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Abstract: In this work, we decided to apply a hierarchical weighted decision, proposed 

and used in other research fields, for the recognition of gait phases. The developed and 

validated novel distributed classifier is based on hierarchical weighted decision from 

outputs of scalar Hidden Markov Models (HMM) applied to angular velocities of foot, 

shank, and thigh. The angular velocities of ten healthy subjects were acquired via three  

uni-axial gyroscopes embedded in inertial measurement units (IMUs) during one walking 

task, repeated three times, on a treadmill. After validating the novel distributed classifier and 

scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, 

classifiers were compared for sensitivity, specificity, and computational load for all 

combinations of the three targeted anatomical segments. Moreover, the performance of the 

novel distributed classifier in the estimation of gait variability in terms of mean time and 

coefficient of variation was evaluated. The highest values of specificity and sensitivity 

(>0.98) for the three classifiers examined here were obtained when the angular velocity of 

the foot was processed. Distributed and vectorial classifiers reached acceptable values 

(>0.95) when the angular velocity of shank and thigh were analyzed. Distributed and scalar 
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classifiers showed values of computational load about 100 times lower than the one 

obtained with the vectorial classifier. In addition, distributed classifiers showed an 

excellent reliability for the evaluation of mean time and a good/excellent reliability for the 

coefficient of variation. In conclusion, due to the better performance and the small value of 

computational load, the here proposed novel distributed classifier can be implemented in 

the real-time application of gait phases recognition, such as to evaluate gait variability in 

patients or to control active orthoses for the recovery of mobility of lower limb joints. 

Keywords: gait detection; Hidden Markov Models; hierarchical decision; distributed 

classifier; wearable sensor network; gyroscopes 

 

1. Introduction 

The identification of events and phases in the human gait is an essential starting point for:  

(i) assessing the degree of recovery in walking ability in patients after interventions or rehabilitation 

treatments [1,2]; (ii) classifying the activity of daily living, including the overall health status of 

individuals [3,4]; and (iii) controlling synchronously active orthoses and exoskeletons for the recovery 

of lower limb mobility [5].  

Several approaches and technologies have been developed in order to detect gait phases. Motion 

capture systems based on marker tracking and six-component force platforms still represent the gold 

standard for extracting gait patterns [6–10]. Alternatively, the detection of human motion can be 

evaluated by means of self-contained wearable systems, which do not rely on camera-based systems 

and can be also used outdoors for continuous data logging. The most used sensors are: wireless 

pressure sensing shoe insoles [11,12], shoe-mounted foot switches [13], smart textiles [14], 

accelerometers [15], gyroscopes [5,16,17], and the composite inertial measurement unit system  

IMU [18,19]. The cited references represent a few of the numerous works available in the literature. 

Computational methodologies for gait phase detection fall into two major categories. Firstly, the 

post-processing analysis uses algorithms which partition the gait phases through the threshold selection 

of raw data [20–22]. Secondly, the procedure is based on matching-learning schemes which extract 

patterns on the basis of Support Vector Machines (SVM) [23], Linear Discriminant Analysis  

(LDA) [24], Gaussian Mixture Model (GMM) [25], and, finally, Hidden Markov Model  

(HMM) [5,16,26,27]; this procedure recently received a great deal of interest for its potential better 

performance. From a comparative examination of the matching-learning schemes, Mannini and 

Sabatini [26] have shown higher performance for HMM than SVM, GMM, and LDA in the 

recognition of seven different motor activities, using a classification method based on the analysis of 

outputs from four tri-axial linear accelerometers placed on hip, wrist, ankle, and thigh. The authors 

demonstrated that HMM is characterized by the highest values of accuracy, sensitivity and specificity. 

Abaid et al. [5] proved the applicability of a scalar HMM based on data from a uni-axial gyroscope to 

control powered orthoses worn by children, testing the HMM both in either normally developed 

children or children with hemiplegia. The algorithm proposed by the authors showed a sensitivity and 

specificity higher than 0.95 in the detection of gait phases.  
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In the case of a sensor network, hierarchical classifiers based on data-fusion processing were 

implemented after matching-learning algorithms in order to improve the performance [28] and 

robustness [29] of the classifiers. Kittler and colleagues [30] examined two methods of post-processing 

data based on the implementation of a hierarchical classification: Hierarchical Decision (HD) and 

Majority Voting (MV). The HD is based on giving more importance to the simple classifiers and then 

letting them decide first, due to their overall better performance. In the MV, however, the same 

opportunity is given to all the classifiers and the final decision is the one which obtains more votes. 

