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Forty-seven decorated samples of Archaic pottery excavated at a Heracles sanctuary (Thebes,
Boeotia) were studied through a combined surface and body approach, using non-destructive
techniques. Most of the samples were archaeologically classified as Theban/Boeotian, others
as Corinthian and a few as possibly Euboean. The techniques employed were optical micros-
copy and SEM–EDAX (micromorphology and compositional analysis of the surfaces) and
XRF for the analysis of the ceramic body. The results provided information on the techno-
logical level of the collected pottery as well as on the relation of the chemistry and micro-
morphology of the pigments, aimed at assisting provenance studies.
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INTRODUCTION

Macroscopic examination of pottery, with an emphasis placed upon surface features, served
archaeology well for a substantial part of the 20th century and continues to be used alone as a
source of valuable conclusions; archaeologists usually examine surface decoration in order to
assess issues such as production/technology capacity and trends, evolution of sites, provenance
and trade patterns. Elaborate versions of the approach have led to impressive results; for example,
Boardman has relied substantially on his decorated Greek pottery expertise amassed from
macroscopic studies for his key work on Greek colonization (Boardman 1999). Microscopic
examination of pottery makes use of physics and chemistry methods appropriate for the chemical
and microstructural study of materials, and eventually attempts to address almost the same
questions as macroscopic examination, preferably in a complementary manner. For the micro-
scopic approach, tiny fragments can turn out to be at least as useful as sizable fragments or intact
objects; for example, a tiny pottery fragment properly oriented in a SEM–EDS holder constitutes
a cross-section made available non-destructively and can be studied with regard to composition,
layering and so on.

In the south-east Balkans and the Aegean, decoration techniques have been applied since the
very beginning of pottery production, mainly in the form of engraved and simply coloured motifs.
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The engraved motifs were in most cases produced prior to firing, while a variety of coloured
earths (usually calcium- or magnesium-rich clays for white colouring, iron-rich clays for red
colouring etc.) were also applied to the surface. Following firing, the vases were further decorated
using natural pigments, possibly combined with organic adhesives.

As early as the fifth millennium bc, an elaborate technique that led to permanent results
evolved. The so-called ‘iron reduction technique’ (IRT) allowed ancient potters simultaneously to
develop red and black motifs using a single firing (Noll et al. 1975). The IR technique proved to
be extremely effective and continued to be used for thousands of years; pottery of the archaic
period, as well as the well-known high-quality Attic gloss pottery of classic times, was produced
using this method (Noble 1960; Hofmann 1962; Tite et al. 1982; Aloupi 1993; Maniatis et al.
1993).

According to the IRT, a high-iron and low-calcium, usually illitic, clay is selected and then
subjected to extensive elutriation, leading to a fine final product (to be applied for decoration
purposes) exhibiting an increased Al2O3/SiO2 ratio and an enhanced iron content.

The firing begins in an oxidizing atmosphere, which is retained until the temperature approxi-
mates the 800–850°C range; at this point the furnace atmosphere is changed to a reducing one,
possibly by introducing wet or resin-rich fuel and by sealing the air pipes. The CO and H2O
generated by the fuel act as reducing agents, and thus the iron present in the clay is converted
from Fe(III) (hematite contained in the clay) to Fe(II). Black spinels such as magnetite
(Fe2+Fe2

3+O4), hercynite (FeAl2O4,) and, at relatively high temperatures, wustite (FeO) are formed
(Tite et al. 1982; Tang et al. 2001). As a result, the clay develops a dark-black colour. At the same
time, the decoration layer sinters and vitrifies; the latter alteration is promoted by the presence of
alkali ions that act as flux (mainly potassium in illitic clays); in addition, the smaller the clay
particle size, the easier the sintering becomes (Hofmann 1962; Noll et al. 1975; Tite et al. 1982;
Ingo et al. 2000; Mirti et al. 2006).

At the final stage of the firing, the atmosphere is changed back into an oxidizing one, while the
temperature begins to fall below 850°C. Thus all exposed parts of the object (including the body
of the object) reoxidize readily and gain light-red hues (the exact colour depends on the clay
composition), while the vitrified decoration layer is unable to reoxidize and thus retains its black
colour.

