L'emogas analisi (EGA) Arterial Blood Gases (ABG) analysis

Marianna Maranghi

Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

1. Analizza il Ph

a) Identifica il valore e classificalo

<7.35 Acidosi 7.35-7.45 pH normale o compensato

>7.45 Alcalosi

N.B.

- 7.35-7.4: normale/acido
- 7.4-7.45: normale/alcalino
- b) Appuntalo (normale, acidosi, alcalosi)

Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

2. Analizza la CO2

a) Identifica il valore e classificalo

<35 Alcalosi 35-45 mmHg Normale >45 Acidosi

b) Appuntalo (normale, acidosi, alcalosi)

Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

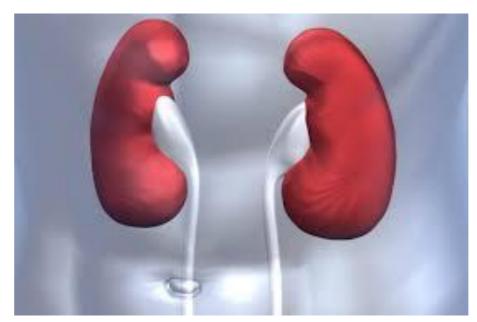
3. Analizza l' HCO3

a) Identifica il valore e classificalo

<22 Acidosi 22-26 mEq/L Normale >26 Alcalosi

b) Appuntalo (normale, acidosi, alcalosi)

Leggere l'EGA in 6 punti


- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

CO2 disordine respiratorio

HCO3
disordine
renale/metabolico

CO2 disordine respiratorio

рН	CO2	Interpretazione
Acidosi ▼	Acidosi 🛦	Acidosi respiratoria
Alcalosi ▲	Alcalosi ▼	Alcalosi respiratoria

N.B. Se discordanti vedi HCO3

HCO3
disordine
renale/metabolico

рН	HCO3	Interpretazione
Acidosi ▼	Acidosi ▼	Acidosi metabolica
Alcalosi ▲	Alcalosi ▲	Alcalosi metabolica

N.B. Se discordanti vedi CO2

CO2 e pH vanno in direzioni opposte per abbinarsi

рН	CO2	Interpretazione
Acidosi ▼	Acidosi 🛦	Acidosi respiratoria
Alcalosi ▲	Alcalosi ▼	Alcalosi respiratoria

N.B. Se discordanti vedi HCO3

HCO3 e pH vanno nella stessa direzione per abbinarsi

рН	HCO3	Interpretazione
Acidosi ▼	Acidosi ▼	Acidosi metabolica
Alcalosi ▲	Alcalosi ▲	Alcalosi metabolica

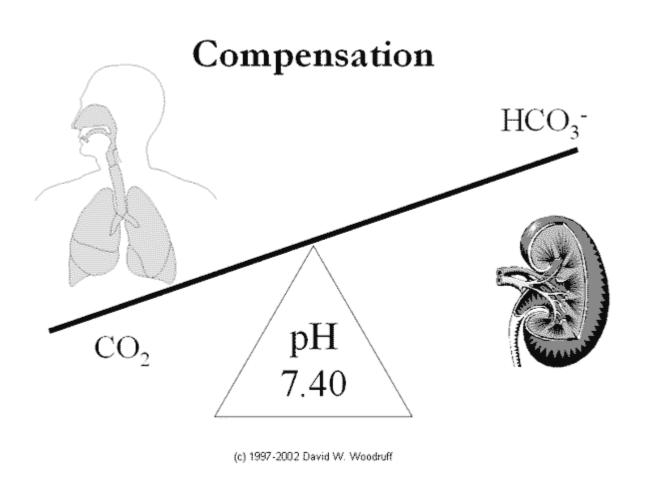
N.B. Se discordanti vedi CO2

CO2 e pH vanno in direzioni opposte per abbinarsi

HCO3 e pH vanno nella stessa direzione per abbinarsi

Acronimo ROME:

