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Abstract
The phytohormone ethylene is a principal modulator in many as-
pects of plant life, including various mechanisms by which plants
react to pathogen attack. Induced ethylene biosynthesis and sub-
sequent intracellular signaling through a single conserved pathway
have been well characterized. This leads to a cascade of transcription
factors consisting of primary EIN3-like regulators and downstream
ERF-like transcription factors. The latter control the expression of
various effector genes involved in various aspects of systemic induced
defense responses. Moreover, at this level significant cross-talk oc-
curs with other defense response pathways controlled by salicylic
acid and jasmonate, eventually resulting in a differentiated disease
response.
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Hypersensitive
response (HR): a
programmed cell
death in plants that
occurs locally in
response to
attempted invasion
by some pathogens.
It is characterized by
the rapid production
of reactive oxygen
intermediates and
collapse of the plant
cell, thereby
preventing further
infection specifically
by biotrophic
pathogens

SA: Salicylic Acid

JA: Jasmonic Acid

ET: Ethylene

AdoMet: S-
adenosyl-methionine

ADS: S-AdoMet
synthase

ACS: 1-
aminocyclopropane-
1-carboxylate
synthase (ACC
synthase)

ACC: 1-
aminocyclopropane-
1-carboxylic
acid

ACO: 1-
aminocyclopropane-
1-carboxylate oxidase
(ACC oxidase)

INTRODUCTION

In order to survive the continuous threat of
diverse pathogenic microorganisms in their
immediate vicinity, plants have developed ef-
ficient defense mechanisms. These include
physical barriers and the production of anti-
microbial components, in both a preformed
and an induced manner. Induced mechanisms
involve the specific perception of pathogen at-
tack and the subsequent build-up of appropri-
ate defense responses. Among the early steps
of induced defense responses are the genera-
tion of reactive oxygen species (such as O2

·−

and H2O2) and nitric oxide. Depending on the
extent of the response, these reactive oxygen
species can lead to a hypersensitive response
(HR) characterized by a rapid programmed
death of host cells (reviewed in 100, 166).
Although HR is generally effective in halt-
ing further ingress by biotrophic pathogens,
which need living host cells for nutrient sup-
ply, it usually does not affect, or even promote,
infection by necrotrophs. More downstream
induced responses rely on a network of cross-
communicating signaling pathways of which
salicylic (SA), jasmonic ( JA) acid, and ethylene
(ET) are the principal mediators (reviewed
by 36, 150). Different studies indicate that
JA- and ET-signaling often operate synergis-
tically to induce the effector genes of induced
defense responses (40, 117, 119, 134).

In this chapter we focus on the possible
role of ET in the plant’s interaction with mi-
crobial pathogens. Although ET is involved
in very different aspects of plant life, a major
part of the ET-pathway seems to be conserved
in all ET-mediated responses. Many excellent
reviews have been published on general ET
biosynthesis (12, 132, 162) and downstream
signaling events (3, 29, 59, 162), as well as on
overall aspects of signaling in plant disease re-
sponses including ET-controlled mechanisms
(53, 134, 143, 150). Here we aim to combine
current understanding of both general ET
biosynthesis and downstream ET-signaling
and ET involvement in host-pathogen inter-
actions. This broad scope limits us to summa-

rizing generally accepted processes and elabo-
rating only on recent findings. Moreover, be-
cause basic aspects of ET-mediated responses
appear relatively well conserved among plant
species, we focus mainly on the model plant
Arabidopsis thaliana, and refer readers to an ex-
cellent recent review by Anderson et al. (6) for
extrapolation to other plants.

ETHYLENE BIOSYNTHESIS

Pathogen challenge of plant tissues in many
cases triggers enhanced ET production (13,
34, 91, 118, 128, 158). The early steps that
precede activation of ET biosynthesis genes
or enzymes, next to a range of other cel-
lular responses, involve and ensure recogni-
tion of pathogen-derived elicitor molecules
and/or avirulence molecules by plant recep-
tors. These early responses have been re-
viewed extensively elsewhere (64, 102, 105)
and thus are not, or only briefly, discussed
here. Instead we focus on the different levels
of transcriptional and posttranscriptional ac-
tivation of genes and gene products involved
in ET biosynthesis (Figure 1).

The biosynthetic pathway of ET was un-
raveled to a large extent by the pioneer-
ing work of Yang and co-workers in the
1970–1980s (81). ET is synthesized from
the amino acid methionine, which is con-
verted to S-adenosyl-methionine (AdoMet)
by the enzyme S-AdoMet synthase (ADS).
AdoMet is the major methyl donor in plants
and is involved in the methylation reac-
tions of lipids, proteins, or nucleic acids (45).
AdoMet is converted by the enzyme ACS
to 5′-methylthioadenosine (MTA), which
is converted back to methionine via the
Yang-cycle and to 1-aminocyclopropane-1-
carboxylic acid (ACC), the precursor of ET.
ACC is finally oxidized by ACC oxidase
(ACO) to form ET, cyanide, and carbon diox-
ide. The conversion of AdoMet to ACC by
ACS is the first committed and generally
considered as the rate-limiting step in ET
biosynthesis, and consequently has been most
intensively studied.
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Figure 1
Simplified schematic representation of the ET biosynthesis pathway. Arrows and end-blocked lines
indicate positive and negative regulation, respectively. Genes and proteins are represented in light blue
ovals and boxes, respectively.

Transcriptional Regulation of
Ethylene Biosynthesis

Genes encoding plant ADS have been cloned
from various plant species (including Ara-
bidopsis), and their characterization has re-
vealed that they are highly conserved in all
organisms and encoded by a gene family (125).
ADS is involved in many more metabolic
pathways than just ET biosynthesis (125). Ap-
parently, no specific induction of ADS genes
upon pathogen attack or abiotic stress stim-
uli has been reported. Thus, in an analysis
of publicly available gene expression data (us-
ing “Genevestigator”; 177) we were not able
to detect any pronounced pathogen-mediated
gene induction or repression of ADS genes.

