Training Manual

Assessing the status of fish stock for management: the collection and use of basic fisheries data and statistics

Phase I: 27 November - 8 December 2006
Suva, Fiji Islands

Phase II: 14 - 25 January 2008
Apia, Samoa

based on the lectures by

Jeppe Kolding (University of Bergen, Norway)
Einar Hjörleifsson (Marine Research Institute of Iceland)

Prepared by
Warsha Singh

May 2009
ABSTRACT

Under the Cooperation Arrangement between the Commonwealth Secretariat and the Government of Iceland, training in the use of basic fisheries data in assessing the status of fish stocks was conducted for the South Pacific region. The training was a joint effort of United Nations University – Fisheries Training Programme (UNU-FTP, Iceland), Commonwealth Secretariat, Secretariat of the Pacific Community (SPC) and University of the South Pacific (USP) which was conducted in two phases held in Fiji and Samoa respectively. Participants from various Pacific Island Countries were trained.

The formal objectives of the training were:

i. To enhance the knowledge and skills in the use of basic fisheries data in the assessment of fish stocks in the Pacific Island Countries.

ii. To review the theory and principal methods in quantitative biology and fisheries science with particular emphasis on improving skills through practical training exercises.

iii. To review recent developments in multi-species ecosystem approach and their potential use in fisheries science and management.

iv. To enable fisheries personnel to establish and develop a database of their inshore resources

v. To develop teaching of graduate fisheries courses at the USP.

This document serves as the training guidebook and is largely based on the lecture materials covered in the training with additional references. Practical exercises in Excel are attached herewith with requisite instructions for the users to get some practical training with data analysis. This teaching material is to be eventually incorporated into the teaching curriculum of the University of the South Pacific as an undergraduate course.

The manual begins with outlining the basics of fisheries population dynamics and the objectives of fisheries stock assessment. Particular emphasis is then given to biostatistics and the use of mathematical models in describing biological processes and the fundamental science of parameter estimation. The issue of sampling and survey designs is discussed next. Some fundamental fishery concepts are introduced before the elementary population parameters age, growth and mortality are discussed. The predictive yield-per-recruit model is also briefly introduced followed by a discussion on the holistic surplus production models. The last chapter puts emphasis on the regional situation and briefly describes fisheries in the South Pacific countries and some complications associated with stock assessment of small-scale fisheries. Consequently, the appropriate assessment techniques are considered.

Learning Objectives

By the end of the course, the trainees should be able to

i. know the type of data to collect in carrying out stock assessment

ii. know how to sample and how to adapt the sampling strategy to suit local conditions

iii. know how to collect and use catch and effort data in stock assessment

iv. explain how sampling methods can introduce bias in estimates

v. know how to store and retrieve data

vi. know how to analyze, interpret and present results in a meaningful manner

vii. estimate basic population parameters such as growth and mortality

viii. explain the impact of fishing on community structure

ix. know how to conduct cohort analysis

x. conduct stock assessment in a cost effective manner.
TABLE OF CONTENTS

1. **INTRODUCTION**.. 5

1.1. Fish Population Dynamics .. 6

1.2. Objectives of Stock Assessment .. 8

2. **BIOSTATISTICS**... 10

2.1. Descriptive Statistics ... 10

2.2. Exploratory Data Analysis ... 19

2.3. Model Parameter Estimation .. 20

2.4. Linear Models .. 20

2.5. Linear Regression ... 22

2.6. Multiple Linear Regression ... 25

2.7. Analysis of Variance (ANOVA) ... 26

2.8. An Introduction to Bootstrap .. 27

3. **SAMPLING AND SURVEYS**.. 29

3.1. Sampling Design ... 30

3.2. Surveys ... 34

3.3. Basic Data Collection .. 34

4. **FUNDAMENTAL FISHERY CONCEPTS**.. 36

5. **GROWTH**... 39

5.1. Population Growth .. 39

5.2. Individual Growth .. 44

5.2.1. Data requirements ... 46

5.2.2. Methods for Estimation of growth parameters from length-at-age data 47

5.2.3. Estimating age composition from length-frequencies .. 48

5.2.4. Computer Packages .. 55

5.2.5. Limitations of length frequency analysis .. 56

6. **MORTALITY** ... 58

6.1. The fate of a cohort .. 62

6.2. Estimation of Mortality .. 64

6.3. Natural Mortality ... 69

7. **YIELD-PER-RECRUIT MODELS**... 72

7.1. Age Based Models .. 74

7.2. Length Based Models ... 75

8. **SURPLUS PRODUCTION MODELS**.. 77

9. **MULTISPECIES MODELS**... 82

10. **PATTERNS OF EXPLOITATION**... 83

11. **FISHERIES IN THE PACIFIC**... 85

11.1. Industrial Fisheries .. 85

11.2. Small-scale fisheries ... 85

12. **BIBLIOGRAPHY**... 93
List of Figures
Figure 1: Stock biomass dynamics of an exploited fish stock. The biomass is increased by growth and recruitment and reduced by natural and fishing mortality... 7
Figure 2: Shows a box and whisker plot and its essential components.. 13
Figure 3: Shows the shape of a normal distribution (Gaussian distribution) with different means and variance... 16
Figure 4: Shows the concept of the Z-score.. 17
Figure 5: Shows a normal distribution with a 95% confidence interval ... 17
Figure 6: Shows the relationship between CV, sample size and maximum relative error. Higher CV results in higher relative error. Increasing sample size reduces the relative error but to a certain optimum point ... 19
Figure 7: Shows three probability distributions (histogram with superimposed probability density function) for a normal distribution (symmetrical), left skewed and right skewed with appropriate locations of their central value and corresponding boxplots ... 20
Figure 8: Shows the calculation of sum of squares in a linear model .. 22
Figure 9: Shows the partitioning of sums of squares for a simple linear regression 24
Figure 10: Shows the concept of accuracy and precision... 29
Figure 11: Shows Simple random sampling for a homogeneous and heterogeneous population 30
Figure 12: Shows stratification of a survey area into four homogeneous strata.................................... 31
Figure 13: Shows the population trajectory when growing according to the logistic curve (classic sigmoid shape, obtained by integrating equation 1.4). K represents the asymptotic carrying capacity. Maximum growth rate is at K/2 .. 40
Figure 14: Shows the plot of equilibrium rate of change of population size versus population size (production vs. stock size curve) obtained by taking the slope of the curve in Figure 13 at each time step and plotting against population size. Maximum productivity occurs at half K, equilibrium occurs at zero and K .. 41
Figure 15: Shows the logistic Gordon-Schaefer model applied to fisheries....................................... 42
Figure 16: Shows the production curve for the discrete logistic growth. The diagonal line of equilibrium is \(N_{t+1} = N_t \), with the equilibrium carrying capacity at K. The curved line is the surplus production (sum of new recruits and the growth of the existing individuals in the population after subtracting natural mortality in the stock) with point of maximum production at K/2 .. 43
Figure 17: Shows the conventional fisheries management theory.. 44
Figure 18: Shows a growth trajectory of length of a fish as per the von Bertalanffy growth function (von Bertalanffy growth curve). .. 45
Figure 19: Shows an example of a Gulland and Holt plot of growth rate against length....................... 48
Figure 20: Shows part of a Bhattacharya analysis, converting a normal distribution into a straight line.. 50
Figure 21: Shows a Bhattacharya plot corresponding to columns D and E of Table 1, and regression line estimated for the first cohort N1 with the intercept a = 5.33 and the slope b = -0.306. The calculated values of column F are obtained by inserting the independent value (x) = upper limit of the smallest of two adjacent length groups in the equation: \(y = a + bx \) .. 52
Figure 22: Shows the modal progression analysis method. A is a plot of the mean lengths from the Bhattacharya analysis; B shows the connected mean lengths to represent growth curves of assumed cohorts. .. 54
Figure 23: Shows the basic dynamics of the decay of a cohort with corresponding symbols used in fishery models. The figure illustrates the impact of fishing to the survival rates, compared to natural decay without fishing. The line N+ catch illustrates the fate of cohort when its exposed to some fishing mortality as opposed to decay without exploitation.. 58
Figure 24: Shows the exponential decay of a cohort at different levels of total mortality Z. The higher the Z the faster the population numbers decline .. 60
Figure 25: Shows the factors affecting mortality at various life stages of the life of a cohort............... 61
Figure 26: Shows the development of a cohort through time based on catch in numbers of the Icelandic Haddock in Table 6. The orange, yellow and red lines represent the 1985, 1988 and 1990 cohort respectively. The 1985 and 1990 are strong year classes with more fish numbers. In contrast the 1988 is a weak year class ... 63

Figure 27: Shows the development of a cohort through time illustrating its entire life span based on the data in Table 6. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The 1985 year class is 2 years old in 1987 and so forth and maximum catch is seen around 4-5 years old ... 63

Figure 28: Shows the development of a cohort with log-transformed catch in numbers for Icelandic Haddock. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The exponential decline or the slope of the straight line gives an estimate of total mortality Z .. 64

Figure 29: Shows the age based linearised catch curve. The log-transformed catch is numbers at age is regressed against age to get an estimate of the total mortality Z which is the slope of the regression line .. 65

Figure 30: Shows how a cohort develops through time in numbers (red), weight (yellow) and biomass (blue). After birth the numbers in a cohort decline exponentially and the individuals in a cohort increase in size and weight. The biomass which is a product of the two increases to a certain maximum and then decreases thereafter .. 74

Figure 31: Shows an example of a yield-per-recruit and a spawning stock biomass curve with the target management point F_{max} and Y/R at F_{max} .. 75

Figure 32: Shows the classic Gordon-Schaefer model with the concept of maximum sustainable yield (MSY) which occurs at half the carrying capacity $(K/2)$ and the biomass leading to MSY is B_{MSY} ... 79

List of Tables

Table 1: Shows frequency tabulation of a random sample of lengths of 30 fish ... 12
Table 2: Shows the calculation of mean and median of a sample .. 13
Table 3: Illustrates the calculation of sample variance .. 14
Table 4: Shows the partitioning of sums of squares for a simple linear regression 24
Table 5: Shows the process of a Bootstrap ... 28
Table 6: Estimation of the first cohort, N_1 from a composite length frequency distribution by means of the Bhattacharya method, and the total minus $N_1 = N_2^+$. The arrow indicates where to start the calculation of N_1 .. 51
Table 7: The total catch in numbers of Icelandic Haddock split up by age groups. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The fate of a specific cohort can be followed diagonally across the table. The 1985 and 1990 are strong year classes with more fish numbers. In contrast the 1988 is a weak year class. A pseudocohort is represented by the shaded area (Age 8) ... 62
Table 8: Shows the catch in numbers at age. The diagonal blue line represents the development of a cohort and the straight line represents a pseudocohort. Part A of the table shows a constant parameter system assuming that recruitment and mortality (F and M) remain constant every year so that the number of survivors and the numbers caught would be the same for all cohorts. Part B represents a variable parameter system with variable recruitment and mortality over time which is a more realistic scenario .. 66
Table 9: Shows Russell’s experiment of the effect of two fishing mortalities on a hypothetical fish stock. This is based on weight at age data. The lower fishing mortality resulted in higher catch weights .. 72
1. Introduction

The objective of modern fisheries management deals with biological, economic, recreational and social aspects (Hart and Reynolds 2002). Some management regimes try to focus on all four dimensions with an underlying objective to ensure sustainable development. “In fisheries terms, we should not destroy or diminish fish stocks to such a degree that future generation would not have the opportunity to gain a living from them in the way we do now or to benefit from the maintenance of biodiversity” (Hart and Reynolds 2002). The economic point of view would be to consume resources in a way that maximises utility over time. This directly leads to the formulation of the principles of fisheries stock assessment or fish population dynamics.

Fishing has sustained a major part of the world’s population through providing food and livelihood and its significance is widely acknowledged. The universal foundation for fisheries management is outlined in the Food and Agricultural Organisation (FAO) Code of Conduct for Responsible Fisheries. The Code recognises the nutritional, economic, social, environmental and cultural importance of fisheries and “sets out principles and international standards of behaviour for responsible practices with a view to ensuring the effective conservation, management and development of living aquatic resources, with due respect for the ecosystem and biodiversity” (FAO 1995).

Article 7 on general fisheries management says:

“States and all those engaged in fisheries management should, through an appropriate policy, legal and institutional framework, adopt measures for the long-term conservation and sustainable use of fisheries resources. Conservation and management measures, whether at local, national, subregional or regional levels, should be based on the best scientific evidence available and be designed to ensure the long-term sustainability of fishery resources at levels which promote the objective of their optimum utilization and maintain their availability for present and future generations; short term considerations should not compromise these objectives”

“When considering the adoption of conservation and management measures, the best scientific evidence available should be taken into account in order to evaluate the current state of the fishery resources and the possible impact of the proposed measures on the resources”

However lack of scientific information should not be used as an excuse of absence of fisheries management, as such the precautionary principle says:

“States should apply the precautionary approach widely to conservation, management and exploitation of living aquatic resources in order to protect them and preserve the aquatic environment. The absence of adequate scientific information should not be used as a reason for postponing or failing to take conservation and management measures”
“States should promote the use of research results as a basis for the setting of management objectives, reference points and performance criteria, as well as for ensuring adequate linkage between applied research and fisheries management.”

In implementing the precautionary approach, states shall:

“a) Improve decision-making for fishery resource conservation and management by obtaining and sharing the best scientific information available and implementing improved techniques for dealing with risk and uncertainty;”

“d) Develop data collection programmes to assess the impact of fishing on non-target and associated or dependent species and their environment, and adopt plans, which are necessary to ensure the conservation of such species and to protect habitats of special concern.”

1.1. Fish Population Dynamics

Fishing affects the dynamics of the fish populations. They can undergo many changes such as changes in total numbers, total biomass, size frequency distributions, age-structure, and spatial distributions. One of the major objectives of stock assessment is to understand these variations which are revealed in the catches of different fisheries. The underlying assumption is that if we can understand how populations respond to different perturbations (fishing and natural fluctuations) then we should be able to manage those fisheries according to our chosen objectives (Haddon 2001).

To put fish population dynamics into perspective a fish stock has to be seen as a simple biological system. Russell (1931) summarised stock biomass dynamics as follows:

\[
B_{i+1} = B_i + (R + G) - (F + M)
\]

where :

- \(B_{i+1}\) is stock biomass in year \(i+1\)
- \(B_i\) is stock biomass in year \(i\)
- \(R\) is total weight of all individuals recruiting to the stock year
- \(G\) is the total growth in biomass of individuals already recruited
- \(F\) is the total weight of all fish caught (fishing mortality)
- \(M\) is the total weight of all fish which die of natural causes (natural mortality)

This forms the basis for most fish population dynamics studies. The essential aspect is that stock biomass has gains (recruitment and growth) and losses (fishing and natural mortality) (Haddon 2001). King (1995) illustrates this through Figure 1 which relates to Russell’s formula. The biomass of a stock is increased by growth of individuals and
subsequent reproduction by the adult fish which leads to small fish being recruited into the stock. In the figure three consecutive age classes are shown. At the same time, the stock numbers get reduced due to fishing mortality (fish caught by fishermen) and natural mortality (other causes such as predation). If the fish are removed at a high rate, the number of adult fish may be reduced to a point where reproduction will be unable to compensate for the numbers lost hence the stock size will decline.

Figure 1: Stock biomass dynamics of an exploited fish stock. The biomass is increased by growth and recruitment and reduced by natural and fishing mortality [Source: King (1995)].

A stock of fish or a unit stock can be defined as a discrete group of individuals having the same gene pool which are self sustaining and having little connection with adjacent groups (King 1995). A stock of fish usually occupies a particular geographical area with little integration with adjacent groups. The growth and mortality parameters in a unit stock are uniform over the distribution area of the stock. Assessments are made for each stock separately. Identifying unit stocks can be fairly complicated. In order to determine whether a species forms one or more distinct stocks, we should examine its spawning areas, growth and mortality parameters, morphological and genetic characteristics, compare fishing patterns.

There are at least three main reasons for failing to work properly with the stock unit.

- The full distribution area of the stock is not covered by the data collected, so that only part of the stock is considered. This is a typical example where several independent fisheries are exploiting the same stock.
- Several independent stocks are lumped together, for example, because their areas of distribution overlap.
- Continuous immigration and emigration of the components of one or more stocks from the fishing ground, migratory species e.g. tuna. Taking into account that most of the exploited marine resources undertake migration, an essential element to perform stock assessment is an understanding and knowledge of migration routes (Kolding and Giordano 2001)
1.2. Objectives of stock assessment

The objective of fish stock assessment is to provide estimates of the state of the stock (size, composition, regeneration rate, exploitation level, and fishing pattern) to assure, in the long run, the self-sustainability of the stock under exploitation (Hilborn and Walters 1992). The ultimate aim is to provide biological and economic reference points to be used as guidelines for the rational management of the fishery. For instance, some of the conventional biological reference points for fisheries management have been estimation of sustainable harvest levels, such as maximum sustainable yield (MSY) and/or sustainable exploitation rates such as the optimum fishing mortality, fishing effort, and the size of fish to be caught. The techniques used to obtain such biological reference points, forms the scope of this manual.

Fisheries are renewable resources i.e. replenish by natural processes at a faster rate than its rate of loss and fishing should not offset this natural balance. Even though maximizing economic benefits from our natural resources through harvesting is also essential. Hence the aim is to ensure maximum utilization of the stock in such a way that it is able to sustain itself in the long run. If there is no fishing then there will be no catch and at low levels of fishing effort the potential yield, or surplus production, of the resource is normally under-used (Stefánsson). At very high levels of exploitation the removal will surpass a stock’s regenerative capacity eventually leading to a collapse of the fishery. Thus the point somewhere between no effort and very high effort needs to be found that will give the maximum average yield with a maximum regenerative capacity of the stock (King 1995).

Variations in yield are a combined effect of variations in effort, recruitment, natural mortality and growth. One of the key goals is to understand both the natural variation found in exploited populations and how harvesting affects their dynamics. This requires an understanding of the productive stock (stock structure) as well as the individual components of productivity (recruitment processes, individual growth, and mortality processes). Each of these components needs to be considered. Fisheries science has naturally developed into using mathematical and statistical descriptions of these processes in attempts to understand the dynamics of exploited populations that is to explain biological processes using mathematical models. It is a quantitative science based to a large extent on statistical inference and analyses.

To a fisheries scientist understanding fundamental fisheries means; to understand the growth aspects of an individual fish and a population of fish as a whole, to understand how a population responds to increased mortality, and how a selective mortality influences genetic changes, to know how these processes are modelled and the limitations and underlying assumptions of these models, to recognize how useful information can be extracted from the available data and simultaneously be conscious of the limitations and uncertainties involved and at the same time to understand the natural fluctuations in the environment apart from the human exploitation on a population (man is not the only predator in the system). Most stocks are part of a food chain, or food web, either feeding on or giving food to other stocks. Managing fisheries entails being able to translate and
explain all the understanding from the science to the community and the authorities and to understand the implications of management regulations, not only for the fish community but also the fishing community (Kolding 2006).

Stock assessment implies understanding the dynamic system (Figure 1) and estimating these fundamental population parameters namely stock abundance, growth, recruitment and mortality. These parameters can be estimated from different types of data set such as length of fish/ length-frequencies, age, catch rates (catch per unit effort).

Essentially three basic elements are necessary:
- The input (e.g. the fishing effort in terms of fishing gears and amount of time spent fishing)
- The output (landed catch) as a part of the biological production
- The processes that describe and link the input and output (the biological processes and fishing operations represented by mathematical models) (Sparre and Venema 1998).

Sparre and Venema (1998) condense the fish stock assessment models into two main groups:

- Analytical or dynamic pool models that are structured around individual fish as the basic unit and where dynamic processes such as age, growth, mortality, and maturity are each represented by a sub-model. These models are either length-structured or age-structured and deal with a partial or the entire demographic structure of the population. They have their origin from Thompson and Bell (1934) and Beverton and Holt (1957).
- Holistic or biomass dynamic models that are structured around the overall stock (population) as the basic unit where individually based processes such as growth and reproduction are inherently encapsulated in the stock model. The starting point of these models is population abundance indices generated from catch and effort data or fishery independent biomass surveys (swept area method or acoustic surveys). These models have their origin from Graham (1935), and Schaefer (1954).
2. Biostatistics

In order to understand the dynamics of the exploited species, fisheries science has developed into using mathematical and statistical descriptions to illustrate the biological processes. Statistics applied to life sciences is often called biostatistics or biometry and is used as a means of informing the decision-making processes. Before more technical concepts are introduced, it is important to look into some essentials of biostatistics which forms the basis of these mathematical models. One needs to be familiar with some fundamental concepts of statistical sampling and common parameters and statistics.

