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Analytical investigations of fragmented Meissen porcelains well dated to between 1725 and
1763 have been carried out using SEM–EDS. The aim of the analysis was to characterize
elements in bodies, glazes and overglaze enamels in order to create a baseline data set of
materials used in the manufacture of porcelain at the Meissen factory, Saxony, during the 18th
century. Analyses indicate body and glaze compositions to be consistent with a post c.1720–30
date, when a change from a lime-rich flux to a potassium-rich flux is documented to have
occurred. Overglaze enamel compositions are shown to be consistent with contemporary
accounts of enamel preparations at Meissen. Overglaze enamel compositions show that
mixtures of pigments, in addition to documented enamel 18th-century preparations, were in
use at Meissen between c. 1725 and 1763.
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INTRODUCTION

The manufacture of hard-paste porcelain was first achieved in Europe in 1708 in Dresden, by a
group led by Johann Friedrich Böttger (1682–1719) under Augustus the Strong, Elector of
Saxony and King of Poland. The breakthrough followed over 200 years of documented experi-
mentation instigated by Royal courts throughout Europe to discover a formula for ‘white gold’
that rivalled Chinese and Japanese wares (Kingery 1986; Emerson et al. 2000). Production of
porcelain soon followed, with the establishment of the first European porcelain factory in
Meissen, Saxony in 1710.

Under Böttger (1708–19) a limited range of cold enamel paints and gilding were used to
decorate porcelain. Cold paints were soon replaced by fired enamel colours with superior lustre,
brilliance and adherence (Weiss 1971; Menzhausen 1990; Cassidy-Geiger 2008; Pietsch 2010).
The new palette of fired enamels and the formation of fine painting in miniature-like style mark
a period of artistic brilliance that established the factory’s world reputation (Weiss 1971; Walcha
1981).

The exceptional quality, popularity and commercial value associated with early Meissen led to
the production of imitations by other European porcelain factories in the 19th century (Lang
1986). For the art-historian, distinguishing these later pieces from early 18th-century originals
has proved to be problematic, necessitating the need for scientific investigation to help determine
the century in which an object was made (e.g., Neelmeijer et al. 2000; Halfpenny and Mass
2009).
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Technological investigation of Meissen porcelain and its decorative components has been the
focus of a number of analytical studies in recent decades (Schulle and Ullrich 1982; Hornig-
Sutter 1984a,b, 1985a,b; Schulle and Ullrich 1985; Stiegelschmitt and Tomandl 1985; Uda et al.
1999; Neelmeijer et al. 2000; Page and Chilton 2001; Casadio 2004; Colomban and Milande
2006; Lee et al. 2008; Bezur and Casadio 2009; Halfpenny and Mass 2009; Ullrich et al. 2010).
The majority of these studies have been restricted to non-invasive surface analysis using air-path
instruments such as XRF and Raman spectroscopy due to the complete nature of porcelains under
analysis. Of the fragmented Meissen porcelains investigated in published studies, only a small
number have undergone SEM–EDS analysis, largely due to the lack of available samples for
destructive analysis, and these have focused on glaze and body compositions only (Schulle and
Ullrich 1982, 1985).

In this study, fragments from six Meissen porcelains well dated to between 1725 and 1763 have
been analysed using SEM–EDS (Fig. 1). The porcelains belong to one of the most important
private collections of 18th-century Meissen formed in Dresden from the mid-1890s until c.1926
by Gustav and Charlotte von Klemperer (Loesch 2001, 2004; Kuhn 2008, 2010). A catalogue of
the collection, published in 1928, comprises over 800 objects and provides an almost complete
survey of production at the factory from its founding up until the end of the Seven Years War in
1763 (Schnorr von Carolsfield 1928). The collection suffered loss and irreparable damage in
February 1945, during the Allied bombing raids of the Second World War (Kuhn 2008). The six
objects used in this study were broken as a result. A small group from the surviving collection,
including the objects in this study, were recently auctioned at Bonhams, London, in December
2010 (Bonhams 2010).

The broken nature of the group provided a rare opportunity to sample and analyse whole
Meissen sherds in an SEM chamber prior to auction. By accurately characterizing the body, glaze
and overglaze enamel colours of each individual object, this study aims to establish a baseline
compositional data set of materials used in the manufacture of porcelain at Meissen between
1725 and 1763. The compositional data are discussed with reference to recipes and raw materials
documented in contemporary accounts published by Berling (1910), Heintze (1910), Seyffarth
(1957), Weiss (1971), Walcha (1981) Menzhausen (1990), Sterba (1991), Schärer (1996) and
Lübke (2000), in order to help to refine the dates for technological development during this period
of manufacture.

The investigation has been conducted as part of a larger-scale collaborative research project
between Cranfield University and Bonhams, London, which aims to characterize changes in
porcelain technology at Meissen via a systematic non-destructive analytical survey of securely
dated objects primarily using handheld X-ray fluorescence spectrometry (HH-XRF) in order to
help date objects with insecure provenance.

