. The reader 
is urged to find the details of this algorithm in (Xu, Liu, Tang, 2008). Vision sci-
ence has developed as an interdisciplinary research field, frequently involving 
concepts and tools from computer science, image processing, biology, psychology 
and cognitive science, for example the importance of high curvature points in shape 
perception has been already described in (Atteave, 1954) and (Biderman,1985). 
From this theories the important features for shape recognition come from parts of 
the object where changes occur (e.g., corners). A recent descriptor, named contour 
flexibility (Xu, Liu, Tang, 2008), depicts the deformable potential at each point 
along a closed curve, extracting both global and local features, with proper trade-off 
between them. It can be observed that in most cases articulated high flexible parts 
correspond to high curvature points. Let ℓ be a closed simple contour, surrounding 
a bounded domain D. For a point p on a contour ℓ and a given radius r, the contour 
flexibility is defined as ω(p, r) = min(ω+(p, r), ω-(p, r)), where ω+ is the interior 
flexibility and ω- is the exterior flexibility:

w+
+

=
+

+

∫
∫

( , )
( )

,

,

p r
k x dx

dx
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p r

 (1.6)

Cp r,
+ and Cp r,

- respectively are the connected components containing p in the sets 
{x ∈ D:║ x- p ║≤ r} and {x ∈ R2-D:║ x- p ║≤ r}. k+ and k- are two function of 
distance transform on R2,

k x d x D+ = ℜ( ) ( , \ )2 and k x d x D x− = ∈ ℜ( ) ( , ), 2  (1.7)

D(⋅,⋅) is the minimum Euclidean distance between two sets. The radius r is called 
bendable size and should be tuned taking into account the width of the limb-like 
parts of an object. The bendable size r and the contour flexibility are proportional 
to the scale of the contour but invariant to translation, rotation and the choice of 
starting point for the parameterization of the contour. Let
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z(t) = (x(t), y(t)); 0 ≤ t < 1  (1.8)

be the arc-length parameterization of a contour ℓ. Since it is difficult to match flex-
ible parts of two contours (e.g., using uniform sampling of the contour), a better 
strategy is to give large weights to inflexible landmarks and smaller weights to 
more flexible landmarks, using more samples on the segments of a contour which 
are more inflexible. Let

γ
ω

ω
( )

( ( ), )

( ( ), )
t

z u r du

z u r du

t

=
∑

∑
0

0

1
 (1.9)

the optimal sampling can be obtained with sampling speed dγ/dt. Considering each 
landmark a complex number zk =xk+ jyk, the contour can be treated as a complex 
vector Φ=(z1, z2,…, zn)

T and the Procrustean Distance between two sequences can 
be used for global matching of F1  and F2 :

(̂ , ) ,d N
sΦ Φ Φ Φ1 2

1
1 2= ( )( )−

∈cos maxS s  (1.10)

where ss Φ2( ) is a cyclic permutation of F2 , to achieve independence from the 
starting point and “ ” denotes the inner product of two complex vectors. The 
matching score between the two shapes represented by F1  and F2 is determined 
by

M d Dd = + ( )α
π

(̂ , ) ,Φ Φ Ω Ω1 2 1 2  (1.11)

Where D(⋅,⋅)is the warping distance between the two sequences of the contour 
flexibility values extracted from the contours; Ω1, Ω2 are the sequences of the values 
of the contour flexibility at each landmark of uniformly sampled sequences, starting 
form the leading landmark ŝ found by (1.10), α weighting factor, π normalization 
factor.
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Shape Matching by Contour Flexibility

Circular Blurred Shape Model is a recent rotationally invariant descriptor, which 
makes use of a correlogram structure to capture spatial arrangement of object 
parts, shared among regions defined by circles and sections (Escalera et al., 2010). 
The correlogram structure can be defined as follows: given a number of circles C, 
number of sections S, and an image region I, a correlogram B = {b{1,1}, …, b{C, S}} 
is a radial distribution of sub-regions of the image. In each region b of the correlo-
gram the centroid b* can be located by its coordinates and used as reference point. 
The regions around b define the neighborhood of b, and the number of neighbors 
depends on the spatial location b (e.g. inner circle, middle circle or extern circle).

