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Preface

The central theme of Introduction to Electric Circuits is the concept that electric circuits are part of the 
basic fabric of modem technology. Given this theme, we endeavor to show how the analysis and 
design of electric circuits are inseparably intertwined with the ability of the engineer to design 
complex electronic, communication, computer, and control systems as well as consumer products.

A P P R O A C H  & O R G A N I Z A T I O N

This book is designed for a one- to three-term course in electric circuits or linear circuit analysis and is 
structured for maximum flexibility. The flowchart in Figure 1 demonstrates alternative chapter 
organizations that can accommodate different course outlines without disrupting continuity.

The presentation is geared to readers who are being exposed to the basic concepts of electric 
circuits for the first time, and the scope of the work is broad. Students should come to the course with 
the basic knowledge of differential and integral calculus.

This book endeavors to prepare the reader to solve realistic problems involving electric circuits. 
Thus, circuits are shown to be the results of real inventions and the answers to real needs in industry, 
the office, and the home. Although the tools of electric circuit analysis may be partially abstract, 
electric circuits are the building blocks of modem society. The analysis and design of electric circuits 
are critical skills for all engineers.

W H A T ' S  N E W  I N T H E  8 TH E D I T I O N  

Increased use of PSpice K and MATLABH

Significantly more attention has been given to using PSpice and MATLAB to solve circuits problems. It 
starts with two new appendixes, one introducing PSpice and the other introducing MATLAB. These 
appendixes briefly describe the capabilities of the programs and illustrate the steps needed to get started 
using them. Next, PSpice and MATLAB are used throughout the text to solve various circuit analysis and 
design problems. For example, PSpice is used in Chapter 5 to find a Thevenin equivalent circuit and in 
C hapter 15 to represent circuit inputs and outputs as Fourier series. MATLAB is frequently used to obtain 
plots of circuit inputs and outputs that help us see what our equations are telling us. MATLAB also helps 
us with some long and tedious arithmetic. For example, in Chapter 10, MATLAB helps us do the
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FIGURE 1 Flow chart showing alternative paths through the topics in this textbook.

complex arithmetic to analyze ac circuits and, in Chapter 14, MATLAB helps with the partial fraction 
required to find inverse Laplace transforms.

Of course, there’s more to using PSpice and MATLAB than simply running the programs. We pay 
particular attention to interpreting the output o f these computer programs and checking it to make sure it is 
correct. Frequently, this is done in the section called, “ How Can We Check . . . ”  included in every 
chapter. For example, Section 8.9 shows how to interpret and check a PSpice transient response, and 
Section 13.7 shows how to interpret and check a frequency response produced using MATLAB or PSpice.

Revisions to Improve Clarity

Chapter 15 covering the Laplace transform and the Fourier series and transform, Chapters 14 and 15, 
have been largely rewritten, both to improve clarity o f exposition and to significantly increase 
coverage of MATLAB and PSpice. In addition, revisions have been made throughout the text to 
improve clarity. Sometimes these revisions are small, involving sentences or paragraphs. Other, larger
revisions involve pages or even entire sections.

More Problems

The 8 th edition contains 120 new problems, bringing the total number o f problems to more than 1,3 50. This 
edition uses a variety of problem types and they range in difficulty from simple to challenging, including:
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Straightforward analysis problems.

Analysis of complicated circuits.

Simple design problems. (For example, given a circuit and the specified response, determine the 
required RLC values.)

Compare and contrast, multipart problems that draw attention to similarities or differences between 
two situations.



• MATLAB and PSpice problems.

.  Design problems. (Given some specifications, devise a circuit that satisfies those specifications.) 

. How Can We Check . . . ? (Verify that a solution is indeed correct.)

F E A T U R E S  R E T A I N E D  F R O M  P R E V I O U S  E D I T I O N S

Introduction

Each chapter begins with an introduction that motivates consideration o f the material o f that chapter. 

Examples

Because this book is oriented toward providing expertise in problem solving, we have included more 
than 260 illustrative examples. Also, each example has a title that directs the student to exactly what is 
being illustrated in that particular example.

Various methods of solving problems are incorporated into select examples. These cases show 
students that multiple methods can be used to derive similar solutions or, in some cases, that m ultiple 
solutions can be correct. This helps students build the critical thinking skills necessary to discern the 
best choice between multiple outcomes.

Design Examples, a Problem-Solving Method, and 
"How Can We Check . . . "  Sections

Each chapter concludes with a design example that uses the methods o f that chapter to solve a design 
problem. A formal, five-step problem-solving method is introduced in Chapter 1 and then used in each o f  
the design examples. An important step in the problem-solving method requires you to check your results 
to verify that they are correct. Each chapter includes a section entitled ‘ ‘How Can We Check . . . ”  that 
illustrates how the kind o f results obtained in that chapter can be checked to ensure correctness.

Key Equations and Formulas

You will find that key equations, formulas, and important notes have been called out in a shaded box to 
help you pinpoint critical information.

Summarizing Tables and Figures

The procedures and methods developed in this text have been summarized in certain key tables 
and hgures. Students will find these to be an important problem -solving resource.

• Table 1.5-1. The passive convention.

• Figure 2.7-1 and Table 2.7-1. Dependent sources.

• Table 3.10-1. Series and parallel sources.

• Table 3.10-1. Series and parallel elements. Voltage and current division.

Figure 4.2-3. Node voltages versus element currents and voltages.



• Figure 4.5-4. Mesh currents versus element currents and voltages.

• Figures 5.4-3 and 5.4-4. Thevenin equivalent circuits.

• Figure 6.3-1. The ideal op amp.

• Figure 6.5-1. A catalog of popular op amp circuits.

• Table 7.8-1. Capacitors and inductors.

• Table 7.13-2. Series and parallel capacitors and inductors.

• Table 8.11-1. First-order circuits.

• Tables 9.13-1, 2, and 3. Second-order circuits.

• Table 10.6-1. AC circuits in the frequency domain (phasors and impedances).

• Table 10.8-1. Voltage and current division for AC circuits.

• Table 11.5-1. Power formulas for AC circuits.

• Tables 11.13-1 and 11.13-2. Coupled inductors and ideal transformers.

• Table 13.4-1. Resonant circuits.

• Tables 14.2-1 and 14.2-2. Laplace transform tables.

• Table 14.7-1. s-domain models of circuit elements.

• Table 15.4-1. Fourier series of selected periodic waveforms.

Introduction to  Signal P rocessing

Signal processing is an important application of electric circuits. This book introduces signal 
processing in two ways. First, two sections (Sections 6.6  and 7.9) describe methods to design electric 
circuits that implement algebraic and differential equations. Second, numerous examples and 
problems throughout this book illustrate signal processing. The input and output signals of an electric 
circuit are explicitly identified in each of these examples and problems. These examples and problems 
investigate the relationship between the input and output signals that is imposed by the circuit.

Interactive Exam ples and  Exercises

Numerous examples throughout this book are labeled as interactive examples. This label indicates that 
computerized versions of that example are available at the textbook’s companion site, www.wiley. 
com/dorf. Figure 2 illustrates the relationship between the textbook example and the computerized 
example available on the Web-Site. Figure 2a shows an example from Chapter 3. The problem 
presented by the interactive example shown in Figure 2b is similar to the textbook example but 
different in several ways:

• 1 he values of the circuit parameters have been randomized.

• The independent and dependent sources may be reversed.

• The reference direction of the measured voltage may be reversed.

A different question is asked. Here, the student is asked to work the textbook problem backward, 
using the measured voltage to determine the value of a circuit parameter.

http://www.wiley
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(a)

Calculator

Show Answer

The voltmeter measures a voltage in volts. 
What is the value of the resistance, R, in Q?

(b)

Worked Examples

Calculator |

New Problem

Show Answer

The ammeter measures a current in amps. What j
is the value of the current measured by the ammeter? 1— — ■■■J

(c)

FIG UR E 2 (a) The circuit considered Example 3.2-5. (b ) A  corresponding interactive example, (c) A  corresponding
interactive exercise.

The interactive example poses a problem and then accepts and checks the user’s answer. Students are 
provided with immediate feedback regarding the correctness o f their work. The interactive example 
chooses parameter values somewhat randomly, providing a seemingly endless supply o f problems. 
This pairing of a solution to a particular problem with an endless supply o f similar problems is an 
effective aid for learning about electric circuits.

The interactive exercise shown in Figure 2c considers a similar, but different, circuit. Like the 
interactive example, the interactive exercise poses a problem and then accepts and checks the user’s 
answer. Student learning is further supported by extensive help in the form o f worked example 
problems, available from within the interactive exercise, using the Worked Example button.

Variations of this problem are obtained using the New Problem button. We can peek at the 
answer, using the Show Answer button. The interactive examples and exercises provide hundreds o f 
additional practice problems with countless variations, all with answers that are checked immediately 
by the computer.
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S U P P L E M E N T S  A N D  W E B - S I T E  M A T E R I A L

The almost ubiquitous use of computers and the Web have provided an exciting opportunity to rethink 
supplementary material. The supplements available have been greatly enhanced.