2.1. Descriptive Statistics

A population is a finite number of separate objects defined in space and time. It is generally not feasible to take measurements from the entire population therefore a sample (subset of the population) is taken. Biologists usually make inferences about a population from the sample taken from the population. Hence the sample needs to be random and representative of the population. Information contained in the sample, i.e. sample statistics are used to estimate population parameters. For example, not all fish can be measured in a population, therefore a sample of fish are measured and some conclusions can be drawn about the length distribution in the population based on the information obtained from the sample. Inferences about the population are normally limited to the space and time the sample is taken from. For example if we sample from a population of animals at a certain location in October 2007 then our inference is restricted to that area in October 2007.

Fisheries data normally consist of a collection of observations e.g. length of fish, number of individuals. The actual property measured by the individual observations are called variables e.g. length. In a given population, each variable can be characterised by certain parameters e.g. mean length. Estimates of the parameters are obtained from a sample. Every measured variable and its parameter estimate will have some degree of uncertainty which is viewed in terms of probabilities. Thus every variable has an associated probability distribution (Quinn and Keough 2002).

First the raw data (e.g. a range of length measurements) needs to be condensed into some more useful form that allows some visual interpretation of the data. This is obtained by a frequency tabulation to get a frequency distribution. A length group can be identified by using index j, with an upper limit denoted by $j+1$;

$$L_{(j+1)} = L_{(j)} + dL$$

where the interval size is expressed as dL, a concept that appears frequently. The midpoint of length interval j is defined as
A fish of length \(x(j) \) then belongs to the length group \(j \) when

\[
L(j) + \frac{dL}{2} \leq x(j) < L(j) + dL
\]

\(F(j) \) is the frequency of length group \(j \), or the number of fish observed in the length group \(j \). When \(L(j) \) in a frequency table is just represented by one number, it represents the lower limit of length group \(j \).

An example data set is used below to illustrate the frequency distribution process. Consider a random sample of lengths of 30 fish from the population i.e. \(n \) (number of observations) = 30. Firstly, one needs to decide on the number of classes to include in the frequency distribution. Generally the number is kept in-between 5 to 15, although it depends on the number of observations (more length classes would be allocated with greater number of observations). The nature of the data also plays a role. Some general guidelines include taking a square root of \(n \) or Sturge’s rule = \((X\text{max}-X\text{min}) / (1+1.44\ln(n))\). In this case 7 length classes are used. The class width is determined by finding the range of the data (highest value-lowest value) and dividing by the number of classes and rounded up to the next convenient number. Range: 15.3 cm – 3.4 cm = 11.9/7 = 1.7 cm \(\rightarrow \) 2 cm. For defining the class limits, start with the lowest value as the lower limit of the first class (2cm), add the class width to this to obtain the lower limit for the second class, 2 + 2 = 4 cm etc. Count the number of fish in each length class, either by using a pencil or a paper or a computer program. Relative frequency is the proportion of the observation within a class. Cumulative frequency is the sum of the relative frequency of all classes below and including the class indicated (Table 1; Exercise 1 in spreadsheet can be referred to for frequency distribution plots).

Two aspects of the data are normally important, some measure of location or central tendency (i.e. where is the middle of the population) and some measure of the spread or variability (i.e. how different are the observations in a population).

One common measure of the center of the distribution is the arithmetic mean which is the sum of all observations divided by the total number of observations

\[
x = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} [x_1 + x_2 + x_3 + \ldots + x_n]
\]

where \(n \) is the total number of measurements
\(i \) is the \(i^{th} \) measurement
\(x_i \) is the value of the \(i^{th} \) measurement

The sample mean is an unbiased estimator of the population mean.
Table 1: Shows frequency tabulation of a random sample of lengths of 30 fish
[Source: Hjörleifsson (2006)]

<table>
<thead>
<tr>
<th>Measurement number (i)</th>
<th>Length of fish i (cm)</th>
<th>Sorted</th>
<th>Length class</th>
<th>Class</th>
<th>Frequency (# of fish)</th>
<th>Relative</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.1</td>
<td>3.4</td>
<td>2-4</td>
<td>4</td>
<td>2</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>2</td>
<td>11.7</td>
<td>3.4</td>
<td>4-6</td>
<td>6</td>
<td>3</td>
<td>0.100</td>
<td>0.167</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
<td>4.1</td>
<td>6-8</td>
<td>8</td>
<td>5</td>
<td>0.167</td>
<td>0.333</td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>5.1</td>
<td>8-10</td>
<td>10</td>
<td>6</td>
<td>0.200</td>
<td>0.533</td>
</tr>
<tr>
<td>5</td>
<td>9.9</td>
<td>5.6</td>
<td>10-12</td>
<td>12</td>
<td>7</td>
<td>0.233</td>
<td>0.767</td>
</tr>
<tr>
<td>6</td>
<td>5.1</td>
<td>6.4</td>
<td>12-14</td>
<td>14</td>
<td>6</td>
<td>0.200</td>
<td>0.967</td>
</tr>
<tr>
<td>7</td>
<td>11.6</td>
<td>7.0</td>
<td>14-16</td>
<td>16</td>
<td>1</td>
<td>0.033</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median is another measure of central tendency. Median position is the middle point in the data which is obtained by first sorting the measurements in an ordered fashion from lowest to highest and then finding the median position \((n+1)/2\) of the ordered data. If \(n\) is an even number the median is the average of the two central values. The median is more resistant to outliers (extreme values very different to the rest of the sample) in comparison to mean. This is illustrated using an example below (Table 2; Exercise 1 in spreadsheet). The median is also a better estimator of the center of skewed distributions (explained later).
Table 2: Shows the calculation of mean and median of a sample
[Source: Hjörleifsson (2006)]

| Measurement number (i) | Measurement value (xi) | Data set 1 | | Measurement value (xi) | Data set 2 |
|------------------------|------------------------|------------|------------------------|------------|
| 1 | 40 | 40 | | | |
| 2 | 20 | 20 | | | |
| 3 | 10 | 10 | | | |
| 4 | 30 | 30 | | | |
| 5 | 50 | 100 | | | |
| n | 5 | 5 | | | |
| Sum | 150 | 200 | | | |
| Mean (sum/n) | 30 | 40 | | | |
| Median pos.: (n+1)/2 | 3 | 3 | | | |
| Median value | 10 | 10 | | | |

The third measure is the **mode**, which is the value that occurs most often. This is not affected by outliers but the problem is that there could be none or many modes.

The simplest measure of spread or variability is the **range** of the data (difference between the largest and the smallest value). There is however no clear link between the sample range and the population range and generally the range will rise as the sample increases (Quinn and Keough 2002). A measure that is more robust to unusual observation is the interquartile range, which is obtained by creating quartiles, $Q_1 Q_2 Q_3$, which divide the data set into four equal parts. A percentile divides the data set into 100 equal parts. The first quartile $Q_1 = P_{25}$ is the observation which has 25% of the observations below it. The third quartile $Q_3 = P_{75}$ is the observation which has 75% of the observations below it or 25% above it. This information is used in the making box and whisker plots (boxplots; Figure 2) that give an indication of the central value of the data and its distribution and is an excellent exploratory data analysis tool.

![Figure 2](image-url)
Figure 2: Shows a box and whisker plot and its essential components
[Source: Hjörleifsson (2006)].

An imperative measure of variability is the sample **variance** which can be used to estimate the population variance. Variance is based on the deviations of the individual observations from the mean value. A sample variance S^2 is
\[S^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n - 1} \]

where the numerator is known as the sum of squares (i.e. the sum of squared deviations of each observation from the sample mean) and the variance is the average of these squared deviations. Subtracting the mean from individual observations can result in negative numbers thus the values are squared. The sum is divided by \(n-1 \) since dividing just by \(n \) gives a biased estimate (i.e. underestimates) of the population variance \(\sigma^2 \):

\[\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} \]

Note the sample variance \(S^2 \) is an estimator of the population variance \(\sigma^2 \). A square root of the variance is taken to obtain the **standard deviation** which then has the same unit as the length measurements (calculation shown in Table 3):

\[\sqrt{S^2} = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n - 1} \text{ (sample)} \]

\[\sigma = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} \text{ (population)} \]

<table>
<thead>
<tr>
<th>number (i)</th>
<th>Measurement value (X_i)</th>
<th>(X_i - \bar{X})</th>
<th>((X_i - \bar{X})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>-20</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>20</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mean (\bar{X})</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sums of squares (SS)</td>
<td>[\sum_{i=1}^{N} (X_i - \bar{X})^2]</td>
</tr>
<tr>
<td>variance (S^2)</td>
<td>[SS/(n-1)]</td>
</tr>
<tr>
<td>standard deviation (S)</td>
<td>[\sqrt{S^2}]</td>
</tr>
<tr>
<td>relative standard deviation (CV)</td>
<td>[S/\bar{X}]</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
</tr>
</tbody>
</table>

The **coefficient of variation** is used to compare standard deviations between populations with different means and it provides a measure of variation that is independent of the measurement units. The sample CV, which is the estimate of the population CV,
describes the standard deviation as a percentage of the mean. It gives an indication of the
data dispersion; how the individuals in a population are distributed relative to one
another.

\[CV = \frac{S}{\bar{X}} \quad \text{or} \quad CV\% = 100 \frac{S}{\bar{X}} \]

Fisheries scientists use standard error (explained later) as opposed to standard deviation
for calculating CV. The statistical theory states that CV is inversely related to the square
root of the number of samples;

\[CV = 100 \frac{s}{\sqrt{n}} \]

A rule of thumb is that a survey becomes of uncertain value if the CV is greater than
30%. A high CV implies that the statistical precision of the population mean is not very
good i.e. the mean density given by the sample provides a relatively uncertain estimate of
the mean density of the population (Haddon). From the above formula a decrease in the
CV would imply an increase in the sample size \(n \). If information is available about the
variability in the population (standard deviation) then optimum number of samples can be
calculated for any desired CV. The higher the desired statistical precision of the mean
density or abundance estimate, the more samples are required i.e. CV of 15% requires
more samples than a CV of 30%.

The normal distribution

Most of the variables encountered in fisheries biology are continuous (take any value and
not only integers) and for continuous variable the theoretical probability distribution can
be represented by a continuous curve (Sokal and Rohlf 1995) called a normal distribution
or Gaussian distribution. The probability density function is expressed as

\[pdf = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{1}{2\sigma^2}\frac{(x - \bar{X})^2}{s^2}\right)} \]

The parameters in the equation are mean (\(\bar{X} \)) and s (standard deviation) and 2, \(\pi \), and \(e \)
are constants. Therefore the normal distribution is said to be a function of \(\bar{X} \) and \(s \). The
shape or the spread of the normal distribution is dependent on \(s \). The higher the value of
\(s \), the greater the spread of the curve and the mean of the parameter describes the central
location of the x-axis (Figure 3).

After a parameter is estimated it is equally important to determine the precision of the
estimate and how much confidence can be placed on the obtained value. If the parameter
value is inconsistent between repeated sampling it will not very useful for inference.
Given that a sample is from a normally distributed population, we can easily determine
what proportions of observations in the population occur within certain distances based on the known mean and standard deviation:

- 50% of population falls between $\bar{X} \pm 0.674s$
- 95% of population falls between $\bar{X} \pm 1.960s$
- 99% of population falls between $\bar{X} \pm 2.576s$

These values are formulated on the basis of Z scores. The z transformation converts any normal distribution to a standard normal distribution with mean 0 and standard deviation 1.

$$Z = \frac{X_i - \bar{X}}{s}$$

i.e. each measurement is subtracted by the mean divided by the s. The Z-score value is a multiplier, indicating how many standard deviations a particular measurement is from the mean (Figure 4). This is essentially converting any value from a normal distribution into its equivalent value from a standard normal distribution. The theoretical student t-distribution table gives the Z score.

For example 7073 fish larvae were measured. The mean was 50 mm and the standard deviation 10 mm. Given that the data follow a normal distribution, Figure 5 illustrates 95% ($\pm 2s$) of all the measurements (6719 larvae) falling within 1.96 standard deviation (30-70 mm) from the mean.

The shape of this graph and the values of Z and probability density function (pdf) are the same for any normally distributed data irrespective of the number of measurements (n) and the value of the mean and standard deviation. Additionally, if we have a mean and a standard deviation from a sample and we assume that the data are normally distributed, we can say what the probability is, that the next sample we take is less than a certain Z value.

E.g. mean = 100 mm, s = 20 mm. How likely is it that the next sampled measurement is:

- 60 : Z score = $\frac{(60-100)}{20}$ = -3, probably very unlikely (refer to Figure 4)

![Figure 3: Shows the shape of a normal distribution (Gaussian distribution) with different means and variance](source: Hjörleifsson (2006)).
The Standard Error

If we consider the sample means to have a normal distribution, we can calculate the variance and standard deviation of the sample means just like we could calculate the variance of the observations of the sample. Note standard deviation of a sample was:

\[S^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n - 1} \]

Standard error (SE) is essentially standard deviation of the mean and is obtained by:
\[SE = \frac{S}{\sqrt{n}} \]

where \(S \) is the standard deviation of the sample and \(n \) is the sample size. This indicates the variation in the sample mean. If \(SE \) is large then repeated samples are likely to produce very different means and the mean of any single sample might not be a reliable measure of the population mean and vice versa. Thus this estimate gives a measure of confidence in the mean estimate.

Confidence Intervals for population means

As was shown earlier 95% of population falls between \(\bar{X} \pm 1.960s \), therefore 95% of the sample means would fall between \(\bar{X} \pm 1.960s \) multiplied by the standard deviation of the sample means i.e. standard error. Thus the 95% confidence limits (CL) of a population mean given the sample mean and standard error can be calculated is given as follows:

\[\bar{X} \pm CL = \bar{X} \pm Z \frac{S}{\sqrt{n}} \]

where \(Z_{0.95} = 1.96 \) (can also be illustrated as \(t_{n-1,0.05} \)) for \(n \geq 30 \)

Suppose that we require that the estimated mean landings from samples should not deviate more than 7% (maximum relative error) from the true landings and that we want to be 95% certain of this. The maximum relative error of the mean can be calculated from:

\[\varepsilon_{\text{max}} = \frac{t_{n-1,0.05}}{\sqrt{n}} CV \text{ where } CV = 100 \frac{S}{\bar{X}} \]

Increasing sample size (n) lowers the maximum relative error. Higher CV results in higher relative error for a given sample size (Figure 6).

We could further ask, how many samples are needed in order to be 95% sure that the estimated mean from the samples does not deviate more than 7% from the true mean? The answer is it depends on your CV. If CV is 10%, need 10 samples are needed to achieve the required precision and if CV is 20%, then 35 samples are needed to achieve the required precision (Figure 6). However it must be noted that increasing the number of samples (for any given CV) does not proportionally increase the precision of the value and the cost of obtaining the sample could get disproportionately higher the closer one gets to the “true value” or minimum relative error.
Figure 6: Shows the relationship between CV, sample size and maximum relative error. Higher CV results in higher relative error. Increasing sample size reduces the relative error but to a certain optimum point
[Source: Hjörleifsson (2006)]

2.2. Exploratory Data Analysis

The first step in any data analysis is to explore or do a preliminary check on your data. This is done to; (1) familiarize yourself with the data; (2) ensure in a way that the data is meaningful, (3) detect errors, (4) see patterns in the data which may not be revealed by statistical analysis, (5) determine outliers (unusual values) (Quinn and Keough 2002).

The prime thing we want to know about our data (and hence the population it is taken from) is the shape of its distribution. Most of the statistical techniques operate on the underlying assumption that the data is normally distributed. Some of the plots are very useful for studying the distribution of your data such as scatterplot, histogram (a useful addition is to superimpose a probability density function), boxplot (Figure 7).

If the data are non-normally distributed (skewed), transformation of the data to normality is a solution. The most common use of transformations in biology is to help the data meet the distributional and variance assumptions required for linear models. Sokal and Rohlf 1995 provide a good explanation on transformations. Some of the common transformations of biological data include logarithms, square root or fourth root, power transformations. It is important to check the data after transformation to ensure that the transformation improved the distribution of the data.

Outliers (unusually high/low values out of the data range) can have serious effects on data analysis. The outlying data points should be identified and dealt with. Formal test are available for detecting outliers.
2.3. Model Parameter Estimation

Most of the analysis described in the following chapters concern with fitting statistical models to data and estimating the optimum parameters that give the best fit between the data and the model. Essentially, a mathematical model of biological population is always a simulation of nature. The design of the model should inherently represent the structure of the system being modelled. This entails determining which variables are to be included (i.e. whether the model will include age structure, length information, relate to numbers or biomass etc.) and the relationships between them (linear, non-linear etc.) that give a prediction about a particular condition in nature. Once a model has been designed for a system, it needs to be “fitted” to the available data from the system. This implies estimating values for the model parameters which optimizes the agreement between the model’s predictions and the observed data from nature (Haddon 2001). Hence there are three essential requirements:

- A formal mathematical model of a system with parameters to be estimated (this is capable of generating predictions)
- Data from the system to be used when estimating parameter values (observations from a population).
- A criterion to judge the quality of fit (goodness of fit) between the model’s predictions and the observed data for any combination of parameter value.

2.4. Linear Models

Fitting statistical models require a response variable or dependent variable termed \(Y \) and one or more predictor variables or independent variable termed \(X \). The expectation is that the predictor variable may explain some biological pattern in the response variable. Thus the general statement of the model is:
response variable = model + error

where the model component incorporates the predictor variables and the parameters relating the predictor and response variables and becomes the prediction (\(\hat{Y} \)). In a linear model the predictor variables and the parameters are included as a linear combination and vice-versa for a non-linear model. The error term indicates the uncertainty of the model fit i.e. the variation part of the response variable that was unexplained by the predictor variables and the model parameters.

The criterion for goodness of fit is often called an objective function:

\[Y_i = \hat{Y}_i + \varepsilon_i \]

where
- \(Y_i \) is the observed values (response variable)
- \(\hat{Y}_i \) is the predicted values of observation \(i \) from the mathematical model (predictor variable and the model parameters)
- \(\varepsilon_i \) is the residual of observation \(i \), this value is used as to calculate some criterion to judge the goodness of fit
- \(i \) stands for a certain observation, \(i = 1, 2, 3, \ldots n \)

Parameter estimation is the fundamental science of modeling populations and is carried out by optimizing the fit between the expectations from the model (predicted values) and the observed data from nature. Since \(\varepsilon_i \) is the difference (deviation) between the predicted and the observed values:

\[\varepsilon_i = Y_i - \hat{Y}_i \]

this is used to formulate the measure of goodness of fit. Since deviations are both positive and negative and may cancel out, they are squared to make them additive. Thus the criterion in modeling fitting is to minimize this sum of squared deviations (SSE) (Figure 8) known as the least squares criterion.

\[SSE = \sum (Y_i - \hat{Y})^2 \]
\[SSE = \sum (\text{Observed} - \text{Predicted})^2 \]

There are 2 major assumptions when using the sums of squares as the criterion of fit; which are that the residuals are (1) normally distributed about the predicted variable (2) with equal variance for all values of the observed variable.
Figure 8: Shows the calculation of sum of squares in a linear model [Source: Hjörleifsson (2006)]

Whether the model is simple or complex the principal of the criterion for the goodness of fit for the least squares is always the same, i.e. minimize the sums of squares SSE. Note that only one combination of the parameters will give the minimum SSE, the aim is to find this combination. The complexity arises in the algorithm used to obtain the best parameter estimates that describe the predicted value. Computationally it easy to search for values of the parameters to find the ones that fulfil the condition of minimum sums of squares. It can be done through:

- Grid search: try different values for the model parameter and calculate SSE for each case
- Inbuilt minimization routines: most statistical programs have these routines. They are for all practical purposes “black boxes”, how it is done is not important, the principal understanding is the issue. In Excel the black box is called Solver.

It is important to take note of some of the synonyms used in the literature generally:
- observed value = measurement = response variable = dependent variable
- predicted value = fitted value = expected value
- residual error = deviation = random error = residual = error = noise

2.5. Linear Regression

Linear regression is based on statistical models that assume a linear relationship between one response variable (Y) and one predictor variable (X). The simple linear regression analysis has three main purposes:

- To describe the linear relationship between Y and X
- To determine how much of the variation in Y can be explained by the linear relationship with X and how much remains unexplained
- To predict new values of Y (predicted value) from the new values of X.

