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Perception of pathogen-associated molecular patterns

(PAMPs) constitutes the first layer of plant innate immunity and

is referred to as PAMP-triggered immunity (PTI). For a long

time, part of the plant community was sceptical about the

importance of PAMP perception in plants. Genetic and

biochemical studies have recently identified pattern-

recognition receptors (PRRs) involved in the perception of

bacteria, fungi and oomycetes. Interestingly, some of the

structural domains present in PRRs are similar in plants and

animals, suggesting convergent evolution. Lack of PAMP

perception leads to enhanced disease susceptibility,

demonstrating the importance of PAMP perception for

immunity against pathogens in vivo. Recently, proteins with

known roles in development have been shown to control

immediate PRR-signalling, revealing unexpected complexity in

plant signalling. Although many PAMPs recognised by plants

have been described and more are likely to be discovered, the

number of PRRs known currently is limited. The study of PTI is

still in its infancy but constitutes a highly active and competitive

field of research. New PRRs and regulators are likely to be soon

identified.
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Introduction
Plants lack the adaptive immunity mechanisms of jawed

vertebrates, so rely on innate immune responses for

defense. As sessile organisms they are subject to changing

environmental conditions including constant pathogen

attack. However, would-be pathogens must first pene-

trate barriers such as wax layers or rigid cell walls. A

pathogen that overcomes these obstacles is subject to

molecular recognition by plant cells. Plants lack circulat-

ing cells specialised in microbe recognition such as macro-

phages. Instead, each cell is able to recognise and respond

to pathogens autonomously. In addition, systemic signal-

ling can be triggered in response to microbial stimuli that
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prepare naı̈ve tissue for imminent attack. Overall, plant

innate immunity is very efficient and most plants are

resistant to most microbes. Part of this success is because

of an amazing spectrum of recognition specificities

encoded by all cells.

Plants initially sense microbes via perception of pathogen-

associated molecular patterns (PAMPs) by pattern-recog-

nition receptors (PRRs) located on the cell surface. PAMPs

are conserved, indispensable molecules that are character-

istic of a whole class of microbes and therefore are difficult

to mutate or delete. They are also referred to as microbe-

associated molecular patterns (MAMPs), as they are

not restricted to pathogenic microbes. This first level of

recognition is referred to as PAMP-triggered immunity

(PTI). Intracellular responses associated with PTI include

rapid ion fluxes across the plasma membrane, MAP kinase

activation, production of reactive-oxygen species, rapid

changes in gene expression and cell wall reinforcement.

Successful pathogens have evolved strategies to infect host

plants, either by evading recognition or by suppressing the

subsequent signalling steps. In many cases, suppression of

PTI involves secretion of virulence effectors by the patho-

gens. In a dynamic co-evolution between plants and patho-

gens, some plants have evolved resistance proteins (R

proteins) to recognise these effectors directly or indirectly.

This so-called effector-triggered immunity (ETI) is often

accompanied by local cell death known as the hypersensi-

tive response (HR). In turn, pathogens have evolved

effectors capable of suppressing ETI, and so the arms-race

between host and pathogens unfolds.

In this model, PTI is the first facet of active plant defense

and can therefore be considered as the primary driving

force of plant–microbe interactions. Given the complex-

ity of plant innate immunity as a whole, I will focus here

on recent developments in PAMP perception by plants.

For aspects related to PTI signalling, PTI suppression by

effectors and ETI, readers are directed to excellent recent

reviews [1��,2��,3–7].

PAMP perception in mammals mostly depends on trans-

membrane proteins, such as Toll-like receptors (TLRs),

‘Triggering Receptors Expressed on Myeloid cells’

(TREMs), Siglec5 and C-type lectin receptors (CLRs)

[8]. However, the important role of cytoplasmic Nod

(nucleotide-binding oligomerisation domain)-like recep-

tors (NLRs) as mammalian PRRs has also been recently

demonstrated [9]. Although plant ETI mostly involves

NLR-like R proteins, no cytoplasmic plant PRRs have

yet been identified and known plant PRRs correspond so

far only to transmembrane or secreted proteins. Plants do
www.sciencedirect.com
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not possess obvious orthologues of mammalian trans-

membrane PRRs. However, some of the domains poten-

tially involved in PAMP recognition and signalling are

conserved between plants and animals, suggesting that

the different kingdoms have recruited similar mechan-

isms to perceive microbes [10,11].