Briefly, the main limitations are: the HD is used only with a few decision classifiers; the MW is 

dependent on the effects of noisy environments, where a minority of high-accuracy decision entities 

can be hidden by a majority of weak-decision ones [28]. To overcome the above-mentioned 

limitations, several studies, in different research fields [28,31–35], introduced a Hierarchical Weighted 

Decision (HWD). HWD gives to all the entities the opportunity to collaborate in the decision making, 

while ranking the relative importance of each decision through the use of weights based on the 

individual performance of each entity. In particular, Banos et al. [28] demonstrated that the use of a 

hierarchical weighted decision allows to take the right decision in more cases with respect to HD and 

MV. However, this technique has not been applied, to the authors’ knowledge, to detect gait phases.  

From this perspective, we propose a novel HWD algorithm, called “Distributed Classifier” (DC), 

for the detection of gait phases in real-time applications. DC is based on the processing, by means of 

HMM, of two or more outputs gathered by uni-axial gyroscopes placed on different body segments of 

lower limbs. The goals of this study are two-fold. Firstly, we seek to answer the question of whether 

the DC can be used to detect gait phases. Secondly, we investigate whether the DC can be 

implemented in real-time applications, such as the control of active orthoses for the recovery of the 

mobility of lower limb joints. To validate the novel classifier we computed sensitivity, specificity and 

computational load and comparatively examined them with the values obtained with two classifiers 

based on scalar (SC) and vectorial (VC) HMM [36] that were already proposed and validated in  

gait detection.  

2. Material and Methods 

2.1. Theoretical Approach 

In the present work, a new gait phase distributed classifier (DC), based on a Hidden Markov Model 

(HMM), is analyzed. In order to describe the DC, a short description of the scalar and vectorial HMM 

classifiers (SC and VC, respectively) follows. 

2.1.1. Hidden Markov Model 

HMM is a powerful statistical model for classification of time series [37,38]. HMM is defined as a 

doubly embedded stochastic process with an underlying process that is not observable, i.e., it is hidden. 

The hidden process can only be observed through another set of stochastic processes that produce the 

sequence of observations [36]. 

The set of the Q model states, and the set of the actual N model states as a function of time  

are, respectively: 
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 (1)

The observation Y at time tn is the vector of M acquired signals which are emitted by the current 

state output at time tn. The vector Y is: 

 (2)

HMM can be written as a set λ of three parameters A, B, and π:  

 (3)

where: 

• A is the probability distribution matrix of the state transitions: 

 
(4)

• B is the probability distribution matrix associated with the M-size set of the Y observations at 
the state Si: 

(5)

Moving to a continuous HMM (cHMM), the previous probability can be computed hypothesizing a 

normal distribution:  

 
(6)

where  is, for each state j, a mixture coefficient, weighting K multivariate normal distributions N, 

with mean  and covariance matrix expressed by . 

• π is the initial state vector distribution: 
(7)

The use of a cHMM as a feature classifier requires the two following phases. The first phase 

consists in the collection of a training data-set for the computation of the model parameters λ. The 

Baum-Welch algorithm [36], which is popular for tackling this problem, is used in the present paper. 

The second phase, based on the results obtained during the first phase, allows feature classification. 

The Viterbi algorithm is the best candidate for the classification and we adopted a “forward-only” 

modification of this method to obtain real-time processing [5]. The “forward-only” is applied to each 
signal in order to find the l-th state of likely sequence 
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• Likely sequence 

( )arg max
n nt tl iγ =    (10)

2.1.2. Scalar (SC) and Vectorial Classifiers (VC) 

Gait cycle is generally divided in four gait phases, Flat Foot, Heel Off, Swing, and Heel Strike, 

which represent the hidden states of here adopted cHMM [5,16]; in normal gait, walking phases occur 

following the above-reported sequence. State transitions follow a left-right model and, consequently, 

transition matrix A, implemented in the present study, is [5]:  

 

(11)

Since transitions are very quick with respect to the gait cycle, they are less frequent in the current 

state sequence; thus, diagonal elements assume higher values than the others [13] and in Figure 1 the 

possible transitions among gait phases are reported. 

Figure 1. Possible transitions (aij) among four states of cHMM (Si) according to a left-right model. 

 
 

Because the initial state of the model at time t0 is not known, its distribution can be chosen as:  

 

(12)

This means that each state has the same probability of being the first in a state sequence. 

The VC is based on a multivariate Normal distribution: 

 
(13)

where at a given time : 

•  is the observation value [1 × M]; 

•  is the vector of mean values [1 × M];  

•  is the covariance matrix [M × M]. 
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When cHMM is applied to one signal (M = 1), the VC is coincident with the SC. SC is based on a 

univariate Normal distribution and the Equation (13) can be rewritten as: 

 

(14)

where at a given time ,  is the standard deviation. 

By applying the “forward-only” algorithm proposed by Abaid et al. [5] to SC and VC, two 
parameters are calculated: (i) the most likely sequence of states (  and ), composed of each 

likely state at time ; (ii) the probability associated at each l-th state (  and ). 