The formal statement of the model is;
\[Y_i = \alpha + \beta X_i + \varepsilon_i \]

where:

- \(Y_i \) is the dependent/response variable
- \(\alpha \) and \(\beta \) are parameters
- \(X_i \) is the dependent/predictor variable
- \(\varepsilon_i \sim n(0, \sigma^2) \) is the error term of the model with mean 0 and variance \(\sigma^2 \) (assumed to be independent and identically distributed)

The \(Y \) and \(X \) variables are regressed to estimate \(\alpha \) (intercept) and \(\beta \) (slope) by ordinary least squares method which involves minimising the sums of squares i.e. minimising the difference between the expected values \(\hat{Y}_i = \alpha + \beta X_i \) and \(Y_i \);

\[
SSE = \sum_{i=1}^{n} (Y_i - (\alpha + \beta X_i))^2
\]

It can be shown that the estimates of \(\alpha \) and \(\beta \), called \(a \) and \(b \) respectively here, that minimises the SSE can be given by;

\[a = \bar{Y} - b\bar{X} \]

\[
b = \frac{\sum(X - \bar{X})(Y - \bar{Y})}{\sum(X - \bar{X})^2}
\]

This is an analytical solution (derivations have been omitted). Although an analytical solution for finding the value of parameters of interest, fulfilling the criterion of best fit, are available for simple linear models such is not always the case for more complex models for which numerical search methods (computational methods) become essential.

The null hypothesis (\(H_0 \)) being tested in a simple linear regression analysis is \(\beta = 0 \). The reason for choosing \(\beta \) for a normal regression model is because the condition \(\beta = 0 \) implies that there is no linear association between \(X \) and \(Y \). The t statistic is used to test the general hypothesis concerning \(\beta \). Since the estimate of \(\beta \), \(b \) is known to come from a t-distribution with \(n - 2 \) degrees of freedom, tests concerning \(\beta \) can be set using the t-distribution where the t value is computed by \(t = \frac{b}{\sigma(b)} \) (i.e. estimate divided by its standard deviation). \(H_0 \) is rejected if the computed t-value is greater than the theoretical t-value (read from the students t-distribution table) at \(n - 2 \) degrees of freedom and a certain significance level (e.g. \(\alpha = 0.05 \)).
Partitioning the total sum of squares

The error structure of the model can be partitioned into the error that is explained by the model and the part that is unexplained by the model (Figure 9, Table 4). There is always some variation in the variable \(Y_i \) (e.g. lengths of fish recorded). This variation is typically measured as the deviations of \(Y_i \) around its mean \(\bar{Y} \); \(Y_i - \bar{Y} \). This is expressed as the total variation and total sum of squares (SST; Table 4). When we consider the predictor variable \(X_i \), the measure of variation that is present in the \(Y_i \) observations around the fitted regression line is called the error sum of squares (\(SSE = Y_i - \hat{Y}_i \)). This is the unexplained variation. If all the \(Y_i \) observations fall on the fitted regression line then \(SSE = 0 \). The difference between the total and unexplained variation is called the explained variation or \(SSR = \hat{Y}_i - \bar{Y} \) that stands for regression sum of squares which is the difference between the fitted regression line and the mean.

![Figure 9: Shows the partitioning of sums of squares for a simple linear regression [Source: Hjörleifsson (2006)]](image)

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>SS</th>
<th>MS or (S^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{Y}_i - \bar{Y})</td>
<td>Explained 1</td>
<td>(SSR = \sum (\hat{Y}_i - \bar{Y})^2)</td>
<td>(SSR/1)</td>
</tr>
<tr>
<td>(Y_i - \hat{Y}_i)</td>
<td>Unexplained n-2</td>
<td>(SSE = \sum (Y_i - \hat{Y}_i)^2)</td>
<td>(SSE/(n-2))</td>
</tr>
<tr>
<td>(Y_i - \bar{Y})</td>
<td>Total n-1</td>
<td>(SST = \sum (Y_i - \bar{Y})^2)</td>
<td>(SST/(n-1))</td>
</tr>
</tbody>
</table>

One measure of the strength of regression is the r-squared parameter called the coefficient of determination and is given by;

\[
r^2 = \frac{\text{explained variation}}{\text{total variation}} = \frac{SSR}{SST}\\
\]
The coefficient of determination shows the level of variation explained by the regression model. The value of r^2 is between 0 and 1. The r^2 will be close to 1 if the explained error is high in comparison with the total variation and vice versa.

Linear models have four main assumptions:
- linearity
- normality
- constant variance (homoscedasticity)
- independence

Formal tests are available to check the conformity of these assumptions i.e. to test the reliability of the regression analysis. However these are not dealt with in this manual. In principle the residuals from the regression analysis should be randomly distributed and not show a systematic pattern.

If model assumptions appear to be violated there are some remedies:
- Try alternative model if there is a systematic pattern in the residuals (often add more parameters)
- Transformation of data if constant variance assumption is violated
- Alternative formulation of the objective function, i.e. use some other criterion than the minimum sums of squares

2.6. Multiple linear regression

Instead of having only one variable X, explaining the observations Y, we may have two variables, X and Z. A possible model would be:

$$Y_i = \alpha + \beta X_i + \gamma Z_i + \epsilon_i$$

Thus three parameters α, β, γ need to be estimated. More parameters can be added similarly. The objective remains the same to minimize SSE;

$$SSE = \sum (Y_i - (a + bX_i + cZ_i))^2$$

The aim is to find a combination of the three parameters a, b and c (estimates of α, β, γ respectively) which give the lowest SSE;

In order to determine if the new variable Z helps in explaining any further variation than variable X an F-test is used. In order words it is important to determine if parameter c is significant. The F-test involves comparing the full model with all parameters to a reduced model with one lesser number of parameters. In this case the full model is;
\[Y_i = \alpha + \beta X_i + \gamma Z + \varepsilon_i \quad \text{and the reduced model is;} \]
\[Y_i = \alpha + \beta X_i + \varepsilon_i \]

The SSE for the full model should be lower than the SSE for the reduced model if the additional variable is explaining some variation in the observations. If \(SSE_F > SSE_R \), then the new parameter is not significant i.e. it does not explain any more variation about the regression line. The analyses of the sums of squares are converted to variances by dividing by the degrees of freedom \((df)\) in order to apply the \(F \)-test to compare them. The formal test is:

\[F = \frac{SSE_R - SSE_F}{df_R} \cdot \frac{SSE_F}{df_F} \]

If \(F \) is higher than some theoretical value then the reduced model is rejected and the parameter is significant.

Exercise 2 set up in Excel demonstrates the simple and multiple linear regression

2.7. Analysis of Variance (ANOVA)

Analysis of variance, often abbreviated with the acronym ANOVA is a technique for identifying and measuring the various sources of variation within a collection of data (Kachigan, 1991). It is a flexible technique that allows making comparisons between any numbers of sample means, all in a single test. The potential sources being tested are sometimes referred to as “treatments” or “factors”. For instance the amount of catch landed at three different sites (markets) need to be formally compared. Then the mean weights of landed catch is compared between markets, which is the factor is this case. The Model assumptions are:

1. The observations in each cell constitute an independent random sample of size \(n \) and come from a population with mean \(\mu_i \).
2. Each population represented by the cell samples is normal and has the same variance \(\sigma^2 \).

The Model hypotheses are:

1. Null hypothesis \(H_0: \mu_1 = \mu_2 = \ldots = \mu_k \) all means are equal
2. Alternative hypothesis \(H_a: \) at least one pair of \(\mu_s \) are not equal.

Difference in the mean of the samples gives rise to two sources of variability (1) variability due to differences among factors (\(SS_{\text{factor}} \)) (2) variability within factors (\(SS_{\text{Error}} \)) which sum up to form Total Sum of Squares (\(SS_{\text{Total}} \)) (Glover and Mitchell 2002). The
analyses of the sums of squares are converted to variances by dividing by the degrees of freedom \((df)\) in order to apply the F-test to compare them.

\[
F = \frac{\text{between sample variance}}{\text{within sample variance}} = \frac{SS_{\text{factor}}/df_{SS_{\text{factor}}}}{SS_{\text{error}}/df_{SS_{\text{error}}}}
\]

If F ratio is 1 then \(H_0\) is true whereas the hypothesis is rejected with F ratio > 1.

2.8. An introduction to Bootstrap

Bootstrap essentially involves generating a number of samples from a given number of original samples. This technique is based on re-sampling. Bootstrap re-sampling is a general form of re-sampling in that it is re-sampling with replacement to produce samples of size \(n\) (Haddon 2001). This technique was developed by Efron (1982) and they named it Bootstrap in the honour of the unbelievable tales of Baron Munchausen who had, in one of his many adventurous travels fallen to the bottom of a deep lake and just as he was to succumb to his fate he thought of pulling himself up by his own bootstrap (Hjörleifsson 2006).

Suppose “we have a set of real-valued observations \(x_1,...,x_n\) independently sampled from an unknown probability distribution \(F\). We are interested in estimating some parameter \(Q\) by using the information in the sample data with an estimator \(\hat{Q}\). Some measure of the estimate’s accuracy is as important as the estimate itself; we want a standard error of \(\hat{Q}\) and, even better a confidence interval on the true value \(Q\)” (Efron and LePage 1992).

Bootstrap becomes most useful where the sampled population cannot fit into classical sampling theory and cannot be represented by a normal distribution and especially where the underlying distribution is unknown (Haddon 2001).

Bootstrap involves randomly re-sampling with replacement from the same original sample, using a random number generator. Suppose a sample data set is available for which a mean and standard deviation can be calculated. By doing this we assume the distribution of the data to be normal. It can be risky to make this assumption if the true distribution of the population is not known and enough samples from the population are not available. We can generate a number of “bootstrap” data sets from the original data using a random draw with replacement from the observations in the original data set. For example, 1000 samples can be generated from one sample using a bootstrap. The generated samples will have the same size as the original sample. This is illustrated in Table 5 below. Because the numbers are picked randomly with replacement, some measurements can be repeated within a sample. The model is refitted to each bootstrap data set and the statistics of interest (mean and standard deviation) is calculated. This generates a frequency distribution and the estimate of the parameter is the mean of the distribution and the standard error of the mean is the standard deviation of the frequency
distribution. Bootstrap can be used to measure the bias in an estimate i.e. the difference between the actual population parameter and the expected value.

Table 5: Shows the process of a Bootstrap

<table>
<thead>
<tr>
<th>Sample Data</th>
<th>Bootstrap sample number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>7.17</th>
<th>8.00</th>
<th>7.17</th>
<th>6.67</th>
<th>6.17</th>
<th>6.33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd</td>
<td>2.86</td>
<td>1.67</td>
<td>2.86</td>
<td>2.66</td>
<td>2.48</td>
<td>3.20</td>
</tr>
</tbody>
</table>

3. Sampling and Surveys

The inferences about a population being studied, is drawn from the information captured by a sample taken from the population. The sites selected for sampling are a representation of the population and the mean abundance observed at these sites are used to estimate the mean abundance for the entire population by applying some raising factor. A raising factor is a ratio between the total number of units and the samples number of units. Thus it is imperative to ensure that the sample is reliable and truly representative of the population being studied before any data analysis is carried out. That is the sampling sites should be selected in an unbiased manner and this can be achieved through a proper sampling and survey design.

Bias and precision are two key issues to take into consideration when designing a survey.

A sample is characterised by:
• Variability (spread of observations) = precision
• Uncertainty (bias, deviation of observed mean from true mean) = accuracy (Figure 10)

In designing a sampling strategy it is important to focus on:
• Randomisation: each object in the population has the same chance of being sampled (avoiding bias thus ensuring accuracy)
• Replication: having adequate sample size to ensure reliable measure of variability or dispersion (SD, SE, CL) (large sample = precision)
3.1. Sampling Design

Simple random sampling

This form of sampling involves a simple random selection. For example the entire survey area can be subdivided into numbered stations and a random number generator can be used to select the numbered stations. However this can lead to uneven sampling if several areas that are clumped together are sampled and other areas are covered lightly. Essentially this sampling technique works if the population has a homogeneous distribution. However if the population is heterogeneous in distribution (patchy) then the number of individuals in a sample are highly variable in random samples and such survey design will result in high variance estimates meaning low precision of the mean estimates (Figure 11).

Systematic sampling

Systematic sampling method involves selecting samples from an ordered sampling frame, where every k^{th} element is chosen. It must be ensured that the system does not affect randomness in any way. Thus functionally is it similar to simple random sampling and is suitable for homogeneous population.

Fish distribution and fishing activity is not a random process. For example, distribution of fish is generally patchy, habitats may be species specific, landed catch at different sites has high variability and temporal changes also introduce variability. These factors need to be taken into account when designing a sampling strategy. The downside of simple random sampling is that it may be less efficient than other sampling designs, especially where there is identified heterogeneity in the population.

Stratified random sampling

For a heterogeneous population, the sampling area should be divided into strata according to the gradients in population density such that each stratum is in turn homogenous. Then simple random sampling can be conducted in each stratum (Figure 12). This helps in minimizing bias. By estimating the mean and the variance within each stratum and then
combining stratum values to obtain overall values results in reduced variance estimate. Allocation of strata can be based on; spatial information of catch rates/density, depth, topography, latitude, temperature, salinity, substrate type or using data from previous surveys or information on commercial catches. When the size and age composition of the population are to be estimated, stratification must maximize within stratum homogeneity in these parameters as well as density (Gunderson 1993). The number of strata depends on; how heterogeneous the population is, sample size within stratum needed to obtain the desired precision, or total number of feasible stations which can be sampled within the specified costs. Stratifying a survey area into regions of homogeneous density is likely give a more representative sample of the population as it ensures that major habitats are included in the sample (Quinn & Keough 2002). Stratification has two main advantages, it increases the statistical precision of the survey estimates and it provides more information about the distribution and abundance within the survey area (Haddon).

![Figure 12: Shows stratification of a survey area into four homogeneous strata](Source: Hjörleifsson (2006)).

The sampling effort among strata should be allocated effectively according to some known strata information. Let A_j stand for area size of stratum j and A_T the total survey area. Then the relative weight of strata j is given by:

$$W_j = \frac{A_j}{A_T}$$

Distributing the total sample size (n) according to strata weight (W_j) gives the number of samples in strata (n_j) by:

$$n_j = nW_j$$

If prior information other than strata size is available these can be included in the weighing factor such as variance estimates:
\[A_{ej} = A_j \sigma_j \]
\[W_j = \frac{A_{ej}}{\sum A_{ej}} \]
\[n_j = nW_j \]

where \(\sigma_j \) is the variance of the strata and \(A_{ej} \) is the weighting factor based on strata area and strata variance that are summed over all strata \(\sum A_{ej} \).

As a general rule, the sampling intensity is higher in areas where the variance is greater and often greater variance is observed where the density is higher. Thus sampling intensity is often proportional to density.

Similarly, cost information can be incorporated. Higher cost of sampling in strata would lead to a lower sample size per those strata. The sample size in stratum as a function of sample size, sample variance and sample cost would be:

\[A_{ej} = \frac{A_j \sigma_j}{\sqrt{C_j}} \]
\[W_j = \frac{A_{ej}}{\sum A_{ej}} \]
\[n_j = nW_j \]

where \(C_j \) is cost per sample in stratum \(j \).

The mean within each stratum or stratified mean is calculated by:

\[\bar{y}_j = \frac{\sum_{i=1}^{n} y_{i,j}}{n_j} \]
\[\bar{y}_{st} = \sum_{j=1}^{L} W_j \bar{y}_j \]

where
\(y_{i,j} \) is catch of the \(i^{th} \) tow in stratum \(j \)
\(n_j \) is number of tows in the \(i^{th} \) stratum
\(\bar{y}_j \) is mean catch rate in the \(j^{th} \) stratum
\(W_j \) is weight of stratum \(j \)
\(\bar{y}_{st} \) is estimated stratified mean density in the entire area
(note: tow is used as a reference and can be replaced by other sampling method such as transects)
The standard deviation of the samples can be calculated by:

\[
s_j^2 = \frac{\sum_{i=1}^{n}(y_{i,j} - \bar{y}_j)^2}{n_j - 1}
\]

\[
V(\bar{y}_n) = \sum_{j=1}^{t} W_j^2 \frac{s_j^2}{n_j}
\]

\[
SE_{\bar{y}_n} = \sqrt{V(\bar{y}_n)}
\]

where

- \(s_j^2\) is variance in stratum \(j\)
- \(V(\bar{y}_n)\) is estimated variance of the stratified mean
- \(SE_{\bar{y}_n}\) is standard error estimate of the stratified mean

If the sample is large enough, then there is a 95% chance that the true mean lies in the interval:

\[
\bar{y}_n \pm t_{n-1,0.05}SE_{\bar{y}_n}
\]

where \(t\) is from the theoretical student’s t distribution with \(n-1\) degrees of freedom and \(\alpha = 0.05\) (this alpha level corresponds to getting 95% confidence interval).

One of the crucial factors is the choice of sample size (i.e. the number of replicates) which will optimize the statistical analysis and the estimates obtained. Replicates are essential because most biological and ecological systems are inherently variable and to be able to achieve a precise estimate, the survey needs to take this variability into account (Quinn and Keough 2002). However this always becomes a matter of capacity and cost. At the same time, precision is not just a function of how many samples are taken but how the samples are taken (Helle and Pennington 2004). Effort should be expended to ensure that sample sizes are equal between the treatment levels. For instance, if the treatment levels are different geographical locations, then equal number of samples should be taken from each location. Secondly, if treatments are to be compared with any confidence, it is vital that surveying procedures be as identical as possible so that the number of uncontrolled variables is reduced (Quinn & Keough 2002). In case of coral reefs, to cater for the large-scale environmental gradient, the sampling area can be divided into homogenous sub-areas such as lagoon, reef flat and reef slope, and sampled. This will also require that an equal number of replicates are taken from each of these sub-areas. Linear model analyses usually rely on comparing the variation between treatment groups (e.g. sub-areas of the coral reefs) to the inherent variability within the treatment groups (replicates) (Quinn & Keough 2002).
Randomisation in fisheries is in practise very difficult due to gear selectivity, unknown spatial and temporal distribution of population and bias introduced when catches are sorted or discarded at sea.

In summary, stratum sampling size:
- Should be large if the stratum (area, numbers) is large
- Should be large if the variance is large
- Should be large if the sampling is inexpensive

For further reading on sampling and data collection FAO 1998 is recommended

The sampling design is always a compromise between different objectives. Sampling theory can however always help. It is generally difficult to determine either the accuracy or the precision of estimates based on commercial catch data, and it is not clear how to improve, at a reasonable cost, the collection of catch data. Therefore it is recommended to always get an independent estimate of your statistics once in a while.

3.2. Surveys

Independent surveys of fisheries resources often appear to provide a more accurate prognosis of the status of a fish stock than commercial catch sampling (Pennington and Strømme 1998, Korsbrekke et al., 2001). These surveys are normally carried out by fishery independent research vessels. Surveys were actively promoted during the exploration phase of fisheries resources in the 1970s and early 1980s, when the concept of Exclusive Economic Zone (EEZ) was adopted by the UNCLOS (United Nations Convention on the Law of the Sea). Since then, standardised scientific abundance survey data has become an important tool to estimate “indices of abundance” in the current situation and for long-term monitoring of most of the commercially important stocks (Kolding and Giordano 2001). An advantage that survey-based assessments have over those based on commercial catch statistics is that the uncertainties associated with survey estimates can be studied and quantified, and based on such research, survey methods, and ultimately stock assessments, can be improved (Godø, 1994).

3.3. Basic Data Collection

Preferably data should be collected at the highest resolution possible. Some of the basic data needed for fisheries resource assessments include:

- Catch or landed catch (numbers or weight of fish) recorded by sampling area
- Location of catch; latitude, longitude, provincial boundaries, statistical rectangles
• Species of fish (catch and stock composition); especially tropical coral reef systems are multispecies and the landed catch comprises of a significant number of species
• Effort which is a measure of fishing activity such as number of boats, numbers of days fished, number of hours fished
• Measurements of individual fish in a sample
 ♦ Length frequency measurements: fish are normally measured on a measuring board and counts are tallied e.g.

<table>
<thead>
<tr>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

♦ Individual measurements can be recorded and tabulated in which case together with length (le), weight (wt), sex (0/1 to represent M/F), maturity stage etc. is also recorded for each fish. If the fish can be aged through readings of hard structures such as otoliths/scales then this information can also be added e.g.