- Respiratory Opposite
- <u>M</u>etabolic <u>E</u>qual

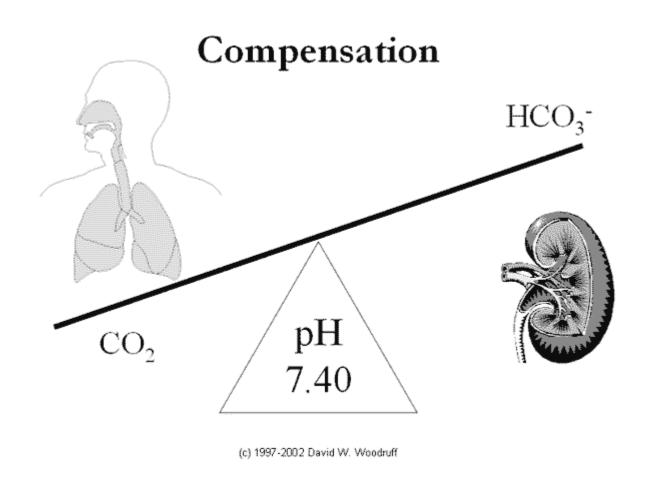


Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

E' un segno di compenso!!

Polmone


Bilancia il pH aumentando o diminuendo la frequenza respiratoria (e quindi modulando la CO2):

- Respiri frequenti e profondi:
- **▼** CO2 (**▲** pH)
- Respiri lenti e superficiali:
- **▲** CO2 (**▼** pH)

Tempo di azione: 1-15 minuti

E' un segno di compenso!!

Rene

Bilancia il pH:

■riassorbendo HCO3 (▲ pH)

eliminando ioni idrogeno(H+) (▲ pH)

Tempo di azione: ore, giorni

E' un segno di compenso!!

Esempio

рН	CO2	HCO3	Interpretazione
Acidosi	Acidosi	Alcalosi	Acidosi respiratoria con compenso metabolico

- 1. CO2 concordante con pH (acidosi respiratoria)
- 2. HCO3 opposto al pH (compenso metabolico)

E' un segno di compenso!!

- 1. Compenso completo: pH torna normale
- 2. Compenso parziale: pH resta "anormale"

Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

6. Analizza la p02 e la Sat02

a) Verifica il valore di pO2

80-100 mmHg Normale

b) Verifica il valore di SatO2

95-100% Normale Se inferiori al normale: ipossiemia

рН	7.27	7.35-7.45	acidosi
CO2	53	35-45 mmHg	acidosi
HCO3	24	22-26 mEq/L	normale
pO2	50	80-100 mmHg	ipossiemia
SatO2	79%	95-100%	ipossiemia

- 1. pH < 7.35 = acidosi
- 2. CO2>45 = acidosi
- 3. HCO3 normale
- 4. Acidosi respiratoria: acidosi perchè pH acido, respiratoria perchè la CO2 si abbina al pH
- 5. HCO3 normale = no compenso
- 6. pO2 e SatO2 basse = ipossiemia

рН	7.27	7.35-7.45	acidosi
CO2	53	35-45 mmHg	acidosi
HCO3	24	22-26 mEq/L	normale
pO2	50	80-100 mmHg	ipossiemia
SatO2	79%	95-100%	ipossiemia

<u>Diagnosi</u>

Acidosi respiratoria non compensata con ipossia

Causa

Insufficienza respiratoria acuta

рН	7.52	7.35-7.45	alcalosi
CO2	29	35-45 mmHg	alcalosi
HCO3	23	22-26 mEq/L	normale
pO2	100	80-100 mmHg	normale
SatO2	98%	95-100%	normale

- 1. pH>7.45 = alcalosi
- 2. CO2<35 = alcalosi
- 3. HCO3 normale
- Alcalosi respiratoria: alcalosi perchè pH alcalino, respiratoria perchè la CO2 si abbina al pH
- 5. HCO3 normale = no compenso
- 6. pO2 e SatO2 normali = normale ossigenazione

рН	7.52	7.35-7.45	alcalosi
CO2	29	35-45 mmHg	alcalosi
HCO3	23	22-26 mEq/L	normale
pO2	100	80-100 mmHg	normale
SatO2	98%	95-100%	normale

