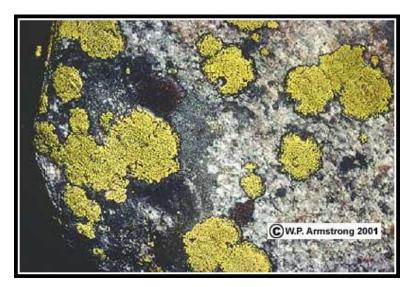
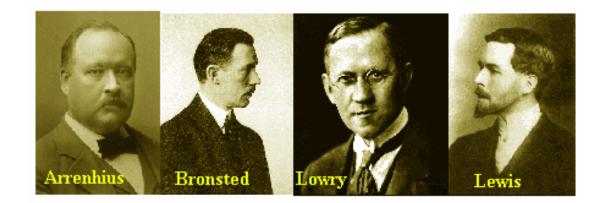
Robert Boyle 1680


"acids...substances able to turn to red the indicator paper and to react with bases being neutralised..."


Chrozophora tinctoria

2-hydroxyphenazine

What do you notice in this structure ?!

Roccella tinctoria so called tornasole

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

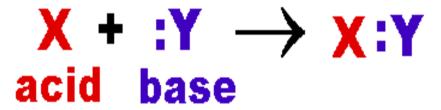
Acids & bases, definition

Arrhenius Theory (1883)

ACID: Produces H⁺ in Water **BASE: Produces OH**⁻ in Water

Bronsted/Lowry Theory (1923)

ACID: proton, H⁺ DONOR


BASE: proton, H⁺ ACCEPTOR

Lewis Theory (1938)

a more general acid base theory.

ACID: accepts pair of electrons for sharing

BASE: donates pair of electrons for sharing

OPERATIVE DEFINITIONS

generally,

- •an acid donates one (or more) H⁺ to an acceptor base
- •An acid accepts one (or more) *lone pair(s)* form a donor base
- •H⁺ is a very efficient *lone pair* acceptor
- •OH is avery efficient *lone pair(s)*3 of them) *donor*…!.

HCl is an acid, since it releases H⁺ (accepting a *lone pair*) NaOH is a base, since it releases OH⁻ (donating a *lone pair*)

Acid base reaction (most common)

HCl + NaOH

$$H^{+} + \stackrel{!}{\circ}H^{-} \longrightarrow H_{2}O$$
acid base product

$$\Delta G < 0 \approx -80 \text{ KJ/mol}$$

The calorie, again

1 cal raises by 1 °C (14.5 – 15.5) 1 g
$$H_2O$$

$$(p = 1 atm)$$

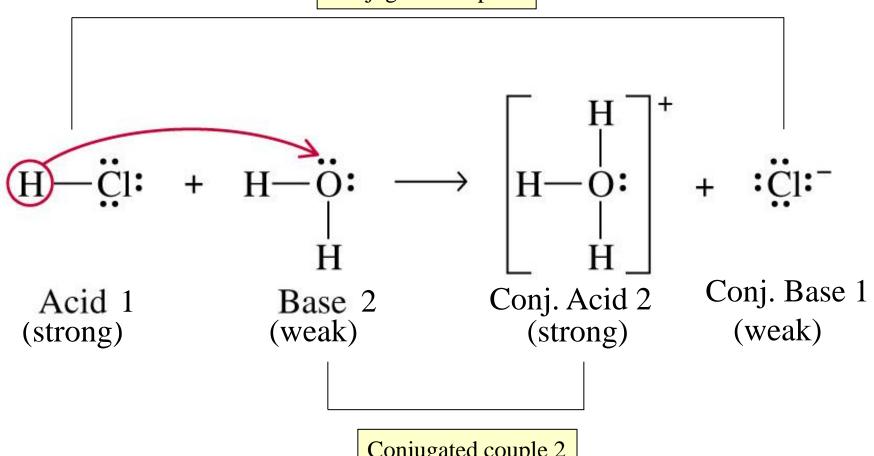
1 Kcal raises by 1 °C (14.5 – 15.5) 1 Kg H_2O

(p = 1 atm)

100 Kcal raise from 0 to 100 °C 1Kg H₂O

1 cal ~ 4.18 joules

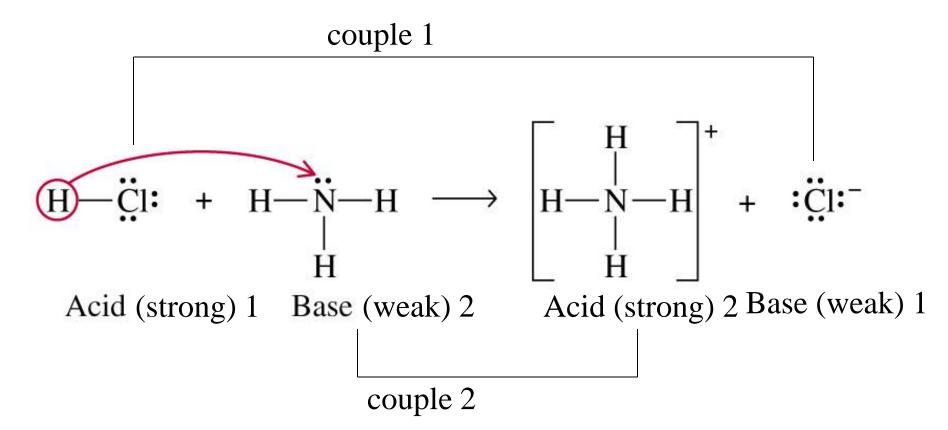
Acids e bases of biomedical interest


<u>ACIDI</u>			
HC1	ac cloridrico	forte	succo gastrico
HNO_3	ac nitrico	forte	caustico
H_2SO_4	ac solforico	forte	caustico
H_2SO_3	ac solforoso	forte	caustico
H_3PO_4	ac fosforico	debole	tampone sangue e liquidi biologici
H_3BO_3	ac borico	debole	antisettico superficie
H_2CO_3	ac carbonico	debole	tampone sangue e liquidi biologici
НСООН	ac formico	debole	capostipite ac carbossilici
CH ₃ COOH	ac acetico	debole	tampone laboratorio + <i>aceto</i>
BASI (IDROSSIDI)	<u> </u>		
NaOH	Id di sodio	forte	caustico (soda)
KOH	Id di potassio	forte	caustico (potassa)
Ca(OH) ₂	Id di calcio	forte	caustico
$Mg(OH)_2$	Id di magnesio	forte	caustico
$Al(OH)_3$	Id di alluminio	forte	caustico
NH ₃ .H ₂ O	ammoniaca	debole	coadiuvante detersione superfici
NH ₄ OH	Id di ammonio		