For white decoration, clays rich in calcium or/and magnesium were widely in use (Swann et al.
2000; Ferrence et al. 2002), while kaolin was an accessible alternative and was routinely encoun-
tered in the decoration of white lekythoi during the classical period (Noll et al. 1975). In addition,
red hues could be simply achieved by the use of ferruginous clay for the body, in which case the
non-covered (by the decorative clay-black) areas served as red patterns; iron ochres were also in
use for the same purpose (Noll et al. 1975). Further, it was possible for a different grade of the
raw material used for the black decoration to serve as a source of a final red colour: the potters
simply had to collect a portion during the elutriation and before its completion. This quantity, less
refined and thus coarser, would create a layer with a structure that was more open and less
susceptible to complete vitrification during the reduction step; consequently, the latter layer
would be able to turn red during the reoxidation step.

Purple is a colour encountered less frequently in the decoration of pottery. It has been
proposed that this colour could be achieved by mixing iron ochre and a portion of refined (used
for the black motifs) clay (Noble 1960; Mirti et al. 2006). The unusual purple colour might
then result from the incomplete reoxidation of the iron particles (at the final oxidative stage of
the firing), leading to the coexistence of a certain appropriate balance of Fe(II) and Fe(III)
(Mirti et al. 2006).
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The assemblage considered in this work was recovered from a small excavation plot of about
350 m2 near a famous Theban temenos, the temple of Ismenian Apollo in the centre of Thebes,
central Greece. Ancient Thebes is usually mentioned as the birthplace of the hero Heracles. The
excavation resulted in the collection of hundreds of artefacts, which clearly indicates that an
ancient sanctuary dedicated to Heracles was located at this site (Aravantinos 2009). The core cult
area was an open-air monumental eschara (ash altar), measuring at least 9 ¥ (9–10) m2 (the
structure continues to the east, beneath the modern road). It was carefully built of stones neatly
squared on their outer faces. Courses of small bricks and quantities of small fieldstones on the
inside of the structure perhaps indicate attempts to demarcate the layers of ash with a pyramid-
shaped construction.

The altar was found to be full of pottery, ash, animal bones, metal objects, sculptural vases and
even some faience, and was used probably from the Late Geometric II (late eighth century bc) to
the Early Archaic period (seventh century bc). The vast bulk of the votive offerings consists of
painted wheel-made pottery (drinking, mixing and serving vases, cosmetics containers and
lamps) and unpainted hand-shaped pottery (kettles) (Aravantinos 2010). The local pottery has an
eclectic character, depending on the neighbouring schools (Attic, Protocorinthian and Euboeo-
Cycladic). The figured scenes are second only to those of Attica in the variety of their repertoire,
including hunting, dancing and mythological scenes, and so on. A peculiar local group (‘bird
cups’; upper part of Fig. 1) is decorated with painted birds and, later, with linear motifs. The
presence of Proto-Corinthian pottery is very strong in the ash altar (Fig. 1, bottom right), along
with vases of the ‘Thapsos’ type. Probably because of the increasing height of the offerings, at
some point after the middle of the seventh century it became necessary to seal the site and

Figure 1 Upper left and right: two Theban, ‘bird cup’ samples. Bottom left: characteristic, homogeneous ‘high-quality’
black slip (‘Boeotian’ sample). Bottom right: a representative Corinthian sample with black and purple-coloured motifs.
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relocate the ritual centre a few metres north. The significance of this discovery is further
underlined by the fact that Pindar (15th. 66–77) and Pausanias in his Boeotika (Paus. IX, 11, 1–7)
describe such a sanctuary in detail.

From the vast number of pottery fragments, 47 were selected for the present study to provide
a representative picture of the pottery findings and by following typology and decoration. Most
of the fragments belong to the Early Archaic to Archaic (seventh to sixth centuries bc), the period
during which the sanctuary was in full activity.