2.1.3. Distributed Classifier (DC) 

The novel contribution of the present study is the implementation of a new algorithm to detect gait 

phases based on a distributed stochastic model and on a hierarchical-weighted classification. The 
algorithm, as shown in Figure 2, is based on the processing of each  simultaneously obtained from 

more than one sensor in order to obtain the final likely sequence of states .  

Figure 2. Logical diagram of Scalar Classifier SC, Vectorial Classifier VC and Distributed 

Classifier DC. 
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Taking into account a number of signals equal to M, for each time and each signal m, the DC 

compares each state  following the above if-structure: 

If 

 (15)

then 

 (16)

Conversely, if at least a disagreement is found at , for each m signal, a new probability  is 

calculated by the introduction of a distributed transition matrix : 

 (17)

Then,  is equal to  which is obtained by the m-th signal characterized by the 

maximum value of .  

By means of the repetition of the if-structure for each t, the final likely sequence of states  can 

be individuated. The performance of the algorithm is strictly related to the choice of the distributed 

transition matrix  implemented in the distributed classifier.  

2.2. Experimental Procedure 

Ten healthy subjects (26.2 ± 23.1 years), who had no known gait or other pathologies influencing 

their walking patterns, were enrolled in this study at the Movement Analysis and Robotics Laboratory 

(MARlab) of the Bambino Gesù Children’s Hospital. Informed consent, in written form, was obtained 

from the participants. The Research Ethics and Medical Board of the Bambino Gesù Children’s 

Hospital approved the experimental protocol. The protocol conforms to the ethical standards outlined 

in the 1964 Declaration of Helsinki. 

The participants’ left lower limb was equipped with three Inertial Measurement Units (XBus 

Master, Xsens Technologies, The Netherland) on foot, shank, and thigh, as reported in Figure 3, and 

four footswitch sensors (Footswitch FSR sensors, Wave Cometa, Italy) on the foot sole, at the toe, at 

the heel and at the first and fifth metatarsophalangeal articulations, as reported in Figure 3b. As regards 

the IMU system, only the outputs of gyroscopes were used for the post-processing. 

Since only gyroscope data were acquired from IMU sensors, no particular procedure was needed for 

Kalman filter stabilization in order to limit the effects induced by indoor magnetic distortions [39]. An 

operator precisely positioned the sensors on the subject, by aligning one of their sensible axes with the 

sagittal axis of each body segment. This alignment methods is easier to be performed than a functional 

calibration procedure [40–42] and it gives better results when only one axis for each sensor has to be 

taken into account. Thus, we decided to use the manual alignment because we analyzed only the 

sagittal component of angular velocity. 

Sagittal angular velocities of the three body segments were captured through the tri-axial gyroscope 

into each IMU at a frequency of 60 Hz, while the actual sequence of gait phases was captured by 

means of foot switches at a frequency of 2 kHz.  
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Figure 3. (a) Position of IMUs on participants’ left lower limb; (b) position of foot 

switches (1: toe, 2: fifth metatarsophalangeal, 3: first metatarsophalangeal, and 4: heel). 

(a) (b) 

 

Participants were asked to perform a walking task on a treadmill for at least 120 s at their preferred 

speed, in the range of 0.5–1.5 m/s; this range was chosen to guarantee a normal pace and prevent 

fatigue [43]. Each subject self-selected the preferred velocity by walking on the treadmill during a 

preliminary session before the walking task. The mean value of the chosen treadmill speed was  

0.81 ± 0.08 m/s for all the subjects involved in the study. The actual data acquisition began five 

seconds after reaching the speed chosen by the subject and ended five seconds before the turning off of 

the treadmill to prevent acquisition during the transient state. The task was repeated three times. 

Between trials, the subject remained on the treadmill in standing position. The entire experiment, 

including instrumentation, walking tasks, and de-instrumentation, was completed within one hour by 

all participants. All participants completed the tasks without expressing fatigue. 

2.3. Data Processing 

Data processing and data analysis were performed using MATLAB software (MathWorks, Natick, 

MA, USA) and a Sony Vaio with Windows 7 Home Premium 64 bit (IntelCore i5 2410 M,  

CPU@2.30 Ghz, Minato, TKY, Japan). Each gait cycle was subdivided into four phases, which were 

used as the states of cHMM: Flat Foot, Heel Off, Swing, and Heel Strike. In particular, Flat Foot 

corresponds to the state where the foot sole is in contact with the floor; during the Heel Off phase the 

heel is not in contact with the floor; Swing occurs when the foot is in the air; Heel Strike corresponds 

to the state where only the heel is in contact with the floor. Each phase has been recognized by means 

of the identification of which foot switches were activated such as reported in Figure 4.  