<table>
<thead>
<tr>
<th>no</th>
<th>le</th>
<th>wt</th>
<th>sex</th>
<th>mat</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.5</td>
<td>12.5</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>13.0</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>14.5</td>
<td>12.0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

♦ Other detailed biological measurements include, liver weight, fat content, RNA/DNA ratios, size and number of eggs (Stefánsson)

• A measure of discarded catch
• For economic analysis: cost of fishing, number of jobs

Data collection can be a costly affair. Therefore it becomes necessary to prioritise and compromise under funding constraints. More so it is necessary to optimise through information sharing. Such as government agencies, NGO’s, private sectors and fishermen can team up in information gathering.
4. Fundamental Fishery Concepts

The basic assumption in fisheries theory is that catch \((C)\) and stock abundance, or standing biomass \((B)\) are related by:

\[
C = q.E.B
\]

where \(q\) is the catchability coefficient
\(E\) is a measurement of fishing effort

Catch and effort are two fundamental data required for managing any fishery. The most common index of abundance is catch per unit effort \((CPUE)\) which is catch divided by effort \(\frac{C}{E}\). \(CPUE\) is recorded in many ways depending on the nature of the fishery and the fishing gear used. For example, number of fish caught per hook per hour, or number of fish caught per hour of trawling. For gillnet fishery, \(CPUE\) maybe recorded as kg per fisher and if information is available by day then kg per fisher per day. In principle one unit of fishing effort will catch a constant proportion (called a catchability coefficient \(q\)) of a total homogeneous stock (King 1995). Thus the above equation can be rewritten in terms of \(CPUE\):

\[
CPUE = q.B
\]

Normally absolute abundance (total number of fish in an area i.e. total biomass) cannot be estimated from \(CPUE\) alone as the factor \(q\) is unknown. However \(CPUE\) can be used as a measure of relative abundance over spatial or temporal changes. This linear relationship assumes that a decline in \(CPUE\) would mean a decline in the stock and vice versa. However this direct relationship may not always be the case. There are many cases in which \(CPUE\) has turned out to be a poor indicator of stock abundance. The key problem is in the difference between how fishing effort is measured and the way the actual fishing effort is changing. For instance an increase in fishing efficiency (such as use of modern gear) could lead to an increase in catch even though the actual abundance of the fish stock might be decreasing. For scientific research surveys, or experimental fishing, effort is standardised and fishing gears kept constant in order to keep a simple relationship between catch rates and population abundance i.e. to minimise the inherent measurement errors and/or variations in \(E\) and \(q\) (Kolding and Giordano 2001).

In most cases absolute abundance are measured by taking small samples from the population and raising the information obtained from the sample to the whole population as discussed earlier.

Fishing Mortality

Most management principles entail deciding on an optimum level of fishing effort that maximises the catch (yield) and is sustainable at the same time. Fishing effort is
expressed as number of fishermen, number of boats etc. Unfortunately, due to changes in the catchability coefficient q (which is related to the fishing gear selectivity and efficiency) there is no fundamental relation between the magnitude of the effort and the magnitude of the catch. For stock assessment purposes, there is a need for a measure of fishing effort that has a constant effect upon the fish population. Therefore the measure, commonly used in population dynamics is the so-called fishing mortality (F) (Kolding and Giordano 2001). This is simply defined as the fraction of average population taken by fishing. F is also called instantaneous rate of fishing mortality. Note this is a rate i.e. the rate at which fish are dying due to fishing, and therefore expressed per time unit, usually per year and not the proportion of fish caught each year. Thus two types of fishing mortality are the instantaneous rate of fishing mortality F and proportional annual mortality denoted H, known as the harvest rate (Haddon 2001). H is related to F by:

$$H = 1 - e^{-F}$$

F can now be defined as:

$$F = q.E = \frac{C}{B}$$

Substituting this in the equation ($C = q.E.B$) above gives

$$C = F.B$$

that is some measure of fishing applied to the stock biomass gives a catch.

F is a rate therefore technically it should have a value between 0 and 1 on an annual basis however in practise this is not the case. Some stocks, especially the smaller sized tropical fish species have a high biological turnover or production to biomass (P/B) ratio i.e. annual productivity of such stocks can be much higher than the average standing abundance which leads to F being greater than 1 in such situations.

Gear Selectivity

All fishing gear is selective to some degree (Jennings et. al. 2001). For instance, the size of the hook used for fishing will determine the lower and upper sizes of the fish being hooked and the mesh size of the net will determine the size of the fish trapped in the net. Suppose, the smallest fish (smaller size classes) caught in a trawl were aged to get an estimate of size at age in the stock. This could easily lead to overestimation of the size at age as fish which are smaller for the age may have escaped the trawl and not appeared in the samples at all. Knowing about fishing gear selectivity is important in order to understand the biases created by it in the sampling programmes and to correct for their effects. Additionally understanding of selectivity can be used for management purposes such as regulating the mesh size to control the size of catches and in turn mortality rates.
for different classes and for correcting length-frequency distributions of samples, by adjusting for differential catchability at size (Jennings et. al. 2001). Selectivity is not entirely based on mesh size but also the shape of the mesh, the orientation of the netting and the direction of the towed gear (for trawls surveys for example). For trawling gear, mesh selectivity can be studied by placing fine mesh covers over codend to catch escapees and the size distribution of the codend and cover are used to study selectivity.

Selectivity is defined as the probability of fish being retained in a fishing gear as a function of the length of the fish (Kolding and Giordano 2001). The probability can be modelled using a logistic curve. A selection curve (i.e. the probability of capture plotted against the size of the fish) for trawl gears is mostly sigmoid or S-shaped, whereas bell-shaped curves are normally the case for gill-nets and hook and line. Important selectivity measures are L50, defined as the fish length, where the fish have a 50% probability of being retained by the gear on encounter, and the selection factor, defined as L50 divided by mesh size in cm. In addition to the selection range which is defined as L75 – L25 (L75 is fish length where 75 % of the fish is retained, and L25 is fish length where 25 % of the fish is retained), these parameters describe the size selection characteristics of fishing gears (Sparre and Venema 1998 and Kolding and Giordano 2001).

Gear selectivity forms the basis of the parameter catchability coefficient (q), the relationship between the catch rate (CPUE) and the true population size (B). Catchability is the proportion of the stock caught for a given effort so the unit of catchability is fish caught per fish available per effort unit and per time unit (Kolding and Giordano 2001). It is also called gear efficiency (Hilborn and Walters 1992) or sometimes fishing power and in principle can be divided into efficiency and availability. Efficiency would refer to the number of fish actually caught and retained by the net to the number of fish in the trawl path for example. And availability refers to the proportion of the stock in the area being fished (Jennings et. al. 2001). Thus the probability of a fish being caught depends on several factors and can be summarised as follows:

Biological factors:
- fish availability on the fishing ground
- behaviour of fish towards the fishing gear
- the size, shape, and external features of the fish
- these factors are dependent on season, age, environment and fish species

Technological factors:
- Gear type, design, size, colour, and material
- Gear position, duration, and handling
- Experience of the fisherman
- these factors are dependent of biological changes

Hence CPUE cannot be considered as an index of absolute abundance and the understanding and information of gear selectivity and catchability is essential for stock assessment purposes.
5. Growth

The study of age and growth is fundamental in stock assessment as the production from a fish stock is a function of the recruitment of new individuals and the growth of the existing individuals in the population. Consequently, growth is a combination of population growth (change in biomass due to change in numbers from recruitment and mortality) and individual growth (increase in length and weight). The growth of a population or an individual is often represented by mathematical models describing the average change per unit of time.

5.1. Population Growth

In describing how a population grows, the most abstract form can be seen as a population growing in an unlimited environment. For example a colonizing species settles in an area with unlimited resources and accelerates in growth. This type of accelerating growth is described as exponential growth. It implies that with each time step, the population increases by a constant proportion given the birth and death rates are constant at all population sizes. This can be described using the differential equation

\[
\frac{dN}{dt} = (b - d)N = rN \quad (1.1)
\]

where, \(\frac{dN}{dt}\) is the rate of change of the population size \(N\) relative to time \(t\), \(b\) is the birth rate, \(d\) is the death rate and \(r = (b - d)\) and is called the intrinsic rate of increase or the instantaneous rate of population growth. In exponential growth \(r\) is a constant and is assumed to be independent of population size \(N\) i.e. the births and deaths are unaffected by the population size. Because of this independence this type of growth is termed “density-independent”.

However, it is known that populations cannot grow indefinitely as all populations live in a limited environment with limited resources. Thus positive exponential growth can only be a short-term phenomenon. The total biomass of a non exploited stock cannot grow beyond a certain limit. The value of that limit depends, for each resource, on the available space, on the feeding facilities, on the competition with other species, etc. In conclusion, it depends on the capacities of the ecosystem to maintain the stock and is density dependent. That size limit of the biomass will be designated by carrying capacity, \(K\).

The simplest model derived from the exponential growth model to include the density dependent effects is the logistic model of growth. This means that the birth and death rates are related to population size in a linear manner. To achieve this some modifying parameter needs to be included in a linear equation:
\[b_N = b_{\text{max}} - b_1 N \quad (1.2) \]
\[d_N = d_{\text{min}} - d_1 N \quad (1.3) \]

where \(b_{\text{max}} \) and \(d_{\text{min}} \) are the birth and death rates when population size, \(N \), is very small and \(b_1 \) and \(d_1 \) are parameters that scale the rates at which the birth and death rates change with population size. These equations indicate that births decrease linearly as \(N \) increases and death rate increases linearly as population increases.

By inserting equations 1.2 and 1.3 in equation 1.1 and rearranging and making further substitution of the new term \(K = r / (b_1 - d_1) \) leads to

\[\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \quad (1.4) \]

where \(K \) is the equilibrium population size (births are equal to deaths) and is often called the carrying capacity in the logistic equation.

Equation 1.4 is a more well-known form of the logistic equation the derivation of which can be found in Haddon (2001). It describes the rate of change of population size. The total biomass of a non exploited fishery resource has the tendency to increase with time towards its carrying capacity, \(K \), with a non constant absolute rate denoted by \(r \). The rate is small when the biomass is small, increases when the biomass grows and is again small when the biomass gets close to the carrying capacity. Changes, including reductions, can occur in the biomass due to fluctuations of the natural factors, but, in any case, the tendency will always be an increase towards its carrying capacity.

When the population grows according to the logistic equation, it is observed that the maximum growth rate will occur at half its theoretical equilibrium population size or carrying capacity (\(K/2 \)) (Figure 13). A plot of growth rate \(dN/dt \) against the population size also depicts this (Figure 14). Additionally the population growth rate is zero when the population is extinct and at the maximum \(K \). Note that the two parameters \(r \) and \(K \) are always strongly correlated.

![Figure 13: Shows the population trajectory when growing according to the logistic curve (classic sigmoid shape, obtained by integrating equation 1.4). \(K \) represents the asymptotic carrying capacity. Maximum growth rate is at \(K/2 \). [Source: Kolding (2006)].](source)
Figure 14: Shows the plot of equilibrium rate of change of population size versus population size (production vs. stock size curve) obtained by taking the slope of the curve in Figure 13 at each time step and plotting against population size. Maximum productivity occurs at half K, equilibrium occurs at zero and K.

[Source: Kolding (2006)].

Any population takes time to respond to any changes in population size (births, deaths, fishing). Therefore it appears realistic to introduce time intervals in the differential equation 1.4. Thus the logistic model set up as a difference equation (known as discrete logistic model incorporating time intervals) could be

$$N_{t+1} = N_t + rN \left(1 - \frac{N_t}{K}\right)$$ \hspace{1cm} (1.5)

An extra source of mortality, such as fishing mortality, could be represented by adding an extra term C_t

$$N_{t+1} = N_t + rN \left(1 - \frac{N_t}{K}\right) - C_t$$ \hspace{1cm} (1.6)

where C_t depicts the catch levels, either constant or a time series of catches.

The logistic model applied to fisheries science becomes

$$B_{t+1} = B_t + rB \left(1 - \frac{B_t}{K}\right) - C_t$$ \hspace{1cm} (1.7)
where

- B_t is the stock biomass at time t
- r is the intrinsic rate of growth
- K is the unfished or virgin biomass equivalent to the carrying capacity
- C_t is the catch level over time t.

Catch is normally assumed to be proportional to fishing effort and stock size (given that the catchability coefficient q does not vary through time or with the stock size). The catchability coefficient q is the proportion of the stock biomass harvested by one unit of effort i.e. $C_t = qE_tB_t$. Incorporating this into equation 1.7 gives the classic dynamic biomass model proposed by Schaefer (1954, 1957) also known as the surplus production models.

$$B_{t+1} = B_t + rB_t\left(1 - \frac{B_t}{K}\right) - qE_tB_t \quad (1.8)$$

The classical fisheries management was based on the simple logistic Gordon-Schaefer model. This forms the basis for the concept of maximum sustainable yield (MSY). Figure 15 illustrates the logistic model applied to fisheries. The carrying capacity in terms of biomass is referred to as B_∞ (B infinity). Maximum surplus yield (MSY) occurs at $\frac{B_\infty}{2}$.

![Figure 15: Shows the logistic Gordon-Schaefer model applied to fisheries](source: Kolding (2006)).

One of the assumptions of this model is that the fish stock is in equilibrium (steady state) with the environment. In reference to Figure 16, this is delineated by the diagonal line. The additional production i.e. the sum of new recruits and the growth of the existing individuals in the population after subtracting natural mortality in the stock is called the surplus production (curved line in Figure 16). The difference between the curve and the line is what is taken without harming the stock i.e. sustainable catch. Under the
assumption of logistic growth, fishing down the biomass to half its virgin state is where the stock has highest regenerative rate, thus maximum production and yield (MSY). Theoretically MSY is the largest yield/catch that can be taken from a species' stock over an indefinite period (Figure 15).

![Production Curve](image)

Figure 16: Shows the production curve for the discrete logistic growth. The diagonal line of equilibrium is $N_{t+1} = N_t$ with the equilibrium carrying capacity at K. The curved line is the surplus production (sum of new recruits and the growth of the existing individuals in the population after subtracting natural mortality in the stock) with point of maximum production at $K/2$ [Source: Kolding (2006)].

This simplistic view based on equilibrium hypothesis is very misleading and has resulted in many blunders in fisheries stock assessment in the past. More will be discussed about the drawbacks of the equilibrium production models in the chapter on Surplus production Models.

Another hypothesis underlying the conventional fisheries management is the Common Property Theory (CTP) alias “The tragedy of the commons”. This forms the background for concepts like resource rent, and maximum economic yield (MEY) or optimum economic yield (OSY) (Figure 17). This is the level of effort that maximises the difference between total revenue and total cost, i.e. maximises the economic profit or rent of the utilised resource. It usually corresponds to a lower effort and greater biomass than MSY. OSY is socially optimal and entails little risk of stock collapse.

The concept of CTP is also much debated. This analytical model can work if the underlying assumptions are satisfied such as focus is on a single species, nature is stable and in balance, fishing continues even when profits are zero. Real fisheries evolve over time and take a long time to reach equilibrium. Hence equilibrium models constitute a very limited description of fisheries. As a result, we need dynamic models.
The preferred alternative, dynamic models, consider the age/length structure of the population. Length-structured and age-structured models are more complex and data-demanding. Instead of considering the stock as a simple whole population, it looks at the components of the stock and its development according to length or age. Considering the stock by its length or age components reflects the natural processes in a realistic manner relative to simple population models; for instance a larger individual will contribute more biomass towards the catch and will contribute a higher egg production than a small individual. Fish enter into the ocean as groups of individuals of the same age, commonly termed as year classes or cohorts. A cohort is a group of fish of approximately the same age and belonging to the same stock (Sparre and Venema 1998). A fruitful approach to determining the status of fisheries is to observe the consistent progression of year classes as members aged. This is called cohort analysis. As the year class aged, two things happened, the numbers decline as the members die, some because of natural causes while others caught and marketed. Secondly the fish grow in length and weight. In this case the Russell’s mass balance equation can then be applied to each cohort separately.

5.2. Individual Growth

Study of individual growth essentially refers to determining the body size (length or weight) of fish as a function of age i.e. describing this average change per unit of time. Therefore growth models need age as an input data. The determination of growth of a single fish is of little use. What is needed is some measure of mean size at age and a method of modelling or estimating the average growth rate of a species or particular stock.
Fish generally grow in size throughout their life towards an asymptotic length. They are considered to grow indefinitely but with continuously decreasing rates with age (Kolding and Giordano 2001). Several models have been formulated to express growth. The idea of von Bertalanffy growth curves to fisheries was introduced by Beverton and Holt (1957). It has been highly accepted and applied in many studies on marine species. The popularity of this model can also be attributed to its incorporation in more complex yield models. The von Bertalanffy growth function (VBGF) models the body length as a function of age hence predicts the length of an organism as a function of its age (Figure 18). The mathematical form of the model is

\[L_t = L_\infty \left[1 - \exp(-K(t - t_0)) \right] \]

where \(L_t \) is the length at age \(t \)
\(L_\infty \) is the theoretical maximum (or asymptotic) length that the species would reach if it lived indefinitely
\(K \) is the curvature parameter which determines how fast the fish reaches its maximum size
\(t_0 \) is the theoretical age at zero length

Note the use of term \(K \). In this case it represents the curvature parameter that determines how fast the fish reaches its maximum size as opposed to the carrying capacity in biomass dynamic models.

Figure 18: Shows a growth trajectory of length of a fish as per the von Bertalanffy growth function (von Bertalanffy growth curve) [Source: Kolding and Giordano 2001].
An animal is not likely to grow according to the above equation throughout its life span, particularly in pre-adult stages hence the curve often cuts the X-axis at a value less than zero, hence \(t_0 \) often has a small negative value. Essentially the model is used to derive the growth parameters \(L_\infty \), \(K \) & \(t_0 \) and predict length as a function of age.

Combining the von Bertalanffy growth equation with the length/weight relationship \(w_i = qL_i^3 \) gives the weight based von Bertalanffy growth equation as a function of age

\[
W_i = W_\infty \left[1 - \exp(-K(t-t_0))\right]^3
\]

where the asymptotic weight \(W_\infty \), corresponding to the asymptotic length is \(W_\infty = qL_\infty^3 \).

5.2.1. Data requirements

Generally the data consists of measurements of age, size (often length or width) and weight. When a fish is caught, it is first measured for length and/or weight and then commonly its otoliths are removed (how they are removed varies from species to species, this can be a highly skilled art when done properly) which are then used to age the fish by counting the yearly rings. Obtaining age data is more problematic. In temperate waters, ageing fish is less complicated as year rings can be counted on hard parts of the fish, such as otoliths and scales. These rings are formed due to strong environmental fluctuations (summer to winter and vice versa). Such strong environmental conditions are missing in the tropics therefore it becomes much very difficult to use seasonal rings for age determination. The methods available for ageing tropical fish are normally too expensive. As such, length measurements of fish are used to estimate age compositions through length-frequency analysis to estimate growth and mortality parameters for most tropical species. When applied with caution, these methods can give similar estimates as obtained by other techniques although the sources and impacts of uncertainty are higher. Lengths are easily measured accurately than weight; hence most of the methods are length-based.

Thus for the range of models available, the input data could either be age and/or length measurements (age obtained from actual otolith readings) or simply length measurements which are used to obtain age estimates. These could be obtained from resources surveys of sampling commercial catches. Another category of data collection includes the Mark and Recapture tagging experiments where two or more length measurements are taken. Methods of data analysis pertaining to the former two will be discussed here.

Firstly the models used for estimating growth parameters are briefly described. Following this is a description of some length-frequency analysis techniques which can be used to estimate age from length data. These are then applied to the models to show how the growth parameters can be estimated.
5.2.2. Methods for Estimation of growth parameters from length-at-age data

The methods assume that an array of age and length data is available for analysis. In principle, the growth parameters are derived from these methods by graphical plots which are always based on a conversion to a linear equation. The methods are named after the authors who derived them.

von Bertalanffy plot

The von Bertalanffy growth function is a very popular method as described above. This method was suggested by von Bertalanffy (1934) and is a derivative of the von Bertalanffy growth function. For model parameter estimation, an input of \(L_\infty \) should be given initially. This can be guessed from the length frequency samples based on the measurements of largest fish in the sample. The parameters \(K \) and \(t_0 \) can then be estimated by rewriting the von Bertalanffy growth equation as

\[
- \ln(1 - L_t / L_\infty) = -Kt_0 + Kt
\]

A linear regression can be defined from this, by taking the left hand side of the equation as the dependent variable \(Y \) and age \(t \) as the independent variable \(X \). From the regression analysis the slope \(b = K \) and \(a = Kt_0 \). This method is normally used with length-frequency analysis methods such as Bhattacharya method. An application of this method with the Bhattacharya analysis is shown later in the chapter.

Gulland and Holt plot

The Gulland and Holt (1959) (Figure 19) plot is a linear relationship between the length of the fish and the growth rate which is a derivative of the von Bertalanffy growth equation and is written as:

\[
\frac{\Delta L}{\Delta t} = KL_\infty - K\bar{L}_t
\]

where mean length \(\bar{L}_t = \frac{L_t + L_{t+\Delta t}}{2} \)

The time difference \(\Delta t \) does not need to be constant which gives this method an advantage. Using \(\bar{L}_t \) as the independent variable \(X \) and \(\Delta L / \Delta t \) as the dependent variable \(Y \) a linear regression is obtained i.e. \(\Delta L / \Delta t = a + b\bar{L}_t \). The growth parameters \(K \) and
L_e are obtained from $K = -b$ and $L_e = -a/b$. This method of estimation is illustrated with modal progression analysis later in the chapter.

![Graph of dL/dt as a function of mean length](image)

Figure 19: Shows an example of a Gulland and Holt plot of growth rate against length [Source: Kolding and Giordano 2001].