ACOs are encoded by multigene fami-
lies in all plant species studied so far (162).
The members of ACO gene families are

differentially expressed during plant devel-
opment or in response to pathogen attack
and abiotic stress stimuli such as wound-
ing, flooding, or ozone exposure (34, 94,
98, 101, 169). Very recently, Cohn & Mar-
tin (34) showed the involvement of the viru-
lence/avirulence factors AvrPto and AvrPtoB
from the bacterial pathogen Pseudomonas sy-
ringae pv. tomato in ET biosynthesis in a sus-
ceptible tomato cultivar. More particularly,
these pathogen-derived proteins up-regulated
two specific ACO genes (LeACO1/2), whereas
other tomato ACO genes remained unaf-
fected. Screening for all Arabidopsis ACO-
encoding genes in reported expression data
(177) also demonstrated significant abiotic
and biotic stress-mediated gene regulation
for particular subsets of ACO genes. As an
example, the ACO genes at loci At1g62380
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and At1g05010 in particular appear to be
up-regulated upon treatment of Arabidop-
sis with ET and Botrytis cinerea, whereas the
ACO gene at At1g12010 tends to be down-
regulated following inoculation with P. sy-
ringae and Alternaria brassicicola. The other
ACO-encoding genes are not affected un-
der these experimental conditions. Taken to-
gether, the differential expression patterns
of ACO genes suggest that transcriptional
control of these genes contributes to the
regulation of ET production. The control
of ET production remains, however, largely
attributed to the ACS genes, as discussed
below.

ACSs are encoded by multigene families
in plants (12, 78). The majority of ACS-
expression studies have been conducted in
tomato, which contains at least 10 ACS genes,
and in Arabidopsis thaliana, which contains 9
ACS genes. Because of their pivotal role in
ET biosynthesis, the regulation of ACS has
been thoroughly studied. A first level of ET
biosynthesis regulation occurs at the ACS
gene expression level. Indeed, many studies
have demonstrated that differential transcrip-
tion of the various members of the ACS-gene
families is an important factor regulating ET
production in response to different stimuli
(7, 113). Recently, Tsuchisaka & Theologis
(154) examined the spatio-temporal expres-
sion patterns of the ACS gene family members
in Arabidopsis during plant growth and de-
velopment and under different abiotic stress
stimuli, and they showed specific and partially
overlapping patterns of expression among the
various ACS gene family members in specific
tissues. For instance, wounding of hypocotyl
tissue inhibited the constitutive expression of
AtACS1 and AtACS5 in this tissue and in-
duced the expression of AtACS2, 4, 6, 7, 8, and
11. Unfortunately, expression patterns of the
different ACS genes upon pathogen infection
have not yet been examined. It would be of
great interest to explore whether the different
key genes show a specific expression profile af-
ter various pathogen inoculations, including

viruses, bacteria and different nectrotrophic
and biotrophic fungi. In a preliminary search
(177) on the expression patterns obtained for
all 9 Arabidopsis ACS-encoding genes, we
found cases of significant pathogen-induced
gene up-regulation, pathogen-induced re-
pression, or invariant gene expression fol-
lowing various pathogen interactions. As an
example, AtASC2 in particular is strongly up-
regulated upon challenge of Arabidopsis with
P. syringae, B. cinerea, and Alternaria brassici-
cola, whereas AtACS5 and AtACS11 tend to be
down-regulated following inoculation with P.
syringae. The other ACS-encoding genes ap-
pear not to be affected under these experimen-
tal conditions.

Posttranscriptional Regulation of
Ethylene Biosynthesis

Whereas transcriptional regulation of ACS
gene family members is central for enhance-
ment of ET production, recent findings indi-
cate the pivotal role of ACS protein turnover
as a key regulator of ET production in plants
(reviewed in 22). Studies on the Arabidop-
sis ethylene-overproducer (eto) mutants (61, 82)
have provided compelling evidence that ACS
protein turnover is indeed regulated posttran-
scriptionally and that this regulation mecha-
nism provides a handle on ET biosynthesis
(22, 168). The molecular mechanisms regu-
lating AtACS5 activity and turnover were fi-
nally elucidated by cloning of the gene re-
sponsible for the eto1 mutation (163). ETO1
is a member of a novel protein family, unique
to the plant kingdom, featuring some distinct
protein-protein interaction motifs including
a BTB (Broad-complex, Tram-track, Bric-à-
brac) domain. BTB domain–containing pro-
teins have been shown to link CUL3-based
ubiquitin ligase to substrate proteins (122).
Wang et al. (163) have demonstrated direct
interaction of ETO1 with both AtACS5 and
CUL3 using in vitro pull-down assays, sug-
gesting that ETO1 acts as a substrate-specific
adaptor protein for AtACS5 and possibly also
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for other ACS isozymes, thereby targeting
these ACS proteins for degradation by the
26S proteasome. Moreover, ETO1 inhibits
the activity of wild-type AtACS5 but not eto2
mutant AtACS5 in vitro (163). Together, this
study suggests that ETO1 directly inhibits At-
ACS5 enzymatic activity in addition to its ef-
fect on the proteolysis-mediated stability of
the ACS5 protein.

Although there is increasing insight into
the regulation of ET biosynthesis via pro-
teolysis of ACS, an important question re-
garding the control of this mechanism is
not fully answered. A mechanism for ACS
breakdown would involve the modification of
the ACS proteins themselves in such a way
that they become targeted for degradation
by the ubiquitin-26S-proteasome machinery.
One probable candidate for such a modifica-
tion is protein phosphorylation. Several stud-
ies in tomato and Arabidopsis provide explicit
indications that protein phosphorylation reg-
ulates the turnover of the ACS proteins. For
example, a serine residue in the carboxy ter-
minus of LeACS2 was found to be phospho-
rylated by a calcium-dependent protein ki-
nase (CDPK) present in extracts of wounded
tomato fruits (142). This study, in combina-
tion with protein kinase and phosphatase in-
hibitor studies (138, 155), suggest that ACS
protein turnover is regulated through phos-
phorylation by CDPK. A more intriguing
question is by which stimuli, including chal-
lenge by pathogens, CDPK phosphorylation
and consequently ACS protein turnover and
ET biosynthesis are regulated. Another recent
study in Arabidopsis revealed that some ACS
proteins are substrates for mitogen-activated
protein kinase (MAPK) phosphorylation and
that this phosphorylation regulates their sta-
bility (88). In particular, activation of a MAPK
pathway involving MPK6 led to in vivo sta-
bilization of the AtACS6 protein and to
in vitro phosphorylation of three conserved
serine residues of both AtACS2 and AtACS6.
AtACS4, -5, -8, and -9 isozymes do not
have these conserved serine residues. More-