Book Companion Site

Additional student and instructor resources can be found on the John Wiley & Sons textbook 
companion site at www.wiley.com/college/dorf.

Student

• Interactive Examples The interactive examples and exercises are powerful support resources for 
students. They were created as tools to assist students in mastering skills and building their 
confidence. The examples selected from the text and included on the Web give students options for 
navigating through the problem. They can immediately request to see the solution or select a more 
gradual approach to help. Then they can try their hand at a similar problem by simply electing to 
change the values in the problem. By the time students attempt the homework, they have built the 
confidence and skills to complete their assignments successfully. It’s a virtual homework helper.

• MATLAB Tutorial, by Gary Ybarra and Michael Gustafson of Duke University, builds upon the 
MATLAB examples in the text. By providing these additional examples, the authors show how this 
powerful tool is easily used in appropriate areas of introductory circuit analysis. Ten example 
problems are created in HTML. M-files for the computer-based examples are available for 
download on the Student Companion site.

• PowerPoints for note taking

• Historical information

• PSpice for Linear Circuits, available for purchase

• Wiley PLUS option

Instructor

• Solutions manual

• PowerPoint slides

• Wiley PLUS option

W iley PL U S

Pspice fo r Linear Circuits is a student supplement available for purchase. The PSpice fo r  Linear 
Circuits manual describes in careful detail how to incorporate this valuable tool in solving problems. 
This manual emphasizes the need to verify the correctness of computer output. No example is finished 
until the simulation results have been checked to ensure that they are correct.

A C K N O W L E D G M E N T S  A N D  C O M M I T M E N T
T O A C C U R A C Y  ---------- -- ---------------------------------------- -----------------------------------

We are grateful to many people whose efforts have gone into the making of this textbook. We are 
especially grateful to our Associate Publisher Daniel Sayre, Executive Marketing Manager Chris Ruel

http://www.wiley.com/college/dorf
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1.1 I N T R O D U C T I O N

A circuit consists of electrical elements connected together. Engineers use electric circuits to solve 
problems that are important to modem society. In particular:

1. Electric circuits are used in the generation, transmission, and consumption of electric power and 
energy.

2. Electric circuits are used in the encoding, decoding, storage, retrieval, transmission, and 
processing of information.

In this chapter, we will do the following:

• Represent the current and voltage of an electric circuit element, paying particular attention to the 
reference direction of the current and to the reference direction or polarity of the voltage

• Calculate the power and energy supplied or received by a circuit element

• Use the passive convention to determine whether the product of the current and voltage of a 
circuit element is the power supplied by that element or the power received by the element

• Use scientific notation to represent electrical quantities with a wide range of magnitudes

1.2 E L E C T R I C  C I R C U I T S  A N D  C U R R E N T

The outstanding characteristics of electricity when compared with other power sources are its 
mobility and flexibility. Electrical energy can be moved to any point along a couple of wires and, 
depending on the user’s requirements, converted to light, heat, or motion.
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An electric circuit or electric network is an interconnection o f electrical elements linked 
together in a closed path so that an electric current may flow continuously.

Consider a s.mple circuit consisting o f tw o w ell-know n electrical elem ents, a battery  and a 
resistor, as shown in Figure 1.2-1. Each elem ent is represented by the tw o-term inal elem ent 
shown in Figure 1.2-2. Elem ents are som etim es called devices, and term inals are som e imes

called nodes.

Wire

Battery ltLt
Resistor

Wire

FIGURE 1.2-1 A simple circuit.

FIGURE 1.2-2 A general two-terminal electrical 
element with terminals a and b.

Charge may flow in an electric circuit. Current is the time rate o f  change o f  charge past a given  
point. Charge is the intrinsic property o f matter responsible for electric phenomena. The quantity o f  
charge q can be expressed in terms o f the charge on one electron, which is -1 .6 0 2  x 10  y coulombs. 
Thus, - 1  coulomb is the charge on 6.24 x 1018 electrons. The current through a specified area is 
defined by the electric charge passing through the area per unit o f time. Thus, q is defined as the charge 
expressed in coulombs (C).

C harge is the quantity of electricity responsible for electric phenomena.

Then we can express current as

i —
dq
dt ( 1.2-1)

The unit o f current is the ampere (A); an ampere is 1 coulomb per second.

C u rren t is the time rate o f flow o f electric charge past a given point.

Note that throughout this chapter we use a lowercase letter, such as q , to denote a variable that is 
a function of time, q(t). We use an uppercase letter, such as Q , to represent a constant.

The flow of current is conventionally represented as a flow o f positive charges. This convention 
was initiated by Benjamin Franklin, the first great American electrical scientist. O f course, we 
now know that charge flow in metal conductors results from electrons with a negative charge. 
Nevertheless, we will conceive o f current as the flow o f positive charge, according to accepted 
convention.

Figure 1.2-3 shows the notation that we use to describe a current. There are two parts to
a --------  - b thls notation: a value (perhaps represented by a variable name) and an assigned direction. As a

—  matter ot vocabulary, we say that a current exists in or through an element. Figure 1.2-3 shows 
that there are two ways to assign the direction o f the current through an element. The current /, 

FIGURE 1.2-3 Current ls the rate ot flow of electric charge from terminal a to terminal b. On the other hand the 
in a circuit element. current i2 is the flow of electric charge from terminal b to terminal a. The currents i, and i2 are



0  / FIG U RE 1.2-4 A direct current of magnitude /.

similar but different. They are the same size but have different directions. Therefore, i2 is the negative 
of i\ and

l’l =  - 12

We always associate an arrow with a current to denote its direction. A complete description of current 
requires both a value (which can be positive or negative) and a direction (indicated by an arrow).

If the current flowing through an element is constant, we represent it by the constant /, as shown 
in Figure 1.2-4. A constant current is called a direct current (dc).

A direct current (dc) is a current of constant magnitude.

A time-varying current /(/) can take many forms, such as a ramp, a sinusoid, or an exponential, as 
shown in Figure 1.2-5. The sinusoidal current is called an alternating current (ac).

Electr ic  C ircu i ts  and Curren t

i

I --------------------------------------

FIGURE 1.2-5 (a) A ramp with a slope M. (6) A sinusoid, (c) An exponential. /  is a constant. The current / is zero for t < 0.

If the charge q is known, the current i is readily found using Eq. 1.2-1. Alternatively, if the 
current i is known, the charge q is readily calculated. Note that from Eq. 1.2-1, we obtain

q =  f  i d x =  [  i d z  + q(0) ( 1 .2 -2 )
J —oc Jo

where <7(0 ) is the charge at t =  0 .

E x a m p l e  1.2-1 C u rre n t  f ro m  C h a rg e

Find the current in an element when the charge entering the element is

q =  12/ C
where t is the time in seconds.



E le c tr ic  C i r c u i t  V a r ia b le s

Solution , „ _ , .  . .
Recall that the unit of charge is coulombs, C. Then the current, from Eq. 1.2-1, is
dq

i =  ^  =  12 A
d t

where the unit o f current is amperes, A.

E x a m p l e  1 . 2 - 2  C h a r g e  f r o m  C u r r e n t

Find the charge that has entered the terminal o f an element from / =  0 s to / =  3 s when the current entering the 
element is as shown in Figure 1.2-6.

/ ( A )

4 -

3 ------------------------------------------------------------------------

2

1

1

1 1 

1 1 t

- 1  (3  1  2  3  t  ( s )3 f(s) FIGURE 1.2-6 Current waveform for Example 1.2-2.

Solution
From Figure 1.2-6, we can describe i(t) as

0  / <  0
/(f) =  { 1 0  <  t < 1

t t >  1
Using Eq. 1.2-2, we have

<7(3)-<7(0) =  [  i{t)dt= [  l d t +  [  tdt  
J  o  Jo J 1

r  t2
1 n +  2

=  1 + 2 ( 9 - l )  =  5 C

Alternatively, we note that integration o f i(t) from / =  0  to t =  3 s simply requires the calculation o f the area under
the curve shown in Figure 1.2-6. Then, we have

<7 = l + 2 x 2 =  5 C

E X E R C I S E  1 . 2 - 1  Find the charge that has entered an elem ent by tim e t when
/ -  8 f -  4/ A, t > 0. Assume q(t) — 0 for t < 0.

Answer: q(t) =  - r 5 -  2t2 C

, a * 2  The t0tal charge that has er>tered a circuit element is q{t) — 4 sin 31 C when
_ 0. rnd =  0 when , < 0 , Detem,™  the c ™ t  in this crcui, element for , >  0,

Answer: i{t) = - 4  sin 3/ =  12 cos 31A
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1.3 S Y S T E M S  OF U N I T S

In representing a circuit and its elements, we must define a consistent system of units for the quantities 
occurring in the circuit. At the 1960 meeting of the General Conference of Weights and Measures, the 
representatives modernized the metric system and created the Systeme International d’Unites, 
commonly called SI units.

