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The accumulation of reactive oxygen species (ROS) is

involved in regulating cell death. Pathogen- and ozone-

induced processes have become important models for

the study of cell death regulation by ROS. Hydrogen

peroxide and superoxide have emerged as the two key

ROS and recent studies have addressed their sources

and control of their production. ROS signals interact

directly or indirectly with several other signaling path-

ways, such as nitric oxide, and the stress hormones sal-

icylic acid, jasmonic acid and ethylene. The interaction

and balance of these pathways determines whether the

cell lives or dies.

Reactive oxygen species (ROS) are central to the regu-
lation of programmed cell death (PCD) [1,2] and have
previously been addressed in several reviews [3–5].
Recent studies have further refined our understanding
of the sources and control of ROS production, as well as
some of the factors that act together with ROS in cell death
regulation. The focus of this article is the role of ROS and
hormonal control in cell death propagation. The model
systems examined are pathogen-induced cell death,
termed the hypersensitive response (HR), and the ozone
(O3) response, both of which are unified in their induction
of apoplastic ROS production (the oxidative burst) and cell
death. Because the O3 response is similar to the HR, O3 has
become established as a model system for studying the role
of ROS in cell death regulation [6–10].

The cell death associated with the HR is regulated
genetically and is a form of PCD, as illustrated by maize,
tomato and Arabidopsis mutants that spontaneously
trigger cell death in the absence of pathogens. These
lesion-mimic mutants can be separated into two classes
[11]: the initiation mutants develop spontaneous lesions of
determinate size that are similar in appearance to normal
HR-lesions triggered by pathogens; by contrast, the
propagation mutants exhibit spreading cell death. Arabi-
dopsis lsd1 and rcd1 mutants [12,13] are typical of
propagation mutants, and extracellular superoxide radical
(O2

2
z) is necessary and sufficient to trigger spreading cell

death. The existence of these two mutant classes suggests
that genetically distinct processes are involved in lesion
formation: first, the initiation of cell death and, second, the
spread of cell death to a limited number of surrounding
cells. This implies a dialog of signals between dying cells

and healthy neighboring cells that determines lesion size
[11]. A question thus arises about the nature of the
processes that propagate or halt the spread of cell death
and hence regulate the extent of lesion propagation.

Ozone as a model of cell death regulation

In contrast to stratospheric O3, which protects plants from
harmful ultraviolet radiation, tropospheric O3 is a potent
toxin [9]. In sensitive plants, O3 causes the formation of
lesions that have many characteristics in common with the
HR. These include induction of an oxidative burst,
deposition of autofluorescent phenolic compounds, patho-
genesis-related (PR) protein expression and both micro-
and macro-scale cell death and the associated local
and systemic-induced pathogen resistance [6,7,10]. Thus,
O3-induced cell death is believed to be the result of
deleterious firing of the HR program by the ROS formed
from the degradation of O3 in the apoplast. These ROS
seem to act primarily as signal molecules, not as directly
damaging agents. This has been widely accepted in the
literature [7,14,15].

Oxidative burst

The oxidative burst is a common response to virtually
every biotic and abiotic stress [16] including the HR and
the O3 response. For example, in the O3-sensitive Bel-W3

tobacco and the O3-sensitive Arabidopsis accession Cvi-0,
and in the rcd1 and jar1 mutants, a biphasic O3-induced
oxidative burst and prolonged ROS accumulation result in
the activation of cell death [13,17,18]. When tobacco, seven
tomato cultivars, 12 Arabidopsis accessions, two Rumex
and one Malva species were assayed for ROS accumulation
and O3 lesions, a clear spatial and quantitative correlation
was found between, depending on the species, either H2O2

or O2
2
z accumulation and O3 damage [19]. In tobacco [17],

tomato [19] and birch (Betula pendula) [8,20], there is a
clear correlation between H2O2 and the later-appearing
lesions, with no O2