Proteasome: A
protein complex that
is a part of a major
catabolic pathway
that degrades
intracellular proteins
after they have
outlived their
usefulness. The
degradation process
occurs in both the
nucleus and the
cytoplasm, and
involves marking the
target proteins
through the addition
of ubiquitin
molecules
(ubiquitination) for
complete hydrolysis

MAPK:
mitogen-activated
protein kinase

CDPK:
calcium-dependent
protein kinase

over, AtACS5 is not phosphorylated by MPK6
in vitro (88). These findings suggest that
MPK6 phosphorylation inhibits the degrada-
tion of AtACS2 and AtACS6 proteins and that
both enzymes are stabilized in response to
pathogens and other stresses through direct
phosphorylation by MPK6 (22). Numerous
studies have previously demonstrated the role
of MAPK cascades in defense signaling and
plant immunity (recently reviewed by Pedley
& Martin, 114)

As a conclusion, at least two parallel sig-
naling pathways, involving either a MPK6 or
a CDPK, appear to play a role in modulation
of ACS function and regulation of ET biosyn-
thesis. In both cases, phosphorylation could
block the interaction with the ETO1-CUL3
ubiquitin ligase and 26S-proteasome-directed
breakdown of the ACS proteins. However, the
exact link between pathogen recognition and
control of ACS protein stability remains to be
elucidated. Ludwig et al. (90) demonstrated
in tobacco that CDPK and MAPK signaling
trails do not function independently and that
a concerted activation of both pathways con-
trols response specificity to abiotic and biotic
stresses. Such parallel signaling branches not
only offer a back-up system to assure multiple
activation events as a reaction to one stimu-
lus, but also allow fine-tuning of responses by
regulating different sets of partly overlapping
reactions. ET biosynthesis and perception are
thought to fulfill a central role in this cross-
talk. In the case of ET biosynthesis, different
ACS members become activated depending
on the signaling branch (Figure 1).

A final remark concerns the position-
ing of the MPK6 pathway in the overall
ET-mediated response. This was originally
proposed by Ouaked et al. (112) to be down-
stream of ET perception (discussed below).
As discussed above, the ACS proteins are the
direct interaction partner of MPK6, and a null
MPK6 mutation affects only ET biosynthesis
and not ET responsiveness. Therefore, it is
more likely that MPK6 is situated upstream
of ET perception (37).
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EIN2

EIN3/EIL1

EBF1/2

ERF4, ...

ETR1/2 - ERS1/2 - EIN4

CTR1

GCC-box genes, 
including PDF1.2, B-CHI, BGL, ...  

EBF1/2

Disease response

Ethylene

ERF1/2, ...
Pti4 Nucleus

ER

Figure 2
Simplified schematic representation of the ET downstream signaling
pathway mentioned in the text. Arrows and end-blocked lines indicate
positive and negative regulation, respectively. White arrows indicate
signal direction. Genes and proteins are represented in light blue ovals
and boxes, respectively.

PERCEPTION AND
CYTOPLASMIC SIGNALING

ET produced after either internal or exter-
nal stimuli is perceived by the cell and this
signal is further transmitted through a single

well-conserved signaling cascade (for recent
reviews see 29, 59, 139). Most of the com-
ponents of this pathway have been discov-
ered using simple genetic screens focused on
Arabidopsis mutants with an impaired ET re-
sponse, such as the morphological “triple re-
sponse” of seedlings to ET exposure (61). The
triple response is characterized by an inhibi-
tion of hypocotyl and root cell elongation, a
radial thickening of the hypocotyl and a hy-
percurving of the apical hook. Mutants result-
ing from these screenings could be catego-
rized as either ET-insensitive mutants or con-
stitutive ET-response mutants. Both classes of
mutants have proven to be invaluable tools for
unraveling the ET perception and signaling
cascade (Figure 2).

Ethylene Perception by
Endoplasmatic Reticulum Receptors

Based on the analysis of ET-insensitive mu-
tants impaired in early hormone perception, a
family of five receptors (ETR1, ETR2, ERS1,
ERS2, EIN4) was identified (11, 24, 70, 72,
129) sharing sequence similarities with bacte-
rial two-component regulators (123). Among
all five receptors the most conserved domain
is their N-terminal part, consisting of three
or four transmembrane regions in subfam-
ily 1 (ETR1, ERS1) and subfamily 2 (ETR2,
ERS2, EIN4) receptors, respectively. This N-
terminal domain has been shown to be re-
sponsible for ET binding for at least ETR1
and ERS1 (62, 127, 131). It has been fur-
ther demonstrated that ETR1 and ERS1
are present in the endoplasmic reticulum
(ER) membrane as disulfide-linked homo-
dimers (62, 133). Each homodimer forms
a hydrophobic pocket constituting one ET-
binding site and ET binding to this pocket
is mediated through a single copper cofactor
(74, 167).

In contrast to the well-conserved ET-
binding region, conservation of the remain-
ing domains of the receptors appears to de-
crease from the N to the C terminus. Other
domains present in the ET receptors include a
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potential cGMP binding site (25) and a histi-
dine kinase region that is believed to be func-
tional only in subfamily 1 ET receptors (50,
72). However, the role of these domains in
ET perception or further signal transduction
is not clear (51, 164). Based on in vitro assays,
serine kinase activity has been suggested for
subfamily 2 receptors as well as for ERS1 as an
alternative to the histidine kinase mechanism
for transducing the phosphorylation signal to
downstream components of the ET signaling
cascade (95). Whether both types of kinase ac-
tivities are also significant in vivo needs to be
further investigated.