SI is Systeme International d ’Unites or the International System of Units.

The fundamental, or base, units of SI are shown in Table 1.3-1. Symbols for units that represent proper 
(persons’) names are capitalized; the others are not. Periods are not used after the symbols, and the symbols 
do not take on plural forms. The derived units for other physical quantities are obtained by combining the 
fundamental units. Table 1.3-2 shows the more common derived units along with their formulas in terms of 
the fundamental units or preceding derived units. Symbols are shown for the units that have them.

Table 1.3-1 SI Base Units

QUANTITY NAME

SI UNIT

SYMBOL

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Table 1 3 2 Derived Units in SI

QUANTITY UNIT NAME FORMULA SYMBOL

Acceleration — linear meter per second per second m/s2
Velocity — linear meter per second m/s
Frequency hertz s - ‘ Hz
Force newton kg • m/s2 N
Pressure or stress pascal N/m2 Pa
Density kilogram per cubic meter kg/m3
Energy or work joule N • m J
Power watt J/s w
Electric charge coulomb A • s c
Electric potential volt W/A v
Electric resistance ohm V/A a
Electric conductance siemens A/V s
Electric capacitance farad C/V F
Magnetic flux weber V -s Wb
Inductance henry Wb/A H
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SI Prefixes

MULTIPLE PREFIX SYMBOL

1012 tera T

109 giga G

106 mega M

103 kilo k

10~2 centi c

i<r3 milli m

i<r6 micro M

i<r9 nano n

n r 12 pico P

l t r 15 femto f

The basic units such as length in meters (m), time in seconds (s), and current in amperes (A) can 
be used to obtain the derived units. Then, for example, we have the unit for charge (C) derived from the 
product o f current and time (A • s). The fundamental unit for energy is the joule (J), which is force 
times distance or N • m.

The great advantage of the SI system is that it incorporates a decimal system for relating larger or 
smaller quantities to the basic unit. The powers o f 10 are represented by standard prefixes given in 
Table 1.3-3. An example o f the common use o f a prefix is the centimeter (cm), which is 0.01 meter.

The decimal multiplier must always accompany the appropriate units and is never written by itself. 
Thus, we may write 2500 W as 2.5 kW. Similarly, we write 0.012 A as 12 mA.

E x a m p l e  1. 3 - 1  S I U n i t s

A mass of 150 grams experiences a force o f 100 newtons. Find the energy or work expended if  the mass moves 10 
centimeters. Also, find the power if the mass completes its move in 1 millisecond.

Solution
The energy is found as

energy =  force x distance =  100 x 0.1 =  10 J

Note that we used the distance in units o f meters. The power is found from
energy

power —
time period

where the time period is 10~ 3 s. Thus,

10

* ____________________________ /
P°wer =  t x t j  =  104 W =  10 kW

m ^ A ^ f f e s r ? 3  1 WHiCh ° f thC three CUITentS’ '' =  45 M ’ h =  003 mA' and ,-3 =  2 5  x 

Answer: i3 is largest.
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1.4 V O L T A G E

The basic variables in an electrical circuit are current and voltage. These variables 
describe the flow of charge through the elements of a circuit and the energy required to 
cause charge to flow. Figure 1.4-1 shows the notation we use to describe a voltage.
There are two parts to this notation: a value (perhaps represented by a variable name)
and an assigned direction. The value of a voltage may be positive or negative. The FIG(JRF , 4_, VoItage 
direction of a voltage is given by its polarities (+ , - ) .  As a matter of vocabulary, we a drc'J t
say that a voltage exists across an element. Figure 1.4-1 shows that there are two ways 
to label the voltage across an element. The voltage vba is proportional to the work required to move a 
positive charge from terminal a to terminal b. On the other hand, the voltage vab is proportional to the 
work required to move a positive charge from terminal b to terminal a. We sometimes read vba as “ the 
voltage at terminal b with respect to terminal a.” Similarly, vab can be read as ‘fcthe voltage at terminal 
a with respect to terminal b.” Alternatively, we sometimes say that vba is the voltage drop from 
terminal a to terminal b. The voltages vab and vba are similar but different. They have the same 
magnitude but different polarities. This means that

vab =  —vba

When considering vba, terminal b is called the “ +  terminal”  and terminal a is called the 
terminal.” On the other hand, when talking about vab, terminal a is called the “ +  terminal” and 
terminal b is called the terminal.”

The voltage across an element is the work (energy) required to move a unit positive charge 
from the — terminal to the +  terminal. The unit of voltage is the volt, V.

The equation for the voltage across the element is

(1.4-1)
dw

V = dq

where v is voltage, w is energy (or work), and q is charge. A charge of 1 coulomb delivers an energy of
1 joule as it moves through a voltage of 1 volt.

1.5 P O W E R  A N D  E N E R G Y

The power and energy delivered to an element are of great importance. For example, the useful output 
of an electric lightbulb can be expressed in terms of power. We know that a 300-watt bulb delivers 
more light than a 100-watt bulb.

Power is the time rate of expending or absorbing energy.

Thus, we have the equation

dw-
(1.5-1)
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(a)

where p  is power in watts, w is energy in joules, and / is time in seconds. The power associated 
with the charge flow through an element is

dw dw  dq 
P d t dq d t

=  V I (1.5-2)

(b)

FIGURE 1.5-1 (a) The 
passive convention is 
used for element 
voltage and current. (b) 
The passive convention 
is not used.

From Eq. 1.5-2, we see that the power is simply the product of the voltage across an 
element times the current through the element. The power has units o f watts.

Two circuit variables are assigned to each element o f  a circuit: a voltage and a current. 
Figure 1.5-1 shows that there are two different ways to arrange the direction o f  the current 
and the polarity o f the voltage. In Figure 1 5 -la , the current enters the circuit elem ent at the 
+  terminal o f the voltage and exits at the -  terminal. In contrast, in Figure 1.5-16, the 
current enters the circuit element at the -  terminal o f  the voltage and exits at the +  term inal.

First, consider Figure 1.5-la. When the current enters the circuit element at the +  
terminal o f the voltage and exits at the -  terminal, the voltage and current are said to “ adhere 
to the passive convention.”  In the passive convention, the voltage pushes a positive charge in 
the direction indicated by the current. Accordingly, the power calculated by multiplying the 
element voltage by the element current

p  =  vi

is the power absorbed by the element. (This power is also called “ the power received by the elem ent”  
and “ the power dissipated by the element.” ) The power absorbed by an element can be either positive 
or negative. This will depend on the values o f the element voltage and current.

Next, consider Figure 1.5-1 A. Here the passive convention has not been used. Instead, the 
current enters the circuit element at the -  terminal o f the voltage and exits at the +  term inal. In this 
case, the voltage pushes a positive charge in the direction opposite to the direction indicated by the 
current. Accordingly, when the element voltage and current do not adhere to the passive convention, 
the power calculated by multiplying the element voltage by the element current is the power supp lied  
by the element. The power supplied by an element can be either positive or negative, depending on 
the values of the element voltage and current.

The power absorbed by an element and the power supplied by that same elem ent are 
related by

power absorbed =  —power supplied

The rules for the passive convention are summarized in Table 1.5-1. When the element voltage and 
current adhere to the passive convention, the energy absorbed by an element can be determined from

Power Absorbed or Supplied by an Element

POWER ABSORBED BY AN ELEMENT POWER SUPPLIED BY AN ELEMENT

Because the reference directions of 
V and i adhere to the passive 
convention, the power

is the power absorbed by the 
element.

v +
Because the reference directions of 
v and / do not adhere to the 
passive convention, the power

p = vi
is the power supplied by the 
element.
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Eq. 1.5-1 by rewriting it as 

On integrating, we have

d w = p d t  (1.5-3)

w = f  p d z  (1*5-4)
J —oo

If the element receives power only for t > t0 and we let t0 = 0, then we have

w =  [  p d r  (1.5-5)
Jo

E x a m p l e  1.5-1 E l e c t r i c a l  P o w e r  a n d  E n e r g y

Let us consider the element shown in Figure 1.5-1 a when v =  4 V and i =  10 A. Find the power absorbed by the 
element and the energy absorbed over a 10-s interval.

Solution
The power absorbed by the element is

p  = vi = 4 • 10 =  40 W

The energy absorbed by the element is
r 10/•1U r 1U

H’=  /  p dt = I 40 dt = 40 ■ 10 =  400 J 
Jo Jo

E x a m p l e  1.5-2 E l e c t r i c a l  P o w e r  a n d  the  P a s s i v e  C o n v e n t i o n  ----------_ __________________________________________ J N

Consider the element shown in Figure 1.5-2. The current / and voltage vab adhere to the passive convention, so the 
power absorbed by this element is

power absorbed =  / • vab =  2 • (—4) =  — 8 W

The current i and voltage vba do not adhere to the passive convention, so the power supplied by this element is
power supplied =  / • Vba =  2 • (4) =  8 W

As expected

power absorbed =  —power supplied

i= 2 A '  +
' ' ---- o b

FIGURE 1.5-2 The element-f-  ̂  ̂y _
considered in Example 1.5-2.