2
z accumulation detectable, even though

diphenylene iodonium (which, among other effects, inhi-
bits production) considerably decreased both H2O2

accumulation and lesion formation in these species. In
Arabidopsis, Rumex and Malva, however, O2

2
z was the

ROS responsible for cell death [12,13,18,19]. Furthermore,
those Arabidopsis accessions that showed the highest O2

2
z

accumulation after a short O3 exposure, before visible
lesion formation, were also the most sensitive to O3 [19].
This raises the questions of why, in some species, cell deathCorresponding author: Jaakko Kangasjärvi (jaakko.kangasjarvi@helsinki.fi).
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and H2O2 are correlated when, in others, O2
2
z seems to be

the ROS that can be detected, and of what is the primary
source of the ROS.

NADPH oxidase as ROS source

Inhibitor studies in several species that primarily
accumulate H2O2 in the apoplastic oxidative burst
[17,19–22] have suggested that, at least partly, the
primary source of the H2O2 in these species is O2

2
z

produced by the NADPH oxidase complex. Accordingly,
in tobacco, O3 exposure upregulated two homologs of the
NADPH oxidase [19]. This suggests that H2O2 is formed
from O2

2
z by spontaneous or enzyme-catalysed dismuta-

tion. Thus, the dismutation rate on one hand and the O2
2
z

production rate on the other hand could determine the
ROS that is accumulating (O2

2
z or H2O2). When the

dismutation rate remains high, no O2
2
z accumulation can

be detected even when the production rate at the cell level
is increased.

What, then, are the subcellular sources of the ROS in
plants undergoing ROS-dependent cell death? Several
different mechanisms have been suggested as the source of
the apoplastic oxidative burst [23]. A NADPH oxidase
homologous to that of activated mammalian phagocytes
and neutrophils (gp91phox) has been considered as a likely
source for the apoplastic O2

2
z generation [24–26]. From the

complete sequence of the Arabidopsis genome, ten
NADPH oxidase genes have been identified, of which
three (RESPIRATORY BURST OXIDASE HOMOLOGS
AtRBOHD–AtRBOHF) are expressed in leaf and root
tissues [24–27]. Antisense knockouts of the tobacco
NtrbohD gene [28], analysis of the Arabidopsis rbohD
and rbohF mutants [27], and virus-induced gene silencing
of NbrbohA and NbrbohB in Nicotiana benthamiana [29]
have confirmed the role of these proteins as the source of
ROS in the oxidative burst that regulates cell death.
Intriguingly, the outcome of lowered ROS accumulation in
Arabidopsis rboh mutants differed in different circum-
stances. In some cases, reduced ROS compromised cell
death induction whereas, in others, it actually enhanced
cell death [27]. This indicates that ROS derived from the
RBOH proteins interact in a complicated manner, pre-
sumably with other ROS, NO or defense pathways, in the
regulation of cell death. Disruptions in the balance
between these interactions results in seemingly unpre-
dictable results. The elucidation of these pathways with
the tools that are now available is an exciting challenge for
future studies.

Nitric oxide (NO) is another important player that is
required for ROS-induced cell death [30]. NO might be key
to our understanding of how H2O2 and O2

2
z regulate cell

death. In soybean suspension cells, the ratio of NO to H2O2

determined when cell death was activated [31]. Further-
more, it was shown that peroxynitrite, formed in a reaction
between O2

2
z and NO, did not induce cell death in these

cells as it does in animals. Thus, in this system, excessive
O2

2
z or NO production might serve to scavenge the other

and prevent the accumulation of NO and H2O2 required for
cell death activation. However, urate, a scavenger of
peroxynitrite, can reduce cell death induced by treatment
with exogenous peroxynitrite or an avirulent pathogen in

Arabidopsis [32]. Thus, the inability of peroxynitrite to
induce cell death might be specific to soybean and requires
further clarification. The mechanism proposed above, in
which H2O2 and O2

2
z have opposing roles, underscores the

importance of O2
2
z dismutation in cell death regulation.