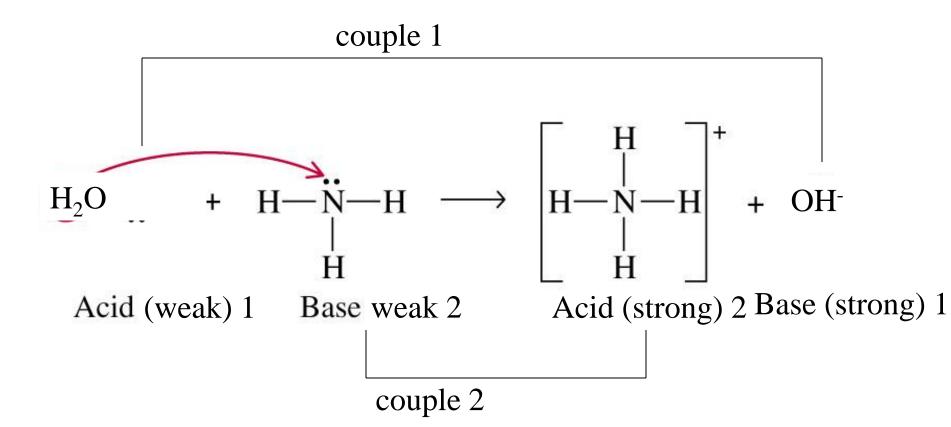
Acid-base conjugated couple (Brönsted & Lowry)

Acid base HCl
$$\longrightarrow$$
 H⁺ + Cl-
HCOOH \Longrightarrow H⁺ + HCOO-
NH⁴⁺ \Longrightarrow H⁺ + NH₃

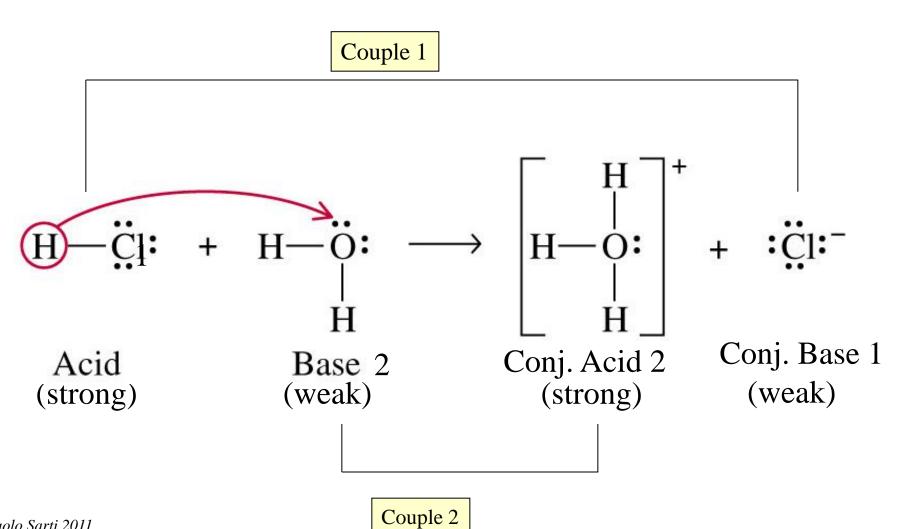
Acid-base reaction


Conjugated couple 1

Conjugated couple 2

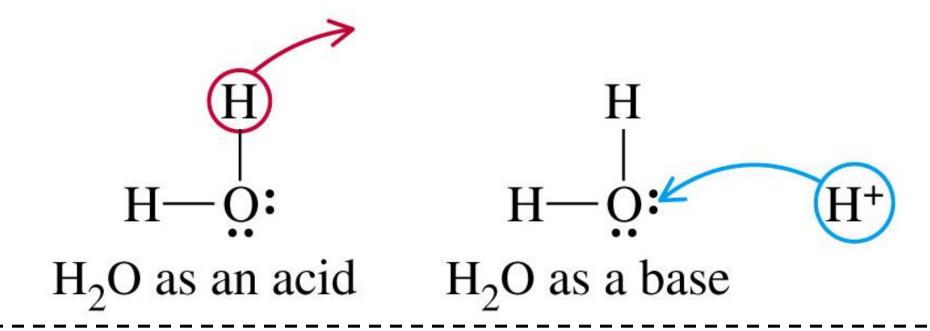

After H+ donation, the acid turns to the conjugated base while the base turns into the conjugated acid The cojugated species have opposite strength!

Acid-base Reaction → between cojugated couples



remember
Conjugated species have opposite strength!

H_2O as an acid (donating H+)



H_2O as a base (accepting H+)

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

The water molecule is ambivalent "amphoteric"

Water auto-protolysis

$$H_2O \rightleftharpoons H^+ + OH^ 2H_2O \rightleftharpoons H_3O^+ + OH^-$$

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

$$2 \text{ H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

$$[H_3O^+] [OH^-] (10^{-7}) (10^{-7})$$
 $Keq = ----- = 3.2 \times 10^{-18}$
 $[H_2O]^2 (55.5)^2$

To make it simpler!