More specifically, the selection included only decorated samples that, according to the
archaeological classification, were assigned as ‘local Theban’, ‘Corinthian’ and ‘possibly
Euboean’, and one sample characterized as ‘possibly Attic’.

The scope of the study may be summarized as follows:
(1) An experimental investigation of the techniques and pigments used for the decorations.
(2) A possible connection between the technological features of the decorative pigments and the
provenance of the samples.
(3) A comparison of locally produced with other, contemporary, products.

EXPERIMENTAL

The samples were subjected to examination in the as-received state, although all samples had
been cleaned in the conservation laboratory of Thebes Museum. The methods used in the
examination are as follows:
(a) Optical microscopy (OM): prior to further investigation, the samples were observed under a
Zeiss (47 50 22-9022) stereoscope at 1¥ to 4¥ magnifications. Thus proper selection of the
samples for further examination by means of electron microscopy was achieved.
(b) Scanning electron microscopy combined with energy-dispersive X-ray analysis (SEM–
EDAX): a FEI SEM–EDAX was used (model Inspect, with a Super Ultra Thin Window) for the
micromorphological and quantitative investigations. The samples were observed alternately in
the secondary (SE) and backscattered (BSE) electron modes. The voltage applied on the filament
was 25 kV and every spectrum was collected for 150 live seconds (total counts ª 50 000).
(c) X-ray fluorescence (XRF): a milli-XRF unit with a Rh target and a Si-Pin detector (XR-
100CR, Amptek Inc.), described at length elsewhere (Zacharias et al. 2009), was employed.
Every sample underwent two sets of measurements, the first at 15 kV and 100 mA for major and
minor elements and the second at 40 kV and 300 mA for the trace elements. Each spectrum was
collected for 1000 s at a relatively stable counting rate ranging between 370 and 480 cps.
(d) X-ray diffraction (XRD): for identification of the crystal structure of specific pigments, a
Siemens XRD 500 diffractometer with a Cu–Ka anticathode was used. The voltage was 40 kV
and the current 35 mA, while all the diffraction spectra were collected in the range between 2 and
85° (2q) with a step of 0.04°/2 s.

RESULTS AND DISCUSSION

Black decoration

The observation of the dark-brown to black-coloured decorations revealed that the samples are
highly differentiated in terms of their colour/texture, micromorphology and chemical composi-
tion. At the same time, it is obvious from the microstructure and chemical composition of all
samples that versions of the IRT methods were employed in all cases. With regard to composition,
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the relevant fingerprints are as follows: moderate to high Al2O3/SiO2 ratio, high iron content, low
Ca and Mg content, and a strong presence of alkalis (K and Na). A characteristic plot of the
Al2O3/SiO2 ratio and the total alkaline earth content of the pigments compared with the body
clays is presented in Figure 2. The considerable differences are an indication that in most
specimens a distinct raw material, selected especially for this purpose, has been used as a
pigment.

The CaO content versus Al2O3/SiO2 the ratio of the pigments is presented in Figure 3. In order
to compare the samples under investigation with previously published data, five samples dis-
cussed in another paper have been introduced in the chart (indicated by crosses in Fig. 3; data
from Maniatis et al. 1993). These five samples are classical Attic and are regarded as high-
quality. On the right-hand side of the chart appear the ‘high-quality’ samples (high Al2O3/SiO2

ratio and low CaO content, similar to the Attic ones), while the ‘low-quality’ samples (less
elaborate raw material selection and processing) are shown on the left. Yet, at least on the basis
of the compositional parameters employed in Figure 3, one might assume that samples of
intermediate quality exist as well.

On the basis of microscopic examination, all specimens under investigation present the same
general micromorphology, characterized by a sintered layer attached to the porous clay body; this
is largely a reflection of the employment of IRT decoration approaches. Microscopic differen-
tiation of the various samples under consideration is possible on the basis of the thickness and
texture of the sintered layer. More specifically, although some samples present a well-vitrified
uniform layer, in many others this layer is not only uneven but also spotted with open (bloating)
pores (Fig. 4).

