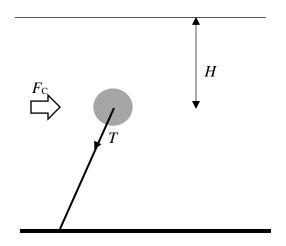
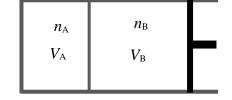
Esame scritto di Fisica per Scienze Biologiche – 5 Novembre 2017 Proff. Betti, Maoli, Schneider

(N00070) Fisica (vecchio ordinamento quadriennale e quinquennale)	Esercizi 1, 2, 3	(3 ore)
(N19018) Fisica I (ordinamento triennale non riformato - 4 CFU)	Esercizio 1	(1 ora)
(N19019) Fisica II (ordinamento triennale non riformato - 3 CFU)	Esercizio 3	(1 ora)
(N19002) Fisica I + Fisica II (ordinamento triennale non riformato - 7 CFU	Esercizi 1, 3	(2 ore)
(1011790) Fisica (ordinamento triennale riformato - 9 CFU)	Esercizi 1, 2, 3	(3 ore)
Per chi ha passato il primo esonero	Esercizi 2,3	(2 ore)
Per chi ha passato il secondo esonero	Esercizio 1	(1 ora)


Esercizio 1

Un corpo di volume $V=0.058~\rm m^3$ e densità $\rho_c=700~\rm kg/m^3$ è completamente immerso alla profondità $H=18.0~\rm m$ in un fiume (densità dell'acqua $\rho_a=1000~\rm kg/m^3$). Il corpo è tenuto ancorato sul fondo da una fune.

a) Considerando che la corrente del fiume esercita sul corpo una forza $F_c = 81.0$ N nella direzione riportata in figura, calcolare il modulo della tensione T della fune.

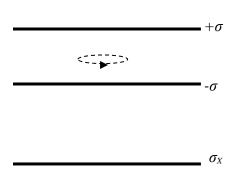

Ad un certo istante la fune si rompe e il corpo inizia a muoversi. Calcolare:

- b) la distanza percorsa in orizzontale prima della sua emersione, considerando la forza della corrente;
- c) il lavoro totale di tutte le forze che agiscono sul corpo dal momento in cui la fune si rompe fino a prima dell'emersione.

Esercizio 2

Un contenitore adiabatico è diviso in due parti, A e B, da un setto fisso conduttore da un punto di vista termico. Le due parti contengono rispettivamente $n_A = 3.00$ moli di un gas ideale monoatomico e $n_B = 2.00$ moli di un gas ideale biatomico. A una estremità il contenitore è chiuso da un pistone ideale, anch'esso adiabatico, con pressione esterna pari a 1.00 atm.

a) Sapendo che all'equilibrio iniziale $V_{A1} = 41.0$ litri e $T_{B1} = 350$ K, calcolare V_{B1} e p_{A1} .


A un certo istante viene aumentata lentamente la pressione sul pistone fino a un valore $p_{B2} = 2.50$ atm, portando il sistema a un nuovo stato di equilibrio.

- b) Sapendo che la temperatura finale del gas in B è $T_{\rm B2} = 412$ K, calcolare la variazione di energia interna del gas in A.
- c) Calcolare di quanto si è spostato il pistone, sapendo che la sua superficie è $S = 720 \text{ cm}^2$.

Esercizio 3

Un condensatore piano con armature di superficie $S = 470 \text{ cm}^2$ ha capacità C = 87.0 pF e $\Delta V = 7.50 \text{ V}$.

- a) Calcolare la densità superficiale di carica σ delle armature. All'interno del condensatore una carica puntiforme $q=3.20\cdot10^{-19}$ C, di massa $m=6.62\cdot10^{-24}$ kg descrive una traiettoria circolare di raggio R=22.0 cm in un piano parallelo alle due armature. La traiettoria, vista dall'alto, è percorsa in senso antiorario con velocità $v=2.40\cdot10^3$ m/s.
 - b) Calcolare il valore della densità superficiale σ_x di uno strato posto al di sotto dell'armatura negativa che giustifichi tale traiettoria.
- c) Calcolare il valore del campo magnetico in modulo, direzione e verso, responsabile della traiettoria circolare. Si trascuri la forza di gravità.