NADPH oxidases that synthesize O2
2
z coordinately with

superoxide dismutase will produce H2O2, which acts as a
cell death inducer. It remains to be elucidated whether the
balance between all these processes determines, for
example, why different rboh mutants had opposite effects
on cell death [27].

Regulation of the NADPH oxidase

The early induction of rapid ion fluxes across the plasma
membrane is involved directly in the induction of the
oxidative burst. Plant RBOH proteins contain Ca2þ-
binding EF-hands and do not have the separate cyto-
plasmic subunits of the complex that the prototype
mammalian NADPH oxidases have [25]. Thus, Ca2þ in
particular has been shown to play an important role in the
activation of O2

2
z production [22]. Anion fluxes are also

involved. Inhibition of Cl2 fluxes by different anion
channel blockers prevented the oxidative burst induced
by osmotic stress in tobacco suspension cultures [33], and
treatment of tobacco cell suspensions with the elicitor
cryptogein induced cell death, which could be blocked by
inhibition of NO3

2 efflux [34].
In addition to ion fluxes, other important regulators are

involved in the activation of the NADPH oxidase in
mammalian and plant systems, including protein kinases
and phosphatases, small GTPases and phospholipases. In
plants, a Rac-family small GTPase has been implicated in
ROS production and cell death [35]. Similarly, a GTPase
activating protein that regulates the activity of Rop (Rho-
like small G-protein of plants) is required for ROS
signaling in the anoxia response [36].

Mitochondria as ROS sources

Another intracellular source of ROS is the mitochondria
[37], which are also thought to be an integral component in
PCD regulation [22,38,39]. The mitochondrial electron
transport chain can produce significant quantities of ROS,
primarily because of the presence of the ubisemiquinone
radical, which can transfer a single electron to oxygen and
produce O2

2
z. When the subcellular compartmentalization

of O3-induced H2O2 formation was studied in birch [20],
increased ROS accumulation, temporally coinciding with
cell death was observed in the mitochondria.

The mitochondrial alternative oxidase (AOX) catalyses
the O2-dependent oxidation of ubiquinol, limiting the
mitochondrial generation of ROS. Lack of AOX induction
caused increased ROS production [40]. Consistent with
this, tobacco cells lacking AOX had increased PCD in
response to H2O2 and tobacco plants overexpressing AOX
developed smaller HR lesions in response to virus infection
[41,42]. H2O2 treatment of Arabidopsis cells and H2O2

accumulation in catalase-deficient tobacco lead to induc-
tion of antioxidant defenses and increased AOX levels
in the mitochondria [22,43]. The normal function of
the mitochondria could be perturbed during oxidative
stress through the early accumulation of ROS in other
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subcellular compartments or changes in the plant hor-
mone ethylene (discussed below), leading to increased
production of ROS in the mitochondria.

Hormonal regulation of ROS-dependent cell death

A picture of the integral role of plant hormones in the
regulation of ROS-dependent cell death is now emerging.
To facilitate their initial characterization, hormone signal
transduction pathways have necessarily been conceptual-
ized as linear and independent. However, as more details
of these signaling pathways have become available, so
their interconnected nature has become increasingly
evident. The three hormones ethylene, salicylic acid and
jasmonic acid are of particular importance in ROS-
dependent cell death. These pathways do not operate
independently but rather are linked together in a complex
web of interactions, as indicated by, for example, the hrl1
mutant [44]. It has been suggested that the overall
sensitivity of the plant cell to a given hormone is at
least partially established in the interplay of multiple
hormones [45].

Oxidative cell death cycle

The extent of HR and O3-lesion propagation seems to be
under hormonal control, with different hormones and their

interactions regulating ROS production and the com-
petence of the cell to perceive and react to ROS signals
(Box 1). Regulation of the ROS-dependent cell death in the
oxidative cell death cycle has been proposed based on work
with plants undergoing HR [46] and later modified based
on O3-induced oxidative cell death [13]. In this model
(Fig. 1), which is further supported by the results reviewed
here, ROS, salicylic acid and cell death function in a
self-amplifying feedforward loop in the regulation of cell
death. Ethylene is required for the continuation of ROS
accumulation, which drives cell death. This attributes a
previously unknown role to ethylene and ROS as positive
co-regulators of cell death and expands the role of ethylene
as a cell death regulator [47,48]. Jasmonic acid is involved
in the containment of the lesion propagation.