These characteristic pores are caused by the presence of carbonates such as CaCO3 and MgCO3

(which decompose with CO2 evolution) and also by the strong reductive conditions, which lead

Figure 2 The MgO + CaO content versus the Al2O3/SiO2 ratio: rectangles represent body clay, and triangles represent
black pigments.
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to the removal of oxygen from the Fe(III) oxides (Fe2O3 → 2FeO + 0.5O2) of the applied layer.
The evolved gases penetrate the quasi-melted mass of the pigments and leave imprints in the form
of characteristic pores. As the latter pores affect the surface morphology and thus the optical
properties of the pigments (reduction of glossiness etc.), they are regarded as defects and their
detection is an indication of an unsuccessful process (in terms of the raw material selection, the

Figure 3 The CaO content versus the Al2O3/SiO2 ratio for the dark-brown to black pigments. Circles indicate the
samples under consideration, while the plus signs (‘+’) indicate five samples from Maniatis et al. (1993).

Figure 4 Left: a black layer with bloating pores (backscattered electron detector, 5000¥). Right: a well-vitrified,
homogeneous black layer (secondary electron detector, 8200¥).
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treatment and/or firing conditions, and the duration and extent of the reducing stage). Moreover,
it is well known that such pores are absent in high-quality samples (Tite et al. 1982; Maniatis
et al. 1993; Mirti et al. 1996, 2006).

Consequently, it was noticed that the ‘high-quality’ (in terms of composition) samples
appeared to be homogenous in terms of micromorphology and usually they do not exhibit
bloating pores – or only exhibit them to a limited extent. With regard to the archaeologically
estimated provenance of samples, it is noted that all the ‘Corinthian’ samples are included in the
high-quality group. On the other hand, although the most of the ‘Theban’ samples appeared to fall
into the low-quality group, some of them present high-quality characteristics (high Al2O3/SiO2,
low CaO and a well-vitrified, homogeneous microstructure). Two characteristic examples are
presented in Figure 1: the upper left sample exhibits low quality and dull black decoration, while
the bottom left sample has been decorated with a high-quality, shiny black pigment.

Red decoration

By visual examination, red decorations on the samples could be divided into two groups: the
samples of the first group bear coloured areas that appear dull and have a rough surface, while in
the samples of the second group the coloured areas exhibit a characteristic glossy surface. This
separation into two groups is also evident in terms of composition. In Figure 5, where the Fe2O3

content versus the Al2O3/SiO2 ratio of the red pigments is presented, two distinct groups are
present; the first appears on the right-hand side of the chart and is characterized by an Al2O3/SiO2

ratio below 0.4 and an Fe2O3 content above 15%, while the second exhibits an Al2O3/SiO2 ratio
above 0.5 and an Fe2O3 content below 15%.

The fact that the compositionally differentiated pigments were also micromorphologically
distinct was not surprising. The high-Fe2O3/low-Al2O3/SiO2 group presents a more or less open

Figure 5 The Fe2O3 content versus Al2O3/SiO2 ratio of the red decorative pigments (wt% oxides).
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structure (Fig. 6), while the high-Al2O3/SiO2 samples are similar to the well-vitrified black layers
(Fig. 7). It must be also noted that in all the red-decorated samples, red pigments have been
applied to the surface prior to firing. This is evident from the micromorphological features of the
pigments, which in all cases exhibit a more or less vitrified structure.

In view of the overall composition and known decoration practices for pottery of the type
considered herein, red pigments with an iron content exceeding 25% (w/w Fe2O3) can be
classified as iron ochres that have been applied on the surface. This is the case for 4 out of 11
samples: all of them also present the characteristic grainy, open structure of fired ochres (Fig. 6,
left), which is easily differentiated from burnt clays (Noll et al. 1975).

The two pigments with a relatively high iron content (15–20%) and a low Al2O3/SiO2 ratio may
be identified as high-iron clays. In fact, they are differentiated from fired ochres not only by their
iron content, but also by their structure: while the ochres are grainy, the high-iron clays under
consideration are much more even and vitrified to a greater extent (Fig. 6, right). However, both
of these pigments retain enough porosity, a fact that makes them ideal for IRT use, as they are
easily reoxidized after the end of the reducing stage of the firing, thus permitting the simultaneous
production of red and black shades.