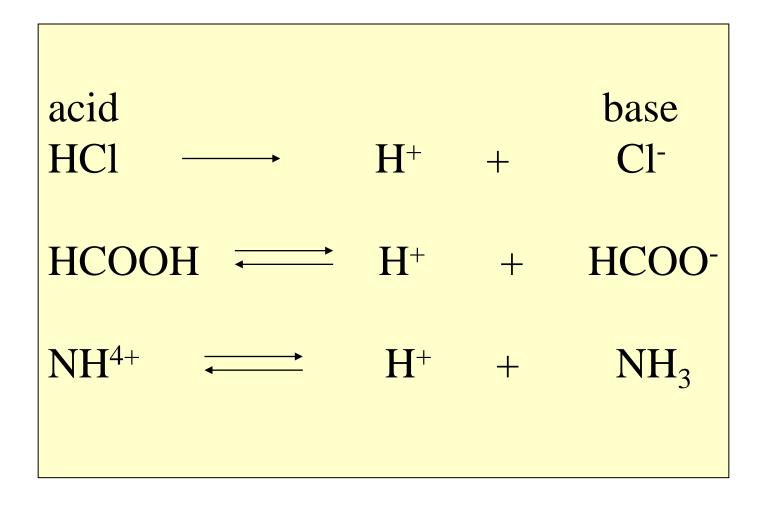
$$H_2O \stackrel{\longrightarrow}{\longleftarrow} H^+ + OH^-$$

$$[H^+] [OH^-]$$

$$Keq = -----$$

$$[H_2O]$$

continuing


$$H_2O \leftarrow H^+ + OH^-$$

$$[H^{+}] [OH^{-}]$$
 $10^{-7} 10^{-7}$ $10^{-7} I0^{-7}$ $10^{-10} I0^{-7} I0^{-7}$ $10^{-10} I0^{-7} I0^{-7}$ $10^{-10} I0^{-7} I0^{-7}$ $10^{-10} I0^{-7} I0^{-7}$ $10^{-7} I$

$$[H_2O] = 55.\overline{5} M$$
, costant!!

$$K_{eq} \times [H_2O] = [H^+][OH^-] = 10^{-14} = K_W(costant, at cost T)$$

ion product of water

Cojugated (acid-base) couples (Brönsted & Lowry)

strength of an acid/base in H₂O

Defined by the tendency to donate/accept H⁺

Es:

1) AH
$$+ H_2O \longrightarrow A^- + H_3O^+$$

2)
$$B^- + H_3O^+ \longrightarrow BH + H_2O$$

These are 2 equilibria

$$[A-] [H_3O^+]$$
 $Keq_1 = ---- [AH] [H_2O]$

$$[H_2O] \approx costant!$$

$$AH + H_{2}O \longrightarrow A^{-} + H_{3}O^{+}$$

$$Keq = \frac{[A^{-}] [H_{3}O^{+}]}{[AH] [H_{2}O]}$$

$$Keq \times [H_{2}O] = ---- = Ka$$

$$AH + H_{2}O \longrightarrow A^{-} + H_{3}O^{+}$$

$$[A^{-}] [H_{3}O^{+}]$$

$$Keq \times [H_{2}O] = ----- = Ka$$

Ka is the H⁺ dissociation constant of a weak acid

$$B^- + H_3O^+ \longrightarrow BH + H_2O$$

[BH] [H₂O] [BH] [Keq = -----
$$\frac{\text{Keq/[H2O]}}{\text{Constant}}$$
 [B-] [H₃O+]

Kb is the H⁺ association constant of a weak base!

Examples

$$HCOOH + H_2O \longrightarrow HCOO^- + H_3O^+$$
 [HCOO-] [H₃O+] [HCOO-] [H₃O+] Keq = ---- Keq x [H₂O] = ---- = Ka

constant

Ka, $HCOOH = 1.8 \times 10^{-4}$

[HCOOH] [H₂O]

$$NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$$

H+ association of a weak base!

Kb, $NH_3 = 1.8 \times 10^{-5}$

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

[HCOOH]

Let's figure out:

The same equilibrium read from left to right and vice-versa...!

$$AH \xrightarrow{on} A^{\text{-}} + H^{\text{+}}$$

Thus K_a e K_b must be inversely related

$$K_a \propto 1/K_b$$
 $K_b \propto 1/K_a$

More in detail

Weak acid dissociates

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

And specific equilibrium constant Ka is:

$$K_a = [A^-][H_3O^+] / [HA]$$

The conjugated base A- reacts with water according to:

$$A^- + H_2O \rightleftharpoons HA + OH^-$$

And specific equilibrium constant Kb is:

$$K_b = [HA][OH^-]/[A^-]$$

Let's multiply the two constants and relative expressions:

$$Ka \times Kb = [A^{-}][H^{+}]/[HA] \times [HA][OH^{-}]/[A^{-}]$$

simplifying:

$$Ka \times Kb = [A^{-1}][H^{+}]/[HA] \times [HA][OH^{-}]/[A^{-1}]$$

_____,**____,*

Thus

$$Ka \times Kb = [H^+][OH^-] = K_w$$

The acid (H⁺) dissociation!

$$AH + H_2O \longrightarrow A^- + H_3O^+$$

$$K_{eq} \rightarrow K_a = \frac{[A-] [H_3O^+]}{[AH]} \qquad [H_3O^+] = \frac{K_w}{[OH^-]}$$

$$in H_2O \quad Kw = [H_3O^+] [OH^-]$$

$$K_a = \frac{[A^-] \quad K_w}{[AH] \quad [OH^-]} = \frac{K_w}{K_b}$$

Thus in water, the strength of an acid is given by Ka = Kw/Kb i.e.: the lower the Kb value of the conjugated base the larger is Ka, and *viceversa*

$$K_a \sim 1/K_b \rightarrow K_a = K_w/K_b$$

The basic (H⁺) association !