Flagellin recognition: an ever-expanding
model
The best-characterised PAMP in plants is the flagellin

protein that constitutes the main building block of eubac-

terial flagella. Most plant species recognise a highly con-

served 22-amino-acid epitope, flg22, present in the

flagellin N-terminus [12]. The PRR responsible for

flagellin recognition in the plant model Arabidopsis thali-
ana is the leucine-rich repeat receptor-like kinase (LRR-

RLK) FLAGELLIN-SENSING 2 (FLS2) [13��]. LRR-

RLKs are single-pass transmembrane proteins composed

of an LRR ectodomain (eLRR), a transmembrane domain

and a Ser/Thr protein kinase domain related to Drosophila
Pelle [14]. Although the exact flg22-binding site is

unknown, FLS2 directly binds to flg22 and contributes

to recognition specificity [13��]. Functional FLS2 ortho-

logues have been recently identified in the Solanaceae
plants Nicotiana benthamiana and tomato [15�,16��]. Com-

parisons between orthologous FLS2 proteins will be

useful to determine the molecular-binding determinants

because Arabidopsis and tomato plants have different

recognition specificities for flagellin [13��,15�].

Arabidopsis plants mutated in FLS2 are more susceptible

to infections with the pathogenic bacterium Pseudomonas
syringae pv. tomato DC3000 (Pto DC3000) when surface-

inoculated [17], but also allow more growth of the non-

adapted bacterium Pseudomonas syringae pv. phaseolicola
(Pph, a bean pathogen) [18�] or to a Pseudomonas syringae
pv. tabaci (Pta, a tobacco pathogen) strain devoid of flagellin

(FliC� mutant) [19]. Finally, N. benthamiana plants

silenced for NbFLS2 are more susceptible to a range of

adapted and non-adapted bacteria [16��]. Multiple

examples of successful pathogens that evade recognition

because of mutations within flg22 epitope also exist

[12,20,21], further demonstrating the importance of flagel-

lin perception on plant–bacteria interactions.

Despite the importance of flg22/FLS2 perception system

as a model to study PAMP recognition and associated

signalling, flagellin seems to be recognised by the other

means in certain plant species. For example, rice does not

respond to the flg22 epitope, but flagellin induces cell

death indicative of a defense response on this species

[12,22,23]. Whether this recognition is FLS2 dependent

is still unknown. Furthermore, the glycosylation status of

flagellin proteins with otherwise identical flg22 domains is

a key emerging determinant of recognition of adapted

and non-adapted bacteria by Solanaceae plants, such as

tobacco and tomato [24,25].
www.sciencedirect.com
EF-Tu: an unexpected PAMP?
Elongation factor Tu (EF-Tu) is the most abundant

bacterial protein and is recognised as a PAMP in Arabi-

dopsis and other members of the family Brassicaceae [26].

A highly conserved N-acetylated 18 amino acid peptide,

elf18, is sufficient to trigger those responses induced

by full-length EF-Tu. Peptides derived from plant

mitochondrial or plastid EF-Tu are inactive as PAMPs,

revealing that this perception is specific to the infectious

non-self.

The PRR for EF-Tu is the LRR-RLK EF-TU RECEP-

TOR (EFR) of the same subfamily (LRRXII) as FLS2

[27��]. Interestingly, expression of AtEFR in N. benthami-
ana, a plant normally blind to EF-Tu, results in elf18

binding and responsiveness. This result indicates that

signalling components downstream of PRRs are con-

served across plant families and open the possibility of

trans-species transfer of PRRs to improve disease resist-

ance. Arabidopsis efr mutants are more susceptible to

Agrobacterium tumefaciens bacteria [27��] and to weak

strains of Pto DC3000 (Zipfel, unpublished), demonstrat-

ing the in vivo importance of EF-Tu perception in

defense against bacteria.

EF-Tu possesses all the characteristics of a typical

PAMP: highly abundant, high sequence conservation

over thousands of bacterial species and vital for microbial

survival. Although EF-Tu is fundamentally involved in

translation of bacterial mRNAs, it is also recognised

externally by EFR at the host plasma membrane. This

raises the recurring question of how EF-Tu becomes

visible to the plant. Given the abundance of EF-Tu

protein and the picomolar sensitivity of EF-Tu percep-

tion, lysis of dying bacteria during plant colonisation

should release sufficient EF-Tu to stimulate the recep-

tor. However, increasing evidence suggests that EF-Tu

is also surface localised, though it lacks classical signal

and transport sequences. EF-Tu from Mycoplasma pneu-
monia binds host fibronectin [28] and Lactobacillus john-
sonii EF-Tu mediates attachment of the bacteria to

human instestinal cells and mucins [29]. Recently, sur-

face-localised EF-Tu from Pseudomonas aeruginosa was

shown to bind to human complement regulator Factor H

and plasminogen to evade complement activation

[30,31].

How EF-Tu is secreted and whether mammals have also

acquired the ability to recognise EF-Tu as a PAMP, are

interesting questions for the future.

