Prova scritta di Fisica per Scienze Biologiche – 22 Novembre 2016

I risultati saranno pubblicati sul sito di e-learning del corso di Fisica dei prof. Betti, Maoli e Piacentini

(N00070) Fisica (vecchio ordinamento quadriennale e quinquennale)	Esercizi 1, 2, 3	(3 ore)
(N19018) Fisica I (ordinamento triennale non riformato - 4 CFU)	Esercizio 1	(1 ora)
(N19019) Fisica II (ordinamento triennale non riformato - 3 CFU)	Esercizio 3	(1 ora)
(N19002) Fisica I + Fisica II (ordinamento triennale non riformato - 7 CFU) Esercizi 1, 3	(2 ore)
(1011790) Fisica (ordinamento triennale riformato - 9 CFU)	Esercizi 1, 2, 3	(3 ore)
Per chi ha passato solo il primo esonero	Esercizi 2,3	(2 ore)

Esercizio 1

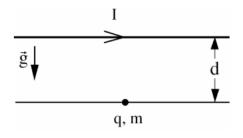
Un ascensore di massa M = 470 kg compie un viaggio dal piano terra al 48mo piano accelerando per un tempo t_1 iniziale ($t_1 = 0.850$ s), muovendosi a velocità costante per un tempo t_2 , per poi decelerare per un tempo $t_3 = 0.850$ s fermandosi al piano. Il motore durante la fase a velocità costante eroga una potenza $P_m = 28000$ W.

Sapendo che ogni piano è alto $h_p = 3.10$ m e che gli attriti sono trascurabili, calcolare:

- a) la velocità dell'ascensore nella fase intermedia;
- b) la tensione dei cavi che sollevano l'ascensore in ognuna delle tre fasi;
- c) il tempo impiegato dall'ascensore per compiere il viaggio e graficare la velocità in funzione del tempo durante tutto il tragitto.

Esercizio 2

Un recipiente a pareti isolanti contiene un volume V = 1.8 litri di acqua in equilibrio termico con una massa m di ghiaccio, alla pressione atmosferica. Sul sistema viene compiuto, con un mulinello, un lavoro L = 120 kJ. Al termine, il sistema si trova all'equilibrio alla temperatura $T_f = 12$ °C.


- a) Calcolare la massa m del ghiaccio;
- b) se lo stesso lavoro venisse fornito a una pari massa m di idrogeno (considerato un gas perfetto biatomico), contenuta in un recipiente a volume costante, con la temperatura iniziale pari a $T_i = 0$ °C, quale sarebbe stata la sua temperatura finale?
- c) quale dovrebbe essere il volume minimo del recipiente per evitare che durante la trasformazione il gas superi la pressione massima $p_{max} = 3.2$ atm di rottura del recipiente?

Nota: il calore latente di fusione del ghiaccio è $\lambda_g = 80$ cal/g; il calore specifico dell'acqua è c = 1 cal/g; l'idrogeno ha peso molecolare pari a 2.

Esercizio 3

Un filo conduttore rettilineo orizzontale e di lunghezza infinita è percorso dalla corrente I = 40 A, da sinistra verso destra (vedi figura). Una particella avente carica $q = 9.6 \times 10^{-19}$ C e massa m si muove di moto rettilineo uniforme con velocità pari a $v = 8.4 \times 10^7$ m/s lungo una traiettoria parallela al filo e posta al disotto di esso ad una distanza d = 14 cm (vedi figura).

- a) calcolare il valore del campo magnetico *B* lungo la traiettoria della particella ed indicare direzione e verso;
- b) calcolare la massa della particella;
- c) indicare, motivando la risposta, direzione e verso della velocità della particella e se è concorde o discorde a quello della corrente *I*.