Even less is known about the specific role
of the C-terminal part of the receptors, con-
sisting of a specific receiver domain in ETR1,
ETR2, and EIN4 receptors. Along with the
kinase domain, the receiver moiety of ETR1
appears to participate in the interaction of the
receptor with CTR1, a downstream compo-
nent of the ET signaling cascade (33). It has
been postulated that the ERS-type receptors,
lacking this domain, might use the receiver
domain of other proteins through the forma-
tion of heterodimers (72).

Despite these structural differences among
the different ET receptors, various genetic
and biochemical studies revealed a remarkable
functional redundancy. They all appear to be
inhibited by ET binding and to act as negative
regulators of ET responses (71, 127, 131). As
such, the observed induction of their genes by
ET should be seen as a means of resensitiza-
tion of the plant to ET. Additional posttran-
scriptional regulation has been proposed for
ETR1, although the underlying mechanism is
not yet known (29).

There is solid evidence that ET perception
occurs at the ER based, among others, on the
observation that ET receptors are localized
in the ER membrane (29, 30). This is consis-
tent with the fact that (i ) the ER is a point
of junction for diverse cellular processes in-
cluding several stress responses ( reviewed in
65), and (ii ) ET is a key regulator in several
of these physiological processes (reviewed in
12, 25, 78, 162).

Downstream Intracellular Ethylene
Signaling

Studies of the Arabidopsis mutant ctr1
(constitutive triple response) resulted in the
identification of CTR1 as a negative regulator
of ET responses (82). Cloning of the CTR1
gene revealed that it is composed of an N-
terminal domain of unknown function and a
C-terminal kinase domain with highest ho-
mology to Raf-like serine-threonine kinases
(82). Such Raf-kinases have been demon-
strated in mammalians to act in mitogen-
activated protein (MAPK) signaling cascades
(116). Similarly to ET receptors, localization
studies indicated that CTR1 is primarily as-
sociated with the ER (52), although CTR1
does not contain any predicted transmem-
brane domain or membrane attachment mo-
tifs. The ER-location of CTR1 has been ex-
plained through its association with the ET
receptors (21, 33, 52, 71, 73). Such a direct
interaction is also the basis for signal transmis-
sion between both types of components of the
ET signaling pathway. It appears that binding
to the ET receptors (through the N-terminal
part of CTR1) and kinase activity (through its
C-terminal kinase moiety) are both necessary
for correct negative regulation of downstream
ET responses (21, 52, 73). A model for the sig-
naling through the ETR1-CTR1 complex is
suggested by Gao et al. (52). In the absence of
ET, binding of the receptors to CTR1 would
maintain the latter’s conformation such that
it remains active and thus acts as a negative
regulator able to repress downstream ET re-
sponses. Binding of ET would cause a con-
formational change of CTR1, resulting in re-
lease of its downstream inhibitory effect. Such
a conformational change in the N terminus
could autoinhibit its C-terminal Ser/Thr ki-
nase activity, a model earlier proposed for the
mammalian protein Raf kinase (68). In anal-
ogy with Raf kinase signaling, a MAPK ki-
nase pathway has been proposed to function in
ET signaling (104, 112). More recent studies,
however, raised serious doubts about the va-
lidity of these conclusions (37, 88), and rather
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EIL: EIN3-like

propose such a pathway to be positioned up-
stream of ET perception, as mentioned ear-
lier. A MAPK kinase cascade may still function
downstream of CTR1, but in the absence of
conclusive experimental evidence, this MAPK
module has again been removed in the most
recent model for primary ET signaling (139).

Another key mutant resulting from screens
for ET insensitivity was ein2 (61). Cloning of
the EIN2 gene led to the identification of a
novel plant-specific protein consisting of two
well-defined domains: a unique hydrophilic C
terminus harboring motifs typically involved
in protein-protein interactions, and a hy-
drophobic N-terminal part containing 12 pre-
dicted transmembrane helices showing simi-
larity to Nramp-proteins (2). Nramp-related
proteins are described as metal transporters
in different organisms ranging from bacte-
ria to humans (80, 140). However, no metal
transport activity has been detected so far for
EIN2 (2). Although EIN2 behaves as an inte-
gral membrane protein, attempts to localize it
at the subcellular level have been unsuccessful
(2). The complete lack of ET sensitivity in ein2
loss-of-function mutants suggests an essential
role of this protein as the first positive regu-
lator of ET responses. Overexpression of the
C-terminal part appeared sufficient to con-
stitutively activate ET responses, suggesting
that this part of EIN2 is responsible for fur-
ther downstream signal transduction (2).

NUCLEAR TRANSMISSION OF
THE ETHYLENE SIGNAL

Primary Transcriptional Regulation:
EIN3/EIL Transcription Factors

The ET signal arrives at the nucleus through
derepression of EIN2 by CTR1 and leads to
the activation of EIN3 and EIN3-like tran-
scription factors (26) (Figure 2). In Arabidop-
sis, there are six members of the EIN3 family
(EIN3 and EIL1–5) among which EIN3 and
EIL1 are the most closely related proteins and
apparently the most important for ET sensi-
tivity (4). The other family members (EIL2–

5) seem to play a marginal role in the ET
response or, alternatively, may participate in
specific tissues or may even function in differ-
ent ET-independent signaling pathways (27,
59, 76, 126, 151). Recent data support a tissue-
specific role for the EIL2–5-like transcription
factors during growth and development (76,
174).