LRR-receptor kinases do not explain
everything
FLS2 and EFR are so far the only known PRRs in

Arabidopsis, but also the only known PRRs that recognise

bacterial PAMPs in plants. Other examples of plant PRRs

are very scarce (Figure 1).
Current Opinion in Immunology 2008, 20:10–16
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Figure 1

Plant PRRs. Bacterial flagellin (flg22) and EF-Tu (elf18) are recognised by the LRR-RLKs FLS2 and EFR, respectively. Orthologues of FLS2 have

been cloned and characterised in tomato and N. benthamiana. In tomato, xylanase is recognised by the RLPs LeEIX1 and LeEIX2. Although both

LeEIX1 and LeEIX2 can bind to EIX, only LeEIX2 is able to trigger signalling. The chitin high-affinity-binding site in rice corresponds to CEBiP, a

transmembrane protein with two extracellular LysM domains. In legumes, the soluble glucan-binding protein (GBP) directly binds oomycetal

heptaglucan. As LeEIX, CEBiP and GBP lack obvious signalling domains, they are likely to interact with yet unknown transmembrane proteins. In

Arabidopsis, the LRR-RLK CERK1 is required for chitin response. It is still unknown if CERK1 constitutes the Arabidopsis chitin-binding site, or if it

interacts with CEBiP orthologues.

Q1
In legumes, a soluble b-glucan-binding protein (GBP) is

the specific binding site for the 1,6-b-linked and 1,3-b-

branched heptaglucoside (HG) present in the cell wall

of the oomycete Phytophtora sojae. Interestingly, GBP

also exhibits an intrinsic endo-1,3-b-glucanase activity

[32]. Therefore, GBP can both potentially release and

bind ligands during contact with Phytophtora. In contrast

to the situation with EFR, expression of GmGBP in

tomato, a plant normally blind to HG, did not result

in signal transduction after HG treatment, though high-

affinity binding could be detected [33]. This, and the

fact that GBP orthologues exist in many plant species

insensitive to GBP [32], suggests that signalling after

HG perception requires as yet unknown additional

components.

Two PRRs for fungal PAMPs have been recently ident-

ified. Perception of the ethylene-inducing xylanase (EIX)

in tomato requires the receptor-like proteins (RLPs)

LeEIX1 and LeEIX2 [34]. RLPs are transmembrane

proteins with eLRRs and a short cytoplasmic tail [35].

Although both proteins are capable of binding EIX inde-

pendently, only LeEIX2 confers signalling when

expressed heterologously in tobacco.

Finally, a high-affinity-binding protein for chitin, a b-1,4-

linked polymer of N-acetylglucosamine that is a major
Current Opinion in Immunology 2008, 20:10–16
structural component of fungal cell walls, has been ident-

ified in rice [36��]. The chitin oligosaccharide elicitor-

binding protein (CEBiP) is a transmembrane protein with

two extracellular LysM domains and a short cytoplasmic

tail. Silencing of CEBiP expression leads to specific

reduction in binding and responses triggered by chitin

in rice cell culture.

Arabidopsis can recognise both chitin octamers and EIX.

Clear orthologues of CEBiP and LeEIX1/2 exist in Ara-

bidopsis, but their roles in perception of these PAMPs are

still unknown. Furthermore, GBP, LeEIX1/2 and CEBiP

all lack obvious intracellular signalling domains. This

suggests that other yet unknown signalling components

are required. RLKs possessing extracellular LRRs or

other extracellular domains are primary candidates to

fulfil such functions. Indeed, an RLK with three extra-

cellular LysM domains, named CERK1 is required for

chitin responses in Arabidopsis [57]. Whether CERK1

constitutes the Arabidopsis chitin receptor, or acts

together with CEBiP orthologues, remains to be deter-

mined.

Interestingly, RLKs with extracellular LysM domains are

also involved in the perception of bacterial chitin-like

molecules (Nod factors) during the nitrogen fixing

legume–Rhizobium symbiosis [37,38].
www.sciencedirect.com



Pattern-recognition receptors Zipfel 13

Figure 2

Multiple roles of BAK1. BAK1/SERK3 was originally found as a BRI1 interactor and positive regulator of brassinosteroid (BR) signalling in

Arabidopsis. The BRI1 complex also includes SERK1 and BKK1/SERK4. Interaction of BRI1 with its interactors is ligand-dependent. FLS2 and

EFR signalling also require BAK1/SERK3. FLS2 and BAK1/SERK3 interact rapidly upon flg22 treatment. As EFR responses are less affected

by the bak1 mutation, EFR might interact preferentially with another SERK. Similarly, the FLS2 complex might also include another SERK. BAK1/

SERK3 also regulates other PRRs, including unknown PRRs for necrotroph pathogens in Arabidopsis, bacterial cold-shock protein (CSP22)

and the oomycetal INF1 in N. benthamiana. Together with BKK1, BAK1 is also involved in cell death control. This control might require a RLK

recognising an unknown endogenous ligand.
PRRs do not signal alone
The best-studied LRR-RLK in plants is BRASSINOS-