$$K_{eq} \rightarrow K_{b} = \frac{[AH] \ [OH^{-}]}{[A^{-}]}$$

$$in \ H_{2}O \quad Kw = [H_{3}O^{+}] \ [OH^{-}]$$

$$K_{b} = \frac{[AH] \ [K_{w}]}{[A^{-}] \ [H_{3}O^{+}]} = \frac{K_{w}}{K_{a}}$$

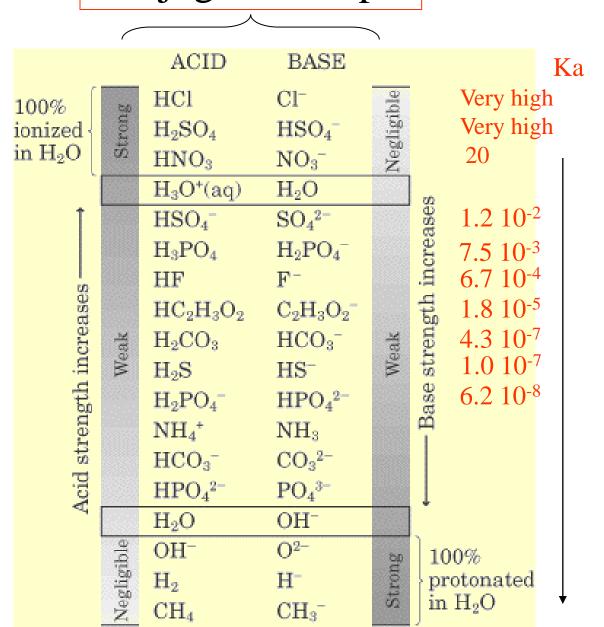
Thus in water, the strength of a base is given by Kb = Kw/Ka i.e.: the lower the Ka value of the conjugated acid the larger is Kb, and *viceversa*

$$K_b \sim 1/K_a \rightarrow K_b = K_w/K_a$$

The strength of the hydroxides (inorganic strong bases) is commonly expressed as dissociation of OH-

$$BOH \longrightarrow B^+ + OH^-$$

$$K_b = \frac{[B^+][OH^-]}{[BOH]} \rightarrow \infty$$


CONCLUDING:

- •The stronger the acid, the bigger K_a
- •The stronger the base, the bigger K_b

How big?!

Conjugated couple

Relative strength

Kb = Kw/Ka

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

K _a and K _b Values							
Name of Acid	Acid K _a		Name of Base	Base	Kb		
Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO ₄ -	very small		
Hydrochloric acid	HC1	large	chloride ion	C1-	very small		
Nitric acid	HNO ₃	large	nitrate ion	NO ₃ -	very small		
Hydronium ion	H ₃ O ⁺	55.5	water	H ₂ O	1.8 x 10 ⁻¹⁶		
Hydrogen sulfate ion	HSO ₄ -	1.2 x 10 ⁻²	sulfate ion	SO ₄ 2-	8.3 × 10 ⁻¹		
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	dihydrogen phosphate ion	H ₂ PO ₄ -	1.3 × 10 ⁻¹²		
Hexaaquairon(III) ion	Fe(H ₂ O) ₆ 3+	6.3 x 10 ⁻³	penta a quahydroxoiron(III) ion	Fe(H ₂ O) ₅ OH ²⁺	1.6 × 10 ⁻¹²		
Hydrofluoric acid	HF	7.4 × 10 ⁻⁴	fluoride ion	F-	1.4 × 10 ⁻¹		
Formic acid	HCO ₂ H	1.8 × 10 ⁻⁴	formate ion	HCO ₂ =	5.6 x 10 ⁻¹		
Benzoic acid	C6H5CO2H	6.3 × 10 ⁻⁵	benzoate ion	C6H5CO2-	1.6 x 10 ⁻¹⁰		
Acetic acid	CH ₃ CO ₂ H	1.8 × 10 ⁻⁵	acetate ion	CH ₃ CO ₂ -	5.6 x 10 ⁻¹		
Hexaaquaaluminum ion	A1(H2O)63+	7.9 × 10 ⁻⁶	pentaaquahydroxoaluminum ion	A1(H2O)5OH2+	1.3 x 10 ⁻⁹		
Carbonic acid	H ₂ CO ₃	4.2 × 10 ⁻⁷	hydrogen carbonate ion	HCO ₃ -	2.4 x 10 ⁻⁸		
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS-	1 × 10 ⁻⁷		
Dihydrogen phosphate ion	H ₂ PO ₄ -	6.2 x 10 ⁻⁸	hydrogen phosphate ion	HPO ₄ 2-	1.6 x 10 ⁻⁷		
Hypochlorous acid	HC10	3.5 × 10 ⁻⁸	hypochlorite ion	C10-	2.9 x 10-7		
Ammonium ion	NH ₄ +	5.6 x 10 ⁻¹⁰	ammonia	NH ₃	1.8 × 10-5		
Hydrocyanic acid	HCN	4.0 × 10 ⁻¹⁰	cyanide ion	CN-	2.5 x 10 ⁻⁵		
Hexaaquairon(II) ion	Fe(H ₂ O) ₆ 2+	3.2 × 10 ⁻¹⁰	pentaaquahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH ⁺	3.1 × 10 ⁻⁵		
Hydrogen carbonate ion	HCO3-	4.8 × 10 ⁻¹¹	carbonate ion	CO32-	2.1 × 10-4		
Hydrogen phosphate ion	HPO42-	3.6 x 10 ⁻¹³	phosphate ion	PO43-	2.8 x 10 ⁻²		
Water	H ₂ O	1.8 × 10 ⁻¹⁶	hydroxide ion	OH-	55.5		
Hydrogen sulfide ion	HS-	1 × 10 ⁻¹⁹	sulfide ion	S2-	1 × 10 ⁵		