Salicylic acid

Salicylic acid and ROS have been proposed to be on a
positive feedback loop that amplifies signals leading to
defense responses and cell death [46,49]. This salicylic
acid-dependent signal potentiation loop has been proposed
to be negatively regulated by LSD1 [50], which also
explains the runaway cell death phenotype of the lsd1
mutant. Cell death and the accumulation of salicylic acid
are intimately associated. This is supported by the many

Box 1. Hormonal interactions regulating ROS-dependent cell death

Activation of the NADPH oxidase (RBOH) requires ion fluxes and protein

kinases [22,34]. The action of reactive oxygen species (ROS) is amplified

and death is induced through salicylic acid (SA) at the sites of lesion

initiation. During the initial cell death, jasmonic acid (JA) signaling is

suppressed by salicylic acid and ethylene (ET). From these initial sites, a

burst of ethylene production spreads to surrounding cells and induces

competence for programmed cell death (PCD) (Fig. I). In tomato,

ethylene signaling was required for salicylic acid accumulation and cell

death spread during symptom formation after virulent pathogen attack

[91]. This model is consistent with the cooperative action of salicylic acid

and ethylene seen during O3 and pathogen symptom development

[48,57]. But to which signal do ethylene- (and salicylic acid-) primed cells

become competent? O2
2
z is actively produced in lesions and then, during

spreading cell death, in a row of cells in advance of cell death spread.

This pattern suggests that O2
2
z is the death-inducing signal to which

ethylene and ethylene-dependent salicylic acid prime cells. Thus,

ethylene and O2
2
z conspire in a feedforward chain reaction responsible

for spreading cell death. The O2
2
z signal is passed forward rows of cells at

a time from dying cells. Cell death results in the production of jasmonic

acid, which triggers the jasmonic acid-dependent lesion containment.

Jasmonic acid can antagonize lesion spread in several ways, for

example, through the suppression of salicylic acid biosynthesis and

signaling. Also, attenuation of ethylene sensitivity by jasmonic acid

contributes to halting cell death spread.

Fig. 1.
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lesion mimic mutants that have constitutively elevated
levels of salicylic acid. Transgenic plants engineered to
degrade salicylic acid with the bacterial NahG gene are
unable to induce cell death after pathogen attack [51].
However, it has recently been shown that the effects of
NahG are not limited to salicylic acid depletion [52].
Catechol, the byproduct of salicylic acid degradation by
NahG induces the accumulation of H2O2, which in turn
results in the loss of resistance to a bacterial pathogen. It is
not clear whether this has implications for the regulation
of cell death by salicylic acid. However, conclusions that
rely heavily on the phenotypes of NahG plants should be
re-evaluated.

There is clear evidence of cell death signals such as ROS
and NO being involved in the regulation of key steps in
salicylic acid biosynthesis during pathogen infection
[31,49]. An alternate pathway of salicylic acid biosynthesis
involved in the establishment of systemic resistance has
been elucidated by the cloning the allelic sid2 (salicylate
induction deficient 2) and eds16 (enhanced disease
susceptibility 16) mutants encoding the isochorismate
synthase (ICS) gene. The normal induction of HR cell
death in sid2/eds16 plants argues against involvement of
salicylic acid derived from the ICS pathway in ROS signal
amplification and cell death activation.