On the other hand, four pigments form a separate, third group with a relatively low iron content
but a high Al2O3/SiO2 ratio. Their chemical characteristics are almost identical with those of
the black pigments. Furthermore, they present the characteristic, well-vitrified structure of the
high-quality black pigments (Fig. 7).

These four samples come from pots on which there are no black-coloured motifs. However, the
red-coloured pigments exhibit morphological and chemical characteristics that are identical with
those of the typical—for the IR technique—black pigments. Thus it can be concluded that the raw
materials used for the specific red pigment are similar to those commonly used for the production
of black motifs; however, the final colour is red because the pots had been fired in a single
oxidizing step.

Figure 6 Two morphologically differentiated samples: on the left, a rough, grainy, non-vitrified layer of red pigment
(secondary electron detector, 350¥); and on the right, a quasi-vitrified sample similar to, though less vitrified than, that
of the black pigments (backscattered electron detector, 7000¥).
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In conclusion, the red decorations had been created by using three distinct raw materials: iron
ochres, iron-rich clays (which are open-structured and reoxidize readily) and finely processed
clay (identical, or at least very similar, to those used for black pigments) burned in a single
oxidizing stage.

Purple decoration

Purple-coloured motifs are found on the surface of all the ‘Corinthian’ (5) and two ‘Theban’
samples (Fig. 1, bottom right). It must be noted that purple was used freely on Proto-Corinthian
and Corinthian vases (Payne 1971). From a macroscopic point of view, there was no significant
differentiation among the seven samples with regard to the hue of the colour. Furthermore, all of
the samples exhibit similar rough and uneven surface micromorphology (Fig. 8), but they differ
considerably with regard to the thickness of the pigment layer (which varies between 5 and
25 mm).

Observation of the pigment at a magnification above 10 000¥ revealed an unexpected
morphology; that is, particles with dimensions ranging between 0.3 and 1.2 mm (Fig. 8,
right).

Figure 7 A well-vitrified red pigment (backscattered electron detector, 5000¥).

814 G. Mastrotheodoros et al.

© 2012 University of Oxford, Archaeometry 55, 5 (2013) 806–824



With regard to chemical composition, the main characteristic is the high iron content, which in
all cases exceeds 30 wt% Fe2O3. Another characteristic is the relatively low Al2O3/SiO2 ratio
(0.30–0.37), which indicates the presence of coarse clay.

On the other hand, spectra collected on areas with high concentrations of tiny particles
exhibited an even higher iron content, which in some areas reached 80%; this fact, combined with
the morphological characteristics (see below), led to the conclusion that the particles are pure iron
oxide. In order to identify the crystal structure of the iron particles, an XRD spectrum was
collected from the surface of a sample. XRD revealed that iron in the purple pigment is in the
form of hematite.

These iron pigments had been applied on to the pottery surface prior to firing, a fact that was
made evident by micromorphological observations, which revealed that the pigment is sintered
(Fig. 8, left and right). Also, in cases where purple had been applied over black pigment, a
diffusion zone has been created between the two layers by the diffusion of iron particles in the
black gloss.

It has been stated elsewhere (Mirti et al. 2006) that this unusual colour may be attributed to
the alternation of oxidizing–reducing–oxidizing conditions during firing: during the reducing
stage, Fe(III) is converted to FeO oxide, which—due to partial sintering—may not be fully
reoxidized upon the final reoxidization stage. The combination of Fe(II) (black-coloured) and
Fe(III) (red) oxides leads to the purple colour (Mirti et al. 2006). However, the XRD exami-
nation in the present study showed that the iron in the purple pigment is in the Fe2O3 state.
Furthermore, previous publications give no explanation for this peculiar iron particle morphol-
ogy. An extended research approach on ancient iron pigments (Mastrotheodoros et al. 2010)
revealed that high-iron (>90%) raw materials present a colour shift from red to purple upon
firing at gradually rising temperature in oxidizing conditions. More specifically, a purple colour
may develop at a temperature of 900°C or higher, and the colour change observed is explained
by the gradual shift of the iron particle dimensions. The purple hue is achieved when the iron
particles exceed 0.4 mm in diameter. Thus although it is possible that a purple tint can be

Figure 8 Left: the rough surface of the purple pigment (backscattered electron detector, 390¥). Right: the grainy texture
of the purple pigment (backscattered electron detector, 30 000¥).
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obtained by partial reoxidation of the Fe(II) oxides (Mirti et al. 2006), such a tint may also be
obtained by firing iron-rich raw material at 900°C (or even higher), with a reducing stage not
being necessary.