Diagnosi

Alcalosi respiratoria non compensata

Causa

Iperventilazione

рН	7.18	7.35-7.45	acidosi
CO2	44	35-45 mmHg	normale
HCO3	16	22-26 mEq/L	acidosi
pO2	92	80-100 mmHg	normale
SatO2	95%	95-100%	normale

- 1. pH < 7.35 = acidosi
- 2. CO2 = normale
- 3. HCO3<22 = acidosi
- 4. Acidosi metabolica: acidosi perchè pH acido, metabolica perchè l'HCO3 si abbina al pH
- 5. CO2 normale = no compenso
- 6. pO2 e SatO2 normali = normale ossigenazione

рН	7.18	7.35-7.45	acidosi
CO2	44	35-45 mmHg	normale
HCO3	16	22-26 mEq/L	acidosi
pO2	92	80-100 mmHg	normale
SatO2	95%	95-100%	normale

<u>Diagnosi</u>

Acidosi metabolcia non compensata

Causa

Disordine metabolico acuto, come la chetoacidosi diabetica

рН	7.60	7.35-7.45	alcalosi
CO2	37	35-45 mmHg	normale
HCO3	35	22-26 mEq/L	alcalosi
pO2	92	80-100 mmHg	normale
SatO2	98%	95-100%	normale

- 1. pH>7.45 = alcalosi
- 2. CO2 = normale
- 3. HCO3>26 = alcalosi
- Alcalosi metabolica: alcalosi perchè pH alcalino, metabolica perchè l'HCO3 si abbina al pH
- 5. CO2 normale = no compenso
- 6. pO2 e SatO2 normali = normale ossigenazione

рН	7.60	7.35-7.45	alcalosi
CO2	37	35-45 mmHg	normale
HCO3	35	22-26 mEq/L	alcalosi
pO2	92	80-100 mmHg	normale
SatO2	98%	95-100%	normale

Diagnosi

Alcalosi metabolcia non compensata

Causa

Vomito

рН	7.30	7.35-7.45	acidosi
CO2	30	35-45 mmHg	alcalosi
HCO3	14	22-26 mEq/L	acidosi
pO2	68	80-100 mmHg	ipossiemia
SatO2	92%	95-100%	ipossiemia

- 1. pH < 7.35 = acidosi
- 2. CO2<35 = alcalosi
- 3. HCO3<22 = acidosi
- 4. Acidosi metabolica: acidosi perchè pH acido, metabolica perchè l'HCO3 si abbina al pH
- 5. CO2 = acidosi, opposta al pH = compenso (parziale: pH acido)
- 6. pO2 e SatO2 basse = ipossiemia

рН	7.30	7.35-7.45	acidosi
CO2	30	35-45 mmHg	alcalosi
HCO3	14	22-26 mEq/L	acidosi
pO2	68	80-100 mmHg	ipossiemia
SatO2	92%	95-100%	ipossiemia

<u>Diagnosi</u>

Acidosi metabolcia parzialmente compensata con ipossia

Causa

Insufficienza renale, diarrea, chetoacidosi metabolica, shock.

Leggere l'EGA in 6 punti

- 1. Il pH è normale?
- 2. La CO2 è normale?
- 3. L'HCO3 è normale?
- 4. Accoppia la CO2 o l' HCO3 con il pH
- 5. I valori di CO2 o di HCO3 vanno nella direzione opposta del pH?
- 6. La pO2 e la saturazione di O2 sono normali?