5.2.3. Estimating age composition from length-frequencies

The aim of a length-frequency analysis is to assign ages to certain length groups. A group of fish of a similar age (a cohort) will have lengths that will vary about a mean. This variation in length generally follows a statistical normal distribution (Gaussian distribution), although it can also follow other distributions like log normal or gamma. When a fish population is sampled, it contains fish of many ages hence a mixture of many such length distributions. The idea behind a length based method or length frequency analysis is to separate these overlapping distributions or constituent cohorts. This gives an estimate of the different sizes of fish (hence some indication of age) in the sample and an estimate of the numbers of fish in each size group (cohort). If the mean sizes in the series of samples are followed we can estimate growth. By following the change in the numbers of fish in each size group we can estimate mortality with some underlying assumptions. Since the mean length of each cohort can also be determined, we will have the length and age data which is necessary for estimating the growth parameters.

The idea of length frequency analysis is based on the observation that length compositions of populations often display modes (peaks) in the younger ages. These modes are an effect of recruitment, growth, mortality and sampling. Each year or season a birth frequency of the same pattern with a distinct modal shape is displayed by the stock. Temperate species almost always have one annual spawning thus the recruitment period and the time of maximum recruitment is easily identifiable. Tropical, or subtropical, species are more complex with extended or several annual spawning seasons.
Still, in most cases it is possible to identify some pattern as a result of concentrated spawning periods, and the number and extent of recruitment periods can be defined.

The spawning period of fish falls within a range and the “birthday” of a single fish is considered as a random process within this timeframe therefore it is considered as a continuous random variable and can be represented by a normal distribution. It is furthermore assumed that the growth in length is a random variable (i.e. each individual has its own set of growth parameters; \(L_{\infty}, K \), and \(t_0 \) if the von Bertalanffy growth function is adopted), but with the same probability function, i.e. a Gaussian distribution. Therefore, because of different birthdays, the individuals within a cohort do not have exactly the same age at the same time, and because of different growth, the individuals also do not have the same length at the same age. As a result, a certain spread in lengths is expected which leads to the growth of individuals in a cohort to be considered as a random variable also with a normal probability distribution.

The normal distribution has three important characteristics, the mean of the distribution, the standard deviation and the number in the distribution. It is first important to determine the number of distribution which forms the composite distribution and then determine the mean, standard deviation and number in each distribution. From the length frequency analysis standpoint the information that needs to be extracted is; the number of cohorts that make up the sample, the mean length of each cohort and its relative contribution in numbers to the sample.

Bhattacharya’s method

This is a graphical method. Bhattacharya is a useful method for splitting the combined distribution into separate normal distributions each representing a cohort of fish. The fundamental concept in this method is to transform the normal distribution into a straight line and through regression analysis, calculate mean, standard deviation and number of fish in each cohort.

In order to transform a normal distribution into a straight line, first the logarithms of the numbers (frequency in each length group) needs to taken, denoted by \(\ln f(x) \) here. This when plotted against an independent value \(x \) gives a parabola. The consecutive logarithmic values are then subtracted \(\ln(f(x + dl)) - \ln(f(x)) \) which is then plotted against a new independent value \(z = x + dl / 2 \) where \(dl \) refers to the length interval. This gives a straight line (Figure 20) which makes carrying out a linear regression possible. The slope \(b \) and intercept \(a \) from the regression analysis is used to obtain the mean length \(\bar{x} \) and standard deviation \(s \) as follows:

\[
\bar{x} = -a / b
\]

\[
s = \sqrt{-dl / b}
\]
In a sample comprising several normally distributed components, one component should be isolated at a time. The computation described above is used to obtain the mean and variance for the first isolated component. This information is then used to calculate the theoretical numbers in that cohort. The values pertaining to the first cohort should then be separated from the sample and the whole procedure repeated for the second component (Table 6). A scatter plot known as the Bhattacharya plot is normally used to identify those points that lie on a straight line (Figure 21) which form the cohort. This whole process is repeated until proper identification of cohorts is possible.

The points selected for the straight line are normally based on visual inspection which makes this method somewhat subjective. The first (even second) component is generally quite neatly identified although the latter components become more difficult to distinguish. As the fish grow older the length distributions get messy and more difficult to identify.
Table 6: Estimation of the first cohort, N1 from a composite length frequency distribution by means of the Bhattacharyya method, and the total minus N1 = N2+. The arrow indicates where to start the calculation of N1

[Source: Kolding and Giordano (2001); modified from Sparre and Venema (1998)].

<table>
<thead>
<tr>
<th>Length(x)</th>
<th>N1+</th>
<th>ln(N1+)</th>
<th>ln(x+1-ln(x))</th>
<th>z</th>
<th>Calculated</th>
<th>ln(N1)</th>
<th>N1</th>
<th>N2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-13</td>
<td>1</td>
<td>0.00</td>
<td>12</td>
<td>y = a+b^z</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>4</td>
<td>1.39</td>
<td>13</td>
<td>1.35</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>11</td>
<td>2.40</td>
<td>14</td>
<td>1.04</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>24</td>
<td>3.18</td>
<td>15</td>
<td>0.73</td>
<td>24</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>36</td>
<td>3.64</td>
<td>16</td>
<td>0.43</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>42</td>
<td>3.74</td>
<td>17</td>
<td>0.12</td>
<td>3.76</td>
<td>42.90</td>
<td>-0.96</td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>33</td>
<td>3.50</td>
<td>18</td>
<td>-0.19</td>
<td>3.57</td>
<td>35.85</td>
<td>-2.65</td>
<td></td>
</tr>
<tr>
<td>19-20</td>
<td>20</td>
<td>3.00</td>
<td>19</td>
<td>-0.49</td>
<td>3.08</td>
<td>21.81</td>
<td>-1.81</td>
<td></td>
</tr>
<tr>
<td>20-21</td>
<td>7</td>
<td>1.95</td>
<td>20</td>
<td>-0.80</td>
<td>2.28</td>
<td>9.82</td>
<td>-2.82</td>
<td></td>
</tr>
<tr>
<td>21-22</td>
<td>3</td>
<td>1.10</td>
<td>21</td>
<td>-1.10</td>
<td>1.18</td>
<td>3.25</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>22-23</td>
<td>3</td>
<td>1.10</td>
<td>22</td>
<td>-1.41</td>
<td>-0.23</td>
<td>0.79</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>23-24</td>
<td>5</td>
<td>1.61</td>
<td>23</td>
<td>-1.72</td>
<td>-1.95</td>
<td>0.14</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td>24-25</td>
<td>8</td>
<td>2.08</td>
<td>24</td>
<td>-2.02</td>
<td>-3.97</td>
<td>0.02</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td>25-26</td>
<td>11</td>
<td>2.40</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-27</td>
<td>14</td>
<td>2.64</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-28</td>
<td>17</td>
<td>2.83</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-29</td>
<td>16</td>
<td>2.77</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-30</td>
<td>15</td>
<td>2.71</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-31</td>
<td>14</td>
<td>2.64</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-32</td>
<td>11</td>
<td>2.40</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-33</td>
<td>11</td>
<td>2.40</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td>10</td>
<td>2.30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-35</td>
<td>9</td>
<td>2.20</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-36</td>
<td>10</td>
<td>2.30</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-37</td>
<td>11</td>
<td>2.40</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-38</td>
<td>10</td>
<td>2.30</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-39</td>
<td>10</td>
<td>2.30</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-40</td>
<td>11</td>
<td>2.40</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-41</td>
<td>11</td>
<td>2.40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-42</td>
<td>9</td>
<td>2.20</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-43</td>
<td>7</td>
<td>1.95</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-44</td>
<td>7</td>
<td>1.95</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-45</td>
<td>5</td>
<td>1.61</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-46</td>
<td>6</td>
<td>1.79</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-47</td>
<td>5</td>
<td>1.61</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-48</td>
<td>3</td>
<td>1.10</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-49</td>
<td>2</td>
<td>0.69</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-50</td>
<td>2</td>
<td>0.69</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-51</td>
<td>2</td>
<td>0.69</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-52</td>
<td>1</td>
<td>0.00</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Column A represents the length intervals.
- Column B is the frequency distribution of elements in each interval (called N1+ to indicate that it consists of the first component N1 + the rest. N1 is the component that needs to be isolated).
- Column C gives the logarithmic values.
- Column D gives the difference of the logarithmic values between two adjacent intervals.
- Column E gives the length against which the values of column D should be plotted (i.e. the upper limit of the smallest length group).
- Column F gives the calculated (theoretical) values of the differences of the logarithmic values between two adjacent intervals, obtained by insertion into the regressed line equation.
• Column G is a back calculation to the logarithmic values of the frequencies in the first component (N1), obtained by choosing a clean value (i.e. a value where the elements are considered only to belong to N1) and adding the calculated values of the differences step-wise forward. By this, an estimate of the number of elements in each interval, which only belong to N1, is obtained.

• Column H is the anti-logarithm of the values in column G, i.e. the frequencies of N1 now adjusted to conform to a normal distribution.

• Column I gives the frequencies of N2+, i.e. the components of N1 have been subtracted. The idea now is to repeat the whole procedure with N2+ in order to isolate N2 and so on.

Figure 21: Shows a Bhattacharya plot corresponding to columns D and E of Table 1, and regression line estimated for the first cohort N1 with the intercept $a = 5.33$ and the slope $b = -0.306$. The calculated values of column F are obtained by inserting the independent value $(x) = $ upper limit of the smallest of two adjacent length groups in the equation: $y = a + bx$

Source: Kolding and Giordano 2001).

Second phase involves using the information obtained on mean lengths and age to estimate the growth parameters based on the von Bertalanffy growth equation. The three growth parameters L_∞, K and t_0 have to be estimated. After the first two mean length of cohorts are available we are in a position to obtain a first rough estimate of the growth parameter K, provided an estimate of age difference between the two cohorts is available and an estimate of L_∞ is available. From the length-frequency distribution a rough estimate of L_∞ can be obtained by taking a mean of the biggest specimens recorded from the population, or by $L_\infty = L_{\text{max}} / 0.95$. The difference between the ages can be taken according to number of spawning per year. The parameter K can be calculated using the following equation which is a derivative of the von Bertalanffy equation:
\[K = \frac{1}{t_2 - t_1} \ln \frac{L_\infty - L_{t_1}}{L_\infty - L_{t_2}} \]

Given the values of \(L_\infty \) and \(K \), \(t_0 \) can be computed for a known length at age \(t \) by:

\[t_0 = t + \frac{1}{K} \ln (1 - \frac{L_t}{L_\infty}) \]

This can then be used in the VBG to model the growth of the fish.

Exercise 3 in Excel has been set up to follow the steps of the Bhattacharya analysis and estimation of growth parameters for better comprehension. This is illustrated using a hypothetical data set, of which the age groups are known which then makes it possible to compare the results of the Bhattacharya analysis with the actual input. Example is taken from Sparre and Venema (1998).

Modal Progression Analysis

This is classified as a visual method. The Bhattacharya analysis described earlier was to estimate growth parameters from one sample, a sample collected in October 2006 for instance. If a time series of length-frequency data is available, collected over specific month intervals (e.g. January, April, July and October) over a few years, then Modal Progression Analysis can be applied. A time series of data would naturally be more reliable to estimate growth parameters as more information is available on the development of the length composition of the stock. This is illustrated using an example from Sparre and Venema (1998) again. This entails, applying the Bhattacharya method to each sample in the whole time series and estimating the length components in each sample. Suppose that 12 samples are available then the mean lengths from each Bhattacharya analysis can be plotted as shown in Figure 22A, with each sample having 3 length components. Modal Progression Analysis involves plotting these mean lengths against the time axis and attempting to connect them to obtain a growth curve as illustrated in the Figure 22B. Note that the connection of points to produce cohorts is a subjective process. Although in the given case the choice appears quite easy, in reality it may not always be so simple (Sparre and Venema 1998).
Figure 22: Shows the modal progression analysis method. A is a plot of the mean lengths from the Bhattacharya analysis; B shows the connected mean lengths to represent growth curves of assumed cohorts. [Source: Sparre and Venema (1998)]

Mean length development of each cohort (6 in this case) can be separated and tabulated. Data arranged in this format allows the application of Gulland and Holt curve to estimate the growth parameters. For each cohort change in length over change in time $\Delta L / \Delta t$ and mean length between two consecutive time intervals \bar{L}_i can be calculated as follows:

$$\frac{\Delta L}{\Delta t} = \frac{L_{t+\Delta t} - L_t}{(t + \Delta t) - t} \quad \text{and} \quad \bar{L}_i = \frac{L_t + L_{t+\Delta t}}{2}$$

The time difference $\Delta t = 0.25$ (4 months in a year) is constant throughout the time series in this case. A regression of $\Delta L / \Delta t$ against \bar{L} can be carried out to get estimates of intercept a and slope b. From this information L_∞ and K can be calculated as follows:

$L_\infty = -a / b$ \quad \text{and} \quad K = -b.$

Regression analysis is also used to estimate t_0. The dependent variable Y can be obtained from the von Bertalanffy plot by $Y = -\ln(1 - \bar{L}_{t(i)} / L_\infty)$ which is regressed against $t(i)$ and $t_0 = -a / b$.

54
The least squares method

This method is more advanced than the methods described above and hence requires more computational work. A series of pairs of observations of lengths and age are required. These can be obtained through age reading or through length-frequency analysis such as modal progression analysis or cohort slicing (i.e. visual inspection of the distribution and cutting the normal distribution at mid point to get mean lengths (this method however needs some prior information on growth from independent survey).

The method relies on minimizing the sum of the squared deviations between the model and the observations with respect to the growth parameters L_c, K and t_0 to estimate their optimum values. In principle, this measure of goodness of fit is the same as the one used in linear regression. The von Bertalanffy growth curve is normally used.

5.2.4. Computer Packages

Several computer packages are available to enable analysis of length frequency data primarily intended for tropical fish stock assessment. Descriptions of the main packages are given by Sparre and Venema (1998) and Hart and Reynolds (2002) and are briefly discussed below.

One package developed by FAO (Sparre 1987) is the **Length-based Fish Stock Assessment (LFSA)**. The program “MODALPR” can execute the modal progression analysis. The package also allows continuing from the Bhattacharyya analysis (program “BHATTAC”) with a least squares estimation of the growth parameters using program “VONBER” instead of the Gulland and Holt plot. The package has various other sub-packages or programs for analysis. This can be considered as a computer-assisted version of the Bhattacharyya method, with the underlying assumption that the length frequency distribution of each cohort is normally distributed.

The **ELEFAN** (Electronic Length Frequency ANalysis) was introduced by Pauly and David (1981). A description of the entire package and a clear review can be found in Pauly (1987). The modern version of this length-frequency method is the ELEFAN I module incorporated in the widely used FiSAT package. The FiSAT Package was developed to have both LFSA and ELEFAN complement each other. This was a joint initiative by FAO and ICLARM (International Center for Living Aquatic Resources Management (Gayanialo et. al. 1995). This method is basically a modal progression analysis. However if a times series of samples are not present the package can simulate the data based on the information available in the given sample assuming that the same recruitment and growth pattern are followed by all cohorts.

ELEFAN works by attempting to find a maximum for a goodness of fit function based on peaks and troughs seen in the data. This is based on how often a von Bertalanffy growth curve hits modes in the data. The length frequency data are restructured and moving...
average is applied to allocate points. A moving average above 5-points is identified as a peak. The number of peaks gives the maximum “available sum of peaks” (ASP). Growth curves (von Bertalanffy) with different parameters \(L_\infty \) and \(K \) are run and mapped. For each trial an “explained sum of peaks” (ESP) is calculated. The goodness-of-fit function is the ratio ESP/ASP. The set of growth parameters which yield the highest ratio are taken to be the best growth parameters which explain the peaks and troughs in the data. The parameter \(t_0 \) can be calculated from the \(L_\infty \) and \(K \) values. If peaks are well defined in the data then this method gives reliable results however it tends to underestimate \(K \) in general. The drawbacks are that it is sensitive to the appearance of the modes in the data and it is an \textit{ad hoc} method and lacks clear statistical error structure and thus does not provide standard errors of estimates and a measure of performance (Hart and Reynolds 2002).

The maximum-likelihood-method is more computational and works by calculating a goodness-of-fit between the sample data and a distribution mixture specified by its component parameters. This method is reviewed by MacDonald and Pitcher (1979). Automatic search of the maximum goodness-of-fit gives the best estimate of the growth parameters. This is similar to ELEFAN except the goodness-of-fit criteria used here is chi-square. However the user needs to give the number of cohorts that constitute the sample. This method provides variance estimates of the parameters. This forms the basis of statistical mixture analysis represented by the MIX technique (MacDonald and Pitcher 1979). The main problem with the MIX technique is obtaining the number of components in the mixture however the growth parameter estimates are shown to be quite robust by Rosenberg and Beddington (1988). MULTIFAN (Fournier \textit{et. al.} 1990) is a more complex method which gets around the problem of estimating the number of cohorts by using a von Bertalanffy curve to provide the number of cohorts in a similar manner as the graphical and visual methods explained earlier (Hart and Reynolds 2002).

In the tropics there is often more than one cohort recruiting each year which is a consequence of monsoon like seasonality in productivity. Thus care needs to be taken during analysis and appropriate assumptions should be made when analyzing length-frequencies and identifying modes.

5.2.5. Limitations of length frequency analysis

The major downside of length-frequency analysis is to be able to reliably separate the composite length distribution into components. The younger components are easier to separate as a significant difference in length is present and the distributions have small overlap. As the fish grow older there is a smaller difference in length between older ages and separating the distribution becomes considerably tricky with mean values lying very close to each other in relation to the size of the standard deviations (Sparre and Venema 1998). As outlined in Kolding and Giordano (2001), one solution to this problem was proposed by Hasselbald (1966), McNew and Summerfelt (1978) and Clark (1981) and is known as the separation index \(f \) which is given by:

\[
I = \frac{\sum (L_i - \bar{L})^2}{\sum (L_i - \bar{L})^2}
\]
\[I = \frac{\bar{L}_{t+1} - \bar{L}_t}{(s_{t+1} - s_t)/2} \]

where \(\bar{L} \) stands for the mean length and \(s \) is the standard deviation.

In a nutshell if the separation index is less than 2 then it is impossible to separate the components. This rule holds for all methods of analyses, including the most sophisticated computerised techniques.

Age Data are considered most reliable. An alternative to von Bertalanffy equation is simply to have a look up table of mean lengths (or weights) at a given age or the proportional distribution of numbers at different sizes for given ages known as age-length keys.
6. Mortality

After a certain number of individuals are hatched, the numbers in that group can only decline through time. The concept of mortality essentially aims to describe this death process of a population and is not individually focused. The focus is on the number of fish in each cohort and how it declines through time. To define this process of how fish numbers decline in a stock after spawning (birth), it is essential to follow the fate of a “cohort”. As defined earlier a cohort is a batch of fish all of approximately the same age and belonging to the same stock (Sparre and Venema 1998). All fish of a cohort are assumed to have the same age at a given time so that they all attain the recruitment age at the same time. In the context of mortality we are interested in the number of survivors from a cohort as a function of age. Mortality can be divided into fishing and natural mortality. Estimating mortality entails determining the total mortality first and then splitting this into natural and fishing mortalities as appropriate.

How a cohort develops through time is illustrated in Figure 23. In a cohort model; it is assumed that R individuals are recruited into the fishery at the age t_r (denoting age at recruitment). From this age fish are exposed to some degree of natural mortality M (such as predation, competition). After certain time these fish are exposed to fishing at age t_c (age at first capture) denoted by F for fishing mortality. At some point t_{max} the older fish are not vulnerable to fishing. Note that the model assumes a knife-edge selection, which means at t_c either none or all fish in an age-class are either recruited or not or are vulnerable or not, and once vulnerable all age-classes are equally vulnerable (Sparre and Venema 1998).

Figure 23: Shows the basic dynamics of the decay of a cohort with corresponding symbols used in fishery models. The figure illustrates the impact of fishing to the survival rates, compared to natural decay without fishing. The line N+ catch illustrates the fate of cohort when its exposed to some fishing mortality as opposed to decay without exploitation [Source: Kolding and Giordano (2001)].
The next few steps show how the exponential decay model, which models the decline in the population, is derived.