Salicylic acid accumulates in O3-exposed plants, in
which high levels of salicylic acid accumulation correlate
with lesion formation. The O3-sensitive Cvi-0, rcd1 and
jar1, which hyperaccumulate salicylic acid upon O3

exposure became markedly more O3 tolerant when

transformed or crossed with NahG or the salicylic acid
signaling mutant, npr1 [53] (J.K. et al., unpublished).
Similarly, expression of NahG in the tobacco cultivar
Xanthi resulted in reduced lesion formation upon O3

exposure [54]. Furthermore, when exogenous salicylic acid
was added to O2

2
z-treated Col-0, it significantly enhanced

the induction of cell death [55]. Similarly, pretreatment of
Col-0 with salicylic acid before O3 exposure increased cell
death significantly [53].

Salicylic acid is known to inhibit the activity of the last
step in the ethylene biosynthesis pathway, 1-aminocyclo-
propane-1-carboxylic acid (ACC) oxidase [56]. Given the
cell-death-promoting role of ethylene, the antagonism of
ethylenebiosynthesisbysalicylicacidmightbeamechanism
by which salicylic acid accumulation can contribute to the
containment of lesion growth. By contrast, salicylic acid and
ethylene have been shown to act co-operatively during
symptom formation in O3-treated [48] and virulent-patho-
gen-treated [57] Arabidopsis.

Ethylene

Ethylene has vital roles in many aspects of plant growth
and development. Ethylene evolution is also associated
with wounding, pathogen attack, anaerobiosis, senescence,
heavy metals and oxidative stresses such as O3 [58].
Importantly, ethylene is involved in the regulation of PCD
in several different developmental and inducible processes
[59–61]. Ethylene -biosynthesis genes are present in large
multigene families in which different genes or sets of genes
respond to various developmental and environmental cues
[58]. Ozone-induced leaf damage is preceded by a rapid
increase in ACC synthase activity, ACC content and
ethylene emission, which are required for ROS accumu-
lation and lesion development [13,48,62–65].

Similarly in Arabidopsis, external addition of ethylene
during cell death increased O2

2
z production and caused

increased spreading cell death [13]. Accordingly, also the
ethylene-overproducing mutants eto1 and eto3 are more
sensitive to O3 and display increased ROS-dependent cell
death amplification [48] (J.K. et al., unpublished). The
results demonstrate a selective ozone response of ethylene
biosynthetic genes and suggest a role for ethylene as a
positive regulator of ROS production and regulation of the
spread of cell death.

These results are consistent with the role assigned to
ethylene in the regulation of the pathogen-triggered cell
death. In plants challenged with a compatible bacterial
pathogen, ethylene signaling was required for symptom
development [66]. However, the HR triggered in an
incompatible interaction developed fully in ethylene-
insensitive Arabidopsis plants [66]. Thus, there seems to
be a core cell death pathway that is ethylene independent.
However, this does not exclude the possibility that
ethylene-dependent cell death can contribute to lesion
size in incompatible interactions; manipulation of ethyl-
ene signaling has been shown to alter lesion size in at least
three different incompatible interactions in tomato and
tobacco [42,67,68].

In O3-exposed plants, ROS formation from the degra-
dation of O3 is not confined to a limited location as it is in
the HR, O3 enters the sub-stomatal cavities throughout

Fig. 1. Hormonal regulation of the oxidative cell death cycle. Increased reactive

oxygen species (ROS) accumulation together with salicylic acid (SA) induces cell

death. Ethylene is required for the amplification of ROS production, which results

in a positive feedback cycle (þ) that promotes the lesion spread (compare with

Box 1). Increased accumulation of jasmonates, through either the activation of jas-

monic acid (JA) biosynthesis by the ROS or increased substrate availability from

the dying cells, acts as a negative regulator of the oxidative cell death cycle and

can overcome the promoting effect of ethylene to ROS generation, resulting in the

containment of lesion spread.
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the leaf. However, in tomato, both H2O2 accumulation and
ethylene biosynthesis were confined to distinct regions
surrounding the vascular tissue, mainly in the parench-
yma cells (Fig. 2) [65]. Furthermore, both ethylene
synthesis and perception were required for active H2O2