Now let us consider an example when the passive convention is not used. Then p  =  vi is the 
power supplied by the element.
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1E x a m p l e  1 . 5 - 3  P o w e r .  E n e r g y ,  a n d  t h e  P a s s i v e  C o n v e n t i o n

Consider .he circuit shown in Figore 1 5-3 with v =  8. "  V and i =  2 0 e" ' A f o r , >  0. Find the power supplied by 
this element and the energy supplied by the element over the first second o f  operation. We assume that v and . are

zero for t < 0 .

b
- °  FIGURE 1.5-3 An element with the current
+ flowing into the terminal with a negative voltage sign.

Solution
The power supplied is

p =  Vi =  (8O (20<?■') = 160e W 
This element is providing energy to the charge flowing through it.

The energy supplied during the first second is

h- =  [  p d t  — f  (160e~2,)d t
Jo Jo

e 2t 11 160
=  160—~  =  —  (e~2 -  1) =  80(1 -  e~2) =  69.2 J 

- 2 10 2

E x a m p l e  1 . 5 - 4  E n e r g y  in  a T h u n d e r b o l t

The average current in a typical lightning thunderbolt is 2 x 104 A, and its typical duration is 0.1 s (W illiams, 
1988). The voltage between the clouds and the ground is 5 x 108 V. Determine the total charge transmitted to the 
earth and the energy released.

Solution
The total charge is

rO-l /.O.lru.i mu

Q =  i(t) d t=  /  2 X 104 dt =  2 X 103 C
Jo Jo

The total energy released is

rO.l/•o 1 p0.\
H =  /  Kt) x v(t) d t=  (2 x 104) (5 x 108) dt =  1012 J =  1 TJ 

Jo J
^ C ' S E  1 - 5 -  1 Figure E 1.5-1 shows four circuit elem ents identified by the letters A, B ,

(a) Which of the devices supply 12 W?

(b)  Which of the devices absorb 12 W?
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(0 What is the value of the power received by device B1

(g) What is the value of the power delivered by device B1

(h) What is the value of the power delivered by device D1

+ 6 V

_0 o------ 1 I------ O c
4 V -  -  2V

I-----0 °-----1

3 V

I -----------0

3 A

(A)
6 A

(B)

2 A

(C)
4 A

(D) FIGURE E 1.5-1

Answers: (a) B and C, (b) A and D, (c) -1 2  W, (d) 12 W, (e) -1 2  W

1.6 C I R C U I T  A N A L Y S I S  A N D  D E S I G N

The analysis and design of electric circuits are the primary activities described in this book and are key 
skills for an electrical engineer. The analysis of a circuit is concerned with the methodical study of a 
given circuit designed to obtain the magnitude and direction of one or more circuit variables, such as a 
current or voltage.

The analysis process begins with a statement of the problem and usually includes a given circuit 
model. The goal is to determine the magnitude and direction of one or more circuit variables, and the final 
task is to verify that the proposed solution is indeed correct. Usually, the engineer first identifies what is 
known and the principles that will be used to determine the unknown variable.

The problem-solving method that will be used throughout this book is shown in Figure 1.6-1. 
Generally, the problem statement is given. The analysis process then moves sequentially through the 
five steps shown in Figure 1.6-1. First, we describe the situation and the assumptions. We also record 
or review the circuit model that is provided. Second, we state the goals and requirements, and we

Describe the situation and 
the assumptions.

State the goals and 
requirements.

Generate a plan to obtain 
a solution of the problem.

Act on the plan.

Verify that the proposed 
solution is indeed correct.

Communicate the solution.
FIGURE 1.6-1 The problem-solving method.
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normally record the required circuit variable to be determined. The third step is to create a plan that 
will help obtain the solution o f the problem. Typically, we record the principles and techniques that 
pertain to this problem. The fourth step is to act on the plan and carry' out the steps described in the 
plan. The final step is to verify that the proposed solution is indeed correct. If it is correct, we 
communicate this solution by recording it in writing or by presenting it verbally. If the verification step 
indicates that the proposed solution is incorrect or inadequate, then we return to the plan steps, 
reformulate an improved plan, and repeat steps 4 and 5.

To illustrate this analytical method, we will consider an example. In Example 1.6-1, we use the 
steps described in the problem-solving method o f Figure 1.6-1.

E lec tr ic  C i r c u i t  V a r ia b le s

------------------ | E x a m p l e  1. 6-1 T h e  F o r m a l  P r o b l e m - S o l v i n g  M e t h o d

An experimenter in a lab assumes that an element is absorbing power and uses a voltmeter and am m eter to 
measure the voltage and current as shown in Figure 1.6-2. The measurements indicate that the voltage is 
v =  +  12 V and the current is i=  - 2  A. Determine whether the experim enter’s assumption is correct.

Describe the Situation and the Assumptions: Strictly speaking, the element is absorbing power. The 
value of the power absorbed by the element may be positive or zero or negative. When we say that someone 
“ assumes that an element is absorbing power,”  we mean that someone assumes that the power absorbed by 
the element is positive.

The meters are ideal. These meters have been connected to the elem ent in such a way as to m easure the 
voltage labeled v and the current labeled i. The values o f the voltage and current are given by the m eter
readings.

State the Goals: Calculate the power absorbed by the element to determine whether the value o f the power
absorbed is positive.

Generate a Plan: Verify that the element voltage and current adhere to the passive convention. If  so, the 
power absorbed by the device is p  =  vi. If not, the power absorbed by the device is p  — —vi.

Act on the Plan: Referring to Table 1.5-1, we see that the element voltage and current do adhere to the
passive convention. Therefore, power absorbed by the element is

p  = vi =  1 2 - ( - 2 )  =  - 2 4  W

The value of the power absorbed is not positive.
V erify the Proposed Solution: Let’s reverse the ammeter probes as shown in Figure 1.6-3. Now the 

ammeter measures the current /, rather than the current i, so /, =  2 A and v =  12 V. Because /, and v do not adhere 
to the passive convention,/? =  /, • v =  24 W is the power supplied by the element. Supplying 24 W is equivalent to 
absorbing - 2 4  W, thus verifying the proposed solution.

Element

t K.t RE 1.6-2 An element with a voltmeter and

[l 1 2 1 - 10 1
Voltmeter o  , . , ~

 — T 1 121 ■ 1010 1
^  Q Ammeter o

k z & m J  I

ammeter.

Element i l

F ll . l  RE 1.6-3 The circuit from Figure 1.6-2 with the ammeter 
probes reversed.
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Design is a purposeful activity in which a designer visualizes a desired outcome. It is the process 
of originating circuits and predicting how these circuits will fulfill objectives. Engineering design is 
the process of producing a set of descriptions of a circuit that satisfy a set of performance requirements 
and constraints.

The design process may incorporate three phases: analysis, synthesis, and evaluation. The first 
task is to diagnose, define, and prepare—that is, to understand the problem and produce an explicit 
statement of goals; the second task involves finding plausible solutions; the third concerns judging the 
validity of solutions relative to the goals and selecting among alternatives. A cycle is implied in which 
the solution is revised and improved by reexamining the analysis. These three phases are part of a
framework for planning, organizing, and evolving design projects.

Design is the process of creating a circuit to satisfy a set of goals.

The problem-solving process shown in Figure 1.6-1 is used in certain Design Examples included in
each chapter.

1.7 H O W  C A N  WE C H E C K  . . .  ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify 
those solutions that need more work.

This text includes some examples that illustrate techniques useful for checking the solutions of 
the particular problems discussed in that chapter. At the end of each chapter, some problems are 
presented that provide an opportunity to practice these techniques.

.  _  ^ 

E x a m p l e  1 . 7 - 1  H ow  C an  W e C h e c k  P o w e r  a n d  th e  P a s s i v e  C o n v e n t i o n ?

A laboratory report states that the measured values of v and i for the circuit element 
shown in Figure 1.7-1 are - 5  V and 2 A, respectively. The report also states that the 
power absorbed by the element is 10 W. How can we check the reported value of the 
power absorbed by this element? FIGURE 1.7-1 A circuit 

element with measured 
voltage and current.Solution

Does the circuit element absorb — 10 Wr or - f 10 W? The voltage and current shown in Figure 1.7-1 do not adhere to
the passive sign convention. Referring to Table 1.5-1, we see that the product of this voltage and current is the
power supplied by the element rather than the power absorbed by the element.

