de.form. are ing

graziano.mario.valenti
de.form. are ing
graziano.mario.valenti
Introduction
11 Absolute and general truths
11 Two-dimensional drawing and three-dimensional modeling
13 Modeling of geometries and modeling of objects
15 Mathematical modeling and numerical modeling

Orientation
17 GUI: Graphical User Interface
17 Drop-down menu - Main groups of commands
19 Toolbars
21 Area of dialogue
21 Structure
21 Model window
23 Characteristics of the virtual space
23 Model space, layout space
23 Unit of measurement - Scale of the model
25 Absolute, relative and polar coordinates
27 Construction plane
29 Drawing aids
29 Grid, orthogonality and discreet inclination
29 O’Snap
31 Work organisation
31 Layers
33 Libraries
33 External references
35 Assemblies
37 Visualization
37 Viewport
37 Pan zoom orbit
39 Camera setting
41 Saving views
41 Light Models

Geometric primitives and objects
45 From the point to the solid, from the solid to the point
45 Points
47 Lines
49 Surfaces
49 Solids
51 Objects
51 Elementary models
51 Parametric and variational models
51 Processing

Editing: basic techniques
53 Move, copy, rotate
55 Roto-transaltio, align, polar array, rectangular array
55 Scale, stretch, offset, trim, extend
57 Chamfer, fillet
57 Explode, implode
Solid modeling: simple affixing
61 Table

Solid modeling: trim, dig, unite, chamfer, fillet
65 Trim, section
65 Boolean operations
65 Chamfer, fillet
67 Kitchen knife holder

Solid modeling: roto-translating profiles
77 Paimio Armchair - Alvar Aalto
81 Sgabello X600 - Alvar Aalto
85 Decanter

Surface modeling: creation, implosion in solids
89 Surfaces defined by three or four separate points in space
89 Surfaces defined by a coplanar mixtilinear surface
90 SAMA Lamp - Gregorio Spini
93 Pirce - Giuseppe Maurizio Scutellà
95 Capping Surfaces
95 Surfaces defined by a line and a point
95 Surfaces defined by two lines PLACED ANYWHERE in THE space
99 Albert & Victoria - Ron Arad
100 Surfaces defined by three or four consecutive AND JOINED lines in THE space
102 Dalù - Vico Magistretti
107 Surfaces defined by an array of lines and by one or two guide rails
107 Fiocco armchair - Gruppo 14
110 Vase
123 Surfaces defined by grid lines
123 Surfaces defined by a point cloud
125 Surfaces defined by roto-translation of a line
126 Juice Salif - Philippe Stark
127 Implosion of surfaces in solids

Modeling of lines: locus, freeform
131 Digital representations of mathematical functions
131 Parametric form
133 The U parameter
135 The representation of parametric space
135 From exact geometry to approximated geometry
137 Polynomial forms
137 Basis function
138 Hermite
140 Bezier
143 B-Spline
147 Non-Uniform B-Spline
148 Non Uniform Rational B-Spline NURBS
149 NURBS surfaces
149 Modeling of curves and surfaces NURBS
Transformations: advanced techniques, quality verification

151 Nurbs by control points
153 Nurbs by interpolation points
155 Weight of the control points
155 Chamfer and surface filleting
155 Blending between surfaces
157 Solids
157 Continuity
159 G0 Positional continuity
159 G1 continuity of tangency
159 G2 Continuity of curvature
159 G3 and above continuity of torsion
159 C0,…,Cn parametric continuity
161 Control tools

Deformations

165 Bend
165 Inflect spring (deformation line)
165 Inflect spring (deformation box)
167 Twist
167 Computer fan
169 Bookcase MYDNA - Joel Escalona
169 Tilt, shear
171 Taper, radial flexion
171 Morphing
171 Deformation grid
173 Dynamic deformations

Polygonal modeling

175 Elements of polygonal modeling
177 Construction and editing of the polyhedron
177 Smoothing
177 Subdivision surfaces
179 Applications

Parametrical and variational modeling

181 Prefabricated panel (geometric method)
183 Prefabricated panel (modeling by objects)
187 Kayak
Modellazione di linee: luogo geometrico, forma libera
Modeling of lines: locus, freeform

Le curve aventi forma libera, molto più frequenti in natura delle curve luogo geometrico, sono da sempre oggetto di amore e odio da parte del progettista: da un lato affascinato dalla sensualità e dalla libertà espressiva che le caratterizza; dall’altro preoccupato di non riuscire a comunicare con esse la stessa purezza formale e riconoscibilità caratteristiche delle curve luogo geometrico.

Il tracciamento delle curve di forma libera è da lungo tempo oggetto di studio, condotto inizialmente per via meccanica e oggi prevalentemente per via digitale. Nel disegno tradizionale la generazione di queste curve è sorretta dall’abilità del gesto, la sicurezza dell’esperienza, la conoscenza della geometria, quest’ultima necessaria a guidare il segno nel rispetto delle relazioni di coincidenza, curvatura e tangenza che la curva ha con il contesto. Nello specifico del disegno tecnico tradizionale, ci si avvale anche di strumenti di aiuto, quali i curvilinei e i righelli flessibili. I primi sono di norma utilizzati quando il modello grafico è di piccole dimensione; gli altri sono invece preferiti, e talvolta insostituibili, quando si opera nella grande dimensione, per esempio nella realizzazione 1:1 di modelli grafici di mezzi di trasporto quali aeri, imbarcazioni, automobili.

I curvilinei – conosciuti anche come French curve – sono mascherine, solitamente di plastica o legno, che presentano curve di diverso genere e dimensione. Il set più diffuso consta di tre mascherine dedicate al tracciamento delle coniche ellisse, iperbole e parabola. Identificati un certo numero di punti appartenenti alla forma libera da disegnare, si procede a tracciare la curva per tratti, disponendo il curvilineo in modo che intercetti almeno due punti e rispetti la tangenza con la traiettoria immaginaria dei tratti limitrofi della curva da tracciare.

I righelli flessibili – noti anche con il nome di Spline – sono sottili asticelle di plastica legno o metallo che vengono adagiati sul disegno e vincolati, con l’aiuto di pesi, a passare per un certo numero di punti, individuati sul foglio di carta, riproducendo così la curva desiderata. Nel disegno digitale il problema della generazione delle forme libere naturalmente è affrontato e risolto per via analitica.
Freeform curves, much more frequent in nature than locus curves, have always been both loved and hated by the designer who, on one hand, is fascinated by the sensuality and expressive freedom that characterises them and, on the other hand, is concerned that they do not have the same formal purity and recognition that characterizes the locus curves.

The tracing of free form curves has been object of study for a long time, carried on initially with mechanical means and today mostly with digital means. In traditional drawing the creation of these curves is supported by the skill of the gesture, the confidence of experience and the knowledge of geometry. The latter is required to draw the line while respecting the curvature and tangency relations that the line has with the context.

In the context of traditional technical drawing, tools such as French curves and flexible rulers are used as an aid. The former are normally used when the graphic model has a small size; the latter are favoured, and sometimes are irreplaceable, when the graphic has large dimensions, for example, in the 1:1 realization of graphical models of vehicles such as airplanes, boats, and cars.

French curves are masks, usually in plastic or wood, which have curves of different kinds and sizes. The most widespread set consists of three curves for the tracing of conical ellipses, hyperboles and parables. Once a certain number of points of the free-form have been identified, the curves are traced one stroke at the time by placing the French curve in a way that it intercepts at least two points of the curves, and respects the tangency of the curve with the imaginary trajectory of the strokes that are adjacent to the curve to be traced.

Flexible rulers - also known as Splines - are thin crossbars in plastic, wood or metal. They are placed on the drawing and are forced, by using weights, to go through a number of points identified on the paper, thus reproducing the desired curve. In digital drawing the issue of generating free forms is obviously addressed and solved analytically.
Tuttavia, l’inserimento dei dati necessari a definire il problema - ossia l’insieme delle informazioni utili a delineare solo una curva, quella che desideriamo, fra le infinite possibili - ha modalità operative fondate su considerazioni di carattere geometrico, analoghe e a volte identiche a quelle utilizzate per il disegno tradizionale.

A partire dagli anni ’60 molteplici attività di ricerca sono state condotte con lo scopo di concepire e perfezionare i modelli, la costruzione e la rappresentazione digitale delle forme libere; un’evoluzione lunga, ancora oggi in corso, caratterizzata da diverse tappe significative. Fra queste vale la pena di approfondire quelle che hanno portato alla definizione delle curve Nurbs. Con questo acronimo si identifica un modello matematico, utilizzato nel disegno digitale per rappresentare curve e superfici, sia luogo geometrico, sia di forma libera. Il termine Nurbs, che significa Non Uniform Rational B Spline, rappresenta una soluzione generale del problema, capace di soddisfare modelli particolari di cui ne rappresenta l’evoluzione. In termini sintetici ed esemplificativi, la curva di Hermite è un caso particolare di curva di Bézier, che è un caso particolare di B-Spline uniforme, sottoinsieme delle NonUniform B-Spline, a loro volta sottoinsieme delle NonUniform Rational B-Spline: Nurbs.

