
Prova scritta di Fisica per Scienze biologiche – 14 Settembre 2009

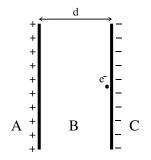
Salvo indicazione contraria del candidato, i risultati della prova verranno pubblicati sul sito web: http://matisse.chem.uniroma1.it/biologia.

Fisica (vecchio ordinamento quadriennale e quinquennale):	Esercizi 1, 2, 4
Fisical (ordinamento triennale non riformato):	Esercizi 1,2
Fisica II (ordinamento triennale non riformato):	Esercizi 3, 4
Fisica I + Fisica II (ordinamento triennale non riformato):	Esercizi 1, 2, 4
Fisica (ordinamento triennale riformato):	Esercizi 1, 2, 3

Esercizio 1 - Un blocco è inizialmente fermo su un piano inclinato liscio ad un'altezza di 5.00~m. Il piano è inclinato di 30° sull'orizzontale. Ad un certo istante il blocco si frammenta in due parti, di massa m_1 = 2.00~Kg e m_2 = 3.00~Kg, con velocità parallele al piano inclinato e dirette come in figura. Il frammento di massa m_1 si ferma dopo aver percorso una distanza d = 6.00~m. Calcolare:

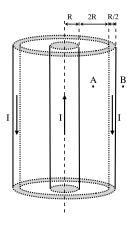
- a) la velocità iniziale del primo frammento subito dopo l'esplosione;
- b) la velocità iniziale del secondo frammento;
- c) l'energia liberata nella frammentazione;
- d) la velocità con cui il secondo frammento arriva per terra.

Esercizio 2 - Una sfera di alluminio di massa M = 3.14 kg, alla temperatura $T_1 = 261$ K, viene immersa in un serbatoio di acqua a $T_2 = 0$ °C. Dopo un certo tempo la sfera raggiunge l'equilibrio termico con il serbatoio; determinare, alla fine di questo processo:


- a) la massa m di ghiaccio che si è formata intorno alla sfera;
- b) la variazione del diametro D della sfera;
- c) la variazione di entropia del serbatoio.

(Dati: calore latente fusione acqua $\lambda_{fusione}$ = 333 kJ / kg; calore specifico Al: c_{Al} = 900 J / kg · K; coefficiente di dilatazione volumica Al: β_{Al} = 69.0 · 10 ⁻⁶ K ⁻¹; densità Al: ρ_{Al} = 2.70 g / cm ³).

Esercizio 3 - Due superfici piane isolanti (supposte di dimensione infinita) affacciate, e poste a una distanza d=20.0 cm, sono elettricamente cariche, con densità di carica uniforme ed opposta, pari in modulo a $\sigma=2.00\ 10^{-8}\ C/m^2$.


Un elettrone (carica q_e =-1.60 10^{-19} C, massa m_e =9.11 10^{-31} Kg) si trova inizialmente fermo in prossimità della superficie carica negativamente. Calcolare:

- a) il valore del campo elettrico (in modulo, direzione e verso), presente tra le due superfici (zona B), e nello spazio esterno ad esse (zone A e C);
- b) la velocità con cui l'elettrone colpirà la superficie carica positivamente, ed il tempo impiegato per muoversi tra le due superfici.

Esercizio 4 - Un filo conduttore, rettilineo e indefinito, la cui sezione circolare ha raggio R=0.80 cm, è disposto all'interno di un cilindro cavo conduttore, la cui sezione è una corona circolare di raggio interno 3R e spessore R/2. I due conduttori, coassiali, sono percorsi in senso opposto da una corrente elettrica costante che ha uguale intensità I= 1.4 mA e densità uniforme, sia nel filo che nel cilindro cavo. Determinare:

- a) l'intensità del campo di induzione magnetica alla distanza 2R (A nel disegno) e alla distanza 4R (B nel disegno) dall'asse di simmetria del sistema;
- b) la distanza dall'asse in corrispondenza della quale il campo di induzione magnetica è massimo, indicandone modulo, direzione e verso.