Then the power supplied by the element is

-10Wrp = v i=  (—5)(2) =

The power absorbed and the power supplied by an element have the same magnitude but the opposite sign. Thus, 
we have verified that the circuit element is indeed absorbing 10 W.
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__  1.8 D E S I G N  E X A M P L E  |—------------------------------

JET V A LVE C O N TR O LLE R

A small, experimental space rocket uses a two- 
element circuit, as showii in Figure 1.8-1, to 
control a jet valve from point o f  liftoff at f =  0  

until expiration o f the rocket after one minute.
| The energy that must be supplied by element 1 

for the one-minute period is 40 mJ. Element 1 is a 
battery to be selected.

It is known that i(t) =  ZJe- *'60 mA for t >  0, 
and the voltage across the second element is v2(f) =

V for t>  0. The maximum magnitude of the 
current, A  is limited to 1 mA. Determine the 
required constants D  and B and describe the required battery.

Describe the Situation and the Assumptions
1. The current enters the plus terminal o f the second element.

2. The current leaves the plus terminal o f the first element.

3. The wires are perfect and have no effect on the circuit (they do not absorb energy).

4. The model of the circuit, as shown in Figure 1.8-1. assumes that the voltage across the 
two elements is equal; that is, Vj — v2.

5. The battery voltage V! is vx =  Be~r60 V where B  is the initial voltage o f the battery’ that 
will discharge exponentially as it supplies energy' to the valve.

6 . The circuit operates from t =  0 to / =  60 s.

7. The current is limited, so D  <  1 mA.

State the Goal
Determine the energy supplied by the first element for the one-minute period and then select 
the constants D  and B. Describe the battery selected.

Generate a Plan
First, find v , ( 0  and i(t) and then obtain the power, p x(t), supplied by the first element. Next, 
using /?,(?), find the energy supplied for the first 60 s.

“ i

Wire
1 __ i

L
i

A ....
Element Element

1 2

Jet value 
controller

v2E_3
Wire

FIGI RE 1.8-1 The circuit to control 
a jet valve for a space rocket.

G0AL EQUATION NEED INFORMATION

The energy wj for the y 60 V] and j known except for
first 60 s Hi — I P \ v )  dt  p x(t) constants D and B

Jo

Act on the Plan
First, we need p\(t), so we first calculate

p x{t) =  ivi =  (De~t,6° x 10"3 A ) [Be~t60 V) 
=  DBe~'/30 x 10’ 3 W =  D Be- //3° mW
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60 „  . DB x 10-3e - ' / 30 6"

Second, we need to find w\ for the first 60 s as
/*60

w, =  /  {DBe~m  X 10- 3) t/f = ------ _ 1/3Q -

=  -3 0 DB x 10-3(e ' 2 -  1) =  25.9DB x 10~3 J 

Because we require vt’i >  40 mJ,
40 < 25.9DB

Next, select the limiting value, D =  1, to get
40

B > - -------- ——- =  1.54 V
“  (25 ,.9)(1)

Thus, we select a 2-V battery so that the magnitude of the current is less than 1 mA. 

Verify the Proposed Solution
We must verify that at least 40 mJ is supplied using the 2-V battery. Because i =  e~ ' 60 mA and 
v2 — 2e~tm  V, the energy supplied by the battery is

/»60 /*60 
w =  (2e-‘/60) (e - t/6° x 10"3) d t=  2e~tl30 x 10' 3 dt -  51.8 mJ 

Jo Jo
Thus, we have verified the solution, and we communicate it by recording the require­

ment for a 2-V battery.

1.9 S U M M A R Y
O Charge is the intrinsic property of matter responsible for 

electric phenomena. The current in a circuit element is the 
rate of movement of charge through the element. The 
voltage across an element indicates the energy available 
to cause charge to move through the element.

O Given the current, i, and voltage, v, of a circuit element, the 
power, p, and energy, w>, are given by

O Table 1.5-1 summarizes the use of the passive convention 
when calculating the power supplied or received by a circuit 
element.

O The SI units (Table 1.3-1) are used by today’s engineers and 
scientists. Using decimal prefixes (Table 1.3-3), we may 
simply express electrical quantities with a wide range of 
magnitudes.

p  =  v -i and
Jo

pdr

P R O B L E M S

Section 1.2 Electric Circuits and Current

P 1.2-1 The total charge that has entered a circuit element is q 
( 0 = 1  25( 1 - e  51) when t > 0 and q{t) =  0 when t < 0. Deter­
mine the current in this circuit element for t >  0 .

Answer: i(t) =  6.25e~St A

P 1.2-2 The current in a circuit element is i(t) =  4 ( 1 - e~5t) A 
when t > 0 and i(t) — 0 when t < 0 . Determine the total charge 
that has entered a circuit element for t > 0 .

Hint: q{0) =  f  i(r) dr = j  0 dx =  0
J — 30 J — GO

Answer: q(t) = 4 1 + 0.8^-5' -  0.8 C for t > 0

P 1.2-3 The current in a circuit element is /(f) =  4 sin 51 A 
when t > 0 and i(t) =  0 when t < 0. Determine the total charge 
that has entered a circuit element for / >  0 .

Hint: q(0) =  f  i(r) dr =  I  0 dr =  0
J -OO J—00



E le c t r ic  C i r c u i t  V a r ia b le s

P 1.2-4 The current in a circuit element is

0 / < 2
2 2 < / < 4
-1 4 < t < 8
0 8 < t

where the units o f current are A and the units o f time are s. 
Determine the total charge that has entered a circuit element 
for t>  0 .

Answer:

<?w =

0 t < 2
2f -  4 2 < / < 4
8 - / 4 < t < 8
0 8 < f

where the units of

charge are C.
P 1.2-5 The total charge q(t), in coulombs, that enters the 
terminal of an element is

r o / < o
q(t) =  < 2 1 0 < t < 2

[ l  +  e - ^ - V  t >  2

Find the current /(/) and sketch its waveform for /> 0 .

P 1.2-6 An electroplating bath, as shown in Figure P 1.2-6, is 
used to plate silver uniformly onto objects such as kitchen­
ware and plates. A current of 450 A flows for 20 minutes, and 
each coulomb transports 1.118 mg of silver. What is the weight 
of silver deposited in grams?

P 1.3-1 A constant current of 3.2 flows through an 
element. What is the charge that has passed through the 
element in the first millisecond?

Answer: 3.2 nC
P 1.3-2 A charge of 45 nC passes through a circuit element 
during a particular interval of time that is 5 ms in duration. 
Determine the average current in this circuit element during 
that interval of time.

Answer: i = 9 n A

P 1.3-3 Ten billion electrons per second pass through a 
particular circuit element. WTiat is the average current in 
that circuit element?

Answer: i = 1.602 nA

P 1.3-4 The charge flowing in a wire is plotted in Figure 
P 1.3-4. Sketch the corresponding current.

Section 1.3 Systems of Units

Figure P 1.3-4

Object to
be plated ^  ^ ^Silver bar

Bath

P 1.3-5 The current in a circuit element is plotted in Figure 
P 1.3-5. Sketch the corresponding charge flowing through the 
element for t > 0 .

Figure P 1.2-6 An electroplating bath.

P 1.2-7 Find the charge, q(t), and sketch its waveform when 
the current entering a terminal of an element is as shown in 
Figure P 1.2-7. Assume that q(t) = 0 for t< 0 .

P 1.3-6 The current in a circuit element is plotted in Figure 
P 1.3-6. Determine the total charge that flows through the 
circuit element between 300 and 1200 *xs.
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Figure P 1.3-6

Section 1.5 Power and Energy
P 1.5-1 Figure P 1.5-1 shows four circuit elements identified 
by the letters A, B, C, and D.
(a) Which of the devices supply 30 mW?
(b) Which of the devices absorb 0.03 W?
(c) What is the value of the power received by device B1
(d) What is the value of the power delivered by device 5?
(e) What is the value of the power delivered by device C?

+ 10 V

°— c m

5 V 6 V

3 mA

( A )

Figure P 1.5-1

6 mA

( B )

5 mA

(C)

(b)

Figure P 1.5-4 (a) Voltage v(t) and (b) current i(t) for an element.

P 1.5-5 An automobile battery is charged with a constant 
current of 2 A for five hours. The terminal voltage of the 
battery is v =  11 +  0.5/ V for t > 0, where t is in hours, (a) Find 
the energy delivered to the battery during the five hours, (b) If 
electric energy costs 15 cents/kWh, find the cost of charging 
the battery for five hours.

Answer: (b) 1.84 cents

-  15 V

P 1.5-2 An electric range has a constant current of 10 A entering 
the positive voltage terminal with a voltage of 110 V. The range is 
operated for two hours, (a) Find the charge in coulombs that 
passes through the range, (b) Find the power absorbed by the 
range, (c) If electric energy costs 12 cents per kilowatt-hour, 
determine the cost of operating the range for two hours.

P 1.5-3 A walker’s cassette tape player uses four AA 
batteries in series to provide 6 V to the player circuit. The 
four alkaline battery cells store a total of 2 0 0  watt-seconds of 
energy. If the cassette player is drawing a constant 10 mA 
from the battery pack, how long will the cassette operate at 
normal power?