Acido acetico	1,75-10-5	Acido	K _{a1} 1,0 K _{a2} 0,032 K _{a3} 0,010 K _{a4} 0,0021 K _{a5} 7,8 · 10 ⁻⁷ K _{a6} 6,8 · 10 ⁻¹¹	Acido mandelico	3,88-10-4
Acido amminoacetico	Ka1 4,47 - 10 ⁻³	etilendiamminotetraacetico		Acido nitroso	7,1 · 10 - 4
(glicina) Acido	K _{a2} 1,67-10 ⁻¹⁰			Acido ossalico	$K_{\rm A1} 5,60 \cdot 10^{-2}$ $K_{\rm A2} 5,42 \cdot 10^{-5}$
amminobenzensolfonico (solfanilico)	K _a 5,86-10 ⁻⁴			Acido ossobutandioico (ossalacetico)	$K_{\rm h2} \ 2.8 \cdot 10^{-3}$ $K_{\rm h2} \ 4.3 \cdot 10^{-5}$
Acido arsenico		Acido formico	1.80 - 10-4	Acido ossopropanoico	2.8 · 10 -3
	K _{a2} 1,10·10 ⁻⁷ K _{a3} 3,2·10 ⁻¹²	Fenolo	1.05 - 10 - 10	(piruvico)	2,6.10
Acido arsenioso	5,1.10-10	Fluoruro di idrogeno	6,8 - 10 - 4	Acido piridin-2-carbossilico	K ₄₁ 9,8 · 10 ⁻²
Acido aspartico	Ka1 1,02-10-2	Acido fosforico	Kai 7,11.10-3	(picolinico)	K ₄₂ 4,1 · 10 ⁻⁶
	K _{a2} 1,26·10 ⁻⁴ K _{a3} 9,95·10 ⁻¹¹	*	$K_{a2} 6,32 \cdot 10^{-8}$ $K_{a3} 7,1 \cdot 10^{-13}$	Acido piridin-3-carbossilico (nicotinico)	$K_{41} 8,9 \cdot 10^{-3}$ $K_{42} 1,55 \cdot 10^{-5}$
Acido benzoico	6,28 · 10-5	Acido fosforoso	Ka1 3-10-2	Acido pirofosforico	K _{a1} 0,16
Acido borico	K _{a1} 5,81-10 ⁻¹⁰		Ka2 1,62 · 10-7		Ka2 6-10-3
	Ka2 1,82 · 10 -13	Acido o-ftalico	$K_{\rm al} 1.12 \cdot 10^{-3}$		K _{a3} 2,0-10 ⁻⁷
	K _{a3} 1,58-10 ⁻¹⁴		Ka2 3,90-10-6		$K_{a4} 4.0 \cdot 10^{-10}$
Acido butanoico	1,52 · 10 - 5	Acido glutammico	K _{a1} 5,9·10 ⁻³ K _{a2} 3,8·10 ⁻⁵ K _{a3} 1,12·10 ⁻¹⁰	Acido propanoico	1,34 - 10 - 5
Acido cis-butendioico (maleico)	K _{a1} 1,23·10 ⁻² K _{a2} 4,66·10 ⁻⁷	*		Acido propenoico (acrilico)	5,52 · 10 -5
Acido trans-butendioico (fumarico)	K _{a1} 8,85 · 10 ⁴ K _{a2} 3,21 · 10 ⁻⁵	Acido idrossiacetico (glicolico)	1,48 · 10-4	Acido solfidrico	$K_{a1} 9.5 \cdot 10^{-5}$ $K_{a2} 1.3 \cdot 10^{-14}$
Acido carbonico	Ka1 4,45·10 ⁻⁷ Ka2 4,69·10 ⁻¹¹	Acido 2-idrossibenzoico salicilico)	$K_{a1} 1,07 \cdot 10^{-3}$ $K_{a2} 1,82 \cdot 10^{-14}$	Acido solforico (seconda dissoc.)	1,02 · 10 ⁻²
Acido cianidrico	6,2 · 10 - 10	Acido L- idrossibutandioico	Ka1 3,48 · 10-4	Acido solforoso	Ka1 1,23 · 10 ⁻²
Acido citrico	Ka1 7,44-10-4	(malico)	Kaz 8,00-10-6	Acido sonoroso	K _{a2} 6,6·10 ⁻⁸
	Ka2 1.73 · 10 · 5	Acido iodico	0,17	Acido succinico	K _{a1} 6,21 · 10 ⁻⁵
	K _{a3} 4,02 · 10 ⁻⁷	Acido ipobromoso	2,3-10-9	(butandioico)	K _{a2} 2,31 · 10 ⁻⁶
Acido cloroacetico	1,36 · 10 - 3	Acido ipocloroso	3,0.10-8	Acido tiasolforico	K _{a1} 0,3
Acido cloroso	1,12 · 10 - 2	Acido ipofosforoso	5,9 • 10-2	Acido tiosofiorico	K _{a2} 3·10 ⁻²
Acido cromico	K_{a1} 1,6 K_{a2} 3,1 · 10 ⁻⁷	Acido ipoiodoso	2,3-10-11	Acido tricloroacetico	0,22
Acido		Acido lattico 🛠	1,37 · 10 - 4		
D-2,3-diidrossibutandioico	Kai 9,20 · 10-4	Acido malonico	$K_{a1} 1,42 \cdot 10^{-3}$		
(p-tartarico)	Ka2 4,31-10-5	*	$K_{a2} 2,01 \cdot 10^{-6}$		