SAMPLES

The samples consist of fragments from six objects: two Augustus Rex bottle vases (AR1; AR2)
dating to 1725–33, two armorial plates (GG; MH) dating to 1740 and 1745, a plate with an
ornithological design (BS) dating to 1755–63, and a plate from the ‘Japanese Service’ (JS)
dating to 1763. The armorial plates and the plate from the ‘Japanese Service’ can be securely
dated by supporting archival evidence, including factory inventories and diplomatic correspon-
dence, and the vases and the plate with an ornithological design are well dated stylistically (S.
Kuhn 2010, pers. comm., 14 July). The collection also comprises several pieces of the same
services for comparison. A description of the objects is given in Table 1. Sample names are given
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Figure 1 The Meissen porcelain analysed in this study: (a) AR1; (b) AR2; (c) GG; (d) MH; (e) BS; (f) JS. Figures 1 (a)
and 1 (b) are published courtesy of Bonhams.
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by a two-letter prefix (representing the object name), followed by the fragment number (numeri-
cal or alphabetical).

METHODOLOGY

A LEO 435VP scanning electron microscope fitted with an energy-dispersive spectrometer, based
at Cranfield University, was used for all analyses. The instrument allowed analysis of elements
with an atomic number 6 (C) and above and has detection limits typically in the range of
0.05–0.26 wt%, depending on element (Pollard et al. 2007, 111). In practice here, a detection
limit of 0.1% was applied to all elements. Three different sample preparation procedures were
used. To determine body composition, fragments of porcelain were prepared by embedding in
epoxy resin, ground flat, polished with diamond paste to 1 mm and carbon coated. Flat surface
chips of glaze and individual enamel colours measuring approximately 0.5–1.0 mm in diameter
were stub mounted and carbon coated. Flatness and perpendicularity to the beam was checked by
scanning across the surface of the glaze and checking that it remained in focus. Carbon-coated
samples were analysed under high vacuum with an accelerating voltage of 20 kV and a beam
current of 200 mA. Larger fragments with overglaze enamel decoration that were intended for
reconstruction were analysed under variable-pressure mode under the same voltage and current.
All samples were measured for 50 000 counts on the highest peak, and glass standard Corning ‘B’
was used to monitor analytical drift. At least two analyses were conducted on each sample, giving
a high degree of consistency, and the mean composition was calculated. The body and glaze
compositions were compared against individual enamel colours in order to identify colouring
agents.

In order to validate the results obtained from polished sections, fragments and surface chips,
samples of glass standard Corning ‘C’ (the closest to the enamel compositions) were prepared in
exactly the same manner as the porcelain samples. At least three analyses were carried out on
each sample and the results averaged. As shown in Table 2, the results of the three preparation
techniques are virtually identical and very consistent with the published values.

Table 1 Description of samples

Object Date Description Enamel colours analysed

AR1 1725–33 Fragments of a bottle vase with
‘Augustus Rex’ manufacturing mark

Yellow, green, turquoise, purple, red,
orange, black, bronze, gold

AR2 1725–33 Fragments of a bottle vase with
‘Augustus Rex’ manufacturing mark

Turquoise, blue, purple, red, gold

GG 1740 Fragments of an armorial plate from the
Götzendorf–Grabowski service

Yellow, green, turquoise, blue, purple,
red, brown, black

MH 1745 Fragments of an armorial plate from the
Münchhausen service

Purple, gold

BS 1755–63 Fragments of a plate from a complete
service with a bird design

Yellow, green, blue, purple, orange,
gold, brown

JS 1763 Fragments of a plate from the Japanese
Service for the Chinese House at
Sanoussi

Yellow, green, blue, pink, orange,
brown, black, gold

Each object consists of several fragments. The fragment numbers are listed after ‘Object’ in the overglaze enamel results in Table 4.
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Enamel colours were recorded visually by matching with colour standards in the Munsell book
of color (glossy edition) as recommended practice (Orton et al. 1993, 136–8; Urland 1999).
Descriptions of colours are based on visual interpretation, and hues and tones are documented
using the Munsell recording system. Systematic documentation of hues and tones enabled the full
range of colours to be evaluated and provided a baseline for comparison with future studies.

RESULTS

Porcelain body

The chemical compositions of the bodies are very consistent, with 60–62% silica (SiO2), 33–36%
alumina (Al2O3) and 2.7–3.6% potash (K2O). As shown in Table 3, these compositions are

Table 3 Comparison of average body and glaze compositions with ‘Böttger’ and early ‘Meissen’ porcelain
(n, number of individual analyses in the average results; –, below detection limit; n.q., not quoted)

Sample Date n SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 TiO2 PbO

Porcelain bodies
AR11 1725–33 6 62.1 33.1 0.5 0.1 0.4 3.4 0.3 – –
AR21 1725–33 4 59.9 34.6 1.2 0.1 0.5 3.3 0.4 – –
GG1 1740 4 60.0 35.5 0.5 0.1 0.6 2.9 0.4 – –
MH1 1745 4 59.9 35.8 0.5 – 0.5 2.7 0.4 – –
BS1 1755–63 4 60.5 34.3 0.4 0.1 0.5 3.6 0.5 – –
JS1 1763 4 61.2 33.7 0.3 0.1 0.4 3.5 0.6 – –

Previous body analyses
Böttger3a c.1712 n.q. 61.5 30.1 6.3 1.1 0.1 0.3 n.q. n.q. n.q.
Böttger3b c.1715 n.q. 57.6 35.8 4.3 1.2 0.2 0.2 n.q. n.q. n.q.
Böttger4 1710–20 n.q. n.q. n.q. 8.7 n.q. n.q. 0.7 n.q. n.q. n.q.
Meissen3c c.1731 n.q. 59.0 35.2 0.3 0.2 0.8 3.9 n.q. n.q. n.q.
Meissen5 c.1782 n.q. 56.6 39.8 0.5 0.2 1.1 1.4 0.4 n.q. n.q.