P 1.5-4 The current through and voltage across an element 
vary with time as shown in Figure P 1.5-4. Sketch the power 
delivered to the element for t > 0. What is the total energy 
delivered to the element between / =  0 and / =  25 s? The 
element voltage and current adhere to the passive convention.

2 mA 

(D)

P 1.5-6 Find the power, /?(/), supplied by the element shown 

in Figure P 1.5-6 when v{t) = 4 cos 31V and i(t) =  A.

Evaluate p(t) at t =  0.5 s and at t =  1 s. Observe that the power 
supplied by this element has a positive value at some times and 
a negative value at other times.

Hint: (sin at)( cos bt) = ^ (sin (a +  b)t +  sin (a — b)t)

Answer:

p(t) = \  sin 6 1 W, />(0.5) =  0.0235 W. p (l)  =  -0 .0466 W 
6

Figure P 1.5-6 An element.

P 1.5-7 Find the power, p(t), supplied by the element shown 
in Figure P 1.5-6 when v(/) =  8 sin 3fV and /(f) =  2 sin 31 A.

Hint: (sin at) (sin bt) =   ̂(cos(a -  b)t -  cos {a +  b)t) 

Answer: p(t) =  8 -  8cos 6 1 W

P 1.5-8 Find the power, p(t), supplied by the element shown 
in Figure P 1.5-6. The element voltage is represented as
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v(/)= 4( l - e ~ 2/yV when /> 0  and v(/) =  0 when t<  0. The 
element current is represented as /(f) =  2e~~r A when f> 0  
and i(t) =  0 when / < 0 .
Answer: p(t) =  8(1 — e~2t)e~~l W
P 1.5-9 The battery of a flashlight develops 3 V, and the current 
through the bulb is 200 mA. What power is absorbed by the bulb? 
Find the energy absorbed by the bulb in a five-minute period.

P 1.5-10 Medical researchers studying hypertension often 
use a technique called “ 2D gel electrophoresis” to analyze the 
protein content of a tissue sample. An image of a typicalk ‘gel” 
is shown in Figure PI.5-10a.

The procedure for preparing the gel uses the electric 
circuit illustrated in Figure 1.5-106. The sample consists of a gel 
and a filter paper containing ionized proteins. A voltage source 
causes a large, constant voltage, 500 V, across the sample. The 
large, constant voltage moves the ionized proteins from the filter 
paper to the gel. The current in the sample is given by 

/(/) =  2 +  2>0e~at mA 
where f is the time elapsed since the beginning of the 
procedure and the value of the constant a is

a =  0.85 J- 
hr

Determine the energy supplied by the voltage source when the 
gel preparation procedure lasts 3 hours.

Hint: Calculate the power absorbed by each element. Add up 
all of these powers. If the sum is zero, conservation of energy 
is satisfied and the voltages and currents are probably 
correct. If the sum is not zero, the element voltages and 
currents cannot be correct.

-  5V + -5 A

+ 1 V -

Figure P 1.7-1

P 1.7-2 Conservation of energy requires that the sum of the 
power absorbed by all of the elements in a circuit be zero. 
Figure P 1.7-2 shows a circuit. All of the element voltages and 
currents are specified. Are these voltage and currents correct? 
Justify your answer.

Hint: Calculate the power absorbed by each element. Add up 
all of these powers. If the sum is zero, conservation of energy 
is satisfied and the voltages and currents are probably 
correct. If the sum is not zero, the element voltages and 
currents cannot be correct.

< « t

(a)

500 V

- e -
500 V

(b)

- sample

Hgure P 1.5-10 (a) An image of a gel and (b) the electric circuit 
used to prepare gel.

Section 1.7 How Can We Check . . . ?

P 1.7-1 Conservation of energy requires that the sum of the 
power absorbed by all of the elements in a circuit be zero.

igure P 1.7-1 shows a circuit. All o f the element voltages and 
currents are specified. Are these voltage and currents correct?
Justify your answer.

+

3 V

|  -3  A

-3  A

Figure P 1.7-2

P 1.7-3 The element currents and voltages shown in Figure 
P 1.7-3 are correct with one exception: the reference direction 
of exactly one of the element currents is reversed. Determine 
which reference direction has been reversed.

-  3V +

+
5V

}-5A

Figure P 1.7-3
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Design Problems
DP 1-1 A particular circuit element is available in three grades. 
Grade A guarantees that the element can safely absorb 1 /2  W 
continuously. Similarly, Grade B guarantees that 1/4 W can be 
absorbed safely, and Grade C guarantees that 1/8W  can be 
absorbed safely. As a rule, elements that can safely absorb more 
power are also more expensive and bulkier.

The voltage across an element is expected to be about 
20 V, and the current in the element is expected to be about 
8 mA. Both estimates are accurate to within 25 percent. The 
voltage and current reference adhere to the passive convention.

Specify the grade of this element. Safety is the most 
important consideration, but don’t specify an element that is 
more expensive than necessary.

DP 1 -2 The voltage across a circuit element is v( 0  =  20 (1 —e~8t) 
V when t >  0 and v(t) = 0 when t < 0. The current in this element 
is i(/) =  30e_8,mA when /> 0  and i(/) =  0 when t< 0. The 
element current and voltage adhere to the passive convention. 
Specify the power that this device must be able to absorb safely.

Hint: Use MATLAB, or a similar program, to plot the power.
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2.1 I N T R O D U C T I O N

Not surprisingly, the behavior o f an electric circuit depends on the behaviors o f  the individual circuit 
elements that comprise the circuit. O f course, different types o f circuit elements behave differently. 
The equations that describe the behaviors o f the various types o f circuit elements are called the 
constitutive equations. Frequently, the constitutive equations describe a relationship betw een the 
current and voltage of the element. Ohm ’s law is a well-known example o f  a constitutive equation. 

In this chapter, we will investigate the behavior o f several common types o f  circuit element:

• Resistors

• Independent voltage and current sources

• Open circuits and short circuits

• Voltmeters and ammeters

• Dependent sources

• Transducers

• Switches

2.2 E N G I N E E R I N G  A N D  L I N E A R  M O D E L S

The art of engineering is to take a bright idea and, using money, materials, knowledgeable people, and a 
regard for the environment, produce something the buyer wants at an affordable price.

Engineers use models to represent the elements o f an electric circuit. A model is a description o f 
those properties of a device that we think are important. Frequently, the model will consist o f  an 
equation relating the element voltage and current. Though the model is different from the electric 

.—  ̂ device, the model can be used in pencil-and-paper calculations that will predict how a circuit
composed ot actual devices will operate. Engineers frequently face a trade-off when selecting a model 
for a device. Simple models are easy to work with but may not be accurate. Accurate models are
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usually more complicated and harder to use. The conventional wisdom suggests that simple models be 
used first. The results obtained using the models must be checked to verify that use of these simple 
models is appropriate. More accurate models are used when necessary.

The idealized models of electric devices are precisely defined. It is important to distinguish 
between actual devices and their idealized models, which we call circuit elements. The goal of circuit 
analysis is to predict the quantitative electrical behavior of physical circuits. Its aim is to predict and to 
explain the terminal voltages and terminal currents of the circuit elements and thus the overall 
operation of the circuit.

Models of circuit elements can be categorized in a variety of ways. For example, it is 
important to distinguish linear models from nonlinear models because circuits that consist 
entirely of linear circuit elements are easier to analyze than circuits that contain some 
nonlinear elements.

An element or circuit is linear if the element’s excitation and response satisfy certain 
properties. Consider the element shown in Figure 2.2-1. Suppose that the excitation is the 
current / and the response is the voltage v. When the element is subjected to a current iu it 
provides a response vj. Furthermore, when the element is subjected to a current z2, it 
provides a response v2. For a linear element, it is necessary that the excitation i\ -I- i2 result 
in a response vx +  v2. This is usually called the principle o f superposition.

Also, multiplying the input of a linear device by a constant must have the consequence of 
multiplying the output by the same constant. For example, doubling the size of the input causes the size 
of the output to double. This is called the property o f homogeneity. An element is linear if, and only if, 
the properties of superposition and homogeneity are satisfied for all excitations and responses.

FIGURE 2.2-1 
An element with an 
excitation current i and 
a response v.

A linear element satisfies the properties of both superposition and homogeneity.

Let us restate mathematically the two required properties of a linear circuit, using the arrow 
notation to imply the transition from excitation to response:

Then we may state the two properties required as follows. 
Superposition:

*1 Vi
h  v2

then h +  *2 —► vi +  v2

Homogeneity:
i —> v

then ki —» kv

A device that does not satisfy either the superposition or
nonlinear.