RAPPRESENTAZIONE DIGITALE DI FUNZIONI MATEMATICHE

Non è facile orientarsi all’interno della teoria matematica sulla quale poggiano le Nurbs, per coloro che sono abituati a modellare esclusivamente per via intuitiva o empirica; ciò non accade perché gli argomenti siano particolarmente ostici da comprendere, piuttosto perché è difficile assimilarli in un sistema organico, finalizzato a supportare l’attività pratica della modellazione. Una chiave di lettura, capace di mettere in risalto la problematica del problema, può essere di valido aiuto e rendere più agevole l’approfondimento. Al fine di rendere meno articolata l’illustrazione, verrà focalizzata l’attenzione sull’approssimazione di forme libere con polinomi di 3° grado; la trattazione per gradi superiori è più estesa ma concettualmente analoga.

La forma parametrica

Vi sono diverse forme per esprimere con la matematica la medesima curva. Fra queste ricordiamo le equazioni:

\[y = f(x) \quad \text{implicita} \]

\[f(x, y) \quad \text{esplicita} \]

\[x = x(u), \quad y = y(u) \quad \text{parametrica} \]

La forma esplicita e la forma implicita sono dipendenti dal sistema di assi cartesiani utilizzato; è facile intuire che questa proprietà estinseca della funzione sia considerata una complessità all’interno dei software di modellazione, nei quali ricorrono frequentemente le operazioni di roto-traslazione e scala delle entità geometriche. La forma esplicita, inoltre, può restituire valori indeterminati, infiniti o doppi generando ulteriori problematiche di interpretazione e calcolo dei risultati, tali da rendere disagevole la traduzione in algoritmi aventi carattere generale, capaci pertanto di operare su un ampio varietà di curve. La forma parametrica, grazie alla sua natura estinseca, è libera dalle problematiche illustrate, pertanto è la scelta preferita per la rappresentazione delle curve, all’interno degli algoritmi dei programmi di modellazione geometrica.
However, inputting the information necessary to define the issue - that is, inputting the information necessary to draw one specific curve among infinite - has operational modalities that are based on geometric considerations, similar, and sometimes identical, to those used in traditional drawing. Starting in the 60s, many research activities have aimed at conceiving and perfecting the models, the construction, and the digital representation of free forms; it has been a long evolution, which is still in progress, that has been characterised by different and significant stages. Among these, it is worth investigating those that have led to the definition of the NURBS curves. This acronym identifies a mathematical model used in digital drawing to represent curves and surfaces, both locus and freeform. The term NURBS means Non Uniform Rational B Spline. NURBS curves are a general solution to the problem, and are able to represent specific models, of which the NURBS curve is a development. In synthetic and exemplifying terms, the Hermite curve is a particular case of a Bézier curve, which is a particular case of uniform B-Spline, which is a subset of the NonUniform B-splines, which in turn are subsets of the NonUniform Rational B-spline: NURBS.

DIGITAL REPRESENTATIONS OF MATHEMATICAL FUNCTIONS

For those who are accustomed to modeling exclusively by intuitive or empirical means, it is not easy to orientate within the mathematical theory on which NURBS are based.; This is not because the topics are particularly difficult to understand, but because it is difficult to absorb them in an organic way that is aimed at supporting the modeling activity. A key that highlights the computational issue may be helpful and may facilitate the investigation. In order to simplify the discussion, the attention will be focused on the approximation of freeforms with 3rd degree polynomials; the treatment of higher degrees polynomial is more complex, but is conceptually similar.

Parametric form

A same curve can be expressed mathematically in many different ways. Among these are the following equations:

\[
\begin{align*}
 y &= f(x) \\
 f(x, y) &= \text{explicit} \\
 x &= x(u), \quad y = y(u) \\
 \end{align*}
\]

The implicit and explicit functions refer to the specific Cartesian system that is used; it is easy to understand that this extrinsic property of the function is a complexity in the modeling software, in which the roto-translation and scale operations of the geometric entities are used frequently. Moreover, the explicit function may be indeterminate, infinite or may have multiple values. This creates further issues in the computation and interpretation of the results, which in turn makes it very difficult to develop general algorithms that can be applied to a wider spectrum of curves. In contrast, thanks to its intrinsic nature, the parametric function is free from these issues and, therefore, is the preferred choice for representing curves in the algorithms of the geometric modeling software.
Il parametro U
La forma parametrica di una curva tridimensionale è costituita da tre funzioni che producono il valore delle coordinate di ogni punto della curva, al variare di un parametro comune, nello specifico denominato U.

\[
\begin{align*}
x &= x(u) \\
y &= y(u) \\
z &= z(u)
\end{align*}
\]

Il parametro U, è generalmente normalizzato nell’intervallo compreso fra 0 e 1. Eccola a sufficienza e semplici esempi di equazione parametrica, che possiamo divertirci a sperimentare all’interno dei modellatori che permettono la rappresentazione delle funzioni.

L’equazione:
\[
\begin{align*}
x &= a + l \cdot u \\
y &= b + m \cdot u \\
z &= c + n \cdot u
\end{align*}
\]
rappresenta una linea retta avente origine e termine rispettivamente nei punti:

\[
P1 \equiv [a, b, c] \quad P2 \equiv [a + l, b + m, c + n]
\]

L’equazione:
\[
\begin{align*}
x &= u \\
y &= u^2 \\
z &= 0
\end{align*}
\]
rappresenta una parabola appartenente al piano Z passante per l’origine.

L’equazione:
\[
\begin{align*}
x &= a \cos (u) \\
y &= a \sin (u) \\
z &= b \cdot u
\end{align*}
\]
infine, rappresenta un elica cilindrica che si sviluppa lungo l’asse Z e avente le spire distanziate dal valore b.

Strumenti per la rappresentazione della curve parametriche
The U parameter

The parametric form of a three-dimensional curve consists of three functions that, upon variation of a common parameter, which in this case is called U, determine the values of the coordinates of each point of the curve.

\[
\begin{align*}
 x &= x(u) \\
 y &= y(u) & 0 < u < 1 \\
 z &= z(u)
\end{align*}
\]

The U parameter is generally normalized in the interval \([0,1]\).

The following are simple examples of parametric equations that we can use to experiment within the software that allow for the representation of the functions.

The system of equations:

\[
\begin{align*}
 x &= a + l u \\
 y &= b + m u \\
 z &= c + n u
\end{align*}
\]

represent a straight line with origin and end at points

\[P1 \equiv [a, b, c] \quad P2 \equiv [a + l, b + m, c + n] \]

The system of equations:

\[
\begin{align*}
 x &= u \\
 y &= u^2 \\
 z &= 0
\end{align*}
\]

represents a parabola on the Z plane that passes through the origin. Finally, the system of equations:

\[
\begin{align*}
 x &= a \cos (u) \\
 y &= a \sin (u) \\
 z &= b u
\end{align*}
\]

represents a cylindrical helix that develops along the Z axis and has the spires at a fixed distance of \(b\).
La rappresentazione dello spazio parametrico
Ogni curva parametrica, può essere rappresentata in grafici bidimensionali ognuno associato ad ogni singola componente. Per esempio, una curva parametrica tridimensionale, è rappresentabile mediante tre grafici bidimensionali aventi in ordinata il valore di \(u \) e in ascissa ognuna delle tre componenti. La comprensione di questi grafici è un valido aiuto per assimilare il concetto di basis function che verrà trattato in seguito.

Dalla geometria esatta alla geometria approssimata
Ognuna delle semplici funzioni parametriche continue fin qui illustrate descrivono esattamente uno specifico luogo geometrico. È facile intuire che nella programmazione di un software di modellazione sia necessario scrivere per ognuna di esse un algoritmo specializzato.