The output of the gyroscopes, which represents the observation Y of cHMM, was, firstly, treated 

with a low-pass Butterworth filter with 15 Hz cut-off frequency, and then partitioned into the four gait 

phases by means of the foot switch data [5]. After the normalization of the time length of each phase, 

mean and standard deviation of the angular velocities were calculated and used to train parameters of 
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cHMM, according to the Baum-Welch algorithm. In Figure 5 the paradigmatic angular velocities of 

foot, shank and thigh are reported for one subject. 

Figure 4. Combination of active foot switches, marked with X, to detect gait phases. 

 

Figure 5. Participant #1: Mean and standard deviation of angular velocity of foot (red), 

shank (green) and thigh (black) partitioned into the four gait phases (S1: Flat Foot, S2: Heel 

Off, S3: Swing, S4: Hell Strike). 

 
 

For each subject, a leave-one-out cross-validation analysis was applied to the three walking trials to 

validate cHMM in a recursive manner. Specifically, the model was trained by two trials, and the 

remaining one was used as the validation data. The procedure was repeated for all trials in turn [16]. 

After the data validation procedure, we obtained the likely state sequences LSC, LVC, and LDC for the 

three here examined classifiers. We chose a leave-one-out cross-validation because it is a model 

validation technique frequently used to estimate the generalization and capabilities of a classifier [44]. 

2.4. Data Analysis 

The choice of the number of sensors and the body segments where the sensors were placed-foot (f), 

shank (s), and thigh (t)-allowed us to compare the performance of 11 classifiers: a cluster of three 

Scalar Classifiers (SCf, SCs, and SCt); a cluster of four Vectorial Classifiers (VCfs, VCft, VCst, and 

VCfst); and finally, a cluster of four Distributed Classifiers (DCfs, DCft, DCst, and DCfst).  
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We computed True Positive Rate (TPR) and True Negative Rate (TNR) relative to each of the three 

classifiers here examined, assuming the foot switch signals as a reference [5,16]. TPR and TNR 

represent the sensitivity and specificity of the classifier in the detection of gait phases. In particular, the 

phase transitions that are similarly detected by classifier and reference signal were considered as a 

True Positive, otherwise they were considered as a False Positive. The non-transitions that are 

similarly detected by classifier and reference signal were considered as a True Negative, otherwise as a 

False Negative. TPR and TNR are defined as: 

 (18)

 
(19)

Both indices were calculated using a tolerance window of 60 ms centered at each time step [5,45].  

To estimate the weight of each sensor in the hierarchical classification of Distributed Classifier DC, 

a Decision Index was calculated. It represents how many times each sensor took the final decision in 

DC and it was expressed as a percentage of the total number of possible decisions. Decision Index was 

calculated for the four combinations of DC and for all subjects, then mean and standard deviation 

values were calculated. 

To estimate the time processing required for each classifier in order to recognize the gait phases, the 

Computational Load was calculated as the time spent by each classifier to estimate a state Si of the 

state sequence. Computational Load was calculated for all the classifiers and for all subjects, 

consequently mean and standard deviation values were calculated.  

To estimate the performance of DCs to evaluate the gait variability, we calculated Mean Time (MT) 

and Coefficient of Variation (CoV) of stride and of each gait phase. For the computation of the 

previous two indices, firstly the sequences of state, which are the outputs of DCs, were partitioned into 

the corresponding gait phases, then mean (MT) and standard deviation (std) of stride time and of each 

phase duration were evaluated for each walking task and for each subject. CoV [46] is defined as: 

std
100 [%]CoV

MT
= ×  (20)

MT and CoV were also calculated for the reference signal (FSR) in order to compare them with the 

ones obtained from DCs. 

2.5. Statistical Analysis 

All data were tested for normality with the Shapiro-Wilk test. One-way ANOVA tests were 

conducted in order to find noteworthy differences among the 11 classifiers both for TPR and TNR. 

Differences among FSR and DCs in the evaluation of MT and CoV were also analyzed with one-way 

ANOVA tests. Statistical difference was set at 0.05. When significant differences were found, a 

Bonferroni’s test for multiple comparisons was performed. Furthermore, to evaluate reliability  

Intra-class Correlation Coefficients (ICC) for MT and CoV were calculated. In accordance with 

literature [47], values in the range 0.0–0.4 were considered poor, 0.40–0.59 fair, 0.60–0.74 good, and 

0.75–1.00 to be excellent.  

True Positive

True Positive False Negative
TPR =

+
True Negative

False Positive True Negative
TNR =

+
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The software package SPSS (IBM-SPSS Inc., Armonk, NY, USA) was used. 