Thus

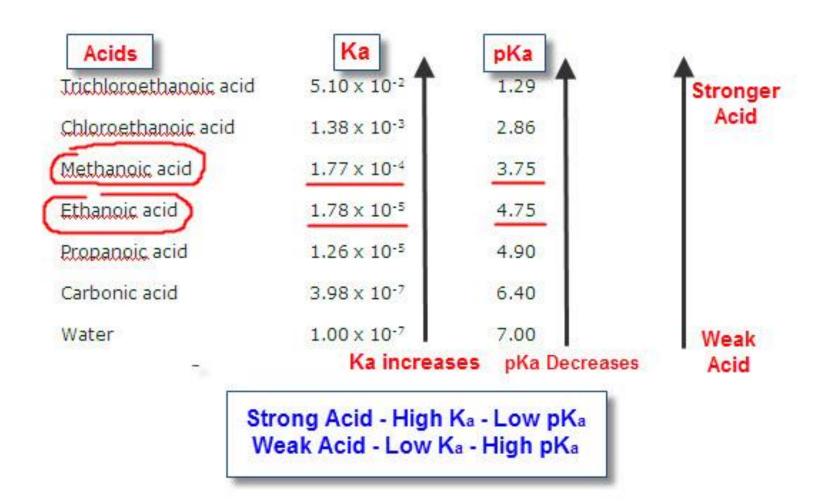
The stronger the acid:

• the higher its Ka (H⁺ dissociation)

The stronger the base:

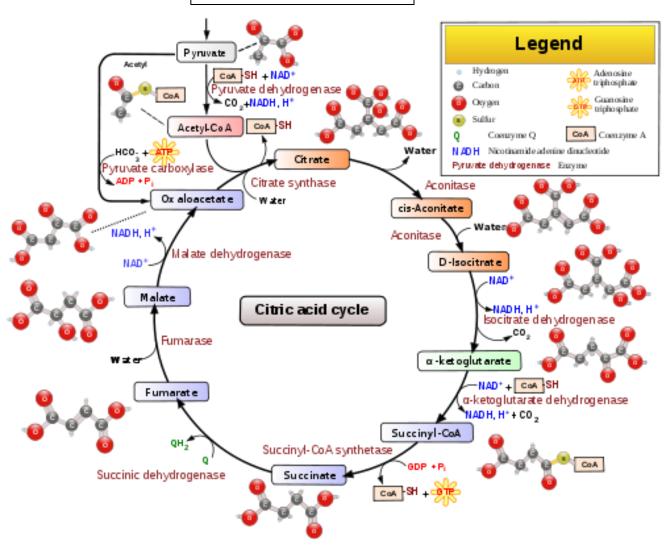
- the higher its Kb value (H+ association)
- the lower the Ka value (of the conjugated acid)
- the higher the efficiency to dissociate OH- (hydroxides only)

Ka or Kb values can be numbers *difficult to handle*, e.g. rather small (10^{-x}) whose, again, small variations induce big effects!


This is why it was introduced the notation \mathbf{p} ; $\mathbf{p} = \text{colog} (-\log x = \log 1/x) \text{ to base} = 10$ of Ka or Kb

if
$$[Ka] = 10^{-5}$$

 $pKa = 5$
 $-log 10^{-5}, log 1/10^{-5} = log 10^{5} = 5$


The weaker the acid:

- •The lower its Ka value &
- •The higher its pKa value

Ka & pKa

Krebs cycle

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza Remember relationship between Ka and α ?

Paolo Sarti 2011 Dept. of Biochemical Sciences Sapienza

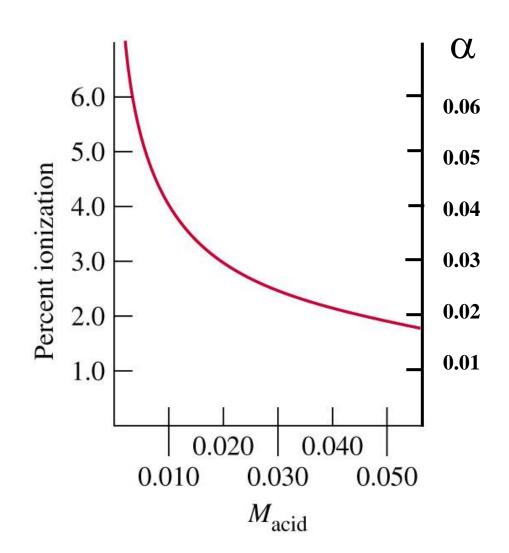
$$AH + H_2O \longrightarrow A^- + H_3O^+$$
Weak electrolytes

$$AB \longrightarrow A^+ + B^-$$

$$AH \longrightarrow A^{-} + H^{+}$$

$$(1 - \alpha) C \qquad \alpha C \qquad \alpha C$$

At equilibrium

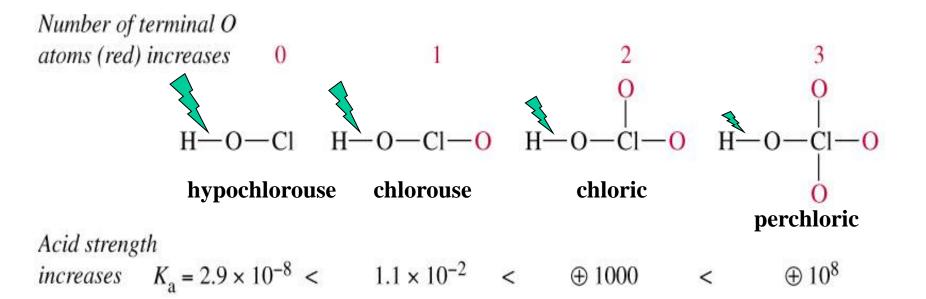

 $if \alpha$ is small...