Ricollegandoci a quanto illustrato nel capitolo “Primitive geometriche e oggetti”, ogni luogo geometrico tradotto in forma di algoritmo e reso disponibile all’interno del software di modellazione assurge a ruolo di ‘primitiva’. Se da un lato questo approccio è formalmente rigoroso – geometria esatta – per contro è molto dispendioso in termini di programmazione e di computazione. La programmazione è complessa perché per ogni primitiva, oltre all’algoritmo di rappresentazione-costruzione, è necessario elaborarne altri per soddisfare l’interazione (rototraslazione, scala, intersezione, divisione, estensione, etc.). La soluzione computazionale, inoltre, non è uniformabile con il crescere del grado della curva. L’utilizzo di Polinomi, in sostituzione delle funzioni descriventi il luogo geometrico, risolvono significativamente entrambi i problemi. Il Teorema di Approssimazione di Weierstrass afferma che qualsiasi funzione reale e continua definita in un intervallo chiuso e limitato è approssimabile, con qualunque livello di accuratezza, utilizzando un polinomio di grado opportuno. I polinomi sono espressioni costituite esclusivamente da operazioni di somma sottrazione e moltiplicazione fra monomi, pertanto facilmente risolvibili attraverso il calcolo matriciale, proprietà che ne rendono estremamente facile l’implementazione e rapido il calcolo.
The representation of parametric space

Every parametric curve can be represented by a number of two-dimensional graphics, each associated to an individual component of the curve. For example, a three-dimensional parametric curve can be represented by three two-dimensional graphics all having \(u \) as the ordinate and each having one of the three components as abscissa. The understanding of these graphics is an important aid to understand the concept of basis function, which will be discussed later.

From exact geometry to approximated geometry

Each of the simple continuous parametric functions presented above describes a very specific locus.

It is easy to understand that to program a modeling software it is necessary to write a specialized algorithm for each function.

Going back to what we discussed in the chapter “Geometric primitives and objects,” once each locus is translated in an algorithm and is made available within a modeling software, it becomes a “primitive”.

If this approach is formally rigorous on one side – it is exact geometry – it is very demanding in terms of programming and computing on the other side. Programming is complex because, for each primitive, it is necessary to elaborate, in addition to the representation-construction algorithm, other algorithms for the interaction (rotation, translation, scale, intersection, division, extension, etc.).

Moreover, the computational solution cannot be made uniform with the growth of the degree of the curve.

Using polynomials in place of the functions describing the locus solves both issues significantly. The Weierstrass Approximation Theorem states that every real and continuous function defined on a closed and limited interval can be approximated, with any level of accuracy, by a polynomial function of appropriate degree. Polynomial functions are expressions composed exclusively of sums, subtractions and multiplications between monomials and, therefore, they can be easily solved by using matrix calculus. This property of polynomials makes the implementation extremely easy and the calculation fast.
Un polinomio di grado appropriato può dunque assolvere il ruolo di primitiva generica - potendo esprimere con la necessaria approssimazione qualsiasi funzione continua - ed essere elaborato con ridotte risorse computazionali.

Il concetto di geometria approssimata, intrinseco nell’applicazione dei polinomi, non deve essere motivo di eccessiva preoccupazione, poiché l’approssimazione è comunque caratteristica fondante del mezzo informatico stesso che è per natura discreto: ciò che conta è che l’approssimazione sia controllata e tenuta sotto i limiti desiderati.

Forme Polinomiali

I programmi di modellazione consentono di operare con polinomi di vario grado, fra questi quelli di terzo grado - curve cubiche - sono i più utilizzati poiché i polinomi di grado inferiore consentono poca flessibilità nel controllo della forma della curva, mentre quelli aventi grado superiore richiedono maggiori risorse computazionali.

La forma algebrica di una curva cubica parametrica è espressa nello spazio a 3 dimensioni dai polinomi:

\[
\begin{align*}
 x(u) &= a_x u^3 + b_x u^2 + c_x u + d_x \\
 y(u) &= a_y u^3 + b_y u^2 + c_y u + d_y \\
 z(u) &= a_z u^3 + b_z u^2 + c_z u + d_z
\end{align*}
\]

Nelle successive esemplificazioni si farà riferimento alla seguente forma base che esprime la precedente più sinteticamente e in forma vettoriale.

\[
p(u) = a u^3 + b u^2 + c u + d
\]

Dove p(u) è il vettore risultato contenente la posizione di ogni singolo punto della curva al variare di u; mentre a, b, c, d sono i vettori dei coefficienti. L’assegnazione di valori ai 4 vettori dei coefficienti algebrici del polinomio, determina univocamente la curva cubica in termini di forma, scala e posizione spaziale. Nella pratica del disegno, però, la determinazione di questi coefficienti non è certo intuitiva: si è reso pertanto necessario riformulare il polinomio in diverse forme, in modo da derivare i parametri da precise condizioni geometriche definibili interattivamente durante l’attività di disegno. Secondo la scelta delle condizioni geometriche iniziali, si distinguono diversi tipi di curve: per le curve di Hermite, per esempio, le condizioni geometriche sono l’appartenenza della curva a due punti e la direzione della tangenza nei medesimi; le curve cubiche di Bézier, invece, sono definite da quattro punti di controllo di cui il primo e il quarto appartenenti alla curva mentre il secondo e il terzo utili a definire direzione e modulo della tangente, rispettivamente sul primo e sull’ultimo punto; la B-spline, infine, è definita da una serie di punti approssimati o interpolati dalla curva.

Basis Function

Ognuna delle quattro equazioni, costituente il sistema necessario a definire una curva cubica, generabili riformulando la forma base secondo specifiche condizioni geometriche, prende il nome di basis function o blending function. Da un punto di vista matematico ognuna di queste funzioni è immagine della influenza che la relativa condizione geometrica ha nella definizione di ogni punto della curva, nell’intervallo normalizzato di u compreso fra 0 e 1. La rappresentazione grafica di queste funzioni è di fondamentale aiuto per apprendere appieno il meccanismo di interpolazione o approssimazione polinomiale, così come diverse altre proprietà geometriche delle curve.
Therefore, a polynomial with an appropriate degree can fulfil the role of a generic primitive – that is, it can approximate any continuous function – and can be elaborated with limited computational resources. The concept of approximate geometry, which is intrinsic to the application of polynomials, should not cause excessive concern because approximation is one of the main characteristics of the computerized system, which is discreet by nature: what matters is that the approximation is monitored and kept below the desired limits.

Polynomial forms

Modeling software allows one to operate with polynomials of various degrees. Among these, third degree polynomials – or cubic curves - are the most popular. In fact, lower degree polynomials give little flexibility in the control of the curves’ form and higher degree polynomials require greater computational resources.

The algebraic form of a cubic curve is expressed in the three-dimensional space by the following polynomials:

\[
\begin{align*}
 x(u) &= a_x u^3 + b_x u^2 + c_x u + d_x \\
 y(u) &= a_y u^3 + b_y u^2 + c_y u + d_y \\
 z(u) &= a_z u^3 + b_z u^2 + c_z u + d_z
\end{align*}
\]

\(0 \leq u \leq 1\)

The examples that will be discussed later will refer to the following basis function, which expresses the previous polynomials more synthetically and in vectorial form.

\[p(u) = a u^3 + b u^2 + c u + d\]

Where \(p(u)\) is the vector representing the position of each point on the curve as \(u\) varies and \(a, b, c, d\) are the coefficient vectors. Assigning specific values to the 4 algebraic coefficients of the polynomial allows one to identify the cubic curve in terms of shape, scale and spatial position. However, determining these coefficients in practice is not at all intuitive: therefore it is necessary to reformulate the polynomial in different forms so that the parameters are derived from precise geometric conditions that are defined interactively during the drawing activity. The various types of curves are defined by the initial geometric conditions: for example, the conditions identifying Hermite curves are (i) the belonging of the curve to two points, and (ii) the direction of the tangents to the curve at these two points; the conditions identifying the Bézier cubic curves, on the other hand, are four control points (where the first and fourth points belong to the curve and the second and third points are used to define the direction and modulus of the tangent at the first and fourth point, respectively); finally, the B-spline is defined by a series of points approximated or interpolated by the curve.

Basis function

Each of the four equations of the system defining a cubic curve is generated by reformulating the basic form according to specific geometric conditions, and takes the name of basis function or blending function. From a mathematical point of view, each of these functions represents the impact that the corresponding geometric condition has on the definition of each point of the curve in the standardized \(u\) interval between 0 and 1. The graphic representation of these functions is crucial to fully understand the interpolation mechanism or polynomial approximation, as well as several other geometric properties of curves.
Il matematico francese Charles Hermite (1822 –1901) dedicò parte della sua vasta ricerca allo studio dei polinomi; sulla forma normale di polinomio, da lui definita, trovò fondamento la curva di interpolazione spline che oggi porta il suo nome. Le condizioni geometriche caratteristiche della curva di Hermite, come precedentemente anticipato, sono l’appartenenza a due punti e la tangente della curva nei medesimi punti.