The descriptor makes use of the information obtained from the contour of the 
object, which can be extracted for example by means of an edge detector. Every 
point x in the contour map is taken into account, calculating first the distance to 
the corresponding centroid of the region in which x lies, then the distances to the 
centroids of neighbor regions. The inverse of these distances are computed and 
normalized by the sum of total distances and the obtained values are then added to 
the corresponding positions of the descriptor vector n, which as dimension C×S. 
As in the case of shape context, the use of histograms makes description tolerant 
to irregular deformations. As for the complexity, for a map of k relevant contour 
points, the computation of the descriptor requires O(k) simple operations. Param-
eters C and S defines the degree of spatial information taken into account in the 
description process (i.e., as the number of regions increase the description becomes 
more local) and should be tuned for each particular application. See also Figure 
12. To obtain a rotationally invariant descriptor a second step needs to be included. 
The main diagonal Gi of correlogram B, with the highest density, is searched. This 
diagonal is then used as a reference to rotate the descriptor. The orientation of the 
rotational process, so that Gi is aligned with the x-axis, is that corresponding to 

Figure 12. Circular Blurred Shape Models of the same shape with different choices 
of the parameters C and S.
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the highest description density at both sides of Gi. Once obtained the rotationally 
invariant CBSM descriptor, it can be used to design a symbol spotting methodol-
ogy (e.g., using Adaboost to distinguish between foreground and background) or a 
multi-class classifier by embedding binary classifiers, for instance using Adaboost 
to define a classifier based on the features that best discriminate one class against 
another, combining then binary classifiers in a Error Correcting Code Framework.

EXPERIMENTAL RESULTS

To test our system we have built an experimental image database. The database has 
been created as follows. First of all, a selection of images from (Walberg, 1978) 
have been inserted in the collection. A total of 36 motifs have been chosen. The 
selection of these motifs among the much larger catalogue in (Walberg, 1978) has 
been done randomly, although in this initial stage of our research we choose to sort 
out the most complex motifs. Instances of these chosen patterns show a high-class 
variability in terms of scale, rotation, rigid and elastic deformations when observed 
in the pictorial reference corpus. Some of the shapes exhibits a low inter-class 
variability especially for simpler shapes. This explains for example some resulting 
ambiguities of the classification. The images selected are in a way the “canonical” 
reference for each of the decorative motifs to recognize. To use as a reference only 
the clean and canonical drawing prepared by an expert is too demanding for any 
shape recognition algorithm. Following a general praxis in the shape recognition 
community we hence enriched the database with three variations for each decora-
tive motif. These variations have been artificially obtained applying the following 
transformations: rotation in clockwise sense of about 33 degrees, perspective cam-
era distortion where camera orientation has been assigned at random and random 
warping. Examples of the shape included in the database are reported in Figure 13, 
an example of variations over a given shape is reported in Figure 14.

Eventually the database is made of 144 shapes. Those shapes have been stored 
in binary images of 500×500 pixels. Those images have been processed for con-
tour extraction in Matlab (Lorensen, Cline, 1987), (Maple, 2003). The resulting 
contours have been resampled and for each shape a vector of 100 points have been 
obtained. Using a higher sampling rate does not improve the performance of the 
system, perhaps because a denser sampling of a contour tends to preserve some 
of the noise of the original image making recognition and matching a harder task. 
The down-sampling has been performed in two different ways, and the results of 
both selections have been stored in the reference database. The first way to sample 
100 points from a closed contour is to compute 100 equally spaced pints along the 
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contour. Notice that the sample points are obtained with cubic interpolations of 
close by points on the contour. This uniform sampling procedure is applied to be 
able to compute CBSM distance and to estimate local contour flexibility values. 
A second non-uniform sampling has been also performed. This second sampling 
takes 100 points according to contour flexibility values: more points are allocated 
in the most flexible segments of the shape. This non-uniform sampling procedure 
is applied to be able to compute contour flexibility distance. Contour flexibility 
value in each of the sampled point is also stored. In summary our system refers to 
this collection of 144×2 point vectors and 144 contour flexibility values to compute 
similarity distances of queries from the database. Observe that this mathematical 
representation is quite compact and easily allows the scaling up of the system up 
to thousands of shapes.

We choose to check the performance only of the CSBM algorithm and of the 
Contour Flexibility approach. Indeed CSBM is a refinement of the initial Belongie’s 
proposal and it is safe to assume that it will perform better. A similar reasoning 
justifies the choice of Contour Flexibility over Hierarchical Procrustes Distance 
for our tests.

Figure 13.

Figure 14.
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The experiments have been carried out as follows. Each shape in the database 
has been, in turn, considered as a query and the best matching shapes (other than the 
query shapes itself) have been considered as the results of the retrieval operation. In 
Table 1 we reported the results obtained with this set of experiments. In particular 
the first column of the Table indicates the percentage of total queries when the al-
gorithms found, within the four most similar shapes, the query shape itself and the 
three variations of it in the database. The second column in the table indicates the 
percentage of total queries when the algorithms found, within the three most similar 
shapes (other than the query shape itself) the majority of shapes of the correct class.