production, which in turn was required for cell death. This
restricted expression is of interest because not all cells
seem to be responding to O3 in the same way. Furthermore,
this co-localization predicts that high concentrations of
both ethylene and ROS occur in the same cells in a
temporally coordinated manner. A similar pattern of cell
death that is preferentially localized to cells close to the
vascular bundles has also been seen in other O3-exposed
species [17,19,69] and in H2O2-overproducing catalase-
antisense tobacco [22]. The spatial location close to the
veins is similar to the location of ROS generation and so-
called ‘micro-HR’ during the establishment of systemic
resistance [70]. As discussed [17], the cells in the
periveinal region might be predisposed to amplify ROS
production and thus to act as ROS receptor cells that are
predisposed to die upon a ROS signal.

In tomato, the genes encoding ethylene receptors were
induced differently by O3 [65] and during pathogen
infection [71]. The increased synthesis of ‘fresh’ receptors,
unoccupied by ethylene, has been proposed to decrease
ethylene sensitivity and to be involved in the desensitiza-
tion of plants to ethylene when the ethylene responses
need to be shut down [72,73]. The increased ROS
production in the mitochondria discussed above could
also be perturbed through changes in ethylene synthesis
and sensitivity. It has been shown that activation of AOX is
ethylene dependent [74]. The lack of AOX induction
caused increased ROS production [40]. Reduced ethylene

sensitivity has also been shown to compromise the
upregulation of cyanide detoxification, which clears this
toxic byproduct formed during the oxidation of ACC into
ethylene [69]. Thus, high ethylene synthesis, attenuated
induction of the AOX or cyanide-resistant respiration, and
defective HCN removal owing to reduced ethylene
sensitivity might result in inhibition of the normal
mitochondrial respiration by HCN and thus cause
increased ROS production in the mitochondria.

Jasmonic acid

Jasmonic acid is a plant signaling compound with roles in
both stress and development [75]. It is induced by a wide
range of biotic and abiotic stresses, including O3, but it is
best known for its role in the wound response [14]. This
cyclopentone compound is a derivative of the octadecanoid
lipid pathway and is derived from linolenic acid. Several
jasmonic acid-deficient mutants have been isolated,
resulting in nearly complete definition of the jasmonic
acid biosynthesis pathway [14,76]. Importantly, jasmonic
acid is not the only biologically active molecule on the
jasmonic acid biosynthesis pathway. Several intermedi-
ates are active in defense signaling [77,78]. Also, the
volatile jasmonic acid derivative methyl-jasmonic acid
(MeJA) is an important diffusible molecule involved in
both intra- and interplant signaling [79]. It is now
apparent that not only jasmonic acid but also many
other related signal molecules, all derived from fatty
acids, act together in signaling. This has led to the
concept of the ‘oxylipin signature’, in which the full
profile of lipid signals taken together determines the
signaling outcome [14,76,80].

Gene expression analysis with jasmonic acid-inducible
marker genes and jasmonic acid treatments have
suggested that jasmonic acid could be a factor involved
in the containment of the ROS-dependent lesion propa-
gation [13,53]. The O3 sensitivity of jasmonic acid mutants
further supports this idea. The jasmonic acid-insensitive
mutants jar1 and coi1, and the jasmonic acid-biosynthesis-
defective fad3 fad 7 fad 8 triple mutant are all highly O3

sensitive [13,53]. Furthermore, jar1 exhibits a transient
spreading cell death phenotype and a pattern of O2

2
z

accumulation similar to that observed in rcd1 [13]. Post-
treatment of O3-exposed rcd1 with jasmonic acid halted
spreading cell death, providing direct evidence of the role
of jasmonic acid in lesion containment [13]. Similarly,
pretreatment of tobacco or the O3-sensitive Cvi-0 Arabi-
dopsis accession diminished O3 damage [53,54].

Lesion containment by jasmonic acid could be achieved
through regulation of ethylene receptors; it has been
shown that jasmonic acid induces genes encoding ethylene
receptors [81]. As discussed above, increased receptor
protein synthesis decreases ethylene sensitivity and
desensitizes plants to ethylene. In this way, jasmonic
acid could affect ethylene-dependent lesion propagation by
reducing the ethylene-dependent ROS accumulation and
thus result in halting of the lesion spread.