2.6. Preliminary Study for the Choice of the Matrix ADC 

The selection of the distributed transition matrix ADC (Equation (17)) is crucial for the validation of 

the novel distributed classifier. The best ADC was chosen testing two different matrices. Firstly, we 
implemented a left-right model [36], where  can be written as: 

 

(21)

Secondly, we tested a matrix  characterized by the possibility of passing from the current state 

to the previous one. This matrix, defined as Right-Left-Right, could be useful in the case where, due to 

a not negligible sensor noise, the actual state is misclassified and addressed as the following one. At 

the successive step of the algorithm, a simple left-right matrix  would not allow going backwards, 

and, consequently, it determines a misclassification of the algorithm until the same transition phase in 

the next gait cycle occurs. A Right-Left-Right model can be written as: 

 

(22)

Values of probability p between 0.07 and 0.09 in steps of 0.02 were tested on data acquired from all 

subjects for the two above reported matrices. TPR and TNR were evaluated both for  and for 

 to find the best distributed matrix that can be implemented in the distributed classifier. In  

Figure 6, TPR and TNR values evaluated for matrices and  are represented. 

TPR and TNR assume similar values in the range of tested p both for  and . Performing 

the comparison between matrices implemented in DCst, DCfs, and DCfst, TPR, and TNR for  reach 

lower values than one evaluated by means of  of about 6%. The observed differences are caused 

by the noise, which implies a misclassification of DCs. The matrix  can be implemented in place 

of  only when the sensors placed on foot and thigh are used (DCft). Therefore, for the application 

of experimental protocol, any value of p included between 0.7 and 0.9 can be utilized; in particular we 

chose, from Equation (22), the following matrix: 

(23)
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Figure 6. Values of True Positive Rate (TPR) and True Negative Rate (TNR) evaluated for 
ADC

 LR and A
DC 
RLR as a function of p values for the four combinations of DC. 

 

3. Results 

In Table 1 mean and standard deviation values of TPR and TNR, as well as statistical differences  

(p < 0.05) are reported for all tested combinations of the three classifiers here examined. 

With regards to the Scalar Classifiers, statistical differences among all SCs were found; in 

particular,  and  showed the highest values, while  and  showed the 

lowest. Regarding the Vectorial Classifiers, although  and  values were high, i.e., 0.97 

fSC
TPR fSC

TNR tSC
TPR tSC

TNR

stVC
TPR stVC

TNR
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and 0.96 respectively, they were statistically lower than the ones measured with the other Vectorial 
Classifiers. Moreover,  and  showed maximum values, but they were not statistically 

different from ones evaluated with VCfs and VCft. Taking into account the Distributed Classifiers, 

 and  were statistically lower than the same parameters evaluated with the other DC. 

Moreover, DCfs and DCfst showed higher values of specificity and sensitivity that were not statistically 

different from the ones evaluated with DCft. Analyzing the three classifiers together, both parameters 

evaluated with SCs and SCt were statistically different from ones obtained with all other combinations 

of VC and DC. On the contrary,  and  did not show any differences comparing them 

with specificity and sensitivity measured with all combinations of VC and DC. Moreover, for each 
combination of sensors,  and  were not statistically different from  and . 

Table 1. Means, standard deviations of True Positive Rate (TPR) and True Negative Rate 

(TNR), and statistical differences for all combinations of Scalar Classifier (SC), Vectorial 

Classifier (VC), and Distributed Classifier (DC). “All” indicates statistically significant 

differences between the specific algorithm and the others. 

Algorithm 
TPR TNR 

Mean (std) Differences Mean (std) Differences 

SCf  0.98 (0.01) SCs, SCt 0.98 (0.02) SCs, SCt 
SCs 0.94 (0.01) All 0.93 (0.02) All 
SCt  0.83 (0.01) All 0.77 (0.01) All 

VCfs 0.99 (0.01) SCs, SCt, VCst, DCst 0.98 (0.01) SCs, SCt ,VCst, DCst 
VCft  0.98 (0.01) SCs, SCt 0.98 (0.02) SCs, SCt 
VCst  0.97 (0.01) SCs, SCt, VCfs, VCft, VCfst 0.96 (0.02) SCs, SCt, VCfs, VCft, VCfst 
VCfst  0.99 (0.01) SCs, SCt, VCst, DCst 0.99 (0.01) SCs, SCt, VCst, DCst 

DCfs  0.99 (0.01) SCs, SCt, DCst 0.98 (0.01) SCs, SCt, DCst 
DCft  0.98 (0.01) SCs, SCt 0.98 (0.02) SCs, SCt 
DCst  0.96 (0.02) SCs, SCt, VCfs, VCfst, DCfst, DCfs 0.95 (0.02) SCs, SCt, VCfs, VCfst, DCfst, DCfs 
DCfst  0.99 (0.01) SCs, SCt, DCst 0.98 (0.01) SCs, SCt, DCst 

 

Table 2 shows Decision Index values calculated for all Distributed Classifiers. The value of 

Decision Index measured for the thigh is 0.00% for DCft and DCfst and this means that the sensor 

placed on the thigh did not take part in the decision-making process. The sensor on the foot, in all 

combinations in which it was present, made the decision in most cases. In the absence of the sensor 

placed on foot, i.e., DCst, the final decision was made mainly by the sensor placed on the shank. 

