

2Fe + O_2 + 2H₂O \longrightarrow 2Fe (OH)₂ Δ H = - 272 KJ/mol

Reaction coordinate

Dip. Scienze Biochi La Sapienza

THERMODYNAMICS

http://www.slideshare.net/Emersius/energy-changes

A problem of relative energetic stability (P vs R)

Paolo Sarti 2003 Dip. Scienze Biochimiche La Sapienza

Definition of a chemical system

- a) Isolated : no exchange of mass (*m*) and/or energy (*E*) dewar flask
- b) closed : no exchange of *m* with exchange of *E* reaction chamber
- c) open : exchange of both *m* ed *E*

lab beaker, human body...

Properties of matter (homogeneous)

a) Intensive : independent on dimension density, T, P etc.b) extensive : dependent on dimension molar mass, volume, weight, etc.

PRINCIPLES (meaning)

- I°: Energy conservation (Clausius 1865):
- energy is neither created or destroyed, it is converted.
- II° the Energy cannot be fully converted into useful work the total entropy (Entropy of universe S_U) always increases

III° the entropy value of a pure, perfect, cristal is
S = 0, a T = 0 K
(Nernst 1906)

Parameters defining the energetic state of matter

STATE FUNCTIONS:			
 1) INTERNAL ENERGY 2) ENTHALPY 3) ENTROPY 4) FREE ENERGY 5) TEMPERATURE 	U H S G T		

Paolo Sarti 2011 Department of Biochemistry Sapienza

James Joule [1818-1889]

INTERNAL ENERGY U

- U = the sum of all energetic contribution in a system (E_{bonds} ; $E_{kinetic}$; $E_{nuclear}$, etc.)
- U evaluation is difficult/impossible

U can be evaluated through variation (ΔU) of related parameters :

used/produced work [L; W] (changes in molecular structure)
 heat exchange [Q]

ENTHALPY ($\varepsilon v \tau \alpha \lambda \pi o = heat up$) easy... to measure

H = heat

The calorie unit

1 (small) cal rises the temperature of 1 g H_2O by 1 °C (from 14.5 to 15.5) (p = 1 atm)

In biology, medicine, dietetics

1 Kcal (large Calorie, C) raises temperature of 1 Kg H₂O by 1 °C (from 14.5 to 15.5 °C)

100 Kcal bring 1Kg of H_2O to the boiling point (p= 1 atm)

1 cal ~ 4.18 joules

Paolo Sarti 2011 Department of Biochemistry Sapienza

Hess Law : the enthalpy variation (Δ H) for the reaction converting reactants (SM) into products (P) Is independent on the reaction pathway(s).

Hess's Law implies that :
$$\triangle H_{rl} = \triangle H_{r2} + \triangle H_{r3}$$

Paolo Sarti 2011 Department of Biochemistry Sapienza

The reaction (overall) is exothermic

Paolo Sarti 2011 Department of Biochemistry Sapienza

Solubilization ΔH Kcal/mole

solute	+∆H _{1.2}	- ⊿H ₃	ΔH_{tot}	
NaCl	186	185	+1	?
NaOH	176	186	-10	?
NH ₄ CI	152.6	149	+3.6	?

Effect of temperature on solubility

Solution

Paolo Sarti 2011 Department of Biochemistry Sapienza

Solute Crystal

 ΔH_2

Equilibrium and Enthalpy

Sapienza

H = heat

Aggregation states and Entropy

 $NaCl_{crist.} \approx 2 \text{ u.e.}$

 $NaCl_{gas} \approx 40$ u.e.

Paolo Sarti 2011 Department of Biochemistry Sapienza

System Entropy (S_{sy}) & Surroundings Entropy (S_{su})

$$\mathbf{S}_{\mathbf{su}} \propto -\Delta \mathbf{H} / \mathbf{T}$$

Entropy & Spontaneity of a reaction

 $S_2 - S_1 >> 0$ $\Delta S = +$

Paolo Sarti 2011 Department of Biochemistry Sapienza

$\Delta H \& \Delta S \& S pontaneous processes$

Do spontaneous endothermic reactions exist (+ Δ H)? Yes (e.g. salt solubilization) \rightarrow S_{sv} increases

Do spontaneous reactions with decreasing-entropy exist (- Δ S)? Yes (e.g. crystallization) \rightarrow why? \rightarrow increases the surrounding entropy S_{su}

$$\Delta G = \Delta H - T \Delta S$$

Paolo Sarti 2011 Department of Biochemistry Sapienza

Gibbs Equation

Gibbs 1863 Yale University

$$\Delta G = \Delta H - T\Delta S$$
spontaneous process $\Delta G < 0$

- 1) ΔH negative & ΔS positive
- 2) Both $\Delta S \& \Delta H$ are negative, but ΔH has an absolute value bigger than $T\Delta S$
- 3) ΔH positive, ΔS positive & $|T\Delta S| > |\Delta H|$

The reactions occurring in our body are very often Entropy driven !!!

Free Energy & Equilibrium

[C]^c [D]^d K_{eq} =-----[A]^a [B]^b

La Sapienza

High values of Keq = reaction shifted to the right *Low values of* Keq = reaction shifted to the left

 ΔG and K_{eq} (Van't Hoff equation)

 $\Delta G = (-RT \ln K_{eq} + RT \ln Q) = RT \ln Q/K_{eq}$ For Q \cong Keq ?
Paolo Sarti 2003
Dip. Scienze Biochimiche