рН	7.32	7.35-7.45	
CO2	27	35-45 mmHg	
HCO3	13.9	22-26 mEq/L	
pO2	100	80-100 mmHg	
SatO2	99%	95-100%	

<u>Diagnosi</u>

рН	7.32	7.35-7.45	acidosi
CO2	27	35-45 mmHg	alcalosi
HCO3	13.9	22-26 mEq/L	acidosi
pO2	100	80-100 mmHg	normale
SatO2	99%	95-100%	normale

<u>Diagnosi</u>

Acidosi metabolica parzialmente compensata

рН	7.37	7.35-7.45	
CO2	60	35-45 mmHg	
HCO3	34.7	22-26 mEq/L	
pO2	72	80-100 mmHg	
SatO2	94%	95-100%	

<u>Diagnosi</u>

рН	7.37	7.35-7.45	normale/acido
CO2	60	35-45 mmHg	acidosi
HCO3	34.7	22-26 mEq/L	alcalosi
pO2	72	80-100 mmHg	ipossiemia
SatO2	94%	95-100%	ipossiemia

<u>Diagnosi</u>

Acidosi respiratoria compensata

рН	7.36	7.35-7.45	
CO2	26	35-45 mmHg	
HCO3	13.7	22-26 mEq/L	
pO2	97.6	80-100 mmHg	
SatO2	98%	95-100%	

<u>Diagnosi</u>

рН	7.36	7.35-7.45	normale/acido
CO2	26	35-45 mmHg	alcalosi
HCO3	13.7	22-26 mEq/L	acidosi
pO2	97.6	80-100 mmHg	normale
SatO2	98%	95-100%	normale

<u>Diagnosi</u>

Acidosi metabolica compensata

рН	7.46	7.35-7.45	
CO2	42	35-45 mmHg	
HCO3	29.9	22-26 mEq/L	
pO2	86	80-100 mmHg	
SatO2	96%	95-100%	

<u>Diagnosi</u>

рН	7.46	7.35-7.45	alcalosi
CO2	41	35-45 mmHg	normale
HCO3	29.9	22-26 mEq/L	alcalosi
pO2	86	80-100 mmHg	normale
SatO2	96%	95-100%	normale

<u>Diagnosi</u>

Alcalosi metabolica non compensata

рН	7.37	7.35-7.45	
CO2	29	35-45 mmHg	
HCO3	16.8	22-26 mEq/L	
pO2	86	80-100 mmHg	
SatO2	96%	95-100%	

<u>Diagnosi</u>

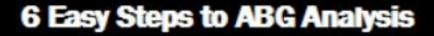
рН	7.37	7.35-7.45	normale/acido
CO2	29	35-45 mmHg	alcalosi
HCO3	16.8	22-26 mEq/L	acidosi
pO2	86	80-100 mmHg	normale
SatO2	96%	95-100%	normale

<u>Diagnosi</u>

Acidosi metabolica compensata

рН	7.15	7.35-7.45	
CO2	50	35-45 mmHg	
HCO3	17	22-26 mEq/L	
pO2	54	80-100 mmHg	
SatO2	73%	95-100%	

<u>Diagnosi</u>


рН	7.15	7.35-7.45	acidosi
CO2	50	35-45 mmHg	acidosi
HCO3	17	22-26 mEq/L	acidosi
pO2	54	80-100 mmHg ipossiemia	
SatO2	73%	95-100%	ipossiemia

<u>Diagnosi</u>

Disturbo misto: acidosi respiratoria e metabolica

Emogasanalisi

A STEP-BY-STEP METHOD FOR ANALYZING ABGS:

- 1. Is the pH out of range?
- 2. Secondly, is the pCO2 normal?
- 3. Thirdly, is the HCO3 out of range?
- 4. Next, match the abnormal result with the pH.
- 5. Fifth, does the PaCO2 or HCO3 go in the opposite direction of the pH?
- 6. Lastly, is the pO2 and O2 saturation out of range?

Reference Ranges:

pH 7.35-7.45

pCO2 35-45 mmHg

H003 22-26 mEq/L

pO2 80-100 mmHg

02 Sat 95-100%

Anion Gap

AG = Na+ + K+- (Cl- + HCO3-) (Major cations- major anions) Normal = 10-15 mEq/L

Compensation:

Compensation occurs to maintain acid/base balance. Compensation will always be from the opposing system. If the pH remains abnormal, the compensation is partial. If the pH returns to normal, the compensation is complete.

System causing imbal.	Compensating system
Respiratory (pCO2)	Metabolic (HCO3)
Metabolic (HCO3)	Respiratory (pCO2)