In Table 3 values of Computational Load are reported. The results showed that all DCs did not 

present any difference with respect to Computational Load values evaluated with all SCs; moreover, 

VCs showed the highest values of Computational Load that appeared to be on the order of about 102 

larger than the others. 
  

fstVC
TPR fstVC

TNR

stDC
TPR stDC

TNR

fSC
TPR fSC

TNR

VCTPR VCTNR DCTPR DCTNR
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Table 2. Means, standard deviations of Decision Index for all of combinations of Distributed 

Classifier (DC). 

Body Segment 
Decision Index (%) 

DCfs DCft DCst DCfst 

Foot 85.45 (2.35) 100.00 (0.00) / 85.45 (2.35) 
Shank 14.55 (2.35) / 76.97 (1.55) 14.55 (2.50) 
Thigh / 0.00 (0.00) 23.03 (1.55) 0.00 (0.00) 

Table 3. Means of Computational Load. 

Classifier Computational Load (s) 

SCf, SCs, SCt 0.009 
VCfs, VCft, VCst 0.147 

VCfst 0.254 
DCfs, DCft, DCst 0.009 

DCfst 0.009 

Figure 7. (a) Mean Time (MT) and (b) Coefficient of Variation (CoV) evaluated for stride 

and each gait phase for FSR and DCs. “*” indicates statistically significant differences. 

(a) (b) 

 

In Figure 7 mean and standard deviation of MT and CoV for stride and each gait phase as well as 

statistical differences (p < 0.05) are reported for FSR and DCs. As regards MT no statistically 

significant differences were observed among DCs and FSR. DCs and FSR detected a Stride MT equal 

to 1.60 ± 0.13 s; in particular MT assumes the lowest values for Heel Strike and the highest ones for 

the Flat Foot/Swing. Taking into account CoV, significant differences were found in the evaluation of 

Heel Strike CoV between DCst and FSR, DCfs, and DCfst. In the Stride and in the other gait phases no 

statistically significant differences were found among FSR and DCs. In particular, Heel Strike CoV 
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reached higher values (always higher than 19%), while Stride CoV assumed lower values (always less 

than 3%).  

In Table 4, values of ICC for MT and CoV are reported. The results showed that ICC for MT was 

always more than 0.97, while ICC for CoV reached lower values, but always in the range of good or 

excellent reliability. 

Table 4. Values of ICC for Mean Time (MT) and Coefficient of Variation (CoV) evaluated 

for stride and each gait phase for FSR and DCs. 

 Reference and 
Classifier 

ICC 

Index Flat Foot Heel Off Swing Heel Strike Stride 

MT 

FSR 0.99 0.99 0.99 0.97 0.99 
DCfs 0.99 0.99 0.99 0.96 0.99 
DCft 0.99 0.99 0.99 0.97 0.99 
DCst 0.99 0.99 0.99 0.97 0.99 
DCfst 0.99 0.99 0.99 0.96 0.99 

CoV 

FSR 0.94 0.75 0.76 0.75 0.75 
DCfs 0.94 0.75 0.72 0.74 0.75 
DCft 0.91 0.71 0.74 0.74 0.72 
DCst 0.96 0.76 0.79 0.79 0.79 
DCfst 0.94 0.75 0.72 0.74 0.75 

  Poor  Fair  Good  Excellent 

4. Discussions 

4.1. Scalar Classifier 

SC shows the best performance when the sensor has been placed on the foot (SCf). This reflects the 

conclusion of Abaid et colleagues [5], in which authors stated that the classifier based on the angular 

velocity of the foot is sufficient for the identification of gait phases in comparison with the other scalar 

classifiers. In reality, SCs could be also used, even though this would lead to a decrease in sensitivity 

and specificity performance of about 4%, which limits use when the highest accuracy is required. In 

addition, SCt achieves performance significantly lower than others, and in particular small value of 

specificity causes an increase of the detection of false transitions; it implies a shorter duration for each 

gait phase with an increase in the number of continuous transitions among states.  

When the classifier is implemented to control gait phases in active orthoses, as also reported by 

Abaid et al. [5], the detection of false transition could determine an incorrect actuator control, causing 

lack of synchrony between the patient's needs and the assistance offered by the device. In fact, active 

orthoses for ankle rehabilitation are designed to assist impaired gait by providing assistance at the 

beginning of propulsion phase, i.e., the end of Flat Foot, and by supporting the foot in the middle and 

at the end of swing phase to prevent the drop-foot [48–50]. This means that low values of specificity 

would provide wrong information on the actual gait phases and, consequently, a not-suitable assistance 

to patients. The significant differences among the three scalar classifiers is due to the variability of 

angular velocity of foot, shank and thigh. As reported in Figure 5, the angular velocity of each body 

segment shows different variability related to each gait phase. From an examination of the figure, it 
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emerges that the angular velocity of the foot presents, unlike the others, the greatest differences 

between gyroscope signal patterns in the four phases, as also reported in [16]. In order to detect gait 

phases, it is sufficient to train cHMM only once with the subject instrumented with FSRsfoot switches, 

and then the classifier based on gyro signals of the foot is able to detect gait phases in post-processing 

without any kind of operator intervention. Conversely, training process is not sufficient for gyros 

applied on the shank and the thigh, which cannot be used as classifiers for gait detection, due to high 

possibility of detecting false transitions. 