Also, in the samples under examination, the iron content is relatively low (30–47 wt% Fe2O3).
Observation of the purple pigments with the BSE detector revealed the presence of areas that are
rich in iron as well as areas rich in clay particles (Fig. 9). Thus the proposal for the use of a
mixture of clay with a high-iron raw material (Noble 1960; Mirti et al. 2006) is also supported by
the present study.

White–pale decorations

White–pale decorations are found on the surfaces of 16 samples. These samples exhibit similar
macroscopic characteristics: a yellow tone combined with a dull and rough surface. The SEM
observations revealed that their morphology is also similar: a characteristic open, mildly sintered,
structure.

However, there are considerable differences with regard to the thickness of the white pigments
and also the method of application, as there are samples where white pigment overlaps black and
vice versa (Fig. 10).

Figure 9 A high iron content at the centre (white particles), surrounded by areas with a high clay content (grey)
(backscattered electron detector, 10 000¥).
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On the other hand, micromorphological observations indicate that in all the samples, white
pigments have been applied prior to firing: with the exception of the samples where the white
pigments are covered by black and thus firing is evident, in all the other cases white appears to
be more or less sintered (Fig. 11).

With regard to the chemical composition, all of the white pigments present a low Al2O3/SiO2

ratio, which is indicative of the use of coarse raw material. However, they exhibit considerable
variation with regard to the CaO and MgO content (Fig. 12).

Furthermore, the white pigments may be divided into three groups in terms of their CaO/MgO
ratio: samples in which magnesium prevails (Ca/Mg < 1), samples with equal amounts of alkaline
earths (Ca/Mg ª 1) and samples with prevailing Ca (Ca/Mg > 1) (Fig. 13).

Further investigation in terms of XRD revealed that Ca or Mg clays have been used as white
pigments. In addition, the detection of diopside, anorthite and other Ca–Al–Si phases is further
proof of the simultaneous firing of pigments and vases.

The combination of technological and archaeological data regarding the samples with white–
pale decorations did not reveal a clear correlation of the different ‘chemical’ groups with specific
archaeological groups.

Provenance issues

As is evident from the experimental data, the samples under consideration exhibit a substantial
variation in terms of pigment characteristics (chemical composition and micromorphology).
This is the case not only for samples belonging in different provenance groups, but also for
many others that are thought to have been produced in the same workshop (estimations based
on archaeological–stylistic criteria). This fact led to the following question: Is it possible that
samples that, according to archaeological criteria, were produced at different sites but reveal
similar technological characteristics have been produced in the same workshop? Furthermore,
is it possible to evaluate the provenance of samples from their pigments’ technological
features?

Figure 10 Left: a white pigment lies over a black layer, in which bloating pores are evident (secondary electron detector,
3000¥). Right: a black, sintered layer overlaps a white pigment (secondary electron detector, 5000¥).
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In order to deal with those questions, further investigations of the body clay by means of
XRF were undertaken. The data collected in this way were evaluated in combination with the
technological characteristics of the pigments in order to estimate the provenance of the
samples.

The concentration of clays in trace elements is quite often used for the investigation of the
possible origin (Hein et al. 2002; Schwedt et al. 2006); within these studies, samples of known
origin are usually incorporated as internal standards. In the present study, we have used as
standards only those of the samples considered to be archaeologically safe with regard to
provenance; the latter samples are several Corinthian and local (Theban) ones. These samples
present unique decorative features as well as an easily identifiable body clay texture.