The timing and control of jasmonic acid biosynthesis
suggests several ways in which jasmonic acid signaling
might be modulated during the regulation of lesion
growth. One level of control in jasmonic acid biosynthesis

Fig. 2. Ethylene synthesis, H2O2 accumulation and cell death in transgenic plants in

which the promoter of the tomato ACC oxidase gene (LE-ACO1) has been fused to

the marker gene uidA. The GUS activity staining shows the localization of ethylene

biosynthesis that is induced by ozone in tomato plants 1 h after the beginning of

the ozone exposure (a). Hydrogen peroxide accumulation 7 h after the beginning

of a 5 h ozone exposure has a similar spatial location as ethylene synthesis 6 h ear-

lier (b). Cell death at 24 h has corresponding spatial localization close to the veins

as hydrogen peroxide accumulation had (c). Inhibition of ethylene synthesis or

perception also prevented H2O2 accumulation and subsequent cell death [65].

Reproduced, with permission, from Ref. [65]. Scale bar ¼ 5 mm.
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and/or signaling might be the sequestration of enzymes
and substrates inside the chloroplast [82]. In this way,
jasmonic acid biosynthesis and signaling will only be
activated by the availability of substrate upon cellular
decompartmentalization during wounding or cell death.
Other studies suggest direct signaling pathways, associ-
ated with but not dependent on cell death, that lead to
jasmonic acid biosynthesis and signaling. First, there is a
requirement for the mitogen-activated protein (MAP)
kinase WIPK for jasmonic acid accumulation [83]. Inter-
estingly, several studies [84,85] have linked the modu-
lation of jasmonic acid accumulation and signaling to MAP
kinase cascades (Box 2). Further evidence comes from the
cet (constitutive expression of thionin) mutants, which
overexpress the strongly jasmonic acid-inducible thionin
gene (Thi2.1) and form microlesions [86]. Microlesions
were independent of COI1-mediated jasmonic acid signal-
ing in all of these mutants, and independent of salicylic
acid signaling in cet2 and cet4.1 but not in cet3.
Significantly, in the double cet3 NahG mutant, Thi2.1
expression was independent of lesion formation. This
suggests that signals other than salicylic acid and
jasmonic acid are involved in regulation of lesion
initiation. These results clearly illustrate that jasmonic
acid accumulation and signaling are intimately associated
with death induction signals, but are not dependent on cell
death itself. The cloning of these cet genes should help to
illuminate the processes involved in stress perception
leading to jasmonic acid accumulation.

In contrast to this protective role demonstrated above,
jasmonic acid signaling is required for fumonisin-B1-
induced cell death, which is also considered to be a model
for HR-like cell death [87]. Furthermore, the bacterial
toxin coronatine, which is a structural analog of jasmonic
acid and mimics its action [75], induces chlorotic symp-
toms in plants. These findings are consistent with the role
of jasmonic acid in promoting senescence [88], which is
also a form of PCD.

Conclusions and future challenges

Powerful genetic strategies driven by the use of Arabi-
dopsis have resulted in the elucidation of many hormone
and other signaling pathways in plants. As illustrated by
the studies reviewed here, the application of this knowl-
edge and, in particular, the use of signaling mutants have
allowed the delineation of signals involved in cell death
regulation. Similarly, genetic approaches involving
mutants have been key in identifying novel plant path-
ways, such as the MAP kinase cascades (Box 2) involved in
the regulation of ROS responses and cell death regulation.
The picture is also more complicated, considering that
even more hormones (e.g. abscisic acid and gibberellic
acid) are likely to be involved in cell death regulation
[89,90]. Continued work with these powerful systems
should result in the further molecular definition of
these pathways and poses the challenge to produce an
integrated map that connects these pathways at the
molecular level.
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