In conclusion, SCf is the only combination among SCs usable as classifier to detect gait phases with 

acceptable performance. 

4.2. Vectorial Classifier 

As regards the vectorial classifiers, the highest values of TPR and TNR are reached using all sensors 

placed on the lower limb (VCfst). Moreover, these values are comparable with the sensitivity and 

specificity obtained with VCs based on two sensors where one is placed on the foot, i.e., VCfs and 

VCft. It implies that, when a gyroscope is mounted on the foot, the increase in performance due to the 

utilization of the third sensor can be considered negligible. Despite the fact that the angular velocities 

of shank and thigh are less variable during gait, VCst provides values higher than 0.96 for both 

parameters. This implies that, in the absence of the contribution of a sensor placed on the foot, the two 

angular velocities can train the parameters of cHMM to recognize gait phases, providing performance 

comparable to those obtained with the other VCs.  

In conclusion, all of VCs can be considered as classifiers when gait recognition is required. 

4.3. Distributed Classifier 

Comparing the performance of all DCs, it appears that DCst is the worst classifier in terms of 

sensitivity and specificity although its values are always higher than 0.95%. This implies that the lack 

of information relating to the angular velocity of foot causes a decrease in performance, but the values 

of TPR and TNR remain acceptable for robust gait detection. In addition, the performance of DCfs are 

the same as the ones obtained with DCfst; this implies that the sensor place on the thigh never took the 

decision in the DCfst algorithm. It is also confirmed by the Decision Index of foot and shank, which 

assume the same values for DCfs and DCfst and the Decision Index of thigh that is always equal to zero 

in DCfst. Actually, the Decision Index reflects the level of variability of the measured angular 

velocities. In fact, the probability associated at the states estimated with angular velocity of foot is 

always higher than the one estimated with other sensors. The sensor on the thigh takes part in decisions 

only when the sensor on the foot is not connected. As also reported for VCst, the small variability of 

angular velocity of the thigh makes its decision possible only in DCst.  

In conclusion, all DCs can be taken into account as classifiers for gait detection. 

4.4. Comparison between SC, VC, and DC  

As regards the comparison between the SCs and VCs, the statistical differences among parameters 

evaluated with VCst, SCs and SCt, imply that, in the absence of the sensor placed on the foot, the use of 
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a VC is mandatory in order to reach the highest values of TPR and TNR. However, when the 

algorithms involve the use of the angular velocity of the foot, VCs do not significantly improve the 

capability of detecting gait phases compared with SCf; this result allows the utilization of a single 

sensor with respect to more complex configurations of sensors avoiding a further increase of 

computational complexity. 

Comparing DCs and SCs, statistical differences were found among each DC and both SCs and SCt. 

This implies that, as also reported in [28], the use of a hierarchical classification based on a data fusion 

procedure causes an improvement in performance with respect to the most parts of ones based on the 

analysis of a single signal. In particular, the main peculiarity of the use of a distributed classifier with 

respect to scalar ones is pinpointed when the performance of DCst are compared with those of both SCs 

and SCt; actually, when the foot is not sensorized, the fusion of the individual characteristics of scalar 

signals determines a significant increase of both TPR and TNR. This finding confirms that DC can be 

used as classifier for gait detection when the signal of foot angular velocity is not available. Moreover, 

in the presence of a sensor placed on the foot, DCs show the same behavior as VCs when they are 

compared with SCs. This implies that DCs can be considered useless for the detection of gait phases 

when almost a gyroscope is placed on foot. Examining DCft and SCf, it emerges that the two classifiers 

show the same values of specificity and sensitivity. This can be explained by analyzing the values of 

Decision Index for DCft, which is equal to zero for the sensor placed on the thigh. Therefore, only the 

sensor on the foot takes the final decision in the hierarchical algorithm based on thigh and foot sensors 

with the consequently coincident performances of SCf and DCft.  