Modulation of EIN3/EIL1 activity by
ET is not primarily achieved by transcrip-
tional regulation but through proteolytic
control of EIN3 protein levels by a SCF
(SKP1/Cullin/F-box protein) E3 ubiquitin
ligase complex (26, 49, 58, 124, 126, 151, 172).
The Arabidopsis F-box proteins AtEBF1 and
AtEBF2 were shown to physically interact
with EIN3 and analysis of atebf1/2 mutant
plants and AtEBF-overexpressing lines con-
firms their role in destabilization of EIN3 (49,
58, 124). Therefore, it seems that, in the ab-
sence of ET, EIN3/EIL1 proteins are con-
tinuously degraded through the AtEBF1/2-
directed and proteasome-mediated pathway,
thereby preventing activation of their tran-
scriptional targets. In the presence of ET,
degradation of EIN3 is suppressed, thereby
allowing EIN3 protein levels to increase and
promote downstream events. At least for
AtEBF2, up-regulation of expression by ET
has been demonstrated (49, 124), suggesting
that a negative feed-back mechanism might
equilibrate EIN3/EIL protein levels. Since
multiple protein kinases have been placed up-
stream of EIN3/EIL (59), it is also possible
that phosphorylation of EIN3 inhibits its as-
sociation with AtEBF1/2, thereby preventing
its degradation (49, 58, 124). Still undeter-
mined is if and how this modification would
take place through action of EIN2. How-
ever, EIN3/EIL proteins are clearly essential
“ethylene switch” molecules in the sense that
slight changes in their level controls the signal
flux to downstream nuclear events.

The EIN3 transcription factor recognizes
its DNA target, the so-called EIN3-binding
site (EBS) or primary ET response element
(PERE) in the promoters of ET response el-
ement binding proteins (EREBP) genes, and
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does this in the form of a homodimer protein
complex (59, 84, 137). Recently, determina-
tion of the DNA-binding region of AtEIL3
by NMR spectroscopy revealed that it consists
of five α-helices, possessing a novel fold un-
like known DNA-binding domain structures
(171).

Secondary Transcriptional
Regulation: AP2/ERF
Transcription Factors

Biochemical and genetic studies in Arabidop-
sis have identified the transcription factor
AtERF1 as an immediate target for the
primary ET-responsive transcription factor
EIN3 (3, 59, 137). Overexpression of ERF1
genes from Arabidopsis, tomato, tobacco, and
rice was shown to rescue the loss of EIN2 and
EIN3 functions (20, 59, 89, 92, 137), provid-
ing evidence that ERF1 acts downstream of
EIN3.

AtERF1 belongs to a family of so-called
Ethylene Response Factors (ERFs), also
termed Ethylene Responsive Element Bind-
ing Proteins (EREBPs) (59, 60, 108, 137,
176). ERFs have been identified in several
plant species as proteins that bind to the so-
called GCC-box present in promoters of sev-
eral ET-inducible genes, for instance those
encoding pathogenesis-related (PR) proteins.
The GCC box is a cis-acting ET response
element, consisting of an 11-bp conserved
sequence (TAAGAGCCGCC), shown to be
necessary and sufficient for ET regulation of
ET-responsive effector genes in a variety of
plant species (66, 93, 108). ERFs interact in
vitro with the GCC-box through a domain
homologous to that previously observed in the
floral homeotic protein APETALA2 (AP2)
from Arabidopsis (reviewed in 60). ERFs also
show homology to transcription factors that
bind to the dehydration-responsive element
binding (DREB) in the promoters of genes
that are responsive to abiotic stress (60, 92).
Together, the AP/ERF superfamily of tran-
scription factors comprises at least 145 mem-
bers in Arabidopsis (60).

ERF: ethylene
responsive factor

PR:
pathogenesis-related

AP2: Apetala2

DREB:
dehydration-
responsive element
binding

EREBP: ethylene
response element
binding protein

Recently, the Arabidopsis HDA19, one of
the histone deacetylases essential for eukary-
otic gene expression regulation, has been im-
plicated in EIN3-ERF1–mediated ET signal-
ing (175). How the interplay between EIN3
and HDA19 precisely enables transcriptional
activation of ERF1 and/or downstream nu-
clear events is not clear thus far. In addi-
tion to transcriptional regulation of ERF pro-
teins through action of EIN3/EIL factors,
posttranscriptional regulation through phos-
phorylation may be a common theme in the
secondary ET-dependent level of transcrip-
tional regulation: AtERF5 contains a potential
MAPK phosphorylation site (48) and phos-
phorylation of the rice OsEREBP1 protein
was shown to enhance its binding to the GCC-
box (31).

Most of the ERF proteins identified so
far have been shown to function as transcrip-
tional activators (48, 110, 111, 137, 170, 176).
For example, AtERF1, AtERF2, and AtERF5
transcriptionally activate GCC-box contain-
ing genes (48). However, a second class of
ERF proteins act as transcriptional repres-
sors. Arabidopsis AtERF3, AtERF4, AtERF7,
AtERF10–12, and tobacco ERF3 repress the
expression of a GCC-box-containing reporter
gene (48, 109, 110). The gene repression
motif (L/F)DLN(L/F)(x)P, also termed ERF-
associated amphiphilic repression (EAR) mo-
tif, was found to be present in all these
ERF proteins (109). At least eight Ara-
bidopsis AP2/ERF protein family members
contain this motif (60). Recently, overexpres-
sion of AtERF4 was shown to confer an ET-
insensitive phenotype and to repress the ex-
pression of the GCC-box containing genes
encoding basic chitinase and β-glucanase
(173). Remarkably, and illustrating the com-
plexity and specificity of the ET-responsive
network of secondary transcriptional regula-
tion, overexpression of AtERF2 and AtERF4
results in opposite disease-resistance pheno-
types toward infection with the necrotrophic
pathogen Fusarium oxysporum (92).

Specific actions of the different ERF tran-
scription factors that can either activate or
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repress particular defense response genes
likely provide for a level of fine-tuning accord-
ing to the kind of biotic stress perceived. Such
fine-tuning of the defense response would
avoid unnecessary action by the plant.

ETHYLENE IN PLANT DISEASE
RESISTANCE

As described above, ET biosynthesis is
activated in many plants challenged by
pathogens, and increased ET production in-
duces defense-related effector genes through
a cascade of events of which the penultimate
step is the activation of ERF-type transcrip-
tion factors. In this section we focus first on
different types of effector genes that are in-
duced upon pathogen challenge. Moreover,
we briefly highlight the cross-talk between
ET-signaling and other mechanisms of in-
duced resistance, including those mediated by
SA and JA. Finally, we discuss the role of ET
and ET signaling in determining the modu-
lation of resistance and susceptibility of host-
pathogen interactions.