XRF spectra were collected as described previously (see the ‘Experimental’ section). The
grouping of the samples was achieved using maximum-intensity (counts) of several trace-element
peaks, as it was soon observed that there were repeated differentiations among the internal-
standard samples. For example, there is an obvious differentiation on the relative intensity of Sr
peaks among the Corinthian and Theban samples (Fig. 14).

In order to assist the grouping of trends and normalize the experimental data, as well as to
minimize the implications of the measurement conditions, sample preparation and so on, internal
ratios of peak maxima (Papadopoulou et al. 2007; Liritzis and Zacharias 2010) were used.

Figure 11 Sintered white pigment (backscattered electron detector, 7000¥).
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On the basis of an empirically developed approach, several sets of peak maxima ratios were
examined; by employing the ratio of Ti/(Cr + Ni) versus Rb/Sr (these five elements are those that
exhibit the most pronounced differentiations among the samples), the samples under investiga-
tion could be divided into four groups (Fig. 15).

Figure 12 SEM–EDAX results showing the MgO content versus the CaO content (wt% oxides) in the white pigments.

Figure 13 The CaO/MgO ratio of the white pigments.
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However, the attribution of these groups to different provenances can only be achieved by
using the safely archeologically investigated samples; that is, the seven ‘Corinthian’ and several
‘Theban’ ones.

With regard to the ‘Corinthian’ samples, they all fall into the same part of the graph (circles in
the upper left part of Fig. 15); the latter part includes 12 more artefacts. The black slip

Figure 14 The Rb/Sr ratio allows for clear differentiation between samples of Corinthian origin (left) and Theban origin
(right).

Figure 15 A plot of Ti/(Cr + Ni) versus Rb/Sr, by means of XRF (peak maximum intensities): groups are distinguished
by different symbols.
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on their surface presents high-quality characteristics (see the ‘Black decoration’ section). Inter-
estingly, most of the other 10 samples of the same XRF group (according to Fig. 15) present
similarly to the safely Corinthian black pigment technological characteristics: a high Al2O3/SiO2

ratio, a low CaO content and micromorphological features similar to those of high-quality black
pigments. The combination of these two facts, the similar chemical (XRF) pattern and the
characteristics of the black slips, leads to the conclusion that most if not all of the additional 12
artefacts may also be attributed to a Corinthian provenance.

On the other hand, most of the samples that could be safely attributed to local Theban–
Boeotian workshops (ª25 samples) form two groups on the graph (triangles and squares in
Fig. 15). Once more, the black pigments on the surface of the samples of these two groups
present similar characteristics (which differ from those of the Corinthian samples). In fact,
these slips may be characterized as ‘low-quality’, since they exhibit a low Al2O3/SiO2 ratio, a
relatively high CaO content and usually a low Fe2O3 content. Additionally, many of them
present non-homogeneous micromorphology with many bloating pores, as well as uneven
colour (on many samples there is a wide, and apparently unintentional, range of hues, from
brown to black); both of the latter features constitute signs of a poorly controlled firing
process. These two groups may be attributed to local (Theban) or nearby workshops. The fact
that they all exhibit identical technological characteristics is proof that they were produced by
potters who shared a common technological background. In addition, their separation into two
XRF groups is in accordance with the well-known lack of uniformity of the Theban clays
(Jones 1986) and may reflect the use of different body clay raw materials (different local
workshops).

Finally, four samples form a fourth group in the upper right region of the graph (Fig. 15).
Unfortunately, none of these samples may be safely attributed to a specific provenance. However,
they also exhibit common technological characteristics of pigments: they all present white-
coloured slips with CaO/MgO > 1 as well as the highest Al2O3/SiO2 ratio among all the white-
decorated samples. Thus they may be attributed to a common provenance, possibly eastern
Boetian or Euboean—at least, if we assume a nearby origin.