Russell’s equation for biomass has an equivalent for numbers

\[N_{t+1} = N_t + R_t - D_t - C_t \]

where

- \(N_{t+1} \) is the stock size in numbers at start of time \(t+1 \)
- \(N_t \) is the stock size in numbers at start of time \(t \)
- \(R_t \) is the number of recruits entering the stock at time \(t \)
- \(D_t \) is the number of fish that died from \(t \) to \(t+1 \) due to natural causes
- \(C_t \) is the number of fish that are caught from \(t \) to \(t+1 \)

If we are considering development of one cohort only, the recruitment term can be excluded and we have

\[N_{t+1} = N_t - D_t - C_t \]

If we assume that the total number dying \((D_t + C_t)\) is a proportion of the numbers surviving we have

\[N_{t+1} = N_t - mN_t = N_t(1 - m) = sN_t \]

where

- \(m \) is the proportion of fish that die during time interval \(t \) to \(t+1 \)
- \(s \) is the proportion of fish that survive during time interval \(t \) to \(t+1 \) \((1-m)\)
- \(s + m = 1 \)

The equation \(N_{t+1} = N_t(1 - m) = sN_t \) is an exponential model and the discrete version is:

\[N_{t+1} = N_t e^{-Zt} \]

which is the negative exponential model where \(Z \) is the instantaneous rate of total mortality a.k.a. total mortality coefficient or simply total mortality rate, which is the key parameter in this model. The higher the \(Z \) the faster the population numbers decline. Since it is important to differentiate the two components of total mortality the equation can be written as
\[N_{t+1} = N_t e^{-(M+F)\Delta t} \]

where
\(M \) is the natural mortality
\(F \) is the fishing mortality

We will refer to this equation as the stock equation which models the exponential decay of a cohort (Figure 24).

![Exponential decay of a cohort](image)

Figure 24: Shows the exponential decay of a cohort at different levels of total mortality \(Z \). The higher the \(Z \) the faster the population numbers decline.

The number of fish that die in each time interval is

\[D_t = N_t - N_{t+1} \]

If the stock equation is substituted in the above we have

\[D_t = N_t - N_t e^{-(M+F)\Delta t} = N_t (1 - e^{-(M+F)\Delta t}) \]

\[
\begin{bmatrix}
\text{Number of fish that die during the time}
\end{bmatrix} = \begin{bmatrix}
\text{Number of fish alive in the beginning}
\end{bmatrix} \times \begin{bmatrix}
\text{Proportion of fish that die}
\end{bmatrix}
\]

The numbers that die due to fishing mortality is the fraction \((F/Z)\) of the number of fish that die, i.e.
\[C_t = \frac{F}{F + M} \left(1 - e^{-(M+F)M} \right) N, \]

where \(C_t \) is the number of fish caught over time \(t \) to \(t+1 \)

\[
\begin{bmatrix}
\text{Number of fish fished during the time} \\
\text{Proportion of fish that die due to fishing} \\
\text{Proportion of fish that die} \\
\text{Number of fish alive in the beginning}
\end{bmatrix}
= \begin{bmatrix}
\text{Proportion of fish that die due to fishing} \\
\text{Proportion of fish that die} \\
\text{Number of fish alive in the beginning}
\end{bmatrix}
\]

The number caught during the time period from \(t1 \) to \(t2 \) depends on the length of the time period, the fishing mortality and the average number of fish in the sea.

The youngest stages of the fish go through most of the mortality as Pitcher and Hart (1982) point out the average adult mortality to be 5 – 10% per year and average larvae mortality to be 2 – 10% per day roughly. This in turn is a strong determinant of the year class strength i.e. how many individuals are entering the fishery. Factors that cause mortality can be broadly classified as abiotic (relating to the physical environment e.g. temperature, salinity, oxygen, light, stability and disturbances) and biotic (predation, cannibalism, density, starvation, competition, diseases). These are illustrated in Figure 25 with the life stages of a fish.

![Figure 25: Shows the factors affecting mortality at various life stages of the life of a cohort [Source: Kolding and Giordano (2001)]](image)

In stock assessment, mortality rates are normally considered only for the adult stages of the population, which normally has a low variability. To be able to describe the death process or estimate these mortality rates, it is important to have information on the exploited part of the population or catch.
6.1. The fate of a cohort

The development of a cohort through time and the process of mortality are easier to explain using age data. Therefore an explanation is given with age data first and the use of length data to estimate mortality is described next.

Suppose data on catch composition by age is available on a fishery. As an illustrative example, the Icelandic haddock is taken to show the development of a cohort through fisheries (Hjörleifsson 2006). Annual variability is often seen in the number of recruits into the fishery and the development of cohorts through the fisheries is a reflection of this variability in the year class strength. The total catch in numbers split up by age groups, based on age frequency in the samples is delineated in Table 7. The blue, red and yellow lines show the development of the 1985, 1988 and 1990 year classes through the fisheries respectively i.e. a cohort’s entire life span. Note that a specific cohort can be followed diagonally across the table. Every year the survivors of that cohort advance to a new age group. The 1985 and 1990 are strong year classes with more fish numbers. In contrast the 1988 is a weak year class. A graphical representation of the cohort development is given in Figure 26. Note a similar representation can be given for yield (weight of fish) as growth rate does not significantly change over the time period. A pseudocohort is represented by the shaded area in green over Age 8. A pseudocohort contains the numbers of survivors from a number of cohorts all of the same age.

Table 7: The total catch in numbers of Icelandic Haddock split up by age groups. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The fate of a specific cohort can be followed diagonally across the table. The 1985 and 1990 are strong year classes with more fish numbers. In contrast the 1988 is a weak year class. A pseudocohort is represented by the shaded area (Age 8)
[Source: Hjörleifsson (2006)].

<table>
<thead>
<tr>
<th>Year</th>
<th>Age 2</th>
<th>Age 3</th>
<th>Age 4</th>
<th>Age 5</th>
<th>Age 6</th>
<th>Age 7</th>
<th>Age 8</th>
<th>Age 9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>84</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>85</td>
<td>82</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>86</td>
<td>24</td>
<td>0</td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>87</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>23</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>88</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>24</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>89</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>90</td>
<td>87</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>91</td>
<td>20</td>
<td>0</td>
<td>12</td>
<td>13</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>92</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>32</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>93</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>94</td>
<td>48</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>95</td>
<td>51</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>96</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>97</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>51</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>99</td>
<td>48</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>25</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>16</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 26: Shows the development of a cohort through time based on catch in numbers of the Icelandic Haddock in Table 6. The orange, yellow and red lines represent the 1985, 1988 and 1990 cohort respectively. The 1985 and 1990 are strong year classes with more fish numbers. In contrast the 1988 is a weak year class [Source: Hjörleifsson (2006)].

Figure 27: Shows the development of a cohort through time illustrating its entire life span based on the data in Table 6. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The 1985 year class is 2 years old in 1987 and so forth and maximum catch is seen around 4-5 years old [Source: Hjörleifsson (2006)].
The entire life span of a cohort is illustrated in Figure 27. Note that the 1985 year class is 2 years old in 1987 and so forth. Maximum catch is seen around 4-5 years old. Selection pattern of the fishing gear plays a role in the numbers caught. Low catches are observed for younger ages as they do not get captured in the fishing gear and a decline in catches of old fish can be attributed to a decline in numbers in general due to high mortality.

6.2. Estimation of Mortality

The common method of estimating mortality is linearising the curves shown in Figure 27. The stock equation can be linearised by taking a natural logarithm of the catch in numbers by age

\[\ln N_t = \ln N_0 - Zt \]

Of particular interest is the observed exponential decline in catches of the older fish (Figure 28). This information in the exponential decline is used to estimate the total mortality \(Z \). Graphing the logarithmic values of the numbers surviving against \(t \) gives a straight line known as catch curve; the slope of this line gives the instantaneous mortality rate \(Z \).

![Graph showing the slope as total mortality = Z](image)

Figure 28: Shows the development of a cohort with log-transformed catch in numbers for Icelandic Haddock. The blue, red and yellow line show the development of the 1985, 1988 and 1990 cohort respectively. The exponential decline or the slope of the straight line gives an estimate of total mortality \(Z \).

[Source: Hjörleifsson (2006)].
Age based linearised catch curve

The illustration above in Figure 28 with the Icelandic haddock data of catch in numbers at age is an example of an age based linearised catch curve. Theoretically, the first step towards calculating Z is the catch equation;

$$C_t = \frac{F}{F + M} \left(1 - e^{(M+F)\Delta t} \right) N_t$$

However a linear form of this equation is required to move forward thus some form of transformation is required to turn this into a linear regression. Firstly the term N_t is replaced with the stock equation $N_t(1 - e^{-(M+F)\Delta t})$. After rearranging the terms a logarithm is taken on both sides to get a linear expression. Furthermore, either a constant or a variable parameter system can be assumed (Table 8).

A constant parameter system implies that recruitment and mortality (F and M) remain constant every year so that the number of survivors and the numbers caught would be the same for all cohorts (Table 8A). With constant time intervals the equation gets reduced to;

$$\ln C(t,t+1) = \text{constant} - Zt$$

This is known as linearised catch curve equation with constant time intervals. In other words, a regression on the log-transformed catch in numbers at age against t (age) will give an estimate of total mortality Z as the slope of the straight line (Figure 29).

![Linearised Catch Curve](image)

Figure 29: Shows the age based linearised catch curve. The log-transformed catch is numbers at age is regressed against age to get an estimate of the total mortality Z which is the slope of the regression line.

[Source: Kolding and Giordano 2001].
However a constant parameter system does not appear realistic in nature. Table 8B shows a more natural situation with variable parameters. The linearised catch equation with variable time intervals has the form:

\[
\ln \left(\frac{C(t, t + \Delta t)}{\Delta t} \right) = \text{constant} - Z(t + \frac{\Delta t}{2})
\]

For details on the derivation of the equation, Sparre and Venema (1998) can be referred.

Normally descending data points representing older age groups are regressed to estimate Z. This is because the initial data points (which are sometimes ascending) represent younger age groups, which is subjected to a lower fishing mortality because they are either not fully recruited or not fully vulnerable to the fishing gear used (King 1995). The example above with the Icelandic haddock data illustrates a variable parameter system.

Note that in the situation with constant parameters it is possible to use a pseudo-cohort to estimate mortality as illustrated in Table 8A where the numbers in a cohort (diagonal blue line) and pseudocohort (straight blue line) are the same.

Table 8: Shows the catch in numbers at age. The diagonal blue line represents the development of a cohort and the straight line represents a pseudocohort. Part A of the table shows a constant parameter system assuming that recruitment and mortality (F and M) remain constant every year so that the number of survivors and the numbers caught would be the same for all cohorts. Part B represents a variable parameter system with variable recruitment and mortality over time which is a more realistic scenario [Source: Hjörleifsson (2006)].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2435</td>
<td>2435</td>
<td>2435</td>
<td>2435</td>
<td>2435</td>
<td>2435</td>
</tr>
<tr>
<td>1</td>
<td>1336</td>
<td>1336</td>
<td>1336</td>
<td>1336</td>
<td>1336</td>
<td>1336</td>
</tr>
<tr>
<td>2</td>
<td>733</td>
<td>733</td>
<td>733</td>
<td>733</td>
<td>733</td>
<td>733</td>
</tr>
<tr>
<td>3</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403</td>
</tr>
<tr>
<td>4</td>
<td>221</td>
<td>221</td>
<td>221</td>
<td>221</td>
<td>221</td>
<td>221</td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2435</td>
<td>3456</td>
<td>2845</td>
<td>2010</td>
<td>1879</td>
<td>2456</td>
</tr>
<tr>
<td>1</td>
<td>679</td>
<td>1336</td>
<td>852</td>
<td>775</td>
<td>1103</td>
<td>981</td>
</tr>
<tr>
<td>2</td>
<td>1282</td>
<td>354</td>
<td>733</td>
<td>423</td>
<td>405</td>
<td>605</td>
</tr>
<tr>
<td>3</td>
<td>512</td>
<td>669</td>
<td>185</td>
<td>403</td>
<td>210</td>
<td>211</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>267</td>
<td>349</td>
<td>97</td>
<td>221</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>112</td>
<td>95</td>
<td>182</td>
<td>50</td>
<td>121</td>
</tr>
</tbody>
</table>
Length-converted catch curves

In most length-frequency analysis it is rather difficult to identify the constituent age groups and estimate the numbers in each age group. Nonetheless, mortality can be estimated when only length-frequency data is available provided an estimate of the growth parameters L_∞ and K are known. The length-frequency distribution can be converted to age-frequency distribution by means of a length-converted catch curve. The idea is to convert the length intervals into time intervals and this can be done using the following formula which is an inverse of the von Bertalanffy equation:

$$\Delta t = \frac{1}{K} \ln \left(\frac{L_\infty - L_1}{L_\infty - L_2} \right)$$

This is the time taken for the species to grow through a particular length class and it allows for the fact that as growth slows down with increasing size, older length classes contain more age classes than do younger groups (King 1995). The relative age at any length L can be calculated by:

$$t_{L_i} = \frac{1}{K} \ln \left(\frac{L_\infty - L_i}{L_\infty} \right)$$

This is used to convert length to age for a length frequency distribution. The length distribution contains data where the time unit within each length interval is not constant. To take this into account the catch is divided by the time duration that a fish takes to pass through the length interval. This gives the linearised length-converted catch curve which has the form:

$$\ln \left(\frac{C(L_1, L_2)}{\Delta t(L_1, L_2)} \right) = \text{constant} - Z t_{0.5(L_1+L_2)}$$

where $t_{0.5(L_1+L_2)}$ is the age at midlength of the interval L_1 to L_2.

This essentially means that the catch in numbers are replaced with the frequency between L_1 and L_2 and t is the age class interval mid-point. The age at midlength of the interval L_1 to L_2 is also calculated using an inverse of the von Bertalanffy equation:

$$t_{0.5(L_1+L_2)} = \frac{1}{K} \ln \left(\frac{L_\infty - 0.5(L_1 + L_2)}{L_\infty} \right)$$

The length-converted catch curve forms a linear equation where $Y = \ln \left(\frac{C(L_1, L_2)}{\Delta t(L_1, L_2)} \right)$ and $X = t_{0.5(L_1+L_2)}$ and the slope is an estimate of Z.

The initial ascending data points representing the younger ages are not fitted in the regression line. This is because these individuals are either not fully recruited or are too small to be totally vulnerable to the fishing gear. Data points close to L_∞ are also excluded since the relationship between length and age becomes uncertain in old fish (King 1995). The conversion of lengths into ages is fairly complex. Further details on the derivation of the equations can be found in Sparre and Venema (1998) for interested readers. Length based Z calculations are very sensitive to the value of K and L_∞ used therefore some careful consideration needs to be given to that. It is best is to estimate K and L_∞ on the stock of interest and if values from literature are used, then they have to be appropriate for the stock in question.

Exercise 4 in Excel gives an application of the age-based linearised catch curve and the length-converted catch curves.

Catch-per-unit effort data to estimate Z

Given that the effort applied to the fishery remains constant over time with an assumption of constant catchability, the log ratio of the number of fish caught at each time interval can be used to estimate total mortality. The methods described above rely somewhat on the abundance of individuals in different age classes. CPUE is considered an index of abundance. CPUE data can used to estimate mortality if recruitment periods are pronounced. Then the decrease in CPUE over the period between one recruitment and the following will give some indication of average mortality of all ages combined. Assumptions are that all age groups are equally exposed to fishing with a constant mortality.
\[CPUE_{a,y} = C_{ay} / E_{ay} \]
Assume \(E_{y} = E_{y+1} \) and \(q_{a} = q_{a+1} \)
Following from stock equation:
\[
Z_{t} = \ln \left(\frac{N_{t}}{N_{t+1}} \right) = \ln \left(\frac{C_{ay}/(E_{y}q_{a})}{C_{a+1,y+1}/(E_{y+1}q_{a+1})} \right)
\]

It is not necessary to know the absolute values of \(N_{t} \) and \(N_{t+1} \), only their ratio is required.

Beverton and Holt’s Z-equation

The data requirements for the Beverton and Holt Z-equation are less than the length converted catch curve. It estimates \(Z \) from the mean lengths of fish in the catch and the von Bertalanffy growth parameters \(K \) and \(L_{\infty} \). Thus it assumes that growth follows the VBGF, mortality can be represented by a negative exponential decay and that \(L \) is estimated from a sample representing a steady-state population and \(Z \) is calculated by:

\[
Z = K \left(\frac{L_{a} - \overline{L}}{L - L'} \right)
\]

where \(\overline{L} \) is the mean length of all fish of length \(L' \) and longer and \(L' \) is defined as “some length for which all fish for that length and longer are under full exploitation”.

6.3. Natural Mortality

The techniques described so far are used to approximate total mortality. Natural mortality is an important parameter because to deduce fishing mortality this has to be subtracted from total mortality.

Death that occurs from any factors aside from fishing is lumped as natural mortality. This includes predation, competition, starvation, parasitism, diseases, and death due to old age (Figure 25). The natural mortality phenomenon is still poorly defined as it is difficult to characterize and measure what happens in the natural environment. Instantaneous rate of natural mortality is normally expressed as \(M \) and is assumed to be a constant in most situations and is usually “guesstimated”. The models although do not explicitly require \(M \) to be a constant. Vetter (1998) and Caddy (1991) review the problems involved with estimating natural mortality of fish stocks.

The natural mortality rate and pattern is one of the driving forces of evolution and consequently, the natural mortality rate has clear correlations with other life history parameters. Hence the parameter \(M \) is a function of the following factors:

- Growth and therefore indirectly to the VBGF parameters \(K \) and \(L_{\infty} \).
• Size or weight, which is partly a function of longevity
• Age at maturation, which is also a function of longevity
• Reproductive effort (the relative distribution of energy into gonad or somatic tissue)
• Temperature which determines the metabolic rate and therefore growth
• Environmental stability which may also affect longevity
• Intrinsic population growth rate r (Malthusian factor) (Kolding and Giordano 2001).

Several methods of estimating M are available. Some methods are described below briefly. The approaches are either based on (1) using catch data from commercial fisheries, or sampling programmes or mark and recapture methods (2) correlation with other life history parameters (3) using stomach content analysis and consumption experiments to estimate predation.

Estimation of M from catch data (Paloheimo 1961)

Based on the following equation:

\[M_t = Z_t - F_t = Z_t - q_t E \]

a linear regression can be defined. Given that a range of total mortality Z and effort (E) (covering a wide range of effort level) are available over time, a regression between Z as the dependent variable and effort as the independent variable gives M as the intercept and q (catchability coefficient) as the slope. The underlying assumption is that q is constant.

Pauly’s Empirical formula

Pauly (1980) proposed a formula based on the von Bertalanffy growth parameters and annual average habitat temperature (T):

\[M = 0.8e^{-0.015-0.279\ln(L_m)+0.6543\ln(K)+0.463\ln(T)} \]

where 0.8 is an adjustment factor used for ‘schooling species’.

Rikhter and Efano’s method

This method of Rikhter and Efano (1976) is based on the relationship between M and the age at which 50% of the fish population mature Tm(50%):

\[M = \frac{1.521}{Tm(50\%)^{0.72}} - 0.155 \]
Gunderson and Dygert Method

Gunderson and Dygert (1988) show an association between M and a life history parameter, Gonad Somatic Index (GSI) by

\[M = 0.33 + 1.68 \cdot GSI \]

where

\[GSI = \frac{\text{mean gonad weight}}{\text{mean somatic weight}} \]
7. Yield-per-recruit Models

An optimum harvest from a fishery is not necessarily produced by fishing as hard as possible. This was illustrated by Russell (1942) in Haddon (2001) where he tested the effect of two fishing mortalities on a hypothetical fish stock, showing that the lower fishing mortality resulted in higher catch weights (Table 9). This would be because a lower F would leave more fish in the sea for longer that would grow to a heavier weight before being caught. Thus at a lower harvest rate there is a greater biomass caught and the number of fish remaining in the sea is also greater at the same time. So, if maximizing effort does not necessarily maximize catch, is there an optimum fishing mortality rate that would maximize the yield? Similarly, if individual growth is an important component of productivity then fishing for the right-sized animals is also important and we would wish to catch cohorts selectively and would also want to include the effects of natural mortality.

Table 9: Shows Russell's experiment of the effect of two fishing mortalities on a hypothetical fish stock. This is based on weight at age data. The lower fishing mortality resulted in higher catch weights.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Age</th>
<th>N (number)</th>
<th>Catch (weight)</th>
<th>N (number)</th>
<th>Catch (weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.042</td>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>0.082</td>
<td>200 800</td>
</tr>
<tr>
<td>0.082</td>
<td>1</td>
<td>200</td>
<td>66</td>
<td>500</td>
<td>500 41</td>
</tr>
<tr>
<td>0.175</td>
<td>2</td>
<td>40</td>
<td>28</td>
<td>250</td>
<td>250 44</td>
</tr>
<tr>
<td>0.283</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>125</td>
<td>125 35</td>
</tr>
<tr>
<td>0.400</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>63</td>
<td>63 25</td>
</tr>
<tr>
<td>0.523</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>31</td>
<td>31 16</td>
</tr>
<tr>
<td>0.700</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>16 11</td>
</tr>
<tr>
<td>0.850</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8 7</td>
</tr>
<tr>
<td>0.925</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4 4</td>
</tr>
<tr>
<td>0.999</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2 2</td>
</tr>
<tr>
<td>1.000</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

The primary purpose of a yield-per-recruit model is to use information on fishing mortality and thus selection patterns and growth from a fixed number of individuals that enter the fishery, to determine the point of maximum yield from the fish stock. In other words, the target is to determine the fishing mortality rate and the age at first capture (age at which fish are first exposed to fishery) that would result in maximum yield from the stock. These models are predictive as they use information contained in the past data to forecast future yields and biomass at different levels of fishing effort.