Glazes
AR12 1725–33 4 68.9 15.1 6.9 0.1 0.4 3.7 1.0 0.9 2.6
AR22 1725–33 4 73.0 17.4 3.9 0.1 0.8 3.9 0.5 – 0.3
GG2 1740 4 72.0 16.2 2.8 0.1 0.8 4.5 1.0 0.1 2.2
MH2 1745 2 72.6 16.1 4.2 0.1 0.9 3.3 0.8 0.1 1.3
BS2 1755–63 2 73.9 17.4 3.6 0.1 1.4 2.5 0.3 – –
JS2 1763 4 73.7 14.4 4.1 0.1 1.0 3.8 1.1 – 1.1

Previous glaze analyses
Böttger3a c.1712 n.q. 71.6 19.2 5.7 1.1 0.9 0.6 n.q. n.q. n.q.
Böttger3b c.1715 n.q. 74.0 17.2 5.8 0.8 0.9 0.5 n.q. n.q. n.q.
Böttger4 1710–20 n.q. n.q. n.q. 13.0 n.q. n.q. 1.3 n.q. n.q. n.q.
Meissen3c c.1731 n.q. 72.2 18.1 3.4 0.5 1.3 4.1 n.q. n.q. n.q.
Meissen5 c.1782 n.q. 73.9 17.9 3.5 0.4 1.8 2.1 0.5 n.q. n.q.

1Average results of bodies analysed in this study: all samples prepared as polished cross-sections, carbon-coated and analysed using HV

SEM–EDS at 20 kV and 200 mA; wt% oxides normalized to 100%. 2Average results of glazes analysed in this study: all samples consist of

stub-mounted glaze chips, carbon-coated and analysed using HV SEM–EDS at 20 kV and 200 mA; wt% oxides normalized to 100%. 3After

Schulle and Ullrich (1982): afragments of a vase cover; bfragments of a lid from a Kendi bottle; cfragments of a Kirschner vase—samples

prepared as polished sections and analysed using SEM–EDS, 20 kV, 2–5 nA. 4After Hornig-Sutter (1985a): pagoda figure, method of

analysis not quoted. 5After Ullrich et al. (2010); fragments of a Meissen dish prepared as polished sections using EPMA, 20 kV.
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consistent with analyses of a Meissen body dating to c.1731 that has 3.9% potash (Schulle and
Ullrich 1982, 1985). As Figure 2 shows, the high potash and low lime content distinguish the
bodies from lime-rich ‘Böttger’ porcelain produced at the factory from 1709 until c.1725, which
has potash levels from 0.2% to 0.7% and lime from 4.3% to 13% (Schulle and Ullrich 1982, 1985;
Hornig-Sutter 1985a; Stiegelschmitt and Tomandl 1985). The composition of the group differs
slightly from a later Meissen body dating to c.1782, which has 1.4% potash (Ullrich et al. 2010).

Glazes

The chemical composition of the clear glazes of the von Klemperer porcelains are also very
consistent as a group, with 69–74% silica (SiO2), 15–17% alumina (Al2O3) and 2.5–4.5% potash
(K2O). As shown in Table 3 and Figure 3, these results are consistent with SEM–EDS analyses of
a Meissen glaze dating to c.1731 (Schulle and Ullrich 1985). The higher potash content differ-
entiates the von Klemperer glazes from earlier Böttger glazes, which have potash in the region of
0.5–1.3%. The potash and lime composition of the group is very similar to a late 18th-century
Meissen glaze dating to c.1782 (Ullrich et al. 2010).

Overglaze enamels

All of the overglaze enamels (excluding the gold and copper-pink colours) consist predominantly
of lead oxide and silica. As Table 4 shows, the composition of the lead–silica matrix exhibits a
high degree of heterogeneity. Silica (SiO2) varies from 14% to 65% and lead (PbO) from 10%
to 75%. Alumina, lime and potash are also present, in addition to metallic oxides acting as
colourants. The types of metallic oxides present are dependent on the enamel colour desired.
As overglaze enamels were analysed in situ, elements from the glaze and porcelain body
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Figure 2 A plot of the SEM–EDS analyses of K2O against CaO for porcelain bodies produced at Meissen between 1710
and c.1782: (a) after Hornig-Sutter (1985a) and Schulle and Ullrich (1982); (b) objects analysed in this study; (c) after
Schulle and Ullrich (1982); (d) after Ullrich et al. (2010).
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substrates—that is, silica, alumina, lime, magnesia and iron oxide—will also be reflected in the
results (the interaction volume being dependent on the thickness and composition of the enamel
and accelerating voltage and current). The majority of the metallic oxides are, however, not
common to all three components and can be considered specific to the enamel.

Yellow-coloured enamels are present on four of the objects studied: AR1, GG, BS and JS. The
results indicate that each of the yellow enamels is rich in lead oxide (34–75% PbO) and antimony
(4.2–7.2% Sb2O3). Yellow enamels on AR1, BS and JS contain traces of tin (<0.3% SnO2) and the
two later objects (BS [1755–63] and JS [1763]) contain traces of zinc (<0.2% ZnO). Iron (Fe2O3)
in the region of 1% is present in all yellow enamel areas investigated.

