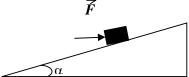
Prova scritta di FISICA per Scienze Biologiche – 5 Marzo 2009

Fisica (vecchio ordinamento quadriennale e quinquennale)	Esercizi 1,2,3.
Fisica I (ordinamento triennale non riformato)	Esercizi 1,2.
Fisica II (ordinamento triennale non riformato)	Esercizi 3,4.
Fisica I + Fisica II (ordinamento triennale non riformato)	Esercizi 1,2,3.
Fisica (ordinamento triennale riformato)	Esercizi 1 2 3

I risultati saranno pubblicati sul sito http://matisse.chem.uniroma1.it/biologia.

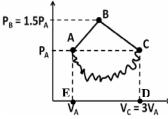

Coloro che desiderano avere la valutazione del proprio compito pubblicata su web devono scrivere e firmare sul frontespizio del compito la seguente dichiarazione:

"Acconsento alla pubblicazione sul web dei risultati di questa prova scritta"

Esercizio 1

Una cassa di massa M=20 kg è posta su un piano liscio inclinato di $\alpha=30^\circ$ sull'orizzontale. La cassa è spinta verso l'alto da una forza F orizzontale e si muove con accelerazione costante a=2.0 m/s². Calcolare:

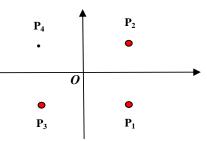
- a) il modulo della forza \vec{F} ;
- b) quanto dovrebbe valere il coefficiente d'attrito perché la cassa si muova verso l'alto con velocità costante sotto l'azione della forza \vec{F} .



Esercizio 2

Un gas perfetto monoatomico compie il ciclo composto da due trasformazioni reversibili AB e BC ed una trasformazione irreversibile CA come mostrato nella figura. Sapendo che:

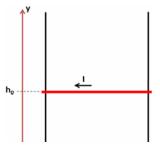
 $V_C=3V_A=33.0$ litri, $P_B=1.50$ $P_A=3.00$ atm, $P_C=P_A$, e che il calore totale assorbito durante il ciclo e` di 700 calorie, calcolare


- a) il calore assorbito dal gas nel tratto reversibile ABC;
- b) il lavoro fatto dal gas nella trasformazione irreversibile CA

Esercizio 3

Tre gusci sferici uguali, non conduttori, sono centrati in $\mathbf{P_1}$ (a, -a), $\mathbf{P_2}$ (a, a), $\mathbf{P_3}$ (-a, -a), con a = 13.0 m. Su ognuno dei gusci è distribuita uniformemente una carica $Q = -7.30 \cdot 10^{-9}\,$ C; il loro raggio è minore di a.

- a) Determinare il modulo e la direzione del campo elettrico $\hat{\mathbf{E}}$ nell'origine \mathbf{O} del sistema di riferimento e nel punto $\mathbf{P_4}$ (-a, a).
- b) Calcolare la differenza di potenziale $V(\mathbf{O}) V(\mathbf{P_4})$.



Esercizio 4

Una sbarra metallica di massa m = 1.5 kg e lunghezza L = 1.2m e` libera di muoversi verticalmente lungo un

binario isolante come mostrato nella figura. Il binario e` posto in un campo magnetico esterno di direzione perpendicolare al piano della figura. Inizialmente nella sbarra, posta alla quota $h_{\rm o}$ scorre una corrente di 4.5 A nel verso mostrato nella figura

- a) calcolare il modulo B ed il verso del campo magnetico affinche' la sbarra rimanga ferma alla quota h_o.
- Successivamente la corrente e` aumentata e la sbarra si mette in moto con un'accelerazione costante g/2 verso l'alto. Determinare l'intensità I₂ della corrente.