Analytical models of yield-per-recruit were derived in 1950s. The basis for yield-per-recruit analysis is formed by constructing a model for the development of a cohort through time which takes into account the growth and mortality of individuals. Revising from the chapter on mortality; in the cohort model, it is assumed that R individuals are
recruited into the fishery at the age \(t_r \) (denoting age at recruitment). From this age fish are exposed to some degree of natural mortality \(M \) (predation, competition). After certain time these fish are exposed to fishing at age \(t_c \) (age at first capture) denoted by \(F \) for fishing mortality. At some point \(t_{\text{max}} \) the older fish are not vulnerable to fishing. Note that the model assumes a knife-edge selection, which means at \(t_c \) either none or all fish in an age-class are either recruited or not or are vulnerable or not, and once vulnerable all age-classes are equally vulnerable (Figure 23). The simple yield-per-recruit model proposed by Beverton and Holt (1957) assumes the cohort is exposed to the same rate of fishing mortality for life.

An initial number of recruits \(N_t \) entering the fishery should be known. The equation of exponential decline illustrates the development of a cohort through time, i.e. how the age class progresses into the next one with the changes in stock size due to mortalities (fishing and natural):

\[
N_{t+1} = N_t e^{-(M+F)\Delta t}
\]

The number of deaths is the difference in the stock size between successive years:

\[
D_t = N_t - N_t e^{-(M+F)\Delta t} = N_t (1 - e^{-(M+F)\Delta t})
\]

The fraction that dies due to fishing mortality (catch) is the fraction \(F_t/(M_t + F_t) \) of the numbers that die:

\[
C_t = \frac{F}{F + M} (1 - e^{-(M+F)\Delta t}) N_t
\]

To convert this into yield we need to multiply the catch by the average weight at age \(w_t \):

\[
Y = \sum_{t_r}^{t_{\text{max}}} w_t C_t
\]

The biomass of a cohort is the numbers at time \(t \) multiplies by the weight at age:

\[
B = \sum_{t_r}^{t_{\text{max}}} w_t N_t
\]

The latter two \(Y \) and \(B \) can be summed up for the whole life time of a cohort.

Therefore, after birth the numbers in a cohort decline exponentially and the individuals in a cohort increase in size and weight. The biomass which is a product of the two increases to a certain maximum and then decreases thereafter (Figure 30). This could be attributed to the fact that at young age, despite being high in abundance (numbers) the fish are low
in weight resulting in the product of numbers and weight being low. As the cohort develops through time, the loss in biomass due to decreasing numbers is countered by the gain in biomass due to growing individuals leading to a maximum. Beyond the maximum point the biomass loss due to mortality (decrease in numbers) is higher than the gain in biomass due to growth of remaining individuals. In general the biomass peaks at a younger age and fewer individuals from the cohort reach older age. The biomass depends on a number of factors such as number of fish being recruited initially, growth rate, natural mortality, fishing mortality and thus the selection pattern in the fishery. The effect of fishing on a cohort of a certain fixed initial size results in lowering of the biomass. This forms the basis for yield-per-recruit analyses where the objective is to find the fishing mortality rate that would result in the maximum biomass and thus yield from the fishery.

Figure 30: Shows how a cohort develops through time in numbers (red), weight (yellow) and biomass (blue). After birth the numbers in a cohort decline exponentially and the individuals in a cohort increase in size and weight. The biomass which is a product of the two increases to a certain maximum and then decreases thereafter [Source: Hjörleifsson (2006)].

7.1. Age based models

The following data are required for age based models: an initial number of recruits (from a biomass survey), an estimate of the fishing mortality, an estimate of natural mortality, age structure of the fish population, number and weight at age. The above equations can then be used for analysis. If information is available on the proportion of mature fish that have reached a spawning stage (spawning stock), the spawning stock biomass can also be calculated.

The management targets aimed for are an optimum fishing mortality and the age at first capture that would maximize yield. The analysis involves determining yield or biomass for a series of fishing mortalities, based on the above data and equations outlines earlier. These are then plotted to construct a yield-per-recruit curve to determine the target fishing mortality F_{max} that gives rise to the maximum yield (Figure 31). If $F > F_{\text{max}}$ then growth overfishing is indicated. Similarly yield can be plotted for a series of age at first capture to determine the optimum value that would maximize the yield.
Figure 31: Shows an example of a yield-per-recruit and a spawning stock biomass curve with the target management point \(F_{\text{max}} \) and Y/R at \(F_{\text{max}} \)

[Source: modified from Hjörleifsson (2006)].

7.2. Length based models

Principally the same as the age based models. In length based models the length measurements are converted into time (age) using the inverse von Bertalanffy growth function. The rest of the model is essentially the same as the age based model. The fraction of individuals that survive (based on some initial given number) from length \(i \) to length \(i+1 \) (after conversion of length to age) is

\[
N_{i+1} = N_i e^{-(F_i + M_i)\Delta t}
\]

where \(\Delta t \) is the time taken to grow from length \(i \) to length \(i+1 \). In case VBGF is used this interval is given by

\[
\Delta t_{L_2-L_1} = \frac{1}{K} \ln \left(\frac{L_\infty - L_1}{L_\infty - L_2} \right) \text{ where } L_1 = L_i \text{ and } L_2 = L_{i+1}
\]

Individual mean weight in interval \(i \) is estimated from the integral over length \(i \) to length \(i+1 \) using the length-weight relationship

\[
w_i = \frac{1}{(L_2 - L_1)(b+1)} \frac{a}{L_1^b} \left(L_2^{b+1} - L_1^{b+1} \right)
\]

where \(a \) and \(b \) are the parameters for the length weight relationship.
Therefore the data required are an estimate of \(K \) and \(L_c \), a relationship between length and weight, selection pattern in the fishery to deduce fishing mortality patterns, some likely values of natural mortality and an estimate of some initial number of recruits. Maturity at length data would be needed to estimate the spawning stock biomass.

Empirical evidence suggests that due to the equilibrium assumptions of YPR, \(F_{\text{max}} \) tends to be too high which leads to stock declines. To counteract this, fishing mortality estimate \(F_{0.1} \) was developed which is lower than \(F_{\text{max}} \). Many fisheries around the world are being managed using \(F_{0.1} \). Numerically the value of \(F_{0.1} \) is determined by finding the fishing mortality rate at which the slope of the YPR curve is 10% of the slope at the origin. It should be noted that the \(F_{0.1} \) strategy is ad hoc and has no theoretical justification. Experimentally it appears to be more conservative and risk averse and appears as a theoretical breakthrough as they provide a replacement for \(F_{\text{max}} \) and MSY and appear to be more robust. Important note \(F_{\text{max}} \) is not the same as \(F_{\text{MSY}} \) that gives rise to maximum sustainable yield, they are two different target reference points. Standard yield-per-recruit is based on growth and mortality only, recruitment variation is not taken into account. Hence, whether the maximum yield is also sustainable cannot be told.

The simple Beverton and Holt (1957) “Yield-per-recruit” assumes a constant fishing mortality model and is essentially a “steady state model” i.e. what happens to one cohort is representative of what happens to all cohorts. There are several uncertainties inherent in the yield-per-recruit. It is unrealistic to assume that the fishery has reached equilibrium with the given fishing mortality as we know most fisheries are unstable with high recruitment variability, age structure and changing exploitation patterns. The Thompson and Bell model gives an option for a non-steady state. This is then based on an array of fishing mortalities by age or length, which is then used for modeling the yield for a series of fishing mortalities. However both models assume a constant natural mortality. Additionally getting an estimate of \(F \) is a very difficult process which requires a good estimate of the population size and good records of total commercial catch.

Yield-per-recruit analysis is species specific. Some forecasts or management measures based on such analysis could include increases or reductions of fishing fleets, use selective fishing gear that only catches the larger individuals in which gains through individual growth would be maximizes, changes in minimum mesh sizes, closed seasons, closed areas, etc. In principle these models form a direct link between fish stock assessment and fishery resource management. They can also incorporate aspects of prices and value of the catch which make then suitable as a basis for bio-economic analyses, where biological and economic inputs are used to predict future yields, biomass levels and value of the catch under all kinds of assumptions (Haddon 2001). The materials in this chapter are mostly taken from Hjöleifsson (2006) and Haddon (2001).
8. Surplus Production Models

So far, models based on age and length structures have been discussed which form the class of analytical or dynamic pool models. Surplus Production Models, also known as biomass dynamic models or stock production models or simply production models falls under the class of holistic models that are structured around the whole stock. They are also said to be the simplest analytical models used in fisheries stock assessment. Due to its simplistic nature and less data requirements this technique has been widely applied to tropical fish stock assessment.

We begin again with Russell’s mass-balance equation which describes the dynamic behaviour of a population as:

\[B_{t+1} = B_t + R_t + G_t - M_t - C_t \]

where:
- \(B_t \) and \(B_{t+1} \) is the stock biomass in years \(t \) and \(t+1 \) respectively
- \(R_t \) is total weight of all individuals recruiting to the stock year
- \(G_t \) is the total growth in biomass of individuals already recruited
- \(M_t \) is the total weight of all fish that die of natural causes
- \(C_t \) is the total weight of all fish caught.

Production models are the simplest because they pool recruitment, mortality and growth into a single production function \(P_t \).

\[B_{t+1} = B_t + P_t - C_t \]

where \(P_t \) is surplus production = ((recruitment + growth) - natural mortality).

This surplus production is a function of biomass in the start of year \(t \), thus it can also be represented as

\[B_{t+1} = B_t + f(B_t) - C_t \]

This can also be written as the classical biomass dynamic model proposed by Schaefer, as explained in the chapter on population growth models earlier:

\[B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K} \right) - C_t \quad \text{where} \quad f(B_t) = rB_t \left(1 - \frac{B_t}{K} \right) \]
This gives a symmetrical curve which implies application to equilibrium conditions. Another variation of the Schaefer model is the Pella and Tomlinson model which introduces a parameter \(p \) that gives a provision for introducing an asymmetry in the production curve:

\[
f(B_t) = \frac{r}{p} B_t \left[1 - \left(\frac{B_t}{K} \right)^p \right]
\]

If \(p \) is set to 1, this simplifies to the original Schaefer model.

Catch is normally assumed to be related to the fishing mortality rate and the available biomass (stock size). Fishing mortality is then related to the effort applied to the fishery and the catchability coefficient, i.e. the proportion of the stock biomass harvested by one unit of effort \((E) \), thus \(C_t = qE_tB_t \). This incorporated gives the classic equilibrium Schaefer model in fisheries

\[
B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K} \right) - qE_tB_t
\]

The two parameters in the model are \(r \) and \(K \). The intrinsic rate of natural increase \(r \), is a species specific constant related to its life history. The density limit of the stock (standing biomass), or its carrying capacity is \(K \). Based on the principles of the logistic model maximum production occurs at \(K/2 \) (as explained earlier with reference to population growth models). Thus the management strategy is to bring the stock down to a size where maximum surplus production would occur, giving maximum sustainable yield (MSY) (Figure 32). Other management targets include the corresponding biomass that gives MSY (\(B_{MSY} \)), the effort and the fishing mortality rate that gives rise to MSY (\(E_{MSY} \)) and (\(F_{MSY} \)) respectively. The classical logistic model is based on equilibrium assumptions of the fish stock. The stock is assumed to be in a steady state i.e. \(B_{t+1} = B_t \) meaning the stock biomass does not change from year to year. Any production that occurs beyond the steady stock size can be harvested, leaving the stock in the condition it was before production and harvesting. Therefore catch becomes equivalent to surplus production i.e. \(C_t = rB_t \left(1 - \frac{B_t}{K} \right) \). Meaning each year’s catch and effort data represent an equilibrium situation where the catch is equal to the surplus production at that level of effort. If the fishing regime is changed (altering effort or harvest rate) the stock is assumed to move instantaneously to a different stable equilibrium biomass with associated surplus production.

The model thus demands a time series of an index of relative abundance, such as catch per unit effort i.e a time series of catch and effort data are required. Given the assumption, \(C_t = rB_t \left(1 - \frac{B_t}{K} \right) \) and substituting \(B_t = \frac{C_t}{qE_t} \); the equation can be solved for
\[
\frac{C_i}{E_i} = CPUE .
\]
Through re-parameterizing and introducing new definitions \(a = qK \) and \(b = \left(q^2K \right)/r \), which gives a simple linear function \(C_i/E_i = a - bE \) or \(C_i = aE - bE^2 \).

Further mathematical solving leads to

\[
MSY = (a/2)^2/b = \frac{rK}{4}
\]

\[
E_{MSY} = a/2b = \frac{r}{2q}
\]

A simple linear regression is carried out between the times series of CPUE and effort. The corresponding intercept \((a)\) and slope \((b)\) values from the regression are used for determining the target fishery performance indicators.

Figure 32: Shows the classic Gordon-Schaefer model with the concept of maximum sustainable yield (MSY) which occurs at half the carrying capacity \((K/2)\) and the biomass leading to MSY is \(B_{MSY}\).

This equilibrium concept is a very simplistic view and essentially incorrect in representing the dynamic behaviour of a fish stock. The stock is assumed to be in a steady state and clearly ignores the time series nature of the data. Wherever possible, equilibrium methods should be avoided in fisheries assessment. If a fish stock is in decline, then equilibrium methods consistently overestimate the sustainable yield. Unlike the logistic (Schaefer) model, MSY in most modern fisheries models occurs at around 30% of the unexploited population size. Their use in the past has undoubtedly contributed to a number of fishery collapses in the past (Haddon 2001). The recommended method for fitting surplus production models is through using observation error estimators, which is a non-equilibrium fitting. This method involves comparing a set of predicted values of CPUE to the observed values of CPUE and obtaining optimum estimates of the
parameters \(r, K, B_0 \). The assumption is that the population model \(B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K} \right) \) exactly describes the population dynamics without any error i.e. \(B_{t+1} = \hat{B}_{t+1} \) (where the \(^\wedge\) symbol indicates predicted/estimated values). The observations (catch and effort) on the other hand are made with an error hence the observation model is expressed with an error term \(C_t / E_t = qB_t + \varepsilon \). Some initial estimates of the parameters \(r, K \) and \(B_0 \) are substituted in the population model to obtain a set of predicted biomass values \(\hat{B}_{t+1} \). Using this predicted biomass values and an estimate of catchability coefficient \(q \), the predicted values of CPUE (denoted as \(U_t \)) are obtained \(\hat{U}_t = qB_t + \varepsilon \). These predicted series of CPUE are then compared with the observed CPUE through least squares method

\[
SS_{\text{min}} = \sum_{t=0}^{T} (U_t - \hat{U}_t)^2
\]

to obtain the best set of parameters \(r, K, B_0 \) that minimise the sum of squares. The error is assumed to be normal with constant variance. The model fitting relies on minimising the sums of squares or the alternative is to maximise the appropriate likelihood function \(L(\text{data}|B_0, r, K, q) = \frac{1}{\sqrt{2\pi\hat{\sigma}^2}} \prod_i e^{-\frac{(\ln U_t - \ln \hat{U}_t)^2}{2\hat{\sigma}^2}} \) This can be greatly simplified to a log-likelihood so that

\[
LL = -\frac{n}{2} (\ln(2\pi) + 2\ln(\hat{\sigma}) + 1)
\]

where \(n \) in the number of observations and

\[
\hat{\sigma}^2 = \frac{1}{n} \sum (\ln \hat{U}_i - \ln \hat{\hat{U}})^2
\]

An estimate of \(q \) that maximises the log likelihood function is given by the geometric average of the time series of individual \(q \) estimates

\[
\hat{q} = e^{\frac{1}{n} \sum \ln \frac{U_t}{B_t}}
\]

In summary one makes predictions about the deterministic trajectory of the system from a hypothesized set of parameters and initial starting conditions and then compares the observed values with the predictions. The parameters can then be used to calculate the fishery performance indicators, MSY and \(E_{\text{MSY}} \) from the formulas given above.

Initial estimates of the parameters \(r, K, B_0 \) can be deduced from available data on the particular fishery. The intrinsic rate of growth can be obtained from some available biological information on the species; the catchability coefficient can be estimated from absolute biomass estimates from direct counts, acoustics or trawl surveys for one or two years; \(K \) could be based on the area or habitat information.

In principle “you cannot understand how a stock will respond to exploitation unless the stock has been exploited” (Hilborn and Walters 1992). Ideally we need three types of
situations to make predictions reliably. The stock has to be low (growing) and with low effort (no fishing) to get information about the growth parameter r. The get information on carrying capacity K, stock has to be high with low effort. To understand the catchability coefficient we need high effort to understand the efficiency of the fishing patterns on a high or low stock. However due to time series nature of stock and fishery development it is virtually impossible to get three such divergent and informative situations. Furthermore, it is assumed that CPUE is proportional to biomass. However we know that the fishing efficiency (q) is likely to increase with time and improved fishing gear technology. Thus true nature of the relationship between CPUE and biomass may not be linear. The data should be carefully studied before any model is fitted to it. What the data portrays should be interpreted with caution.

Surplus production models are the most abused stock-assessment technique. Any published information based on equilibrium assumptions should be ignored. Non-equilibrium fitting are more reliable for management purposes however caution should be exercised as the data may not be informative enough.

The materials in this chapter are mostly taken from Hjöleifsson (2006) and Haddon (2001).

Exercise 5 in Excel gives an example of an equilibrium model and a non-equilibrium model.
9. Multispecies models

The stock assessment techniques described so far have been for single species applications. However we know that different species of fish co-exist in the environment. Production is a result of biological interactions which define predator prey relationships and consequently a whole food web. These biological interactions in the ecosystem will in turn have an effect on the fisheries production levels. It is almost impossible to harvest only a single species at one time as we know that fishing gear are not species selective. Every fishing (industrial or small-scale) has some degree of bycatch i.e. species that are not targeted by the fishery.

Multispecies models have been developed to take these ecosystem interactions into account. A brief mention of some of the available models is made but is not discussed in any detail.

Multispecies yield-per-recruit takes into account the technical interactions such as the effects of direct mortality on target species and incidental mortality on bycatch. It does not take the biological interactions.

Multispecies surplus production models take some technical and biological interaction between species into account. They are based on the assumption of constant catchability and consistent fishing techniques. However when considering a combination of species, MSY for each species will be different and maximum yield for one species may easily under/over exploit another species.

Multispecies virtual population analysis is another method which is more elaborate then the former two. It is also more data demanding and takes the predator-prey relationships of the different species into account. This in turn requires analysis of stomach contents of potential predators and preys and consumption rates together with other elementary data such as catch at age, weight at age, fishing mortalities.

ECOPATH is a description of the ecosystem represented by biomasses aggregated into ecologically functional groups. The Ecopath approach uses mass balance principles to estimate flows between user defined ecological groups. Each group is represented by one balanced linear equation and requires six input parameters: (1) biomass (B) (2) production (P) (3) consumption (Q) (4) ecotrophic efficiency (EE) (5) diet composition (DC) and (6) catch of each group (EX). It differs from the above multispecies models in that it does not require representation of individual species and age structure of species. Predators and prey are linked through consumption defined by a diet composition matrix and consumption rate parameters (Q/B) (Kolding 2006). (More can be read at http://www.ecopath.org/).
10. Patterns of Exploitation

In general the world of commercial fishing can be divided into industrial and artisanal fishing. Industrialised fleets exploit oceanic fisheries resources. These are modern techniques which are much more intensive and efficient fishing methods than those employed in the artisanal fishing which include traditional fishing methods exploiting the coastal and inland waters mostly in reference to the developing countries. Essentially the methods used in industrial and artisanal fishing are similar but the size of the gear, of the tools for gear handling, of the vessels, equipment for navigation and fish finding, of the catches taken and the costs involved are considerably different (Hart & Reynolds).

Fisheries habitats and resources can be generally classified into three categories; coastal zone, continental shelf and high seas. Different zones can be characterised by the different fishing gears used. Mainly in the coastal zone beach seines, diving, traps, nets, lines, lift nets, boat seines, pots are predominant. In the continental shelf the prevalent methods of fishing are trawls, purse seines, traps, gillnets, long lines and the in high seas pelagic trawls, driftnets, long-lines, purse seines, jiggers are common.