(2.2- 1)

(2.2-2)

E x a m p l e  2 . 2 - 1  A L i n e a r  D e v i c e

Consider the element represented by the relationship between current and voltage

v =  Ri
Determine whether this device is linear.

as
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Solution
The response to a current i i is

v,  =  Rit

The response to a current i2 is

v2 =  Rii

The sum of these responses is

V! +  v2 =  Ri\ + Rh — ^(*1  +  *2 )

Because the sum of the responses to i, and i2 is equal to the response to i, +  i2, the principle o f  superposition is 
satisfied. Next, consider the principle o f homogeneity. Because

vi =  Ri\

we have for an excitation i2 =  ki\

V2 =  R ii — Rki\

Therefore,

v2 =

satisfies the pnnciple of homogeneity. Because the element satisfies the properties o f both superposition and
^hom ogeneity, it is linear.

E x a m p l e  2 . 2 - 2  A N o n l i n e a r  D e v i c e

v =  / 2

Now let us consider an element represented by the relationship between current and voltage: 

Determine whether this device is linear.

Solution
The response to a current i, is

The response to a current i2 is 

The sum of these responses is

The response to i, +  i2 is

Because

vi =  i ,2

v2 =  i , 2

V| +  V2 =  l | 2 + 1 ,2

O'l +  *2 )2 =  i\2 + 2*i i2 +  /',2

M2 +  i'i2 #  (j'i +  i'2 )2

\ the pnnciple of superposition is not satisfied. Therefore, the device is nonlinear. J
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E x a m p l e  2. 2-3 A M odel o f  a L inear D e v ic e

A linear element has voltage v and current i as shown in Figure 2.2-2a. Values of the current i and corresponding 
voltage v have been tabulated as shown in Figure 2.2-2b. Represent the element by an equation that expresses v as 
a function of i. This equation is a model of the element. Use the model to predict the value of v corresponding to a 
current of / =  100 mA and the value of i corresponding to a voltage of v =  18 V.

J ! '
V,  V i, mA

4.5 10
11.25 25
22.5 50

(a) (b)

FIGURE 2.2-2 {a) A linear circuit element and (b) a tabulation 
of corresponding values of its voltage and current.

FIGURE 2.2-3 A plot of voltage versus current for the linear 
element from Figure 2.2-2.

Solution
Figure 2.2-3 is a plot of the voltage v versus the current i. The points marked by dots represent corresponding 
values of v and i from the rows of the table in Figure 2.2-2b. Because the circuit element is linear, we expect these 
points to lie on a straight line, and indeed they do. We can represent the straight line by the equation

v =  mi +  b

where m is the slope and b is the v-intercept. Noticing that the straight line passes through the origin, v =  0 when
i =  0, we see that b = 0. We are left with

v =  mi

The slope m can be calculated from the data in any two rows of the table in Figure 2.2-2b. For example:

11 .25-4.5 
25 -  10

=  0.45
V 22 .5-11 .25  

mA 5 0 - 2 5
. . .  V 22.5 — 4.5

=  0.45 —- ,  and ——— —— 
mA 50 -  10

V
0.45 ----

mA
Consequently,

and

m = 0.45
mA

450

v =  450/

This equation is a model of the linear element. It predicts that the voltage v =  450(0.1) =  45 V corresponds to the 
current i =  100mA =  0.1 A and that the current i =  18/450 =  0.04 A =  40 mA corresponds to the voltage 
v =  18 V.

EXERCISE 2.2-1 Consider the circuit element shown in Figure E 2 .2 -la. A plot of the 
element voltage, v, versus the element current,», is shown in Figure E 2.2- 1 b. The plot is a straight 
line that passes through the origin and has a slope with value m. Consequently, v and i are related by

v =  mi
Show that this device is linear.
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(a)

FIGU RE E 2.2-1

(b) (a)

FIGURE E 2.2-2

EXERCISE 2.2-2 Consider the circuit elem ent shown in Figure E 2 .2 - 2 a. A plot o f  the 
element voltage, v, versus the element current, i, is shown in Figure E 2.2-2b. The plot is a straight 
line that has a v-intercept with value b and has a slope with value m. Consequently, v and i are 

related by
v — mi - f  b

Show that this device is not linear.

2.3 A C T I V E  A N D  P A S S I V E  C I R C U I T  E L E M E N T S  -------------------------

We may classify circuit elements in two categories, passive  and active, by determining whether they 
absorb energy or supply energy. An element is said to be passive if the total energy delivered to it from the 
rest o f the circuit is always nonnegative (zero or positive). Then for a passive element, with the current 
flowing into the -I- terminal as shown in Figure 2.3-la, this means that

w  =  f  v i d r > 0  (2.3-1)
J —OO

for all values of t.

A passive element absorbs energy.

Entry
node

Exit
node

t  - I ' '
Exit
node

(a)

Entry
node

(b)

FIGURE 2.3-1 (a) The entry node of the current / is the positive node of the voltage v; (b) the 
entry node of the current i is the negative node of the voltage v. The current flows from the
entry node to the exit node.

An element is said to be active if it is capable of delivering energy. Thus, an active element violates 
Eq. 2.3-1 when it is represented by Figure 2.3-la. In other words, an active element is one that is capable of 
generating energy. Active elements are potential sources o f energy, whereas passive elements are sinks or 
absorbers ot energy. Examples of active elements include batteries and generators. Consider the element 
shown in Figure 2.3-1 b. Note that the current flows into the negative terminal and out o f the positive
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terminal. This element is said to be active if

w = f  vi dr > 0 (2.3-2)
J —oo

for at least one value o f /.

An active element is capable of supplying energy.

E x a m p l e  2.3-1 A n A c t i v e  C i r c u i t  E l e m e n t

A circuit has an element represented by Figure 2.3-16 where the current is a constant 5 A and the voltage is a 
constant 6 V. Find the energy supplied over the time interval 0 to T.

Solution
Because the current enters the negative terminal, the energy supplied by the element is given by

w =  [  (6)(5)dr =  30TJ 
Jo

sThus, the device is a generator or an active element, in this case a dc battery.

2.4 RESI STORS

The ability of a material to resist the flow of charge is called its resistivity, p. Materials that are good 
electrical insulators have a high value of resistivity. Materials that are good conductors of electric 
current have low values of resistivity. Resistivity values for selected materials are given in Table 2.4-1. 
Copper is commonly used for wires because it permits current to flow relatively unimpeded. Silicon is 
commonly used to provide resistance in semiconductor electric circuits. Polystyrene is used as an 
insulator.

Resistance is the physical property of an element or device that impedes the flow of current; 
it is represented by the symbol R.

Georg Simon Ohm was able to show that the current in a circuit composed of a battery and a 
conducting wire of uniform cross-section could be expressed as

Av
1 pL

(2.4-1)

Resistivities of Selected Materials

MATERIAL RESISTIVITY p (OHM .CM )

Polystyrene i x 1018

Silicon 2.3 x 105

Carbon 4 x 10~3

Aluminum 2.7 x 10~6

Copper 1 7  x 10~6
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where A is the cross-sectional area, p the resistivity, L the length, and v the voltage across the 
wire element. Ohm, who is shown in Figure 2.4-1, defined the constant resistance R as

PL
A

R= — (2.4-2)

Ohm 's law, which related the voltage and current, was published in 1827 as

FIGURE 2.4-1
Georg Simon Ohm 
(1787-1854). who 
determined Ohm’s law 
in 1827. The ohm was 
chosen as the unit of 
electrical resistance in 
his honor.

(24-3)

The unit o f resistance R was named the ohm in honor o f Ohm and is usually abbreviated by the 
f l  (capital omega) symbol, where 1 0  =  1 V/A. The resistance o f a 10-m length o f  common 
TV cable is 2 m fl.

An element that has a resistance R is called a resistor. A resistor is represented by the 
two-terminal symbol shown in Figure 2.4-2. O hm 's law, Eq. 2.4-3, requires that the z-versus-v 
relationship be linear. As shown in Figure 2.4-3, a resistor may become nonlinear outside its 
normal rated range o f operation. We will assume that a resistor is linear unless stated 
otherwise. Thus, we will use a linear model o f the resistor as represented by O hm ’s law. 

In Figure 2.4-4, the element current and element voltage o f a resistor are labeled. The 
relationship between the directions o f this current and voltage is important. The voltage direction 
marks one resistor terminal +  and the other - .  The current za flows from the terminal marked +  to the 
terminal marked —. This relationship between the current and voltage reference directions is a 
convention called the passive convention. Ohm ’s law states that when the element voltage and the 
element current adhere to the passive convention, then

v == Ria (2.4-4)
Consider Figure 2.4-4. The element currents ia and ib are the same except for the assigned direction, so

*a =  ~ib

The element current za and the element voltage v adhere to the passive convention,
v =  Ria

Replacing ia by — ib gives
v =  - R i b

There is a minus sign in this equation because the element current zb and the element voltage v do not
adhere to the passive convention. We must pay attention to the current direction so that we don’t
overlook this minus sign.

Ohm’s law, Eq. 2.4-3, can also be written as

i = Gv (2 .4-5 )
where G denotes the conductance in siemens (S) and is the reciprocal o f R ; that is, G =  1 /R . Many 
engineers denote the units o f conductance as mhos with the u symbol, which is an inverted omega (mho is 
ohm spelled backward). However, we will use SI units and retain siemens as the units for conductance.