Ethylene-Dependent Induction of
Effector Molecules

Pathogen-induced defense responses ulti-
mately result in the expression of numerous
defense-related genes. The corresponding
proteins include (i) proteins that participate in
the build-up of physical barriers and as such
in the physical confinement of the pathogen;
(ii) enzymes of secondary metabolism, for in-
stance, those functioning in biosynthesis of
antimicrobial secondary metabolites; and (iii)
pathogenesis-related (PR) proteins, the latter
representing the largest quantitative changes
in soluble protein during defense responses.

The specific role of ET signaling in the for-
mation of induced structural barriers has so far
received relatively little attention. Cell-wall
strengthening hydroxyproline-rich proteins
accumulate in plants upon treatment with
ET (38, 41, 141). Such hydroxyproline-rich
proteins are structural components deposited

in the cell wall and their presence has been
associated with cell wall fortification, espe-
cially after oxidative cross-linking of such pro-
teins (15). Furthermore, VanderMolen and
coworkers (157) demonstrated that ET is re-
quired for the xylem occlusion response that
occurs in plants to counter the further spread
of wilt pathogens such as Fusarium oxyspo-
rum f.sp. lycopersici, through the plant’s vas-
cular system. On the other hand, the local de-
position of callose in the cell wall at sites of
attempted penetration by pathogens appears
not to be mediated by ethylene but instead
involves synthesis and perception of abscisic
acid (153).

The role of ET in the pathogen-
induced production of antimicrobial sec-
ondary metabolites (phytoalexins; 115)
appears to be dependent on the type of phy-
toalexin and the metabolic pathway involved.
In rice leaves, for example, ET induces the
production of the phenylpropanoid-derived
phytoalexin sakuranetin, but not of the
terpenoid phytoalexin momilactone A (99).
In general, phytoalexins derived from the
phenylpropanoid pathway are inducible by
ET in different plant species (32, 77, 79). In
Arabidopsis, pathogen-induced production
of camalexin, an indole alkaloid phytoalexin,
is controlled by a reactive oxygen species-
mediated pathway that exhibits little or
no cross-talk with ET- and JA-dependent
signaling, and mutants affected in ethylene
signaling, such as ein2, are still able to
synthesize camalexin in response to pathogen
attack (43, 54, 149).

By far the most extensively docu-
mented ET-induced defense-related effector
molecules are the so-called pathogenesis-
related (PR) proteins. Currently, 17 PR-
classes have been identified (160), of which
the majority have been shown to exert direct
antimicrobial activity against fungal species
and occasionally against bacterial species
(reviewed in 16; see Van Loon, this issue).
Distinct PR gene classes were shown to be ET
responsive through the GCC-box element in
their promoter regions (see above), including
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vacuolar β-1,3-glucanases (PR-2), vacuolar
basic-chitinases (PR-3), acidic hevein-like
proteins (PR-4), and plant defensins (PDFs;
PR-12) (17, 23, 42, 89, 107, 117, 130, 148).
Induction of these PR-genes occurs via a
pathway in which ET and JA operate syn-
ergistically (118). Other types of PR genes,
including PR-1 proteins, and extracellular
β-1,3-glucanases and chitinases, are induced
through an SA-dependent pathway, at least
in Arabidopsis and tobacco (14, 47, 156).
Both the ET/JA and SA-induced PR genes
are induced in the infected zone as well as
systemically (reviewed in 16; see Van Loon,
this issue).

Recent high-throughput transcript profil-
ing studies have shown that a range of PR-
genes are induced in Arabidopsis plants in
which either AtERF1 or its tomato homolog
Pti4 is overexpressed, confirming the ET-
responsiveness of these PR-genes and adding
several novel potential ET regulated signaling
and effector molecules to the list (23, 89). Re-
markably, a recent proteomics study on pro-
teins secreted by Arabidopsis upon pathogen
challenge has revealed that GLIP1, a novel
secreted lipase, acts as an ET-responsive an-
timicrobial effector molecule critical for dis-
ease resistance to the incompatible fungal
pathogen A. brassicicola (106).

The plant defensin gene AtPDF1.2 (group
PR-12) is widely used as a marker for ET/JA-
induced signaling in Arabidopsis defense re-
sponses (117, 118). The gene contains GCC
box promoter elements and is inducible by
both ET and JA through activation of AtERF1
(see below; 26, 89, 117, 137). Plant defensins
in general are small, basic peptides that have a
characteristic three-dimensional folding pat-
tern that is stabilized by eight disulfide-linked
cysteines, and typically inhibit the growth of
a broad range of fungi after specific binding
to membrane targets (144–146). Recent ad-
vances in gene annotation revealed the pres-
ence of 317 novel defensin-like (DEFL) genes
in the Arabidopsis genome (136), including
the 13 previously annotated plant defensin
(AtPDF) genes (145). It is an intriguing ques-

PDF: plant defensin

DEFL:
defensin-like protein

tion whether all or only a subset of these genes
are responsive to ET. Our own observations
on the originally identified AtPDF genes indi-
cate a largely differential expression pattern in
response to ET, SA, JA, and different marker
pathogens. For example, the genes encoding
AtPDF1.2a/b/c are induced by ET and JA and
repressed by SA, whereas AtPDF1.4 is not re-
sponsive to ET or JA but is induced by SA.
Consistently, analysis of their promoter re-
gions indicated a GCC-box domain present
in all three AtPDF1.2 genes, but not in At-
PDF1.4. In contrast, AtPDF1.5 appears unre-
sponsive to any of these treatments, although
also harboring a GCC-box (B.C., unpublished
results). This suggests that a more complex
network exists in which different groups of
DEFLs respond to one or more signaling
pathways.