Two main hues of green have been used to decorate the six objects; green with a yellow
hue—green (yellow)—and green with a blue hue—green (blue). Green (yellow) enamels all
comprise copper and antimony and may be subdivided into two groups: copper-rich and
antimony-rich. Vase AR1, dating to 1725–33, has two areas of copper-rich green (yellow)
enamels of the same Munsell hue and shade (7.5 GY4/6). The ratios of copper (CuO) to antimony
(Sb2O3) are 1.8 and 3.6, respectively. Objects dating from 1740 to 1763 are decorated with
antimony-rich green (yellow) enamels, with different shades of the same Munsell hue (5GY) and
with a ratio of copper (CuO) to antimony (Sb2O3) in the range of 0.4–0.9. The plate from the
ornithological service dating to 1755–63 is also decorated with a green (blue) enamel that is
coloured by copper, cobalt and antimony. Some arsenic and nickel are also present. The ratio of
cobalt to copper in green (blue) enamels is around 0.5. Tin is present (0.1–2.9% SnO2) in all green
areas investigated except in the green (yellow) enamel on plate GG dating to 1740.

Two hues of turquoise are represented in the von Klemperer objects, turquoise with a green hue
(10G) and turquoise with a blue hue (5BG). Each colour is copper-rich with varying levels of
cobalt. The lightest shade of turquoise on bottle vase AR2 has a pastel tone with a CoO/CuO ratio
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Figure 3 A plot of the SEM–EDS analyses of K2O against CaO for porcelain glazes produced at Meissen between 1710
and c.1782: (a) after Hornig-Sutter (1985a) and Schulle and Ullrich (1982); (b) objects analysed in this study; (c) after
Schulle and Ullrich (1982); (d) after Ullrich et al. (2010).
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of 0.1, elevated potash (2.1% K2O) and high tin (11.2% SnO2). A darker shade of turquoise
present on plate GG is coloured by cobalt and copper with a CoO/CuO ratio of 0.7 and contains
1.2% NiO. Antimony is not present in either of these colours. The third turquoise colour analysed,
on bottle vase AR1, has a more varied formulation, with a CoO/CuO ratio of 0.2, 0.9% Sb2O3,
2.8% As2O3 and 3.2% SnO2.

Two main hues of blue of varying shades are represented: blues with a delicate purple tone—blue
(purple) (5PB–7.5PB)—and blue with a grey tone—blue (grey) (5B). Cobalt is present in all blue
(purple) enamels (0.7–6.1% CoO) in addition to traces of copper (<0.4% CuO) onAR2, BS and JS.
The blue (grey) enamel decorated on plate JS has cobalt with elevated copper (3.6–3.8% CuO) with
a CoO/CuO ratio of 0.9–1.7. High tin (4.6–12.7% SnO2) occurs in three of the five blue (purple)
enamels and high nickel (3.9%) occurs in the darkest blue (grey) enamel on plate JS. Potash (K2O)
occurs between 1% and 2% in three of the four objects analysed (AR2, GG and JS).

Purple- and pink-coloured enamels are decorated on all six objects and range in hue and shade
from light pink to deep purple (10P–2.5RP). Tin and gold occur in all areas analysed, with a
SnO2/Au2O3 ratio between 1.2 and 4.3.

Iron oxide (Fe2O3) is present in all orange and red enamels, with levels in the range of
3.9–19.4%. No other colouring agents are present above the detection limits. The shades repre-
sented range from peach (2.5YR) to brick red (10R).

Two brown hues, 2.5YR and 5YR, are represented in three objects dating between 1740 and
1763 (GG, BS and JS). Each are coloured by iron (7.7–13.3% Fe2O3) and manganese (0.3–2.5%
MnO), with the addition of antimony (~2.0 Sb2O3), cobalt (~0.8% CoO), copper (~0.2% CuO)
and/or tin (<2.0% SnO2).

Three black areas were examined, each with different compositions. The black enamel on the
earliest object (AR1), dating to 1725–33, is manganese-rich (17.2% MnO) and contains traces of
iron and copper (<0.7% Fe2O3 and CuO). The black enamel on the plate dating to 1740 (GG) is
composed of roughly equal levels of iron and manganese (around 6% Fe2O3 and MnO), along
with cobalt (1.4% CoO). In contrast, the black decoration on plate JS dating to 1763 is cobalt- and
antimony-rich (5.4% CoO and 4.6% Sb2O3), with lesser amounts of iron and manganese (around
2% Fe2O3 and MnO).

A copper-coloured enamel with a pink tone—copper (pink) (2.5YR)—occurs on bottle vase
AR1, dating to 1725–33. The enamel consists of 45.4% Au2O3, 8.4% PbO2 and 32.7% SiO2. The
pinkish tone and high lead and silica differentiates this enamel from the gilt areas.

Analyses of the gilt areas on five objects indicate a small number of elements occurring with
gold. All have phosphorus (0.1–2.4% P2O5), and traces of silver (<0.2% Ag2O) occur in the
earliest and later objects (AR1, BS and JS). Lead occurs in all gold enamels at 1.0–4.9% PbO, and
zinc is present at <0.7% ZnO in the gilding on plates MH, BS and JS. No mercury is present in
any of the areas analysed.