Figure 15. Instance of false positives produced by the system, (a) CF; (b) CBSM

Table 1. Performance of the shape matching procedures 

% of perfect matches within 
the four closest shapes

% of majority of correct 
matches within the four 

closest shapes

Circular Blurred Shape Model (CBSM) 
Contour Flexibility (CF)

48% 
75%

72% 
99%
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A closer observation of the results reveals that most of the errors are “near 
misses”. An example of these is given in Figure 15.

The results are very encouraging, although the system is far from being error 
free it provides a valuable help to the expert. When trying to match a novel query 
an archaeologist, in almost all of the cases, has to look only at a very small (4 to 6) 
reference shapes provided as an answer from the system. This greatly reduces the 
time that he should otherwise spend to look among a larger set of candidate refer-
ence patterns. On the other hand at this stage of development of the system the 
human expert intervention is still necessary.

Real World Examples

To further support our claim about the robustness and the usefulness of our approach 
we present two real world examples. The queries and the results are shown in Figure16. 
The application of the algorithm for the automatic classification of the Kamares style 
pottery revealed itself particularly efficient for the immediate discrimination of the 
motifs on the chronological and geographical scales. Basing upon the Walberg’s 
corpora it’s possible to offer two examples of the procedure working. In the first 
case in Figure16(a), we have a potsherd with a spiral type motif partially preserved. 
From the image the algorithm automatically extracts the contour and checking for 
matches in the available database it suggests three hypothesis of interpretation, the 
simple j-spiral (Walberg 2.i.1), the running j-spiral (Walberg 2.i.2), even possibly 
deformed, and the j-spiral with filled angle (Walberg 6.2), again with a certain degree 
of alteration. The immediate restriction of the range of possible motifs gives to the 
archaeologists the chance to easily check the available data on the geographical and 
chronological distribution of the motifs themselves and obtain confirmation for their 
initial hypothesis. In fact, while the simple J- spirals has a wide diffusion in both 
Provincial and Palatial areas and in the four chronological phases, the j-spiral with 
filled angle is present in the Palatial area just in the phase 3 and in the Provincial 
district exclusively in the phases 2 and 3 and just in the East and East-Central Crete 
(in (Walberg, 1983) pp. 38-39, 41, pll. 28, 31; (Walberg, 1987), pp. 48-49, 51, 180, 
183). Again in the second example in Figure16(b), in the potsherd is visible a series 
of teardrops motifs. After the extraction of the contour, the algorithm suggests two 
different matches, the spiral derivatives (Walberg 8.33), both the original motif and 
its altered versions, and the petaloid loops (Walberg 12.i.1). Also in this case, the 
two motifs have exclusive distribution features. The spiral derivatives are present 
in the Palatial area in phases 2-4 and are absent in phase 1, while in the Provincial 
district they occur in all the chronological phases but restricted just to East, East-
Central and Central Crete. The petaloid loops have same distribution in the Palaces 
as the above mentioned derivatives but in the Provincial areas they are exclusive of 
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phase 1 and 3 also having the same geographical diffusion ((Walberg, 1983), pp. 
43-44, 48-49, pll. 35, 41; (Walberg, 1987), pp. 52-53, 57-58, 183, 188).

CONCLUSION AND FUTURE WORK

In this chapter a pipeline to automatically classify simple Kamares decoration has 
been presented. In particular, we focused on the shape matching of the pipeline 
showing how contour flexibility together with Procustean distance, circular blurred 
shape model or shape context may solve this problem. The proposed system will 
be of great support in automatically assisting the archaeologists in classification 
operations according time and place of production of Kamares pottery fragments.

This first example of application of Computer Vision and Pattern Recognition 
techniques to a specific topic of the prehistoric archaeology as the Minoan Kamares 
pottery opened a completely new field of investigation that in the future can deeply 
change the approaching of the scholars to iconographical problems. The satisfac-
tory results obtained with the classification of single motifs, even deformed by the 
preservation of the specimens or altered by the chronological and geographical 
variability of the production and by the creativity of the Minoan artisans, let expect 
the extension of this technique also to the decorative syntax of the Kamares style, 
in order to allow the archaeologist to look forward for the long waited exhaustive 
study of this so significant feature of the Mediterranean prehistory.
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