$$\mathbf{K}\mathbf{a} = \mathbf{\alpha}^2 \mathbf{C}$$

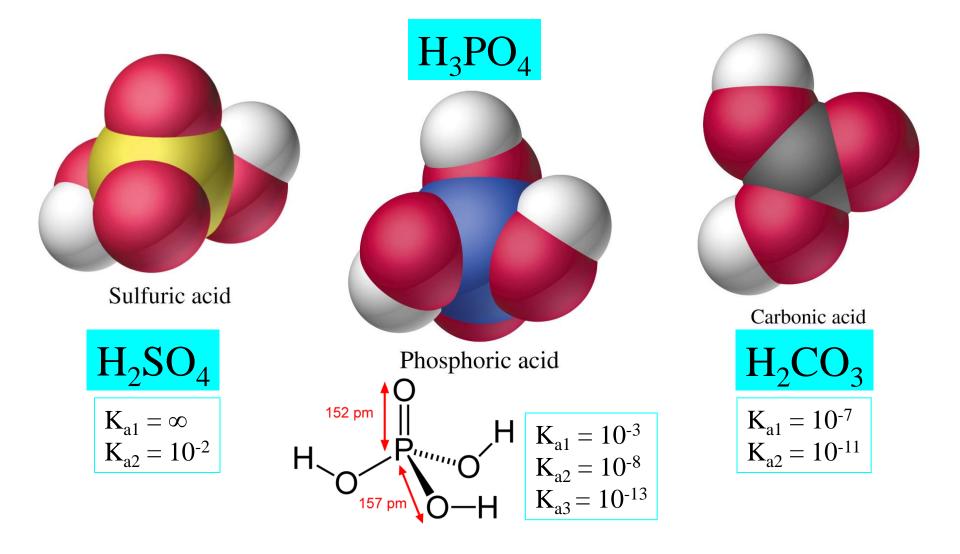
Ostwald dilution-law

What happens to α upon diluting a solution of a weak electrolyte?!

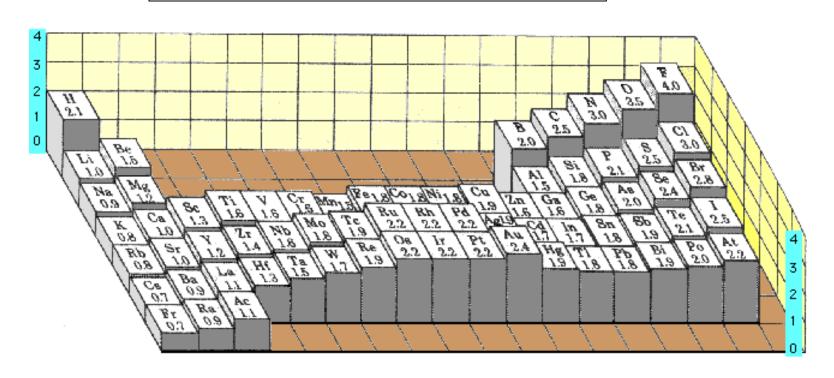
Ostwald law



What is the molecular reason for different acid/base strength?


Different H+ bond energy (covalent etheropolar) (electronegativity + inductive effects + charge distribution)

Strenght of hydro-chloro acids

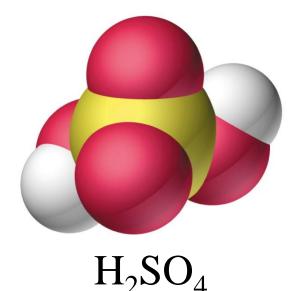

Bond energy!

Poly-functional acids (poly-protic)

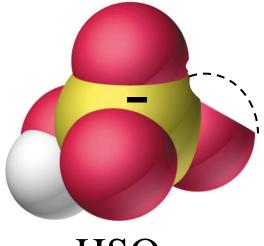
Electronegativity $\rightarrow f(E_i, A_e)$

Distribution of electronegativity

polyfunctional acids


$$H_2SO_4 \longrightarrow HSO_4^- + H^+$$

$$HSO_4^- \longrightarrow SO_4^{2-} + H^+$$


strength

$$K_{a1} = \infty$$

$$K_{a2} = 10^{-2}$$

electroneutral

HSO₄

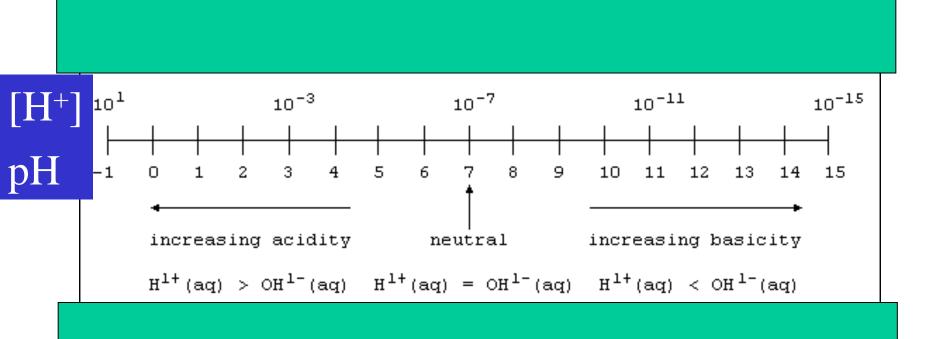
negatively charged

[H⁺] in biological fluids is described by very small numbers (10^{-x}) whose even smaller variations produce big effects!