DISCUSSION

Porcelain body

The increased potash and lower lime content of the von Klemperer bodies versus the pre-1720
‘Böttger’ bodies support evidence from contemporary accounts for a change in the paste formula
at some time between 1719 and 1725, to a preparation using a potassium-rich feldspar. Labora-
tory notes and factory records dating to the developmental period in 1708–9 indicate that the first
hard-paste wares were produced from a mixture of white clay from Colditz and calcined alabaster
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(calcium sulphate) from Nordhausen; the clay was quickly supplanted by kaolin from Aue and
lime introduced used as a flux (Heintze 1910; Kingery 1986; Kingery and Vandiver 1986). The
paste formula was modified sometime after Böttger’s death in 1719, when potassium-rich
feldspar (Siebenlehner gestein) replaced lime, producing a whiter shade of porcelain more
equivalent to Chinese wares (Heintze 1910). The exact date of this change is uncertain; however,
in 1720 the Meissen paste compounder David Köhler noted that a change in body and glaze
technology was required to prevent underglaze blue decoration from running (Pietsch 2010).
Substitution of lime for feldspar also has the additional benefit of decreasing the firing tempera-
ture from around 1400°C to 1300°C, as shown by replication experiments conducted at the
Massachusetts Institute of Technology (Kingery 1986; Kingery and Vandiver 1986). Results
show a further change in paste recipe may have occurred sometime between 1763 and c.1782,
which utilized a lower concentration of feldspar. Further analyses of late 18th-century samples
would be required to confirm this.

Trace elements in the clay such as zirconium and rubidium have been shown to indicate further
subgroups for dating (Hornig-Sutter 1985a; Stiegelschmitt and Tomandl 1985), but the recorded
levels of these elements, <120 ppm, are below the detection limits of the SEM. A comparative
study of trace element levels with contemporary factory records may help secure dates for the
change in clay sources and provide further compositional markers for dating.

Glaze

The increased levels of potash in the von Klemperer glazes are also consistent with the use of
potassium-rich feldspar. The composition differs from early glazes dating from 1709 to c.1720,
which are documented to consist of a mixture of quartz, kaolin and lime (Heintze 1910). As a
study by Kingery and Vandiver (1986) using ultraviolet light has shown, feldspar may have been
utilized as a flux in glaze technology at Meissen prior to its introduction to the paste recipe. The
study found variable levels of purple fluorescence associated with the use of feldspar in the glazes
of three samples dating to the Böttger period (before 1720). Records indicate that the factory was
certainly experimenting with feldspar by this period, as 750 pounds of ‘Flemmingscher Stein’
containing feldspar was delivered to the factory in 1720 (Walcha 1981, 52).

The requirement for a high-temperature glaze to suit the high-fired body is reflected in the
results; the glazes have the same components as the porcelain bodies, but with higher levels of
feldspar to increase fluidity (Kingery 1986). AR1 has a higher lime content than the rest of the
group, which may reflect the use of mixed flux, as was the practice at the du Paquier factory
(Bezur and Casadio 2009). At Sèvres, calcareous fluxes were added to feldspathic glazes in order
to reduce the problem of colour peeling resulting from potassium and sodium oxides being
volatized during repeated firing (Brongniart 1844, 678; Shaw 1968, 7). AR1 is highly decorated
with rich metallic enamel colours that would benefit from a softer glaze by permeating suffi-
ciently during repeated firing. A higher flux content would also have increased the fluidity of the
glaze; extra thin coats were known to be used on Irminger’s finely sculpted Böttger porcelain, so
as not to mask the delicate detail (Heintze 1910; d’Albis 1986). Analysis of further pieces dating
to 1710–30 would be useful to determine whether mixed fluxes were commonly employed during
this period at Meissen and therefore represent an intermediate stage in glaze technology.

Overglaze enamels

The results indicate that metallic oxides are acting as pigments or opacifiers suspended within a
lead silicate glass matrix, which is fused in place on the glaze substrate. The results correspond
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to enamel recipes described in a notebook dated to 1731, attributed to Johann Gregorious
Höroldt, Master Painter and Court Commissioner at the factory, entitled ‘True and correct
description of the enamel paints, which I invented with God’s help and will be used by the Royal
Porcelain Manufactory here as well as gold and silver and how they must be treated’ (Heintze
1910; Seyffarth 1957; Schärer 1996; Lübke 2000). The book details the preparations and raw
materials for a range of overglaze enamel colours, including gold, silver and copper-coloured
gold lustre, listed in Table 5. The colourless lead fluxes for the colours are described as com-
posing of lead ashes, lapis sillicis, potash and tin ashes (Heintze 1910). Detection of tin and
potash may therefore be attributed to the colourless flux as well as the pigment and/or opacifying
agent. Potash occurs in all enamels analysed; however, tin is detected intermittently. If tin was
present as an opacifier within the lead–silica matrix, SnO2 would be present as discrete crystals.
To establish this, further work using BSE–EDS on polished sections of overglaze enamels would
be required.