Overall the world fisheries are mostly dominated by industrial fleets which exploit fisheries in the high seas. They can be characterised as capital intensive having relatively large vessels with a high degree of mechanization, specialized gear and advanced navigational equipment. This is mostly international market oriented with a high production capacity and high catch per unit effort. The type of fisheries targeted is mostly high value offshore demersal and pelagic stocks and highly migratory species. These fisheries are mainly foreign exchange earners and important for national GDP. The Northern hemisphere, what is known is the developed world, dominates in industrial fisheries with the highest landings recorded in the Atlantic. Fisheries monitoring and management is also fairly well established for industrial fleets particularly in the Northern Hemisphere with reasonably good time-series of data and regular stock assessment mostly on a single species basis (Hart and Reynolds 2002 and Kolding 2006).

Small-scale or artisanal fisheries are generally considered less intensive and less stressful on fish populations than modern industrialised fishing techniques. Artisanal fisheries is characterised by a diverse number of species, diverse number of fishing gears with a large number of fishermen operating. It exploits the coastal zone mainly and is normally restricted geographically within the reach of the communities. This type of fishery can further be divided into subsistence fishery, which refers to catch for home consumption utilising primitive fishing methods such as canoes, rafts, wading, barriers, traps, spears, hook and line, nets, pots and commercial fishing which refers to the catch which is retailed in the market and uses more modern fishing techniques such as decked vessels, dredges, automated haulers, jiggers. Small-scale fisheries are an important source of employment, food security and income, particularly in the developing world. Due to its diverse nature (multi-species, multi-gear and multi-fleet), the artisanal fisheries turns out to be quite complex to study and stock assessment becomes difficult. Generally quantitative research is quite limited and not much is known about the actual status of the
stocks (Hart and Reynolds 2002 and Kolding 2006). Single species stock assessment becomes quite difficult and somewhat inappropriate to apply as many species coexist in one environment (such as coral reefs) and a single fishing gear targets many species. Coastal fisheries in most parts of the world are being heavily exploited with unselective and destructive fishing methods such as dynamite fishing. For the most part, due to lack of data, management of small-scale fisheries was based on assumptions from industrial fisheries. Nonetheless, since conventional stock assessment based on single species cannot be realistically applied to artisanal fisheries (such as estimating total allowable catch or setting catch quotas), the new management solution for this type of fishery seems to be co-management and Marine Protected Areas (MPAs). These form the basis for ecosystem based management or ecosystem approach to fisheries which is the new paradigm in fisheries management.

The current statistics on fisheries landings and their economic values can be found at www.fao.org
11. Fisheries in the Pacific

Pacific Island States comprise roughly 0.005% of the world’s total catch (FAO 2007).

11.1. Industrial Fisheries

The industrial component is dominated by Tuna fishery. The three main species targeted by the tuna industry include South Pacific albacore (*Thunnus alalunga*), bigeye (*Thunnus obesus*), yellowfin (*Thunnus albacares*) and skipjack (*Katsuwonus pelamis*). Due to its economic importance the monitoring and management of tuna fisheries is well established in the Pacific in effect of UNCLOS in 1994 and the Implementing Agreement of 1995 which focused attention on management of tuna in the Pacific (Hunt 1997). The management of tuna and other commercial species in the region is the responsibility of Forum Fisheries Agency (FFA) which handles the economic and political issues and scientific assessment and monitoring (stock assessment) of these major species in the Western and Central Pacific Ocean is carried out by the Oceanic Fisheries Programme of the Secretariat of the Pacific Community (SPC) based on the data collected in the respective Pacific Island countries which is collated by SPC. The standard stock assessment tool used is MULTIFAN-CL developed by Fournier et al. (1998).

11.2. Small-scale fisheries

Most pacific islanders are maritime people with ongoing fishing traditions (Veitayaki 2005). Fisheries has been part of their lives throughout their history. The archipelagic and inshore waters are rich in marine biodiversity. Large parts of the population who are confined to the coastal areas rely heavily on the reefs, lagoons and shorelines for subsistence, livelihood and source of income making the inshore marine environment crucial for its subsistence and economic development. This puts a lot of pressure on the fisheries resources.

The dilemma of fisheries stock assessment in the Pacific is associated with the monitoring and management of small-scale fisheries.

Global perspective

Overall, the world’s fisheries are perceived to be in crisis. “Historical data from marine ecosystems clearly suggest that overfishing has had, for thousands of years, a major impact on target species and have fundamentally altered marine ecosystems including coral reefs” (Morato et. al 2006). According to FAO statistics over 70% of the world’s commercially important marine fish stocks are overexploited, depleted or recovering from over-exploitation (FAO 1997). The ever-growing demand of an expanding human population together with an increasing trend in the per capita resource consumption and failure to comply with the management regulations are sought to be the main drivers of
the serious erosion of the marine environment. The coral reef ecosystems have also been a part of this resource downfall. Over the past three decades, many documents have reported evident signs of deterioration in coral reef communities at local, regional and global scales (Wilkinson, 2004) hence the dramatic decline of coastal fisheries is the signal we see. As Bell et. al (2006) states that coral reefs are in decline worldwide and the rapid changes occurring to reefs indicates that the reefs are being stressed beyond their adaptive capability. The issue of coral reef crisis is complex, but there is a general consensus of two broad categories of impact; global warming and climate change and local-scale impacts. Coral reefs normally need an optimum temperature to survive and the rising sea temperatures lead to coral bleaching. Local impacts comprise of the natural disasters and more significantly the human populations in the coastal areas, which are large and growing. The human impacts include increased nutrient and sediment loads, habitat modification, destructive fishing and chronic overfishing. The coral reefs in the South Western Pacific Islands are no exception and are under increased pressure from these similar factors (Zann 1994). As the physical complexities of the reefs are deteriorated, they are not able to support long-term fish productivity. The global fisheries crisis is threatening the livelihood and nutritional security of fishery-dependent areas of mostly the developing nations. These trends have severe negative implications for hundreds of thousands of jobs in industrialized countries and entire fisheries dependent communities in the developing world (Constance 2000).

Coral reefs are among the most biologically diverse habitats and the most productive ecosystems in the world. The conventional single-species fisheries management does not seem to apply to management of coral reefs because of their complex reef fisheries and habitats. Marine Protected Areas (MPAs) or Marine reserves have long been recognised as a suitable and effective management tool for tropical inshore fisheries as they are seen as a central tool for multi-species management and ecosystem-based management (Rudd et. al. 2003) and there is an increasing shift in MPAs’ being used to protect biologically rich habitats. The International Union for the Conservation of Nature and Natural Resources defines MPAs as “any area of the intertidal or sub-tidal terrain, together with its overlying water and associated flora, fauna, historical and cultural features, which has been reserved by law or other effective means to protect part or all of the enclosed environment (IUCN, 1994). Various forms of MPAs exist such as marine parks, nature reserves and locally managed marine areas but they all serve the purpose of protecting the ecosystem, whether it be coral reefs or sea-grass beds or sea bed in deep water (Kenchington et. al. 2003). The theoretical basis for establishing marine reserves for fisheries management is straightforward. A marine reserve, by eliminating fishing pressure in a particular area, allows biomass in the closed area to rebuild, through both growth and reproduction and lead to an eventual spill out of the fish stock into the surrounding open areas (Smith et. al. 2006). The number of marine reserves has increased dramatically over the years and they appear as a useful tool for conservation and a need for more marine reserves is felt in order to deal with the global fisheries crisis (Salm et al., 2000). MPAs range from small, fully protected no-take areas, restricting all activities, to large areas divided into specific zones with different levels of regulated activity. Globally approximately 0.6% of the oceans are MPAs and 0.01% of the oceans are actually entirely closed to fishing (Jacquet 2007).
The accrued benefits of MPAs are numerous. These include conservation of stocks including species of commercial value, protection of endangered or threatened species, maintenance of genetic diversity, protection of spawning stock biomass, reduction of growth overfishing, provision of a baseline for monitoring of stock status and the health of the ecosystem (Agardy 2000). Additionally, they protect critical and unique habitats; act as an insurance against unforeseen ecosystem impacts and changes, provide socio-economic benefits for coastal communities; and increase recreation and tourism opportunities (Salm et al., 2000). From a fisheries management perspective MPAs improve the stability of catches; protect stocks from overfishing; increase fish abundance and size and possibly act as insurance against management failures (Roberts and Hawkins, 2000).

Ecosystem based management (EBM) is increasingly viewed as the only real alternative for managing reef fisheries and MPAs are seen as a primary tool to implement EBM. Recent scientific evidence has indicated that marine reserves can increase fish yields while conserving biological diversity. Agardy (2000) quotes a few recent examples of success of MPAs in Philippines, Kenya, New Zealand and the Mediterranean.

In the past ten or so years, the development of community-based marine protected areas has become an important tool for marine resource conservation (Calamia 2005). The IUCN defines the Community Conserved Areas (CCA) as “natural and modified ecosystems with significant biodiversity, ecological and related cultural values, voluntarily conserved by indigenous people and local communities through customary laws or other effective means”. CCAs have three essential features; communities are related to the ecosystem through cultural, livelihood or economic ties, the community decision leads to conservation of marine area and biodiversity and cultural values; communities are major players in the decision making (IUCN 2006).

South Pacific situation

The global fisheries management approach has had little impact in the South Pacific region as a whole in relation to management of coastal fisheries. This is mainly due to its traditional systems and important recognition of the resource rights. The current management practise in the South Pacific is stepping away from the modern approach and western thinking and reverting to the old-age Pacific Island practise of community-based resource management. Whilst MPAs are conventionally more formal and policy oriented setting up CCAs is a more informal process. Since there is limited amount of documented scientific information on the status of the coral reefs and limited capacity to measure it, the agencies normally rely on anecdotal information and indigenous knowledge to determine suitable management strategies. Thus community based MPAs seem to be a favourable solution to a large extent. The past decade has seen significant progress of community-based marine resource management in the South Pacific with numerous MPAs set up throughout the region. Some successful community initiatives can be found in Fiji, Samoa and Vanuatu. These community initiatives rely on traditional mechanisms but not entirely. The Government and Non-Government Organisations
NGOs) responsible for implementing the planning process normally integrate knowledge with some scientific studies for monitoring purposes.

Some of the networks and agencies actively working in the region consist of the Locally Managed Marine Areas network (LMMA); ProcFish which is an initiative of the SPC; NGOs such as Worldwide Fund for Nature (WWF), World Conservation Society (WCS) and Fisheries departments of the respective countries. In common their approach of setting up community based MPAs is through initiatives from concerned communities, who have been experiencing declining catches. The procedure involves interviewing the key informants in the village, especially the village head (chief), fishermen and village elders. They try to gather all anecdotes about the marine environment and the status of the stock from the experience and traditional knowledge of the people. At the same time the local people are also educated. Together the main problem that the community is facing is ruled out such as, identifying which species are threatened, which areas are over-exploited or exposed to pollution. Possible solutions are then identified which normally include either complete protection of some identified areas (full reserve) or species specific harvest or size specific harvest. At the same time, alternative sources of livelihood are also weighed for the people. Normally agriculture is a substitute. After all these dialogue the communities then identify the area that they want to close to fishing and thus an MPA is demarcated. The network then carries out a biological survey of the area. This is normally done through underwater visual surveys (underwater visual census). An important component is training villagers to monitor the resources within the protected areas. The general notion behind this step is to make the communities independent so they can monitor the progress of their reserves. Socio-economic surveys are also carried out. This involves interviewing households in the communities through official questionnaires.

Nonetheless, the downsides of this practice have to be taken into consideration if the future of fisheries management is not to be jeopardised. Data analysis and scientific reporting are lagging behind in a way and generally more emphasis is needed on scientific data collection. It is not argued that MPAs are not successful however; it would be valuable if some scientific evidence is available to quantify the success of these community based MPAs. Measuring basic and essential variables such as abundance, size, biomass and species diversity are imperative. As more no-take marine reserves are established, the importance of evaluating effectiveness retrospectively is growing (Smith et. al. 2006). It would also be important to determine at the same time if these reserves are adequate in protecting some highly mobile species. In the same line, scientific monitoring of the protected areas is of equal importance to show empirical success of the MPAs. The solution still lies in monitoring, data collection and stock assessment. Some relevant data collection and analysis issues are discussed below.

Underwater visual surveys

Underwater Visual Census (UVC) is one widely applied technique for studying coral reef systems and has been extensively applied for studying reef-fish population.
dynamics (Samoïlys and Carlos 2000, Samoïlys and Carlos 2001; Kulbicki and Sarramégna 1999; Watson and Quinn II 1997). This methodology of a diver swimming along transects and taking a direct count of animals was initially proposed by Brock (1954) (Sale and Sharp 1983). Sampling transects can either be placed randomly or systematically and the count of the animals are used to estimate the density (number or weight) by extrapolating the sample results to the entire study area to estimate population size or biomass. The initial idea has been modified over the years and various techniques of UVC exist today. The observers either snorkel or scuba dive and the basic information collected are on abundance and length-frequency distributions by species. The sampling devices used are transects for organisms distributed at larger spatial scale and quadrants for sessile organisms. The different types of transects used are; (1) Line transect where a diver swims along the transect and estimates the distance and direction of target animals from that line at regular intervals; (2) Strip transect where a diver is either swimming or is being towed along a strip of known length and width, or two divers are swimming on either side of the transect; (3) Time transect where sampling is carried out for a fixed time interval; (4) Point count where the diver is scanning 360 degrees while descending to a fixed point (5) Rapid visual techniques where a diver lists fish species sighted in rank order of initial encounter for each species (Edgar et. al. 2004). The size (length and width) of transects are survey specific. The most commonly used are line and strip transects and point counts (Edgar et. al. 2004; Kulbicki and Sarramégna 1999).

There are certain advantages of visual surveys which have led to adoption of this method in many coastal studies. They give rapid assessments of the reef areas and are relatively cheap to perform (Watson and Quinn II 1997). The survey is able to give information on a variety of variables such as density, relative abundance, size structure, species composition and habitat characteristics and the method does not require extensive subsequent lab-work. Additionally, the non-destructive nature of the survey makes it particularly useful for surveying marine protected areas (Stobart et. al. 2007). In the fisheries management context, visual estimates are useful because they provide an independent estimate of the fish abundance (Saimoïlys and Carlos 2001).

Basically data analysis can be done in the following manner. The fish lengths recorded in the surveys are converted into weight using a length-weight relationship. The parameters from for the length-weight relationships are normally taken from literature. This multiplied by the number of fish observed gives a total weight per transect which gives an estimate of the fish abundance by species. If the total area of the survey site is known and the area sampled by the survey is known a raising factor can be applied to get an estimate of the total abundance (biomass) in the area. Other forms of analysis can also be carried out such as comparing mean lengths of species in different areas using analysis of variance.

Bias in UVC

There are a number of potential sources of error in any density estimate. The UVC methodologies have many such problems of bias and precision inherent in them. The following sources of bias are known be to associated with UVC; divers level of
experience, given the technique relies highly on diver’s skill and his efficiency in counting and estimating distance, divers behaviour underwater such as swimming speed, field view available to the diver, subjectivity in the decision making by the diver, average sampling time and time required to go to the next sampling point and moreover the response of fish (attraction or escape) towards the presence of divers (Sale 1983; Stobart et. al. 2007; Watson and Quinn II 1997). Other constraints associated with this methodology are the associated constraints of scuba diving, environmental constraints, physical limitations (Stobart et. al. 2007) and the complex behaviour of coral reef fishes that have patchy distributions and occur in heterogeneous, diverse habitats and different geographical locations. These factors make it difficult to determine optimal survey methods of UVC. These drawbacks have led to a high criticism of the methodology. Even though the method has its downsides, visual census are the most practical method and the widely applied technique in monitoring coral reefs (Harvey et. al. 2002; Saimolys and Carlos 2001; Colvocoresses and Acosta 2007). However, there is continuing concern over the accuracy and precision of the UVC estimates. As a result the reliability of the surveys has been widely assessed and various studies have looked into these issues.

The accuracy and precision of UVC estimates can be investigated by crossvalidation i.e. comparing them with estimates obtained from other independent surveys or comparing two or more different techniques of UVC to determine the optimal survey method. In marine ecology, standard error (of the mean) to mean ratios, which gives the coefficient of variation (CV), are often calculated to examine precision of data (Saimolys and Carlos 2000).

For example, fish counts from all transects of the UVC survey (i.e. numbers and lengths of fish on species level) in a particular area can be combined to estimate the mean and standard deviation by species. These can be used for computing CV for each species. Species can be identified according to their abundance or commercial importance for instance. The CV then gives an indication of how statistically precise and reliable the survey is in estimating the mean density of each species. Based on the relationship between sample size and CV and the variance information available for the different species from the survey, optimal samples sizes can then be calculated according to desired CV which should normally be less then 30%.

Essentially the survey design issues discussed earlier need to be taken into consideration when designing these surveys.

Socio-economic surveys

The socio-economic survey involves questionnaire interviews of randomly selected households in a community. A senior member of the household is normally interviewed and the information gathered includes fisher and community attributes, such as age, education, household size, assets, occupation, dependence on fishery resources, frequency of fishing trips, trip duration, fishing methods, fishing area, catch per trip with species composition, and fish consumption rates. Catch per
trip per household and the number of fishing trips per household can be utilized to evaluate the total yield per household per year. These can be obtained on a species level.

Assuming that the survey is a true sample representative of the population (includes fishing and non-fishing households) a deterministic total catch per community can be calculated by applying some raising factor (total number of households in a community / the number of households sampled).

These surveys are normally snapshots recording catch per household which can be raised to obtain the catch per community. Resources are normally constrained to enable surveying at regular intervals. With just one sample at hand it is not possible to get a confidence limit on the point estimate of landed catch weight. Additionally annual catch per household in villages normally do not follow a Gaussian distribution. Bootstrap technique can be applied to the annual catch per household to generate a number of such samples which will represent the population. These samples can be raised to obtain the standard error of the total catch estimates and bootstrap confidence limits. A coefficient of variation for the sampling can also be obtained.

Bias in socio-economic surveys

The information gathered by household surveys can be very subjective. Such information is also subject to various kinds of “memory error” and a tendency to misreport on the part of the respondent (FAO 2000). As such these estimates need to be verified. Normally surveys of this nature also have a parallel independent survey, which is used for the verification of the information obtained from households. Rawlinson et. al. (1993) carried out a socio-economic survey of artisanal and subsistence fishery for Viti Levu, Fiji. In this survey, a creel survey was also carried out in three villages that were interviewed for verification of the information obtained by the respondents. Kuster et. al. (2005) carried out a questionnaire survey on the island of Ono-i-Lau. In this study the verification process involved taking a sub-sample of the population and monitoring their fish consumption daily for two weeks.

It should be ensured that the sample obtained should be truly representative of the community being studied and not be biased in its selection. A true sample will be an indication of the number of fishing and non-fishing households and commercial operators. A post-stratification approach can be of help where the households within a community can be divided into frequently fishing, non-frequent fishing, and licensed households, for instance, and random samples taken from each strata. Sampling should also give an indication of the licensed fishermen as they also exploit part of the fishing grounds. Catch information on other licensed fishermen who are not residents of the village but have the permit to fish in the area would also be necessary if the objective is to estimate total removal from the fishing area.

Samples that have missing information are a loss therefore consistency in the data recording system needs to be ensured. It is natural some households will have problems
in remembering their catch amounts and species composition. Therefore if it is realised during the survey that one sample is not fully representative, it should be discarded and a replacement sample taken. However, care must be taken that this strategy does not create a bias in the sampling. For example, discarding households that cannot remember their catch because they are infrequent fishers might result in only frequently fishing households being sampled.

Effectiveness of the field operations will directly affect the quality of the collected data. The quality of the data will affect its utility and statistical reliability. “The backbone of a fishery survey is the field team of data recorders and their supervisors who form the primary interface between fishers and fisheries management” (FAO 2000). It is important that the data recorders should have a good understanding of the purpose and the utility of the survey. To ensure this thorough training and re-training of data collectors would be required. Workshops and training courses concerning aspects of data recording would ensure positive contribution to survey planning and the revision of the survey design (FAO 2000).

The UVC survey and the socio-economic survey highly complement each other as they normally target the same fishing area. Given the biomass estimate from the UVC data and the catch estimate from the socio-economic data, would give some indication of fishing mortalities of the different species;

\[
F = \frac{C}{B}
\]

An example has been set up in Excel which exemplifies how a typical UVC data set can be explored and analysed [Source: Kolding (2006) and Hjörleifsson (2006)]
12. Bibliography

Bell J.D. Ratner, B.D. Stobutzki, I., Oliver, J. 2006. Addressing the coral reef crisis in the developing countries. *Ocean & Coastal Management* (49): 976–985

Haddon, M. *Stratified random survey design*. University of Sydney. (Unpublished)

Hjörleifsson, E. 2006. *Fisheries Statistics and Stock Assessment Training, Fiji. Lecture Notes and exercises*

Pauly, D., David, N. 1981. ELEFAN 1, a BASIC program for the objective extraction of growth parameters from length-frequency data. *Meeresforsch,* (28): 205-211.