TEROID INSENSITIVE 1 (BRI1), the receptor for the

brassinosteroid hormones (BRs) which control many

aspects of growth and development. Although BRI1

contains the BR-binding site, it requires another

LRR-RLK named BRI1-ASSOCIATED KINASE 1

(BAK1) for proper signalling [39]. Unexpectedly,

BAK1 was identified as a positive regulator of both

FLS2 and EFR [40��,41��]. BAK1 is dispensable for

flg22 binding, but interacts with FLS2 in a ligand-de-

pendent manner shortly after elicitation [40��,41��].
Silencing of BAK1 expression in N. benthamiana affects

responses to diverse PAMPs in addition to flg22,

including bacterial cold-shock protein (CSP22) and

oomycete INF1, suggesting that BAK1 also regulates

the function of their corresponding but unknown PRRs

[41��]. Furthermore, BAK1-silenced plants are more

susceptible to adapted and non-adapted Pseudomonas
and to the oomycete Hyaloperonospora parasitica [41��].
Although Arabidopsis bak1 mutants are not significantly

more susceptible to bacterial pathogens, they show

extreme susceptibility to necrotrophic fungi [42��]. In

addition, Arabidopsis plants mutated in both BAK1 and

its closest paralog BKK1 show spontaneous cell death

occurring within two weeks following germination

[43��]. BAK1 seems to be crucial for response to necro-

trophic pathogens, while BKK1 plays a complementary
www.sciencedirect.com
role in restricting cell death. Interestingly, in all these

examples, BAK1 function appears to be BR-indepen-

dent [40��,41��,42��,43��]. BAK1 can therefore interact

with several different RLKs to control PAMP responses,

execution of cell death and different aspects of plant

growth (Figure 2).

BAK1 belongs to the LRR type II subfamily, which

contains 14 members, 5 of which were previously named

SERK1-5 (SOMATIC EMBRYOGENESIS RECEP-

TOR KINASE 1–5). The fact that bak1 mutants are

not fully insensitive to flg22, or more importantly to

elf18, suggests that other LRRII members might act

redundantly with BAK1, as shown previously for other

members of the SERK family [44–46].

Given their central role in PTI signalling, BAK1 and

potentially other LRRII members are potential targets

for pathogen effectors.

Another LRR-RLK, ERECTA was shown to interact

genetically with its closest paralogs and other LRR-RLKs

to control development [47]. In addition, ERECTA is also

involved in resistance to the bacterium Ralstonia solana-
cearum and to the necrotrophic fungus Plectosphaerella
cucumeria [48,49]. This suggests that ERECTA could also

interact with LRR-RLKs involved in immunity, poten-

tially PRRs.
Current Opinion in Immunology 2008, 20:10–16
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BAK1 and ERECTA thus have dual roles in development

and immunity, and in this sense are reminiscent of

Drosophila TOLL, which plays roles in larval develop-

ment and innate immunity in adult flies.

Conclusions and perspectives
We clearly need to identify new PAMPs and their corre-

sponding PRRs to reveal the span of PAMP perception in

a given plant species. Classical bacterial PAMPs recog-

nised in animals, such as lipopolysaccharides [50�] and

peptidoglycans [51�] are also recognised by plants, but

their receptors are still unknown. Plants can also recog-

nise microbial toxins to activate defense [52�]. Plants are

also able to sense the infectious-self, that is, host mol-

ecules that are normally not available for recognition, but

that are released following microbe detection, wounding

or during the infection process. Examples include

oligogalacturonides released from the plant cell wall

[53], or endogenous peptides [54�]. Interestingly, the

receptor for the Arabidopsis endogenous peptide AtPep1

has been identified recently as the LRR-RLK PEPR1.

Release and recognition of these peptides by the plant are

proposed to be part of a positive feedback loop to amplify

the response triggered by PAMP perception [54�].

Plants possess numerous potential PRRs. The Arabidop-

sis genome for example encode >600 RLKs and >50

RLPs [14,35]. Other transmembrane or secreted proteins

could also act as PRRs, as seen for GBP. It is also

unknown whether some of the �150 cytoplasmic NBS-

LRR proteins present in Arabidopsis [55], for example,

could also act as intracellular PRRs, as recently demon-

strated in mammals [56]. Finally, the availability of

new plant genome sequences and the development

of new genomic resources should enable the discovery

of new PRRs from non-model crop species.

The characterisation of further plant PRRs will enable us

to address the following questions: Do PRRs cooperate

during infection to create new specificities or to recognise

multiple PAMPs? Do all PRRs share a common signalling

cascade? Can PAMP perception tailor responses to differ-

ent classes of pathogens? Are PRRs direct targets of

pathogen virulence effectors?

The understanding of this important layer of plant innate

immunity should provide better strategies for broad-

spectrum, sustainable disease control.
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