Yellow The presence of lead oxide (PbO) and antimony (Sb2O3) corresponds to the first ‘yellow’
documented in Höroldt’s enamel recipe book described as being produced from the pigment
‘Naples yellow’ (lead antimonate) bought from apothecaries (Seyffarth 1957). Records indicate
that after 1769, yellow enamels at Meissen were manufactured in house from antimony regulus
and iron ore (Heintze 1910). The presence of iron may be attributed to the glaze or as a deliberate
addition as a tone enhancer, rather than Höroldt’s second ‘yellow’, which is described as being
‘in the Japanese manner’ and manufactured from ‘iron compounds’ (Weiss 1971, 201; Mields and
Lauschke 1965, 81; Sterba 1991, 22). Iron was the colouring agent for translucent yellow enamels
on contemporary Japanese Kakeimon porcelain (1680–1725) and Chinese Kangxi (1662–1722)

Table 5 Fired enamel colours available to Meissen painters in 1731, as recorded in an enamel preparation book
attributed to Johann Gregorious Höroldt, dated to 24 December 1731 (after Heintze 1910; Seyffarth 1957;

Weiss 1971; Sterba 1991; Schärer 1996)

Colour Base materials

‘Iron red’ Iron ore, steel filings, rust
‘Yellow’ Naples yellow pigment
‘Yellow in the Japanese manner’ Iron compounds
‘Green’ Copper or brass ash
‘Yellow green’ Mixing yellow and green
‘Blue green’ Mixing green and lightly alkaline cobalt pigment
‘Blue’ Cobalt carbonate
‘Brown’ Umber
‘Good black’* Cobalt carbonate, umber and manganese ore
‘Silver’ Silver dust obtained by precipitation from melted-down coins
‘Purple’ Precipitate from gold and tin solution
‘Mother of pearl or copper colour’ Gold lustre
‘Gold’ Gold dust from melted ducats, ground with flux of red lead
‘Sea green in the Japanese manner’ Indian blue and brass ash
‘Indian blue’ Cobalt carbonate and potassium bitartrate, rich in alkali
‘Old Japanese purple’ Purple and flux
‘Contour brown’ Umber, Naples yellow and iron red

*The same black preparation is used for painting outlines, but without mixing with flux.
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famille verte porcelain. Iron yellow was gradually replaced by opaque tin- and antimony-based
pigments from the late Kangxi period onwards, as a study by Miao et al. (2010), using Raman
spectroscopy, XRF and XRD, demonstrates.

The low concentrations of tin (SnO2) in three of the enamels suggest that it is dissolved in the
lead–silica matrix rather than being present as an opacifier: studies have shown that tin is usually
present in concentrations of around 5–20% when used as an opacifier in lead glazes (e.g.,
Maggetti and Neururer 2009) and enamels (Wypyski 2002). Both tin and or zinc may have been
deliberately added to the Naples yellow pigment before arrival at the factory, prior to its
conversion into a vitrifiable pigment. The Mariani manuscript dating to the 17th century describes
one of three preparation of Naples yellow (also termed giallo de’vasari or ‘potter’s yellow’) as
having the addition of ‘Alexandrine Tutti’ (commonly associated with tin or zinc oxide) to lead
antimonate (Dik et al. 2005). While the presence of zinc in potter’s yellow has not yet been
detected on securely dated pigment samples from paintings (Dik et al. 2005), recent investiga-
tions of du Paquier porcelain by Bezur and Casadio (2009) have detected zinc in addition to lead
and antimony in yellow overglaze enamel decoration (Bezur and Casadio 2009). Zinc is also
documented in eight contemporary Venetian lead–antimony–tin yellow glass recipes, as a study
by Moretti and Hreglich (1984) has shown. Brongniart (1844, 529) notes that a range of yellow
tones for porcelain painting was achieved at Sèvres by adding zinc oxide or iron oxide to
antimony yellow enamels, from light yellow to golden yellow, respectively. The du Paquier
zinc-containing yellow enamels are characterized by a luminous lemon colour (Bezur and
Casadio 2009), while Moretti and Hreglich (1984) found that the addition of around 6.5% ZnO
to Venetian yellow glasses moves the colour towards ochre or orange. The zinc-containing
yellows on the objects analysed in this study have a slightly warmer hue than the yellows without
zinc; however, the zinc contents are very low (<0.2%). A greater sample size of zinc-containing
yellows is needed to make a direct comparison between tone and composition.

Green The green (yellow) enamels analysed appear to represent the ‘grass green’ documented
in Höroldt’s enamel colour book as being prepared by mixing ‘yellow’ (‘Naples yellow’) and
‘green’ (‘copper or brass ash’) (Seyffarth 1957; Weiss 1971, 201; Sterba 1991, 22). The absence
of zinc in the green decoration on objects dating to 1725–63 suggests that copper was used, rather
than brass ash. The green (blue) enamels decorated on object BS equates with Höroldt’s ‘blue
green’, which is documented as being prepared from ‘lightly alkaline cobalt’ and ‘green’ (‘copper
or brass ash’). However, the presence of antimony in the green (blue) enamel suggests that the
colour may have been prepared by mixing Höroldt’s ‘grass green’ with ‘lightly alkaline cobalt’
rather than ‘green’.

Elevated tin (1.1–2.9% SnO2) in three of the areas studied may indicate the deliberate addition
of a tin opacifier. While the levels are low in comparison to tin-opacified lead glazes (e.g.,
Maggetti and Neururer 2009), SnO2 has been found in concentrations as low as 1.8% in opaque
yellow and green enamels on jewellery when present in association with antimony (Wypyski
2002). Further work using BSE imaging of polished sections of yellow and green enamels would
be useful to confirm the nature of the tin.