Interactions between Primary ET
Signaling and Other Mechanisms of
Induced Resistance

The primary ET signaling pathway compo-
nents described earlier (ETR/ERS/EIN4,
CTR, EIN2, EIN3/EIL) are required for
all known ET responses and, to date, none
has been found to respond to signals other
than ET (3, 59, 143). Branch points in the
ET response pathway therefore must lie
downstream of EIN3/EIL. In fact, differ-
ential regulation by disease-related stimuli
such as ET, JA, SA, and infection by virulent
or avirulent pathogens has been shown for
several ERF genes (20, 23, 28, 48, 57, 59,
89, 92, 111). As such, significant cross-talk
between different signaling pathways appears
to occur at this level. In the present review
we do not specifically aim to present an
overview of all reported points of cross-
communication between disease-related
signaling pathways but refer therefore to
various excellent schematic presentations in
recent reviews (5, 143, 162). In the section
below we rather concentrate on some illustra-
tive overlaps between ET-dependent disease
responses and other mechanisms of induced
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Gene-for-gene
resistance:
resistance based on
the genetic
interaction between
a dominant plant
resistance (R) gene
and a
complementary
dominant pathogen
avirulence (Avr) gene

resistance in plants including gene-for-gene
resistance, JA- and SA- dependent resistance,
and rhizobacteria-induced resistance.

Gene-for-gene resistance. In gene-for-
gene resistance, the plant-pathogen inter-
action and subsequent plant signal trans-
duction upon recognition of the pathogen
avirulence products result in resistance against
the pathogen in most cases through an HR.
It is well documented that the HR involves
and is potentiated by the SA-dependent sig-
naling pathway (53, 63). However, in a num-
ber of cases gene-for-gene interactions were
also linked to ET-dependent gene expres-
sion, as exemplified in the study of the pro-
tein kinase encoding resistance gene Pto from
tomato. Recognition of the pathogen avir-
ulence product AvrPto from P. syringae pv.
tomato by Pto induces changes in the expres-
sion of over 400 genes, an oxidative burst
and an HR (46, 96, 135). Remarkably, Pto
interacts directly with the AP2/ERF tran-
scriptional activators Pti4, Pti5, and Pti6
(56, 176). Furthermore, expression of the
transcription factor Pti4 is rapidly induced
by ET, and binding of Pti4 to the GCC
box in defense response genes is regulated
by its Pto kinase-mediated phosphorylation
(57). However, consistent with its involve-
ment in gene-for-gene resistance, Pti4 seems
able to bind to non-GCC-box promoter ele-
ments as well (23), to induce SA-dependent
PR-gene expression and to increase resis-
tance to biotrophic pathogens when overex-
pressed in Arabidopsis (56). Therefore, it is
unclear whether ET is causally involved in
gene-for-gene resistance or whether gene-
for-gene interactions rather trigger the in-
duction of ET-regulated genes. In fact, the
Arabidopsis ethylene signaling mutants etr1
and ein2 were shown not to be impaired in
gene-for-gene–type resistance to biotrophic
pathogens such as the Oomycete Hyaloper-
onospora (Peronospora) parasitica and the bac-
terium P. syringae, suggesting that ET is not
required for gene-for-gene resistance per se
(85, 86, 121).

Ja-dependent induced resistance. The
ET- and JA-mediated signaling pathways act
synergistically in defense responses (40, 117,
121). Such synergism has been supported
by microarray analyses indicating clusters of
genes that are commonly induced by ET or
JA (55, 134). Furthermore, the GCC-box
required for AtERF1 binding in the sys-
temically pathogen-induced gene AtPDF1.2
from Arabidopsis has also been identified
as a JA-responsive element, indicating that
AtERF1 is a point of integration for ET and
JA acting downstream of the intersection
between both signaling pathways (20, 89).
It has been suggested that an unknown
JA-induced transcription factor interacts
cooperatively with EIN3 in the promoter of
AtERF1 (59). The presence of basal levels
of either ET or JA signaling molecules
would then be sufficient to allow AtERF1
expression. A recent transcript profiling
study identified at least ten different Ara-
bidopsis AP2/ERF family members to be
transcriptionally induced upon treatment
with both methyl-JA and inoculation with
the incompatible pathogen A. brassicicola,
including the positive regulators AtERF1/2
and negative regulator AtERF4 (92).

Sa-dependent induced resistance. Nu-
merous studies have shown that, whereas ET
and JA interact synergistically to activate cer-
tain disease response, the ET and JA path-
ways act at least independently or even antag-
onistically with respect to the SA-dependent
pathway. Arabidopsis mutants affected in ET
or JA perception are still fully capable of
mounting SA-dependent responses (118, 147,
148) or of inducing the expression of SA-
controlled genes (55). On the other hand,
transgenic Arabidopsis plants that are un-
able to accumulate SA (e.g., nahG-expressing
plants) and mutants impaired in SA-synthesis
(e.g., sid2 and eds5) or SA signaling (e.g.,
npr1/nim1) are blocked in the induction of
SA-dependent PR-genes but show an equal or
even stronger induction of ET/JA-dependent
PR-genes (55, 150). The negative regulation
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between ET- and SA-mediated signaling is
also reflected by their final disease resis-
tance response. For example, overexpression
of AtERF1 in Arabidopsis results in increased
ET-mediated resistance to B. cinerea but re-
duces SA-mediated resistance to P. syringae pv.
tomato (10).

Rhizobacteria-induced resistance. A spe-
cific kind of cross-talk between systemic de-
fense responses in plants occurs upon root col-
onization by nonpathogenic Pseudomonas spp.,
leading to the development of enhanced de-
fensive capacities against a broad spectrum of
pathogens. In contrast to pathogen-induced
systemic acquired resistance (SAR), associated
with an increase of SA and induction of a sub-
set of PR-genes in distant uninfected tissues,
this rhizobacteria-induced systemic resistance
(ISR) is not associated with SA or systemic
changes in the expression of PR genes (75,
121, 152). However, NPR1, a component of
the SA pathway, has been shown to be re-
quired for ISR (120, 121) as well as the ET re-
ceptor ETR1, the root ethylene insensitivity
locus ISR, and components of JA-dependent
signaling (75, 121, 152). Remarkably, how-
ever, dependent on the rhizobacterial strain,
the plant seems to activate different subsets
of signaling branches to induce resistance
(75, 152). A recent transcriptome analysis on
P. fluorescens ISR-induced Arabidopsis plants
showed considerable expression changes in
several JA- and ET-responsive genes (161),
suggesting that these genes are primed to re-
spond strongly and consequently more effec-
tively to pathogen attack. Very recently it was
found that ISR-induced expression of a root-
specific PR-5 gene (AtTLP1) can be mimicked
by application of the ET precursor ACC, but
not by JA or SA (87), confirming a specific
involvement of ET in rhizobacteria-mediated
resistance.