Applicando queste condizioni alla forma base otteniamo il seguente sistema:

\[
\begin{align*}
p(0) &= d \\
p(1) &= a + b + c + d \\
p''(0) &= c \\
p''(1) &= 3a + 2b + c
\end{align*}
\]

Ricavando dal sistema i coefficienti ed utilizzandoli nuovamente per la forma base otteniamo:

\[
p(u) = F_1(u)p(0) + F_2(u)p(1) + F_3(u)p''(0) + F_4(u)p''(1)
\]

dove:

\[
\begin{align*}
F_1(u) &= 2u^3 - 3u^2 + 1 \\
F_2(u) &= -2u^3 + 3u \\
F_3(u) &= u^3 - 2u^2 + u \\
F_4(u) &= u^3 - u^2
\end{align*}
\]

rappresentano le basis function delle condizioni geometriche imposte.

HERMITE

The French mathematician Charles Hermite (1822-1901) dedicated part of his extensive research to the study of polynomials; the spline interpolation curve, which today bears his name, is based on the normal form of polynomial that he defined. As noted above, the geometric conditions that characterize the Hermite curves are the belonging of the curve to two points and the direction of the tangents to the curve at the same points.

Applying these conditions to the basic form, we obtain the following system:

\[
\begin{align*}
p(0) &= d \\
p(1) &= a + b + c + d \\
p''(0) &= c \\
p''(1) &= 3a + 2b + c
\end{align*}
\]

By deriving the coefficients from the system and then using them again for the basic form, we obtain:

\[
p(u) = F_1(u)p(0) + F_2(u)p(1) + F_3(u)p''(0) + F_4(u)p''(1)
\]

where:

\[
\begin{align*}
F_1(u) &= 2u^3 - 3u^2 + 1 \\
F_2(u) &= -2u^3 + 3u \\
F_3(u) &= u^3 - 2u^2 + u \\
F_4(u) &= u^3 - u^2
\end{align*}
\]

represent the basis functions of the geometric conditions set above.
Come è facile comprendere dalla loro rappresentazione:
• la curva passa per il primo e l’ultimo punto poiché per \(u=0 \) è unitaria e diversa da 0 solo la basis function derivata dalla condizione di appartenenza della curva al primo punto; ugualmente per \(u=1 \) è unitaria e diversa da zero solo la basis function definita dalla condizione di appartenenza al secondo punto.
• ad eccezione dei valori \(u=0 \) e \(u=1 \), tutte le basis function sono diverse da 0, pertanto la variazione di una delle quattro condizioni geometriche comporta ripercussioni sulla forma di tutto la curva.

Il modulo delle tangenti influenza l’andamento della curva e l’allontanamento di essa rispetto al segmento retto, tracciabile fra i due punti individuati. Alcune implementazioni delle curve di Hermite considerano i moduli delle tangenti unitari ed uguali, successivamente li moltiplicano per un fattore di stiramento, attraverso il quale si controlla detto allontanamento.

As it is clear from their representation:
• the curve goes through the first and the last point. In fact, for \(u=0 \) only the basis function derived from the condition that the curve belongs to the first point is unitary and different from 0; similarly, for \(u=1 \) only the basis function defined by condition that the curve belongs to the second point is unitary and different from zero.
• with the exception of \(u=0 \) and \(u=1 \), all the basis functions are different from 0, and, therefore, a change in one of the four geometric conditions has an effect on the shape of the entire curve.

The module of the tangent influences the curve's shape and its moving away from the straight segment that connects the two points identified. Certain implementations of the Hermite curves use modules of the tangent that are unitary and equal to each other, and subsequently they multiply these modules by a stretching factor that determines the magnitude of the distance of the curve from the straight segment.
BÉZIER
Pierre Étienne Bézier concepì il modello di curve e superfici, che in seguito presero il suo nome, all’interno dell’azienda produttrice di automobili Renault, dove lavorò, forte delle sue lauree in ingegneria meccanica ed ingegneria elettrica, dal 1930 al 1977. Il frutto del suo lavoro emerse in particolare dai primi anni 60 con lo sviluppo della teoria che successivamente divenne base per lo sviluppo del sistema CAD Unisurf. A quei tempi, le operazioni necessarie a passare dal disegno di concept al prototipo erano lente, articolate, coinvolgevano diverse persone e pertanto erano critiche e costose. La possibilità di disegnare, controllare, modificare, rappresentare e riprodurre virtualmente le curve libere, per poi riprodurle fisicamente mediante l’uso delle macchine a controllo numerico, introdotta da Bézier, portò significative riduzioni di tempi e di costi in questo processo. Ma quello che più affascinò della soluzione di Bézier e ne decretò il successo fu l’attenzione per l’aspetto progettuale della curva: per il designer, infatti, divenne possibile controllarne la forma, con la semplice definizione di pochi e semplici vincoli geometrici.

Geometric representation of the Bézier solution.

Rappresentazione geometrica della soluzione di Bézier.

BÉZIER
Pierre Étienne Bézier developed the curves and surfaces model that later took his name at Renault, the car manufacturer where he worked between 1930 and 1977, after he obtained his degrees in Mechanical Engineering and Electrical Engineering. His work became known in the early 60s with the development of the theory that later became the basis for the development of the Unisurf CAD system. At that time, the operations that were necessary to move from concept drawing to prototypes were slow, complex, and involved several people, therefore they were difficult and expensive. The possibility of drawing, checking, modifying, representing, and reproducing free curves first virtually and then physically by means of numerical control machines was introduced by Bézier and brought significant saving to this process in terms of both time and money. But what was mostly attractive about Bézier solution and what established its success was the attention to the drawing aspect of the curve: for the designer, in fact, it became possible to control the shape by simply defining few and straightforward geometric constraints.
In termini concettuali e generali, possiamo immaginare le curve di Bézier contenute all’interno di un cubo orientato e tali da avere punto iniziale e punto finale appartenenti a due vertici opposti del cubo, tangente iniziale parallela all’asse X e tangente finale parallela all’asse Z. La deformazione del cubo in un parallelepipedo, ottenibile modificando la posizione di soli quattro punti detti punti di controllo, produce cambiamenti nella forma della curva. L’andamento della curva all’interno del parallelepipedo è controllato dalle basis function che determinano per ogni valore di u l’influenza di ogni singolo punto di controllo. In forma di equazione la condizione è espressa da:

$$p(u) = \sum_{i=0}^{n} p_i B_{i,n}(u) \quad u \in [0,1]$$

Le basis function adottate da Bézier sono polinomi nella base di Bernstein.

$$B_{i,n}(u) = \binom{n}{i} u^i (1-u)^{n-i}$$

Per $n-1$ elementi della base - i punti di controllo - il polinomio assume grado n. Una curva di Bézier cubica, è dunque definita assegnando quattro punti; sviluppando il polinomio di Bernstein, otteniamo le relative quattro basis function.

$$B_{0,3}(u) = (1-u)^3$$
$$B_{1,3}(u) = 3u(1-u)^2$$
$$B_{2,3}(u) = 3u^2(1-u)$$
$$B_{3,3}(u) = u^3$$

quindi:

$$p(u) = (1-u)^3p(0) + 3u(1-u)^2p(1) + 3u^2(1-u)p(2) + u^3p(3)$$

Osservando la rappresentazione grafica delle basis functions, è possibile evincere alcune proprietà base delle curve di Bézier: per ogni valore di U, eccetto $U=0$ e $U=1$, tutte le funzioni sono diverse da 0, ne deriva che ogni polinomio associato al punto di controllo contribuisce alla posizione di ogni punto appartenente alla curva. espresso in termini pratici, significa che agendo su un singolo punto di controllo si influenza la curva in modo globale e non locale. Nei casi limite $U=0$ e $U=1$ la curva passa rispettivamente per il primo e l’ultimo punto di controllo, poiché l’influenza degli altri punti è nulla essendo nulli i relativi polinomi. L’insieme dei punti di controllo collegati in sequenza, definisce il poligono di controllo; la curva di Bézier gode della proprietà di essere sempre contenuta all’interno dell’inviluppo convesso del poligono di controllo. Considerando per semplicità una curva piana, l’inviluppo convesso di un poligono di controllo è anch’esso un poligono ed è facilmente individuabile, immaginando di delimitare con una fascia elastica l’insieme dei punti di controllo. Le tangenti alla curva nel punto iniziale e finale coincidono rispettivamente con il primo e l’ultimo lato del poligono di controllo. Il numero dei punti di controllo è strettamente legato al grado della curva, e sono sempre uno in più del grado: una Bézier appoggiata a 6 punti di controllo è pertanto di grado 5.

La curva di Bézier è costituita da un solo arco, il cui andamento rispetto ad una linea retta non oscilla mai più del poligono di controllo. Naturalmente è possibile costruire curve molto articolate unendo più curve di Bézier, tuttavia in questo caso sorgono difficoltà operative per controllare la continuità nei punti di giunzione fra un arco e il successivo.
In conceptual and general terms, we can imagine the Bézier curves as being contained within an oriented cube and having the initial and the final points on two opposite vertexes of the cube. The initial tangent is parallel to the X axis, and the final tangent is parallel to the Z axis. The deformation of the cube in a parallelepiped, which is achievable by changing the position of only four points, called control points, produces changes in the curve’s shape.