Further investigation under XRF allowed the quantification of several trace element concen-
trations (Ba, Cr, Mn, Ni, Cu, Zn, Pb, Rb, Sr and Zr). From each of the four groups (a maximum
peak intensity approach; see Fig. 15), two representative samples were selected and subjected to
quantitative analysis. The results verified the above-mentioned grouping of the samples: Corin-
thian samples exhibit the highest Sr concentrations (>200 ppm), while the Theban samples
are separated into two main groups (120 ppm < Rb < 130 ppm and 60 ppm < Rb < 80 ppm)
(Fig. 16). The ‘possibly eastern Boeotian–Euboean’ samples are characterized by the lowest Sr
(Sr < 100 ppm) and the highest Rb concentrations (Rb > 150 ppm; Fig. 16).

Although the XRF data provided are considered of semi-quantitative character, a further
attempt was made to relate these data with previously published data on pottery provenance.
The high-Sr samples of Figure 16 (attributed to Corinth) exhibit relatively low Cr concentra-
tions (2330 ppm), which is one of the characteristics of Corinthian pottery (Grimanis et al.
1980; Jones 1986, and chemical data therein). Further comparison of the XRF results with the
data of Schwedt et al. (2006) revealed a correlation of our ‘Theban’ samples (triangles and
squares in Figs 15 and 16) with the pattern of central Boeotia (Thebes) (and in a lesser extent
with the eastern Boeotia – Tanagra pattern). In addition, the ‘Theban’ samples exhibit high Cr
and Ni concentrations, which are also associated with Boeotia (Mommsen et al. 2002). With
regard to the fourth group (the upper right region of Fig. 15), although it could not be clearly
related to any of the groups presented by Schwedt et al. (2006), the relatively low Cr and Ni,
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as well as the moderate Ti concentrations, indicate a possible correlation with the pattern of
Euboean pottery (Jones 1986).

CONCLUSIONS

The examination, by means of optical microscopy and SEM–EDAX, of the decorative pigments
on 47 samples excavated in an archaic sanctuary in Thebes revealed their technological charac-
teristics. For the production of black motifs, the so-called ‘iron-reducing’ technique has been
used exclusively. The samples exhibit considerable differences with regard to their optical
characteristics (hue, glossiness and so on), their chemical compositions and the micromorphol-
ogy of the pigments; these features are correlated with the technological characteristics of the
production process (raw material selection and processing, firing conditions and so on). In order
to produce red shades, ancient potters used a variety of raw materials, which included iron ochres
as well as iron-rich clays, the latter being similar to those used for the production of black
pigments but fired in a single, oxidizing stage. White–pale hues were mainly produced using
Ca- or Mg-rich clays.

Of particular interest is the case of purple decorative pigments. SEM–EDAX analysis and
micromorphological investigations, combined with an extended experimental approach to the
thermal treatment modification of iron pigments (Mastrotheodoros et al. 2010), led to the con-
clusion that in order to produce purple hues, ancient potters had possibly used a mixture of clay
and an iron-rich raw material. The crucial factor in the production of the purple hue is the iron
particle-size distribution, which is affected by firing: at temperatures as high as 900°C, iron
particles with diameters above 0.4 mm are formed, which exhibit the characteristic deep red–
purple hue.

Figure 16 A plot of the Sr versus Rb concentrations (ppm) of representative samples from Figure 15, based on
quantitative XRF analysis.
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An in-depth interpretation of the technological characteristics of the pigments, along with
further examination of the samples’ body clay trace elements concentration pattern, led to the
establishment of a correlation between decorative pigments and sample provenance. The chemi-
cal composition as well as micromorphology of the black pigments may be correlated with the
provenance of the samples: Corinthian samples are characterized by high-quality black slips
made using finely manipulated, high-quality raw materials and using a well-controlled procedure
(furnace temperature and atmosphere). On the other hand, Theban samples generally exhibit
low-quality black pigments: large compositional variations among different samples and
medium-quality raw material processing, as well as poorly controlled firing (bloating pores,
uneven final colour). Finally, it is also possible that a specific type of white–pale pigment may
also be characteristic of the provenance.

Our understanding of the relation between pigment technology and provenance, as well as the
pottery circulation issues pertinent to the Heracles sanctuary during the archaic period, might be
enhanced via additional quantitative investigation of the minor and trace element concentrations.
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