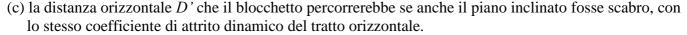
## Prova scritta di Fisica per Scienze biologiche – 13 aprile 2015 (appello riservato a fuori corso)

I risultati saranno pubblicati sul sito http://w3.uniroma1.it/fisicabio/

| (N00070) Fisica (vecchio ordinamento quadriennale e quinquennale)           | Esercizi 1, 2, 3 | (3 ore) |
|-----------------------------------------------------------------------------|------------------|---------|
| (N19018) Fisica I (ordinamento triennale non riformato - 4 CFU)             | Esercizio 1      | (1 ora) |
| (N19019) Fisica II (ordinamento triennale non riformato - 3 CFU)            | Esercizio 3      | (1 ora) |
| (N19002) Fisica I + Fisica II (ordinamento triennale non riformato - 7 CFU) | Esercizi 1, 3    | (2 ore) |
| (1011790) Fisica (ordinamento triennale riformato - 9 CFU)                  | Esercizi 1, 2, 3 | (3 ore) |

## Esercizio 1


Un blocchetto è inizialmente fermo su un piano inclinato privo di attrito, alla distanza d dalla base. Il

piano è raccordato con un tratto orizzontale scabro sul quale il blocchetto può scorrere con coefficiente di attrito dinamico  $\mu_d$ . Lasciato libero, il blocchetto scivola sul piano inclinato e si arresta dopo un tratto orizzontale D.

Si calcoli:

(a) il valore dell'angolo di inclinazione  $\alpha$ ;

(b) il tempo di percorrenza del tratto orizzontale *D*;



Valori numerici: d = 62.0 cm;  $\mu_d = 0.433$ ; D = 1.24 m.



Un recipiente cilindrico a pareti isolanti, chiuso superiormente da un pistone libero di muoversi in

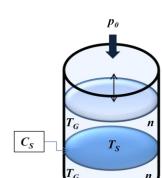
verticale senza attrito, anch'esso isolante, è diviso al suo interno in due settori mediante un setto metallico fisso, conduttore di calore, di capacità termica  $C_S$ . Ciascun settore contiene un ugual numero n di moli di gas perfetto biatomico. La capacità termica del recipiente isolante e del pistone sono trascurabili. Inizialmente il setto metallico è alla temperatura  $T_S$  mentre il gas è alla temperatura  $T_G$  in entrambi i settori. Mentre si raggiunge, molto lentamente, l'equilibrio termico, la pressione esterna  $p_0$  resta costante.

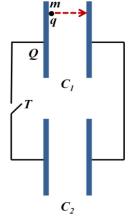
Si calcoli:

(a) la temperatura di equilibrio  $T_{eq}$ ;

(b) la variazione totale  $\Delta V_G$  del volume occupato dal gas.

Valori numerici: n = 2.25;  $C_S = 251 \text{ J/K}$ ;  $T_S = 393 \text{ K}$ ;  $T_G = 285 \text{ K}$ ;  $p_0 = 1.03 \cdot 10^5 \text{ Pa}$ .





Particelle di massa m e carica q, emesse con velocità trascurabile da una armatura di un condensatore

carico di capacità elettrica  $C_I$ , raggiungono l'armatura opposta con una velocità v. Successivamente, chiudendo il tasto T indicato in figura, il primo condensatore viene collegato a un secondo condensatore inizialmente scarico, di capacità elettrica  $C_2$ . Si calcoli:

- (a) la carica elettrica iniziale  $Q_0$  del primo condensatore;
- (b) la carica elettrica  $Q_1$  dello stesso dopo il collegamento tra i due condensatori;
- (c) la velocità v' con la quale le stesse particelle raggiungono l'armatura opposta dopo il collegamento tra i due condensatori.

Valori numerici:  $m = 6.62 \cdot 10^{-27} \ Kg$ ;  $q = 3.22 \cdot 10^{-19} \ C$ ;  $C_I = 22.5 \ nF$ ;  $v = 1.21 \cdot 10^4 \ m/s$ ;  $C_2 = 2 \cdot C_I$ .