The curve’s shape within the parallelepiped depends on the basis function, which determines, for each value of \(u \), the effect of each control point.

In equation form, this condition is expressed by:

\[
p(u) = \sum_{i=0}^{n} p_i B_{i,n}(u) \quad u \in [0,1]
\]

The basis functions adopted by Bézier are Bernstein basis polynomials.

\[
B_{i,n}(u) = \binom{n}{i} u^i (1-u)^{n-i} \quad \binom{n}{i} = \frac{n!}{i!(n-i)!}
\]

For \(n-1 \) basis elements – the \(n-1 \) control points - the polynomial is of degree \(n \). Thus, a Bézier cubic curve is defined by assigning four points; then, by developing the Bernstein polynomial, we obtain the correspondent four basis function.

Therefore:

\[
p(u) = (1-u)^3 p(0) + 3u(1-u)^2 p(1) + 3u^2(1-u)p(2) + u^3 p(3)
\]

By noting the graphic representation of the basis functions, it is possible to deduce some basic properties of the Bézier curves: for any \(U \), with the exception of \(U=0 \) and \(U=1 \), all the functions are different from 0. Thus, every polynomial associated to the control point contributes to the position of each point belonging to the curve. In practical terms this means that, by acting on a single control point, the curve is influenced in a global rather than a local way. In the limit cases \(U=0 \) and \(U=1 \), the curve goes through the first and the last control point, respectively. In fact, the effect of the other points is null because the correspondent polynomials are null. The set of control points that are connected in sequence defines the control polygon; the Bézier curve has the property of always being included within the convex envelope of the control polygon. Considering, for simplicity, a plane curve, the convex envelope of a control polygon is also a polygon and is easily identifiable by imagining of delimiting the set of control points with an elastic band. The tangents to the curve at the initial and the final points coincide with the first and the last side of the control polygons, respectively. The number of the control points is closely linked to the degree of the curve, and, specifically, is always one more than the degree: a Bézier supported by 6 control points, therefore, is a degree 5 curve. The Bézier curve is formed by a single arc, whose course with respect to a straight line never oscillates more than the control polygons. Of course, it is possible to build very complex curves by joining a number of Bézier curves, however, in this case operational difficulties arise to ensure continuity at the joining points between an arc and the next.
B-SPLINE
Nei primi anni 70 Rich Riesenfeld, giovane studente impegnato nella tesi, venne coordinato da Steve Coons (Syracuse University) e Robin Forrest (Cambridge University) per approfondire l’uso delle B-Spline nella computer aided design. La teoria matematica su cui fonda l’approssimazione B-Spline è opera di Isaac Jacob Schoenberg e risale alla pubblicazione del paper “Contributions to the problem of approximation of equidistant data by analytic functions.”, avvenuta nel 1946. In esso Schoenberg introduce nella matematica il termine spline - smooth polyline - fino ad allora usato in modo gergale, solo nei laboratori di disegno, per indicare i righelli flessibili. Dimostra inoltre come ogni formula di interpolazione allora esistente poteva essere riscritta come una combinazione lineare di basis function opportunamente slittate all’interno del dominio analizzato.

Rappresentazione delle ‘basis functions’ delle curve di Bezier

Representation of the Bezier curves ‘basis functions’.

B-SPLINE
In the early 70s, Rich Riesenfeld, a young student studying for his thesis, was directed by Steve Coons (Syracuse University) and Robin Forrest (Cambridge University) to investigate the use of the B-Spline in computer aided design. The mathematical theory on which the B-Spline approximation is founded is due to the work of Isaac Jacob Schoenberg, and dates back to the publication of his paper “Contributions to the problem of approximation of equidistant data by analytic functions” in 1946. In this paper, Schoenberg introduced the term “spline - smooth polyline” until then used in mathematics only as a slang word to indicate flexible rulers in drawing laboratories. Schoenberg also showed how all interpolation formulas could be rewritten as linear combinations of basis functions, appropriately rescaled in the domain analyzed.
Il termine B-Spline (Basis – Spline) non fu utilizzato subito da Schoenberg, ma coniato diversi anni dopo. Le curve di Hermite e di Bézier sono costituite da un singolo arco: è possibile creare con esse una curva multi arco ma, in questo caso, sarà necessario controllare la continuità in ogni punto di giunzione. Le curve B-Spline sono invece curve costituite da più archi e la continuità fra un arco e gli adiacenti è integrata nella stessa definizione analitica. Nella forma di B-Spline più semplice, ossia quella Uniforme e Non Razionale, ogni arco è definito e influenzato da un ridotto numero di punti di controllo, che, come per la curva di Bézier, sono in numero di 1 superiore al grado. Un singolo arco di B-Spline cubica è dunque definito da 4 punti di controllo \([p_0,p_1,p_2,p_3]\). A fronte della necessità di aggiungere alla curva altri due punti di controllo \([p_4,p_5]\) così da articolare maggiormente la forma, utilizzando una Bézier - singolo arco – dovremmo incrementare il grado, ottenendo così una quintica (control point -1) composta da un solo arco interpolante 6 punti \([p_0,p_1,p_2,p_3,p_4,p_5]\).

The term B-Spline (Basis Spline) was not introduced by Schoenberg, but was coined several years later. The Hermite and Bézier curves are formed by a single arc: it is possible to create a multi-arc curve by connecting a number of curves but, in this case, it is necessary to check continuity at every joining point. In contrast, the B-spline curves are constructed using more arcs, and the continuity between an arc and the adjacent ones is integrated in the same analytical definition. In the simplest B-spline curve, the Uniform and Not Rational, each arc is defined and determined by a small number of control points that, as for the Bézier curve, are one more than the degree of the curve. Therefore, for example, a single cubic B-Spline arc is defined by 4 control points \([p_0, p_1, p_2, p_3]\). If we use a Bézier - single arc and we need to add two additional control points \([p_4, p_5]\) to the curve to further articulate the curve, we have to increase the degree of the curve by two, thus obtaining a quintica (number of control points minus 1) composed by a single arc interpolating 6 points \([p_0, p_1, p_2, p_3, p_4, p_5]\).
Operando invece con le B-Spline, potremmo mantenere la curva cubica e aumentare a tre il numero degli archi. Il primo arco interpolerà i punti \([p_0, p_1, p_2, p_3]\), il secondo i punti \([p_1, p_2, p_3, p_4]\), il terzo infine i punti \([p_2, p_3, p_4, p_5]\).

La definizione implicita della continuità fra archi adiacenti è da rintracciarsi proprio nella condivisione dei punti di controllo. La possibilità di articolare a piacere la curva, aggiungendo punti di controllo, senza alterarne il grado e mantenendo la continuità fra gli archi ha un notevole vantaggio sul piano computazionale. Inoltre, come è facile intuire dall’esempio appena esposto, il controllo della forma della curva, per mezzo di trasformazioni applicate ai singoli punti di controllo, ha carattere locale, poiché interessa solo archi della curva definiti dai punti trasformati. Nell’esempio riportato, una modifica di posizione indotta al punto \(p_4\), influenzerebbe solo l’aspetto del secondo e del terzo arco della curva, mentre il primo – non interpolante il punto trasformato – rimarrebbe inalterato.

If, instead, we operate with a B-Spline, we can maintain the cubic curve and increase the number of arcs to three. The first arc will interpolate the points \([p_0, p_1, p_2, p_3]\), the second one the points \([p_1, p_2, p_3, p_4]\), and the third one the points \([p_2, p_3, p_4, p_5]\). The implicit definition of continuity between adjacent arcs can be found in the sharing of the control points. The possibility of freely articulating the curve by adding control points without altering the degree of the curve and still maintaining continuity between the arcs has a considerable computational advantage. Besides, as it is easy to imagine from the example outlined above, the control of the curve’s shape by means of transformation of individual control points is local because it affects only the arcs that are defined by the transformed points.

In the example above, a change of position of point \(p_4\) would affect only the shape of the curve’s second and third arcs, while the first arc, which does not interpolate the transformed point, would remain unchanged.
Dalla loro rappresentazione grafica, si può osservare come per ogni arco della curva il primo dei quattro punti di controllo termini la sua influenza, mentre l’ultimo la inizi: è facile intuire come ciò si traduca nella continuità fra un arco e il successivo.

