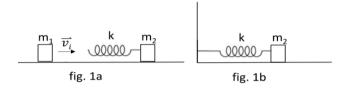
Esercizio 1

Un corpo di massa m₁ avanza con velocità di modulo v_i lungo un piano orizzontale liscio. Ad un certo punto urta contro un altro corpo fermo di massa m₂. Sul secondo corpo è attaccata una molla di costante elastica k e massa trascurabile (fig. 1a). Durante l'urto la molla si comprime e poi rimane bloccata, con i due corpi attaccati, quando raggiunge il punto di massima compressione.


Calcolare (considerando l'urto completamente anelastico):

- 1) la velocità finale dei due corpi (punti 2)
- 2) l'energia cinetica totale persa nell'urto (punti 2)
- 3) la compressione finale della molla (punti 3)

Consideriamo ora la molla attaccata da un' estremità ad una parete, e dall'altra alla massa m₂ appoggiata sul piano orizzontale (fig. 1b):

4) determinare la legge oraria di m_2 sapendo che all'istante t=0 essa parte da ferma con una compressione della molla pari a Δx_0 rispetto alla posizione di riposo.

Dati: $m_1 = 3 \text{ kg}$, $m_2 = 9 \text{ kg}$, k = 250 N/cm, $v_i = 12 \text{ m/s}$, $\Delta x_0 = 0.3 \text{ cm}$ (punti 3)

Esercizio 2

Una zattera è fatta da tavole di legno, ciascuna di lunghezza a, larghezza b e altezza h. Determinare:

- 1) quante tavole servono affinché la zattera galleggi immersa appena sotto il pelo dell'acqua se su di essa si poggia una massa m (punti 2)
- 2) quale frazione dell'altezza della zattera resta sotto il pelo dell'acqua quando la massa viene rimossa (**punti 3**) Dati: a = 2m, b = 1m, h = 20 cm, m = 160 kg, densità dell'acqua, ρ_A = 10³ kg/m³, densità del legno, ρ_L = 800 kg/m³.

Esercizio 3

Una palla di ferro bollente di massa m_P a temperatura T_P in un recipiente riempito con una massa m_A di acqua a una temperatura T_A .

a) di quanto aumenta la temperatura dell'acqua? (2 punti)

Consideriamo ora n moli di gas ideale che subiscono un ciclo di una macchina termica costituito da: $A \rightarrow B$ espansione isoterma a temperatura T_{AB} , $B \rightarrow C$ trasformazione isocora a volume V_{B} , $C \rightarrow D$ compressione isoterma a temperatura T_{CD} , $D \rightarrow A$ trasformazione isocora a volume V_{A}

- b) disegnare il ciclo nel diagramma PV (1 punto)
- c) il calore scambiato nel ciclo (2 punti)
- d) il rendimento della macchina (2 punti)

Esercizio 4

In una regione nello spazio A è presente un campo magnetico uniforme di intensità B diretto lungo la direzione z. Acceleriamo un protone da fermo usando una differenza di potenziale di ΔV prima che entri nella suddetta regione con velocità nella direzione y perpendicolare al campo magnetico.

- a) che tipo di traiettoria descrive il protone nella regione A e perché? (1 punti)
- b) calcolare il raggio r della traiettoria (2 punti)
- c) calcolare la velocità angolare (2 punti)
- d) quale sarebbe la differenza nella traiettoria se la particella incidente fosse un elettrone? (1 punti)
- e) affinché il protone mantenga la sua velocità e direzione quando entra nella regione A, quali dovrebbero essere la direzione e l'intensità di un campo elettrico esterno applicato? (2 punti)

Dati: B=2T, Δ V=-100V, mp=1.67x $\dot{1}0^{-27}$ Kg, q=1.602x $\dot{1}0^{-\dot{1}\dot{9}}$ C