Apart from cross-talk with other defense
response signaling pathways, ET-responsive
ERF transcription factors also seem to act
as connectors with general stress-related sig-

ISR: induced
systemic resistance

SAR: systemic
acquired resistance

ABA: abscisic acid

nal transduction pathways. Antagonistic in-
teractions between multiple components of
the abiotic stress hormone abscisic acid (ABA)
and the JA or ET signaling pathways seem to
modulate gene expression in response to bi-
otic and abiotic stresses (5, 28, 48, 173). In
addition to exhibiting enhanced disease sus-
ceptibility (92), AtERF4 overexpressing Ara-
bidopsis plants show increased resistance to
abiotic stress accompanied by repression of
GCC-box–containing genes (173), suggest-
ing that the negative transcriptional regulator
AtERF4 is capable of modulating both ET
and ABA responses. Possibly, AtERF4 is re-
sponsible for regulating the antagonism ob-
served between ET and ABA responses (5,
92). Regulation of general stress responses
may very well be orchestrated at the level of
the ET-responsive transcription factors of the
AP2/ERF family, which would modulate gene
expression to ensure that the most appropriate
defense response is activated for the specific
type of threat.

The Role of Ethylene in
Determining the Outcome of
Plant-Pathogen Interactions

Treatment of plants with ethylene has long
been known to increase either susceptibil-
ity or resistance, depending on the plant-
pathogen interaction. For instance, treatment
of plants with ethylene enhances resistance to
the fungus B. cinerea (36a), whereas in other
cases exposure of plants to ethylene had ei-
ther no effect or reduced the resistance level
to pathogens (19, 39, 159).

The use of characterized mutants and
transgenic plants has provided more com-
pelling evidence as to the crucial role of ET in
resistance to particular pathogens. The Ara-
bidopsis mutant ein2, impaired in ET sig-
nal transmission, exhibits increased suscep-
tibility to the necrotrophic fungus B. cinerea
(18, 148) and the necrotrophic bacterium Er-
winia carotovora (103) but shows no alteration
in susceptibility to the biotrophic Oomycete
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H. parasitica and the biotrophic bacterium
P. syringae pv tomato (85, 86, 121). Sim-
ilarly, a transgenic tobacco line trans-
formed with a dominant negative allele
of the Arabidopsis ET receptor, etr1, suf-
fered badly from challenge by a nor-
mally nonpathogenic soilborne Oomycete
Pythium sp., whereas its level of resistance
to biotrophic Tobacco mosaic virus (TMV)
was unaffected (83). Conversely, superacti-
vation of ET responses by AtERF1 over-
expression in Arabidopsis plants increased
resistance to B. cinerea, Plectosphaerella cucume-
rina, and different F. oxysporum species but
reduced SA-mediated tolerance against P. sy-
ringae pv. tomato (9, 10, 92). On the other
hand, overexpression of NtERF5 from Nico-
tiana tabacum resulted in an enhanced re-
sistance of the transgenic tobacco plants to
TMV (44). Similarly, overexpression in Ara-
bidopsis of the ERF genes Pti4 and Pti5 from
tomato provided resistance to P. syringae and
the biotrophic fungus Erysiphe orontii (56, 67).
In general, these results indicate that ERF-
like transcription factors are involved in de-
fense responses of various plant species, but
that their effect on disease resistance depends
on the specific plant-pathogen interaction.

Next to its involvement in disease re-
sistance, ET also appears to affect disease
symptom development. For instance, when

infected with the pathogenic bacteria Xan-
thomonas campestris or P. syringae, the ET-
insensitive Arabidopsis mutant ein2 showed
less chlorosis symptoms as compared with
wild-type plants, despite an equal amount
of infecting bacteria (8). Similarly, ethylene-
insensitive soybean plants were less chlorotic
than wild-type plants upon inoculation with
virulent P. syringae pv glycinea strains (69).
This discrepancy might be explained by the
fact that, apart from its role in defense
responses, ET is involved in many other
aspects of plant physiology including mech-
anisms of chlorosis, senescence, and cell
death (1).

As a final remark, different phy-
topathogens have been demonstrated to
autonomously produce ET in vitro and in
planta. Examples of ET-producing pathogens
include the fungus B. cinerea (35) and the
bacterium P. syringae (97, 165). The role of
ET production for the pathogen is presently
unclear as is the significance in host-pathogen
interactions; further investigations are thus
warranted. Moreover, in view of the docu-
mented ET-production by pathogens one
should not preclude the possible perception of
ET and particular responses to ET (produced
by either the pathogen or the plant) in these
pathogens when unraveling host-pathogen
interactions.

SUMMARY POINTS

1. ET biosynthesis and downstream signaling in plants occurs through a well-conserved
linear pathway leading to a cascade of transcription factors that differentially regulate
ET-mediated responses, including various mechanisms of the plant’s defense against
pathogens.

2. Control of this pathway occurs at both the transcriptional and posttranscriptional
levels.

3. A significant cross-talk appears between ET-dependent disease responses and other
mechanisms of induced resistance including gene-for-gene resistance, JA- and SA-
dependent resistance, and rhizobacteria-induced resistance, allowing the plant to fur-
ther differentiate its defense response.
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FUTURE DIRECTIONS

1. In the whole process from pathogen attack to the plant’s final ET-mediated defense
responses, many gaps in our understanding remain, not the least regarding the early
steps that occur between pathogen perception and the resulting induction of ET
biosynthesis.

2. For a complete picture of the role of ET-mediated mechanisms in the final plant’s de-
fense response, more investigations are needed on the complex cross-communication
with other signaling pathways, specifically the conditions that determine either a pos-
itive or negative cross-talk.

3. Based on the increasing evidence for the importance of posttransciptional regulation
present at all levels of the ET pathway, continued efforts should be made to further
unravel this level of control of ET-dependent responses.

4. The observed production of ET by pathogens should be further investigated to get a
complete picture of the role of ET in host-pathogen interactions.
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