Le **B-Spline Uniformi Non Razionali** non interpolano alcun punto di controllo, neanche il primo e l’ultimo come accade per le curve di Hermite e di Bézier, ciò le rende poco pratiche da utilizzare nella modellazione. La soluzione è offerta dalle **B-Spline Non Uniformi**

NON-UNIFORM B-SPLINE

I punti iniziale e finale della B-spline, così come i punti interni di giunzione fra i diversi archi, sono nominati nodi. Se questi sono equidistanti nell’intervallo di esistenza del parametro U, la B-Spline è detta Uniforme, in caso contrario Non Uniforme.

La successione dei nodi della curva è conservata in un vettore, che è parte integrante della sua definizione. Una B-spline Uniforme, costituita da due archi, ha il seguente vettore dei nodi \([0,1,2]\) - dove 0 è l’indice del primo nodo e 2 quello dell’ultimo – e l’intervallo parametrico fra i nodi è uguale. Nel caso più frequente di B-Spline NonUniforme alcuni intervalli sono ridotti a 0, aumentando la molteplicità di un singolo nodo, ossia ripetendolo all’interno del vettore indice.

Una B-Spline Non Uniforme costituita da due archi come la precedente, ha un diverso vettore dei nodi \([0,0,0,1,2,2]\) ove il nodo 0 e il nodo 2 hanno molteplicità 3. Il parametro U, non è più ugualmente distribuito all’interno della sequenza: nei primi due intervalli e negli ultimi due l’intervallo è zero. La molteplicità del nodo si traduce in una riduzione della continuità della curva; quando la molteplicità è pari al grado, la continuità è di tipo posizionale e la curva interpola il punto di controllo.

Naturalmente anche le B-Spline possono essere realizzate di grado superiore a 3 e in questo caso ogni arco costituirà la curva interfererà con un numero maggiore di punti di controllo (grado +1): sui medesimi 6 punti \([p_0,p_1,p_2,p_3,p_4,p_5]\) può essere definita una B-Spline di 4 grado costituita da due archi interpolanti l’uno \([p_0,p_1,p_2,p_3,p_4]\), l’altro \([p_1,p_2,p_3,p_4,p_5]\).

Il numero di archi interessati dalla variazione di ogni singolo punto di controllo dipende dalla posizione (iniziale, centrale o finale) che questo ha sulla curva e non sarà comunque mai maggiore del grado + 1: nell’esempio precedente della B-Spline cubica, il punto p0 interessa solo il primo arco, i punti p1 e p4 rispettivamente solo il primi due e gli ultimi due archi, il punto p3 tutti gli archi segmenti e il punto p5 solo il terzo arco. Se la curva avesse avuto un settimo punto di controllo (p6) e di conseguenza un quarto arco interpolante (p3, p4, p5, p6), il punto P3 sarebbe stato, per l’ultima volta, ancora presente, e la trasformazione prodotta sulla curva attraverso di esso avrebbe interessato quattro archi (grado+1).

Le basis function relativa ad un singolo arco di una Bspline cubica Uniforme e Non Razionale, per la cui derivazione si rimanda ai testi specifici indicati in bibliografia, si presentano in questa forma:

\[
\begin{align*}
 N_{1,4} &= \frac{1}{6}(-u^3 + 3u^2 - 3u + 1) \\
 N_{2,4} &= \frac{1}{6}(3u^3 - 6u^2 + 4) \\
 N_{3,4} &= \frac{1}{6}(-3u^3 + 3u^2 + 3u + 1) \\
 N_{4,4} &= \frac{1}{6}u^3
\end{align*}
\]

Dalla loro rappresentazione grafica, si può osservare come per ogni arco della curva il primo dei quattro punti di controllo termini la sua influenza, mentre l’ultimo la inizi: è facile intuire come ciò si traduca nella continuità fra un arco e il successivo. Le B-Spline Uniformi Non Razionali, non interpolano alcun punto di controllo, neanche il primo e l’ultimo come accade per le curve di Hermite e di Bézier, ciò le rende poco pratiche da utilizzare nella modellazione. La soluzione è offerta dalle B-Spline Non Uniformi.
Of course, even the B-Spline can be of degree higher than 3 and, in that case, each arc constituting the curve will interpolate a larger number of control points (grade + 1): on the same 6 points \([p_0, p_1, p_2, p_3, p_4, p_5]\), a B-Spline of degree four can be defined, for example, by two arcs, one interpolating the points \([p_0, p_1, p_2, p_3, p_4]\), and the other interpolating the points \([p_1, p_2, p_3, p_4, p_5]\).

The number of arcs affected by the change of any single control point depends on the position (initial, central or final) that the control point has on the curve, and will never be greater than the degree + 1: in the previous example of the cubic B-Spline, point \(p_0\) affects the first arc only, points \(p_1\) and \(p_4\) affect the first two and the last two arcs, respectively, point \(p_3\) affects all the segment arcs, and point \(p_5\) affects the third arc only. If the curve had a seventh control point \((p_6)\), and consequently a fourth interpolate arc \((p_3, p_4, p_5, p_6)\), point \(p_3\) would have been present again and the transformation of the curve through this point would have involved four arcs (degree + 1).

The basis function of a single arc of a Uniform and Non Rational cubic BSpline, whose derivation can be found in the specific references indicated in the bibliography, appears in the following form:

\[
N_{1,4} = \frac{1}{6} (-u^3 + 3u^2 - 3u + 1) \\
N_{2,4} = \frac{1}{6} (3u^3 - 6u^2 + 4) \\
N_{3,4} = \frac{1}{6} (-3u^3 + 3u^2 + 3u + 1) \\
N_{4,4} = \frac{1}{6} u^2
\]

From their graphical representation, it can be noted how, for each arc of the curve, the first of the four control points ends its influence while the last starts it: it is easy to imagine how this translates in the continuity between one arc and the next.

The Uniform and Non Rational B-Spline do not interpolate any control point, not even the first and the last one as the Hermite and Bézier curves do. This makes them of little practical use for modeling. The solution to this problem is offered by Non-Uniform B-Splines.

NON-UNIFORM B-SPLINE

The initial and final points of the BSpline, as well as the internal joining points between different arcs, are called knots. If these are equally spaced within the interval of existence of the U parameter, the BSpline is called Uniform, otherwise it is called Non-uniform.

The series of knots on a curve is represented by a vector, which is an integral part of the curve’s definition. A Uniform BSpline formed by two arcs has a knot vector \([0, 1, 2]\), where 0 is the index of the first knot, 2 is the index of the last one, and where the parametric intervals between knots are equal. In the more frequent case of Non-Uniform BSpline, some intervals are 0, thereby increasing the multiplicity of a single knot, which is repeated inside the index vector.

A non-uniform BSpline formed by two arcs like the previous one has a knot vector \([0, 0, 0, 1, 2, 2, 2]\), where the knot 0 and the knot 2 have a multiplicity of 3. The U parameter is no longer equally distributed within the sequence: the first two and the last two intervals are zero. The multiplicity of the knot results in a reduction of the continuity of the curve: when the multiplicity is equal to the degree of the curve, the continuity is positional, and the curve interpolates the control point.
Se l’indice mostrato ad esempio fosse di una cubica, la curva interpolerebbe il primo e l’ultimo punto di controllo. La molteplicità può naturalmente essere assegnata a qualsiasi nodo dell’indice della curva. Fortunatamente, queste condizioni di tipo matematico sono pressoché invisibili a chi modella: la molteplicità utile ad interpolare il primo e l’ultimo punto della B-Spline è assegnata automaticamente dal software; le molteplicità dei nodi intermedi, sono generalmente create – sempre per via automatica - quando si uniscono B-Spline costruite separatamente.

NON UNIFORM RATIONAL B-SPLINE
I modelli fin qui illustrati sono invarianti alle trasformazioni di traslazione, rotazione e scala, ma non alle trasformazioni proiettive. Da un punto di vista computazionale ciò significa che la curva descritta dal modello non varia nella forma se traslata, ruotata e scalata, applicando dette trasformazioni ai soli punti di controllo, mentre una trasformazione proiettiva della curva, per esempio finalizzata alla sua rappresentazione prospettica, se applicata ai soli punti di controllo ne trasformerebbe significativamente la forma anziché generarne la semplice rappresentazione. Il problema trova soluzione nella geometria proiettiva, in particolare nell’uso delle coordinate omogenee: si tratta di descrivere la curva in uno spazio a quattro dimensioni e proiettarla nello spazio a tre dimensioni. Oltre a risolvere il problema della invarianza proiettiva, questo approccio consente di rappresentare in modo preciso coniche quali l’ellisse, il cerchio e l’iperbole; precisione limitata alla sola parabola utilizzando funzioni polinomiali non razionali. L’incidenza che la variazione del peso ha sulla curva, sarà illustrata assieme agli strumenti di modifica.