Then \mathbf{pH} i.e. colog (-log x = log 1/x) to base 10 of $[H^+]$

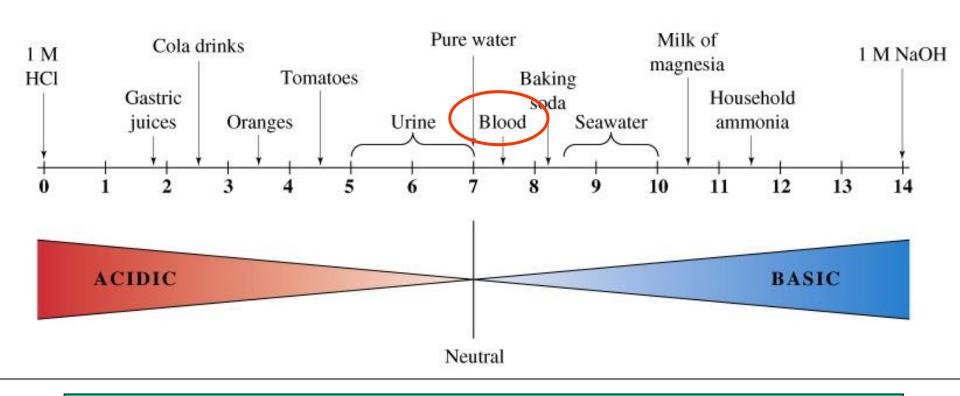
$$[H^+] = 10^{-7} \, M$$
 ?
The log $1/10^{-7} = \log 10^7 = 7$
 $pH = 7 \; (neutral \; pH!)$

Ex.s:
$$[H+] = 2,5119 \times 10^{-8} \rightarrow pH 7.6$$

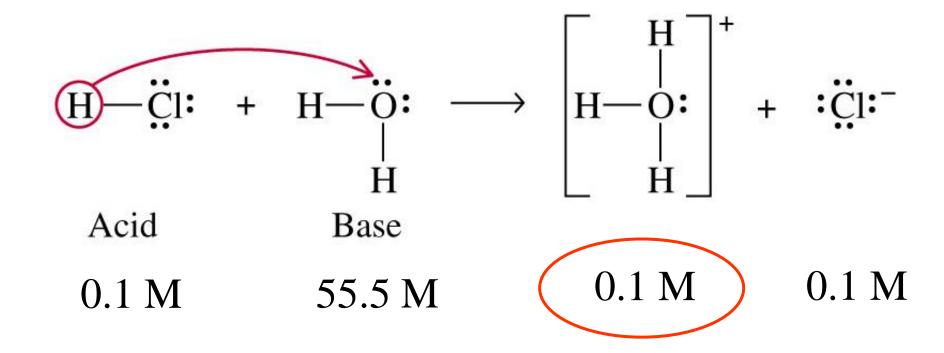

$$[H^+] = 3,9810 \times 10^{-8} \rightarrow pH 7.4$$

$$[H^+] = 5,0118 \times 10^{-8} \rightarrow pH 7.3$$

$$[H^+] = 6,3095 \times 10^{-8} \rightarrow pH 7.2$$


$$[H+] = 3,1623 \times 10^{-7} \rightarrow pH 6.5$$

[H⁺] to pH conversion



 $[H^+] \times [OH^-] = cost = 10^{-14}$

Biological fluids

$$[H^{+}] \times [OH^{-}] = cost = 10^{-14}$$

 $pH + pOH = 14$

$$pH = log 1/0.1 = 1.0$$

pH of a weak acid solution

$$AH \longrightarrow A^- + H^+$$

$$[A^{-}] [H_{3}O^{+}] [H^{+}]^{2}$$
 $Ka = ----- = ---- [AH] [AH]$

$$[H^+]^2 = Ka [AH]$$

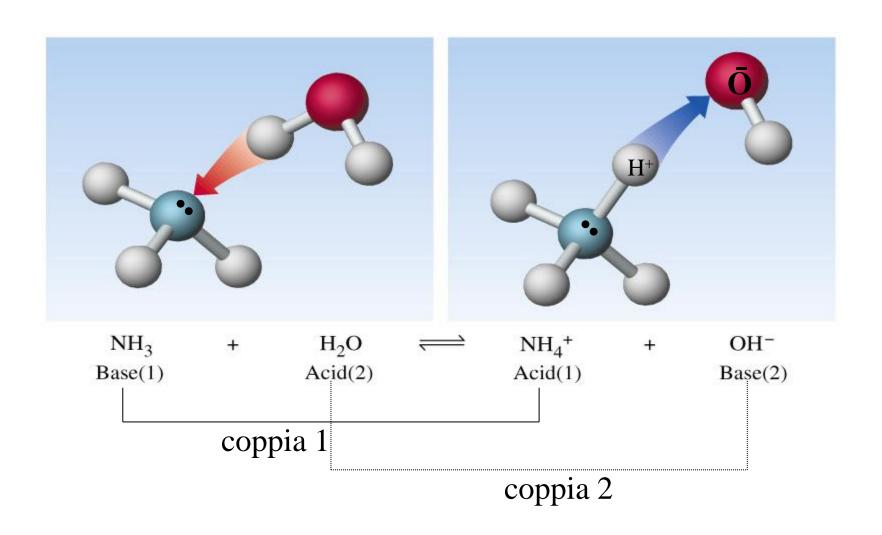
$$[H^+] = \sqrt{Ka \times Ca}$$

How many atoms are in the human body?

A 70 kg body would have approximately $7*10^{27}$ atoms. That is, 7 followed by 27 zeros:

7,000,000,000,000,000,000,000,000

Of that, $4.7*10^{27}$ would be hydrogen atoms, which have one <u>proton</u> and one <u>electron</u> each. Another $1.8*10^{27}$ would be oxygen, which has 8 protons, 8 neutrons and 8 electrons.


There are 7.0*1026 carbon

atoms, which have 6 protons, 6 neutrons and 6 electrons. Now, let's add that all up:

	Protons	Neutrons	Electrons
Hydrogen	4.7*10 ²⁷	0	4.7*10 ²⁷
Oxygen	1.4*10 ²⁸	1.4*10 ²⁸	1.4*10 ²⁸
Carbon	4.2*10 ²⁷	4.2*10 ²⁷	4.2*10 ²⁷
Total	2.3*10 ²⁸	1.8*10 ²⁸	2.3*10 ²⁸

Well, you'll have to agree that really is a whole bunch.

Ancòra: coppie coniugate acido - base