Turquoise The copper-rich turquoise enamels most closely compare to Höroldt’s ‘blue green’,
prepared from mixing ‘green’ and ‘cobalt pigment’. However, elevated potash on AR2 may
indicate the presence of potassium bitartrate, as used in the ‘sea green’ listed in Höroldt’s colour
preparation book. ‘Sea green’ is documented as being prepared using ‘brass ash, cobalt carbonate
and potassium bitartrate’; however, the absence of zinc in this colour once again indicates that
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copper was used, rather than brass ash. The opacity in the pastel tones of turquoise enamels on
AR1 and AR2 is most likely produced by the high tin content.

Blue Three of Höroldt’s documented colours—‘blue’, ‘Indian blue’ and ‘blue green’—appear
to be represented in the areas analysed. Cobalt and low potash on plate BS indicate Höroldt’s
‘blue’, recorded as being prepared using ‘cobalt carbonate’. Elevated potash in combination with
cobalt in the blue (purple) enamels on AR2, GG and JS may indicate the presence of ‘Indian
blue’, which is documented as being prepared using ‘cobalt carbonate and highly alkaline
potassium bitartrate flux’. High copper in the blue (grey) enamels on plate JS is indicative of
‘blue green’, but with a higher cobalt content than the green (blue) shades attributed to the ‘blue
green’ preparation in this study.

The association of arsenic and nickel with cobalt-blue pigment in the blue enamels can be used
to infer the geographical origin of the cobalt ore. As several studies have shown (e.g., Gratuze
et al. 1992, 1995; Soulier et al. 1996), such an association is characteristic of cobalt ores mined
from the Schneeberg (Erzgebirge) district of Saxony. Contemporary factory records dating to
1709 show that cobalt was obtained from the Schneeberg cobalt works (Heintze 1910). Gratuze
et al. (1995) suggest that high nickel and arsenic contents associated with cobalt confirm the use
of smaltite and erythrite ores, which are both present at Schneeberg.

The blue (grey) enamels on plate JS have a higher NiO/CoO ratio than the blue (purple)
enamels: 0.4–0.6 compared to 0.1–0.3. The difference may be indicative of the contemporaneous
use of two cobalt ores or a deliberate addition of nickel as a shading agent, as was common in
Persian cobalt blue decoration (Shaw 1968, 5). However, a similar high nickel to cobalt ratio
occurring in the green (blue) enamels on object BS dating to 1755–63, compared with the low
nickel to cobalt ratios in the earlier enamels, may suggest that a nickel-rich cobalt ore was
exploited sometime between 1740 and c.1755.

Purple/pink The tin and gold components are consistent with the raw materials used in the
preparation of ‘purple’ recorded in Höroldt’s colour book, which documents the base materials to
consist of a ‘precipitate from gold and tin solution’ (Sterba 1991, 22). A page from a notebook in
the Meissen factory archive attributed to Samuel Stötzel, and dated to 1731 (Carbert 1980),
describes the preparation of the ‘finest purple’ as using English tin and a gold ducat dissolved
separately in aqua regia. This preparation is indicative of the pigment Purple of Cassius,
developed in the late 17th century by Andreas Cassius, and prepared from a precipitation of a
mixture of gold trichloride and stannous chloride solutions (Shaw 1968, 37). The hue and shade
of purple is dependent on the colloidal size of the gold. Copper and cobalt were used with Purple
of Cassius in contemporary du Paquier purples to create more nuanced tones (Bezur and Casadio
2009); however, neither of these elements was detected here.

Red/orange The presence of iron (Fe2O3) indicates that both red and orange enamels represent
Höroldt’s ‘iron red’, manufactured from ‘iron ore, steel filings and rust’ (Weiss 1971, 201). An
undated factory recipe published by Heintze (1910) states that ‘various materials could be used
to give a red colour but they are not equal to calamine and vitriol, I therefore find it unnecessary
to use them’. Vitriol and calamine were common names for iron sulphate and zinc ore in the 18th
and 19th centuries, zinc being added to brighten the tone (Shaw 1968, 29). Zinc is absent from
the red and orange enamels on objects dating to before c. 1755–63, which are likely to predate
the recipe. Heintze (1910) notes that purity of the red shades was soon recognized as being
affected by copper in the iron sulphate ore. Trace amounts of copper are present in the orange
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enamel on plate JS, dating to 1763. At some point between the date of the recipe and Heintze’s
publication in 1910, copper is precipitated from vitriol to obtain pure iron sulphate. On the basis
of these documents, there are three potential compositional markers for dating iron red colours:
iron with trace levels of copper; iron with trace levels of copper and zinc; and iron with zinc.

Brown The presence of iron and manganese in each of the brown enamels are representative of
the calcinated pigment, Burnt Umber. Höroldt documents browns as being prepared from ‘the
best English Umber’ (Seyffarth 1957). Three preparations of brown are apparent in the results.
The first preparation, on plate GG, contains iron, manganese and antimony and probably repre-
sents Höroldt’s ‘Contour Brown’; the second preparation, on plate BS, contains iron, manganese
and low zinc; and the third preparation, on plate JS, contains iron, manganese, tin and cobalt.
Elevated manganese in the third preparation (2.5% MnO) indicates that the shade was produced
from a mixture of umber and manganese-black, with tin added to lighten or opacify the shade.