SUPERFICI NURBS
Quando illustrato per le curve può essere esteso alle superfici semplicemente considerando una seconda dimensione parametrica. In via sintetica, possiamo immaginare la superficie come prodotta dalla mutua influenza di due curve parametriche. Matematicamente il concetto è espresso come prodotto cartesiano di due curve. Per distinguere i due parametri sono denominati l’uno U e l’atro V. Un punto appartenente alla superficie nurbs è definito dunque da una funzione bi-parametrica nei parametri U e V aventi ognuno proprie blending function. I punti di controllo, comuni alle due dimensioni parametriche, non sono più distribuiti in forma di poligono poiché anch’esso acquisisce un’altra dimensione, trasformandosi così in un poliedro dei punti di controllo.

MODELLAZIONE DI CURVE E SUPERFICI NURBS
Le curve nurbs sono modellate principalmente mediante l’individuazione dei punti di controllo o dei punti di interpolazione. Il significato geometrico che differenzia queste due tecniche verrà illustrato nel paragrafo successivo, nell’ambito delle spiegazioni degli strumenti di modifica. Le superfici Nurbs sono invece perlopiù generate con gli strumenti di modellazione illustrati nel capitolo precedente, partendo da combinazioni di una o più curve. La costruzione attraverso l’individuazione dei punti appartenenti al poliedro di controllo, se pur perseguibile, ha senso solo in particolari applicazioni. V’è tuttavia una strada intermedia, ad emulazione di un processo scultoreo, che prevede di realizzare inizialmente una superficie – anche semplice – partendo da un insieme di curve, e successivamente modellarla in modo più fine e intuitivo, operando sul relativo poliedro di controllo. Una tecnica simile a quella oggi molto in voga nella modellazione poligonale. Infine, sia curve sia superfici nurbs possono essere create per via indiretta ossia derivandole da geometrie preesistenti, per proiezione e sezione, per copia e offset o per semplice estrazione.
If the index shown above were, for example, of a cubic curve, the curve would interpolate the first and last control points. The multiplicity can, of course, be assigned to any knot of the curve's index.

Fortunately, these mathematical conditions are essentially invisible to the modeler: the multiplicity that is used to interpolate the first and last point of the B-Spline is automatically assigned by the software; the multiplicity of the intermediate knots is generally created – again automatically - when individually created B-Splines are joined.

NON UNIFORM RATIONAL B-SPLINE NURBS

The models described up to this point are invariant to translation, rotation and scale, but are not invariant to projective transformations. From a computational perspective, this means that the shape of the curve described by the model does not change if the curve is translated, rotated or scaled , and these changes are applied to the control points only. On the other hand, if a projective transformation, for example finalised to its prospective representation, is applied only to the control points, it would change the shape of the curve significantly rather than generate its simple representation. The problem finds its solution in projective geometry, and in particular in the use of homogeneous coordinates: this consists of describing the curve in a four-dimension area and then projecting it on a three-dimension space. In addition to solving the problem of projective invariance, this approach allows one to represent with precision conics such as ellipses, circles and hyperboles; in contrast, by using non-rational polynomial functions this precision is limited to the parabola only. The impact that changing weights has on the curve will be discussed later together with the editing tools.

NURBS SURFACES

What has been discussed above for curves can be extended to surfaces by simply introducing a second parametric dimension. In short, we can imagine the surface as being produced by a mutual influence of two parametric curves. Mathematically, the concept is expressed by the Cartesian product of two curves. To distinguish the two parameters, one is called U and the other V. A point belonging to the NURBS surface, therefore, is defined by a bi-parametric function in U and V, with each parameter having its own blending function. The control points that are common to the two parametric dimensions are no longer in a polygon form because the polygon also acquires an additional dimension, and thus turns into a polyhedron of control points.

MODELING OF CURVES AND SURFACES NURBS

The NURBS curves are shaped primarily through the identification of control points or interpolation points. The geometric meaning that differentiates these two techniques will be explained in the next paragraph, in the context of the discussion of editing tools. The NURBS surfaces, on the other hand, are generated mainly using the modeling tools presented in the previous chapter, starting from the combination of one or more curves. The construction of a curve through the identification of the control points that belong to the polyhedron, even if doable, makes sense only in special applications. However, there is an intermediate technique, which emulates the sculptural process, that consists of defining first a simple surface starting from a set of curves, and then modeling it in a more intuitive and fine way operating on the correspondent control polyhedron. This is a technique that is similar to the one that is very trendy today in polygonal modeling. Finally, both NURBS curves and surfaces can be created indirectly, that is, can be derived from pre-existing geometries, by projection and section, copy and offset, or simple extraction.
Il controllo rigoroso dell’espressione e della qualità della forma e la ottimizzazione della relativa definizione matematica è un attività apparentemente complessa e per questo frequentemente ignorata o trascurata. Internet in particolare è piena di modelli tridimensionali sovraccarichi di geometrie, pieni di intersezioni non risolte e numerose discontinuità nelle linee e nelle superfici. Le intersezioni non risolte sono perlopiù dovute ad una cattiva volontà nell’organizzare un modello ben strutturato, mantenervi in ordine e disegnarlo con precisione. L’uso di geometrie sovradimensionate per complessità e la presenza nel modello di indesiderate discontinuità, può invece essere evitata acquisendo gli strumenti di controllo e verifica della flessibilità e della continuità di linee e superfici. I concetti di seguito esposti si riferiscono a curve e superfici NURBS, per operare in modo analogo su entità definite come geometrie specializzate sarà dunque necessario convertirle in questa forma di rappresentazione.

La grande varietà di opzioni accessibili nella definizione delle Nurbs, fa spesso perdere l’orientamento, necessario a giungere ad una soluzione ottimale, capace di integrare qualità e semplicità computazionale. Prima di approfondirne le tecniche di modellazione, appare dunque opportuno focalizzare l’attenzione su alcune proprietà di queste curve, che potremo utilizzare come punti di riferimento ogni volta che sentiremo di aver perso il corretto percorso di modellazione.

- Una curva Nurbs non oscilla più del suo poligono di controllo.
- Creando curve di diverso grado appoggiate allo stesso poligono di controllo ci accorgiamo che l’ampiezza dell’oscillazione della curva tende a diminuire.
- Al crescere del grado anche i flessi, rappresentativi del cambio di concavità, diminuiscono: sono 9 per la prima nurbs di grado 2 e si riducono a 3 per la nurbs di grado 10.
- A parità di punti di controllo, le curve di grado minore hanno un numero maggiore di archi, pertanto la modifica di un singolo punto di controllo ha carattere più locale rispetto ad una di grado superiore.
- Una nurbs di grado superiore è più impegnativa sotto il profilo computazionale: l’uso smoderato di geometrie complesse, può rallentare ogni processo di interazione, modellazione e rappresentazione del modello.

Proprietà delle NURBS

Nurbs per punti di controllo

Alla luce di quanto riepilogato, per disegnare una curva nurbs si può procedere in prima approssimazione disegnando una cubica, quindi una curva di grado=3, immettendo punti di controllo circa a metà di ogni convessità della curva e sufficientemente distanti da essa. Terminato il primo grossolano inserimento si riposizionano con maggiore precisione i punti di controllo, cercando di riprodurre fedelmente la curva desiderata.
The rigorous control of the expression and the quality of form and the optimisation of the relevant mathematical definition is an apparently complex activity and, for this reason, it is frequently ignored or overlooked. Internet, in particular, is full of three-dimensional models that are overloaded with geometries, and are characterised by non-solved intersections and numerous discontinuities in the lines and surfaces. The non-solved intersections are mostly due to lack of care in organising a well structured model, keeping it in order and drawing it precisely. The use of oversized geometries for complexity and the presence of unwanted discontinuities in the model can, instead, be avoided by acquiring the control tools of the flexibility and continuity of lines and surfaces. The concepts exposed here refer to Nurbs curves and surfaces; thus, to operate in a similar way on defined entities like specialised geometries, it will be necessary to convert them in this form of representation.

The large number of options accessible in the definition of NURBS often causes the loss of the orientation that is necessary to achieve an optimal solution, capable of integrating computational quality and simplicity. Before examining the modeling techniques, it seems appropriate to focus the attention on some properties of these curves that we can use as reference points whenever we feel that we have lost the correct modeling path.

- A NURBS curve does not fluctuate more than its control polygon.
- When we create curves of different degree that are supported by the same control polygon, we realize that the extent of the change of the curve tends to decrease.
- When the degree increases, the flexes representing the change of concavity also decrease: they are 9 for the first nurbs of degree two, and reduce to six for the nurbs of degree 10.
- If the number of control points is the same, the curves with minor degree have a greater number of arcs; therefore, the editing of a single control point has a more localized character than one with a higher grade.
- A higher grade nurbs is more demanding in computational terms: the excessive use of complex geometries may slow down every process of interaction, modeling and model representation.