Comparing the performance of VCs and DCs in terms of specificity and sensitivity, no significant 

difference was found between each combination of sensors. It confirms the quality of the novel 

distributed classifier that shows performance comparable with the vectorial one. However, taking into 

account the Computational Load parameter, it emerges that all of VCs are characterized by the highest 

values with respect to those of DC. Therefore, VCs show an increase of processing time mainly due to 

the evaluation of the multivariate probability distribution, which is computationally more demanding, 

during each step of cHMM. Thus, the high value of computational time determines the limitation of 

the use of VCs only in an off-line recognition of gait phases. Conversely, when a real-time detection of 

gait is required, only DCs can be considered as powerful classifiers since they show values of 

Computational Load of about 9 ms that are comparable with the ones obtainable with SCs. It is 

important to note that our findings related to Computational Load are dependent on the type of the 

chosen processor and software. 

DCs show performance comparable with VCs in terms of sensitivity and specificity, and 

computational loads equal to the ones calculated with SCs. The high values of sensitivity and 

specificity and the low value of processing time obtained with DCs can permit its implementation in 

the real-time control of active orthoses of knee, such as [51,52], in order to block the rotation of the 

joint during foot flat phase and to allow free motion during the swing phase [53]. Consequently, the 

implementation of the DC allows us to avoid the use of additional sensors mounted on the foot, 

simplifying the design of active orthoses for the recovery of knee mobility. By contrast, in case of 

active orthoses of the ankle, the cHMM applied to the angular velocities of the foot can be considered 

sufficient to correctly detect gait phases. 
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In conclusion, only the novel hierarchical algorithm herewith proposed can be useful to control the 

movement of active orthoses of the knee if the robotic devices are sensorized at the shank and thigh 

and not at the foot.  

 

4.5. Are DCs Reliable in Study of Gait Variability? 

The analysis of MT values related to Flat Foot, Heel Off, Swing and Heel Strike confirmed the 

results reported by Abaid et al. [5] as regards the percentage of time spent by each phase during the 

stride; in particular Heel Strike has the less duration, while Swing and Flat Foot are characterized by 

the highest time length. In the evaluation of MT, we found no statistically significant differences 

between all combinations of DC and FSR, this implies that MT values are comparable between DCs 

and FSR, agreeing to within a few percent. Moreover, the analysis of ICC confirms the excellent 

reliability of the novel distributed classifier in the evaluation of the gait variability based on MT.  

As regards the analysis of CoV, the Stride CoV was never higher than 3%, confirming values 

reported in literature, both for adults [54] and for children over 11 years old [46]. Furthermore CoV 

values for Stride and all gait phases decreased when the time length increased; it is in accordance to 

the findings of Liu et al. [55] where higher values of CoV were measured in gait phases of less 

duration. Differently from MT, we found statistically significant differences between DCst and FSR, 

DSfs and DCfst in the evaluation of Heel Strike CoV, while no differences were found between FSR and 

DCs in the other gait phases and in Stride. This outcome implies that in studies of gait variability, that 

required the analysis of CoV, DCs are comparable to FSR, except for the evaluation of Heel Strike 

CoV, in which DCst is not able to provide the same performance of other classifiers. This finding 

confirms that DCst is the worst classifier among DCs as also emerged from the outputs of the ANOVA 

tests applied to TPR and TNR. Even if we demonstrated that, in most cases, DCs are comparable to 

FSR, the error in the estimation of the likely state sequence of the novel distributed classifier could 

compromise the studies of gait variability based on CoV. In fact, the classification of false transitions 

or false non-transitions implies the identification of gait phases shorter or longer than the actual 

duration, with an increase of standard deviations and, consequently, of the CoV values. As regards the 

ICC analysis of CoV, no differences were found between the novel distributed classifiers and the 

reference measurement system even if the ICC values appeared to be lower than the ones evaluated for 

MT. Nevertheless, ICC values were in the range of good or excellent in all cases. This findings 

confirmed the lower reliability of CoV evaluation with respect to others time-variability parameters [56].  

In conclusion, considering the observed performance of DCs with reference to FSR, the novel 

algorithm could also represent a useful tool in identifying and quantifying gait variability also in a 

clinical perspective to select a patient specific treatment. 

5. Conclusions 

This study presents a novel gait detection algorithm based on hierarchical weighted decision, 

addressed as a Distributed Classifier, applied to process data generated by uni-axial gyroscopes. The 

innovation of the Distributed Classifier algorithm is on the implementation of a data-fusion procedure 

using the angular velocity signals of two or three gyroscopes placed on the lower limbs. Our findings 
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show that the here proposed and validated Distributed Classifier applied to each combination of 

gyroscopes can successfully detect gait phases with better performance when each DC has been 

compared with a Scalar Classifier of both shank and thigh. Furthermore, the performance of each DC 

can be considered similar to the ones obtainable with a Vectorial Classifier applied to the same signals; 

regardless VCs, DCs can, instead, also be implemented in the real-time application of gait phase 

recognition, such as the control of active orthoses for the recovery of the mobility of lower limb joints 

and in the quantification of gait variability.  
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