Black The results here suggest that at least three recipes for black were in use: a manganese,
iron and cobalt black; a manganese-rich black; and a combinational black that utilized a range of
pigments depending on the required hue. The manganese, iron and cobalt pigment is consistent
with Höroldt’s ‘good black’ preparation, which consisted of well-mixed precipitates of cobalt,
umber and manganese ore (Heintze 1910; Seyffarth 1957). Although Höroldt only mentions one
recipe for black, Weiss (1971, 201) notes that prior to 1723, black was made from lead ash
and manganese oxide . The manganese-rich black present on vase AR1, dating to 1725–33, is
therefore consistent with this earlier factory recipe. Manganese-rich blacks were also utilized at
du Paquier, alone or in combination with copper-oxide blacks (Bezur and Casadio 2009).
However, no copper-rich pigments were identified in the black enamels investigated here.

Copper/pink The copper-pink colour present on vase AR1 is often referred to as ‘Böttger lustre’
and relates compositionally to the ‘mother of pearl or copper colour’ produced from fulminating
gold listed in Höroldt’s enamel preparation book (Seyffarth 1957). Fulminating gold had been
know to alchemists since the medieval period (Steinhauser et al. 2008) and was first used at
Meissen as an enamel colour under Böttger. The preparation is described by Höroldt as a
precipitate of gold in a solution of aqua regis (nitro-hydrochloric acid) and oil of tartar (concen-
trated potassium carbonate solution) (Seyffarth 1957). Once dry, the pigment needed to be stored
in a cool place to prevent it from exploding in the heat.

Stylistically, Kuhn (2011, pers. comm., 21 April) associates the use of the colour with the
1720s and 1730s, in particular to fill out elaborate gilt cartouches that are characteristic of the
baroque-style decoration of the period. During this period, the lustre was used less commonly like
a normal enamel colour in painted decoration, as is the case with its occurrence on vase AR1,
dating to 1725–33.

Gold The variety in composition of the gold decoration may be representative of production by
a number of different workshops. In the early 18th century, independent goldsmiths were
commissioned by the factory to decorate enamelled and plain white wares (Honey 1954, 147ff.).
Contemporary factory reports also note that by 1728 Meissen craftsmen had developed an
in-house technique for painted gold decoration of a similar quality to that produced by the
independent goldsmiths (Pietsch 2010). Despite this, large numbers of porcelains are recorded as
being sent to the studios of George Funcke in Dresden, Conrad Christophe Hunger in Thuringia,
and Abraham and Batholomaus Seuter in Augsburg (Walcha 1981; Rückert 1990; Pietsch 2010).
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The in-house technique for the preparation of gold powder is described in Höroldt’s recipe
book as being produced from Dutch ducats, dissolved in aqua regia with the addition of
‘Hungarian vitriol’ (iron sulphate) (Schärer 1996). Dutch ducats were specifically recommended
because they were ‘easier to cut’, a fact supported by Hunt (1979), who states that, at that time,
Dutch ducats had the highest gold content of any other coinage in Europe, 98.6%. The low levels
of silver and presence of zinc most probably represent impurities in the gold; however, a larger
compositional study of gilt porcelain decorated by known goldsmiths may help to determine
technical differences between studios.

In a study of contemporary porcelain from the du Paquier factory, Bezur and Casadio (2009)
showed that the tone of the gold is indicative of both composition and application technique. They
showed that red golds were achieved by the addition of copper oxide to gold powder, and by the
application of gilding over an iron-rich bole, and a cool green tone was prepared by adding
powdered silver. In comparison, the gilt areas on the Meissen objects have a red tone but lack
notable levels of iron, silver or copper. The compositions are consistent with the application of
gilding over an iron-red bole; the bole is not detected due to the thickness of the gilt layer and the
excitation energy.

Summary This study has characterized 12 of the enamel paints documented by Höroldt to be
in use at Meissen by 1731. These are summarized in Table 6, along with the range of elements
that seem to act as markers for these colours. Two additional black preparations have been
identified. Höroldt’s ‘green’, ‘yellow in the Japanese manner’, ‘sea green in the Japanese
manner’, ‘old Japanese purple’ and ‘silver’ are yet to be identified. More investigations by
HH-XRF of securely dated objects are currently under way, with the aim of further charac-
terizing the 18th-century Meissen palette and identifying the dates at which new colours were
introduced.

CONCLUSIONS

This unique study of fragmented pieces of well-dated 18th-century Meissen porcelains has
permitted compositional analysis of bodies, glaze and fired enamels, which can now be used as
a baseline data set for comparative studies and further non-invasive investigation. Both body and
glaze compositions are consistent with a date later than c.1725–30, when the change from a
lime-based flux to a potassium-rich feldspar flux is documented to have occurred. Overglaze
enamels are consistent with 18th-century technologies described by contemporary documents,
and comprise 12 of the enamel preparations documented to have been developed by 1731. The
results have shown that mixtures of pigments, in addition to documented enamel preparations,
were in use between c.1725 and 1763. Analyses also indicate the potential for cobalt/nickel ratios
and other minor and trace elements to further demarcate the chronology of the Meissen palette.
The next stage of this project is to conduct a systematic characterization survey of Meissen
technology by extending the sample set of 18th-century porcelain through non-destructive analy-
sis of complete objects using handheld HH-XRF.
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