Nurbs by control points

In light of what just summarised, we can draw a nurbs curve by approximating it with a cubic – that is, with a curve of degree three – by entering control points at about the middle of each curve’s convexity and sufficiently distant from it. Completed the first rough inclusion, the control points are replaced with greater precision to try to faithfully reproduce the desired curve.
Nella maggior parte dei casi, l’operazione risulterà già sufficiente, in altri casi sarà necessario avere maggiore duttilità e ciò sarà possibile introducendo ulteriori punti di controllo. L’operazione, tuttavia, può acquisire due significati geometrici ben diversi: elevazione del grado della curva o incremento del numero degli archi. Elevando il grado della curva, il numero degli archi rimane costante; ogni arco avrà un numero maggiore di punti di controllo – salvo discontinuità – in numero di grado-1 – che permetteranno una definizione più accurata dell’andamento della curva. Mantenendo invece fisso il grado della curva, l’inserimento di ogni nuovo punto di controllo, genererà un nuovo arco all’interno della struttura curva, fornendo anche in questo caso maggiore duttilità. Fermo restando che le curve di grado minore vanno preferite ovunque possibile, appare evidente che il loro andamento è più ‘nervoso’ di una curva di grado maggiore; l’elevamento di grado va dunque considerato quando l’andamento della curva richiede un controllo più accurato lungo il percorso di un singolo arco.

Nurbs per punti di interpolazione

A volte si ha la necessità di creare una curva che passi per un certo numero di punti definiti. Si procede dunque, realizzando la nurbs nella modalità per punti di interpolazione. Ogni punto inserito identifica un nodo della curva, ossia il punto di giunzione fra due archi consecutivi appartenenti ad essa. Operando in modifica l’aggiunta di un nuovo nodo produrrà sulla curva l’inserimento di un nuovo arco e poiché il grado della curva rimarrà costante, verrà automaticamente calcolato ed inserito anche un nuovo punto di controllo, necessario a completare la definizione matematica della curva. La creazione della curva per punti di interpolazione, per quanto apparentemente più intuitiva, conduce più facilmente verso errori di definizione. In fase di inserimento è infatti frequente l’uso sovrabbondante di punti di interpolazione, dovuto probabilmente all’equivoco che nasce sul concetto di arco che siamo abituati a immaginare privo di flessi come quello del cerchio.

Per facilitare la modellazione alcuni modellatori hanno introdotto strumenti di creazione e modifica che presentano vincoli diversi da grado, punti di controllo, archi e continuità, rendendo più difficile il controllo sulla complessità della nurbs\(^{12}\). Questo tipo di vincoli è da considerarsi volatile: non proprio della definizione delle nurbs. Poiché questi strumenti possono variare da un programma all’altro, si rende opportuno verificare, attraverso le funzioni di interrogazione delle entità, come agiscono sui vincoli reali, così da mantenere il controllo sulla geometria.

\(^{12}\) Rhinoceros, per esempio, affianca ai nodi i punti di definizione collocati al centro del primo e ultimo arco della curva.
In most cases, the operation will be sufficient; in other cases, it will be necessary to have more flexibility and this will be possible by introducing more control points. However, the operation may acquire two geometric meanings that are very different: the increase in the curve’s degree or in the number of arcs. The increase in the curve’s degree leaves the number of arcs unchanged; every arc will have a greater number of control points - except for discontinuity in the number of grade - that will allow a more complete definition of the curve’s trend. In contrast, maintaining the degree of the curve, the insertion of any new control point will generate a new arc within the curve structure, providing, also in this case, more ductility. Granted that the curves with a lower degree should be preferred where possible, it seems clear that their trend is more “nervous” than a curve with a higher degree; the increase in the degree must be taken into consideration when the curve’s trend requires a more attentive control along the path of a single arc.

Nurbs by interpolation points

Sometimes there is the need to create a curve that goes through a certain number of defined points. Thus, the nurbs is created by interpolation points. Each inserted point identifies a knot in the curve that is the joining point between two consecutive arcs belonging to it.

While editing, the addition of a new knot will lead to the inclusion of a new arc on the curve and, as the degree of the curve remains constant, a new control point necessary to complete the mathematical definition of the curve will be automatically calculated and inserted. The creation of the curve by interpolation points, apparently more intuitive, leads more easily to errors of definition. In the inclusion phase, the superabundant use of interpolation points is indeed frequent, probably due to the misunderstanding that comes from the arc concept, usually imagined as devoid of flexes like that of a circle. To facilitate the modeling, some modelers have introduced creating and editing tools that have constraints that are different from degree, control points, arcs and continuity, making it more difficult to control the complexity of nurbs. This type of constraint is to be considered volatile: it is not an attribute of the definition of nurbs. Because these tools can vary across different software, it is appropriate to check, through the interrogation functions, how they act on the real constraints to maintain control on geometry.
Peso dei punti di controllo

Ogni punto di controllo può influenzare più o meno il percorso della curva, secondo il peso ad esso assegnato. In fase di creazione i pesi sono uniformi e hanno valore 1. In fase di modifica è possibile cambiare il peso di ogni singolo punto di controllo: quelli aventi peso maggiore di 1 attrarranno la curva e viceversa accadrà per quelli aventi peso minore di 1. Il risultato formale, ottenibile con la variazione del peso, non è raggiungibile con la semplice traslazione del punto di controllo, come potrebbe apparire ad uno sguardo superficiale. La traslazione del punti di controllo produce una simile traslazione dei punti appartenenti alla curva nel tratto da esso influenzata. L’aumento del peso, produce invece un movimento di convergenza della curva verso il punto di controllo. Come anticipato, la possibilità di attribuire pesi ai punti di controllo, consente all’algoritmo della nurbs, di rappresentare con precisione, anche alcune coniche quali il cerchio l’ellisse e l’iperbole. Un’utile sperimentazione per familiarizzare con i pesi è indagare come siano distribuiti in questi casi particolari.

Raccordo e smusso di superfici

Coppie di superfici possono essere raccordate con un superficie avente sezione curva (raccordo) o retta (smusso). L’operazione è meno pratica della medesima applicata ai solidi, ove la selezione dei bordi su cui intervenire rende più intuitivo e spedito l’applicazione del comando. Tanto il bordo quanto lo smusso possono variare in dimensione fra i due estremi del bordo. Vale anche per le superfici quanto già detto per i solidi: raccordi e smussi sono operazioni di finitura, pertanto è consigliabile rimandarne l’applicazione ad una fase conclusiva delle modellazione.

Blending fra superfici

Blending è una parola ricorrente nell’ambito della computer grafica, poiché significa ‘transizione’ e perciò è utilizzata in diversi contesti. In questo caso la transizione è fra superfici. Il termine indica un controllo avanzato della generazione della superficie di raccordo, definibile attraverso numerosi vincoli, quali la continuità, le curve di sezione, le linee guida.
Weight of the control points

Every control point can influence, to a smaller or larger extent, the curve’s path according to the weight assigned to it. During the creation phase, the weights are uniform and have value equal to 1. During the editing phase, it is possible to change the weight of each control point: those with a weight greater than 1 attract the curve and the opposite will happen for those with a weight smaller than 1. The formal result, that can be obtained with the variation of the weight, cannot be obtained with the simple translation of the control point as it might appear upon a superficial glance. The translation of the control points produces a similar translation of the points belonging to the curve in the tract that the control points influence. Instead, increasing the weight produces a movement that converges the curve towards the control point. As anticipated, the possibility of conferring weights to control points allows the NURBS algorithm to represent precisely some conics such as the circle, the ellipse, the hyperbola. A useful experiment to familiarize with the weights is to investigate how the weights are assigned in these special cases.

Chamfer and surface filleting

Pairs of surfaces can be chamfered with a surface having a curve (chamfer) or a line (fillet) section. The operation is less practical than the same one applied to solids, where the selection of the edges on which to intervene makes the application of the command more intuitive and fast. The edge, as much as the fillet, may vary in size between the two ends of the edge. What has been said previously for the surfaces also applies for the solids: chamfers and fillets are finishing operations; it is therefore advisable to defer the application to a final phase of modeling.

Blending between surfaces

Blending is a recurring word within computer graphics because it means “transition” and, therefore, is used in various contexts. In this case the transition occurs between surfaces. This term indicates an advanced control of the generation of the chamfer’s surface, which can be defined through numerous constraints such as the continuity, the section curves, the guidelines.
References

4. COX, MG. The numerical evaluation of B-splines. In The numerical evaluation of B-splines DNAC. National Physical Laboratory, Division of Numerical Analysis and Computing, 1971. vol. 4, p.18