FIGURE 2.4-2 Symbol fora 
resistor having a resistance of/?
ohms.

------------------u p v . u u . , 5

within its specified current range, ±  
im, can be modeled by Ohm’s law.

FIGURE 2.4-4 A resistor with 
element current and element
voltage.



Resis tors

FIGURE 2.4-5 (a) Wirewound resistor with an 
(b) adjustable center tap. (b) Wirewound resistor with a

fixed tap. Courtesy of Dale Electronics.

FIGURE 2.4-6 Small thick-film resistor chips used for FIGURE 2.4-7 A 1/4-watt metal film resistor. The body 
miniaturized circuits. Courtesy of Coming Electronics. of the resistor is 6 mm long. Courtesy of Dale Electronics.

Most discrete resistors fall into one of four basic categories: carbon composition, carbon film, 
metal film, or wirewound. Carbon composition resistors have been in use for nearly 100 years and 
are still popular. Carbon film resistors have supplanted carbon composition resistors for many 
general-purpose uses because of their lower cost and better tolerances. Two wirewound resistors are 
shown in Figure 2.4-5.

Thick-film resistors, as shown in Figure 2.4-6, are used in circuits because of their low cost and 
small size. General-purpose resistors are available in standard values for tolerances of 2, 5, 10, and 20 
percent. Carbon composition resistors and some wirewounds have a color code with three to five 
bands. A color code is a system of standard colors adopted for identification of the resistance of 
resistors. Figure 2.4-7 shows a metal film resistor with its color bands. This is a 1 /4-watt resistor, 
implying that it should be operated at or below 1/4 watt of power delivered to it. The normal range of 
resistors is from less than 1 ohm to 10 megohms. Typical values of some commercially available 
resistors are given in Appendix D.

The power delivered to a resistor (when the passive convention is used) is

Thus, the power is expressed as a nonlinear function of the current i through the resistor or of the 
voltage v across it.

Recall the definition of a passive element as one for which the energy absorbed is always 
nonnegative. The equation for energy delivered to a resistor is

(2.4-6)

Alternatively, because v =  iR, we can write the equation for power as

p  =  vi =  (iR)i =  i2R (2.4-7)

(2.4-8)
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Because i2 is always positive, the energy is always positive and the resistor is a passive element. 

Resistance is a measure o f an elem ent's ability to dissipate power irreversibly.

1
E x a m p l e  2 . 4 - 1  P o w er  D i s s ip a t e d  by  a R e s i s t o r

Let us devise a model for a car battery when the lights are left on and the engine is 
off. We have all experienced or seen a car parked with its lights on. If we leave the car 
for a period, the battery will run down or go dead. An auto battery is a 12-V constant- 12 v
voltage source, and the lightbulb can be modeled by a resistor o f 6  ohms. The circuit is 
shown in Figure 2.4-8. Let us find the current the power p, and the energy supplied 
by the battery for a four-hour period.

Solution
According to Ohm’s law, Eq. 2.4-3, we have

FIGURE 2.4-8 Model 
car battery and the 
headlight lamp.

o f a

v =  Ri

Because v =  12 V and R — 6 Q, we have i =  2 A.

To find the power delivered by the battery, we use

p  — vi — 12(2) =  24 W 

Finally, the energy delivered in the four-hour period is

W =  [  p d z  — 24/ =  24(60 x 60 x 4) =  3.46 x 105 J 
Jo

Because the battery has a finite amount o f stored energy, it will deliver this energy and eventually be unable to 
deliver further energy without recharging. We then say the battery is run down or dead until recharged. A typical 
auto battery may store 106 J in a fully charged condition.

EXERCISE 2.4-1 Find the power absorbed by a 1 0 0 -ohm resistor when it is connected directly
across a constant 10-V source.

Answer: 1-W

EXERCISE 2.4-2 A voltage source v =  10 cos / V is connected across a resistor o f  10 ohms. Find
the power delivered to the resistor.

Answer: 10 cos2/ W

2.5 I N D E P E N D E N T  S O U R C E S  _______________ _______ ___________

Some devices are intended to supply energy to a circuit. These devices are called sources Sources are 
categorized as being one of two types: voltage sources and current sources. Figure 2 5 - la  shows the 
symbol lhat ,s u s *  ,o ,ep ,es,„ , a voltage source. The vol.age o f a »„llage ia I I I
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current is determined by the rest of the circuit. A voltage source is described by specifying the function 
v(/), for example,

v(t) =  12 cos 1000/ or v(f) =  9 or v(t) =  1 2 - 2 /

An active two-terminal element that supplies energy to a circuit is a source of energy. An independent 
voltage source provides a specified voltage independent of the current through it and is independent of 
any other circuit variable.

A source is a voltage or current generator capable of supplying energy to a circuit.

An independent current source provides a current independent of the voltage across the source 
element and is independent of any other circuit variable. Thus, when we say a source is independent, 
we mean it is independent of any other voltage or current in the circuit.

An independent source is a voltage or current generator not dependent on other circuit 
variables.

Suppose the voltage source is a battery and

v(/) =  9 volts

The voltage of this battery is known to be 9 volts regardless of the circuit in which the battery is used. 
In contrast, the current of the voltage source is not known and depends on the circuit in which the 
source is used. The current could be 6 amps when the voltage source is connected to one circuit and 6 
milliamps when the voltage source is connected to another circuit.

Figure 2.5-16 shows the symbol that is used to represent a current source. The current of a 
current source is specified, but the voltage is determined by the rest of the circuit. A current source is 
described by specifying the function /(/), for example,

i(t) =  6 sin 500/ or i(t) =  —0.25 or i(t) =  / 4- 8

A current source specified by /(/) =  —0.25 milliamps will have a current of —0.25 milliamps in any 
circuit in which it is used. The voltage across this current source will depend on the particular 
circuit.

The preceding paragraphs have ignored some complexities to give a simple description of the 
way sources work. The voltage across a 9-volt battery may not actually be 9 volts. This voltage 
depends on the age of the battery, the temperature, variations in manufacturing, and the battery 
current. It is useful to make a distinction between real sources, such as batteries, and the simple 
voltage and current sources described in the preceding paragraphs. It would be ideal if the real 
sources worked like these simple sources. Indeed, the word ideal is used to make this distinction. 
The simple sources described in the previous paragraph are called the ideal voltage source and the 
ideal current source.

The voltage of an ideal v oltage source is given to be a specified function, say v(/). The 
current is determined by the rest of the circuit.

The current of an ideal current source is given to be a specified function, say /’(/). The
voltage is determined by the rest of the circuit.

An ideal source is a voltage or a current generator independent of the current through
the voltage source or the voltage across the current source.

?,/(/)

(a)

o
+

v(t) ( T )  M

A
(b)

FIGURE 2.5-1
(a) Voltage 
source.
(b) Current 
source.
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E x a m p l e  2 . 5 - 1  A B a t te ry  M o d e le d  as a V o l t a g e  S o u r c e

Consider the plight o f the engineer who needs to analyze a circuit containing a 9-volt battery. Is it really necessary 
for this engineer to include the dependence o f battery voltage on the age o f  the battery, the temperature, variations 
in manufacturing, and the battery current in this analysis? Hopefully not. We expect the battery to act enough like 
an ideal 9 -volt voltage source that the differences can be ignored. In this case, it is said that the battery is modeled

as an ideal voltage source.
To be specific, consider a battery specified by the plot o f voltage versus current shown in Figure 2.5-2a. I his 

plot indicates that the battery voltage will be v =  9 volts when i < 10 milliamps. As the current increases above 10 
milliamps. the voltage decreases from 9 volts. When i <  10 milliamps, the dependence o f the battery voltage on 
the battery current can be ignored and the battery can be modeled as an ideal voltage source.

v, volts

FIGURE 2.5-2 (a) A plot o f battery voltage versus 
battery current. (b) The battery is modeled as an 

(a) (b )  independent voltage source.

Suppose a resistor is connected across the terminals o f the battery as shown in Figure 2.5-2b. The battery 
current will be

< - 5  P 5 - D

The relationship between v and i shown in Figure 2.5-2a complicates this equation. This complication can be 
safely ignored when / <  10 milliamps. When the battery is modeled as an ideal 9-volt voltage source, the voltage 
source current is given by

> =  l  (2.5-2)

The distinction between these two equations is important. Eq. 2.5-1, involving the v—i relationship shown in 
Figure 2.5-2a, is more accurate but also more complicated. Equation 2.5-2 is simpler but may be inaccurate. 

Suppose that R =  1000 ohms. Equation 2.5-2 gives the current o f the ideal voltage source:
9

» =  -—— =  9m A  ('2 5-3)
1 0 0 0  '  J  J>

Because this current is less than 10 milliamps, the ideal voltage source is a good model for the battery, and it is 
reasonable to expect that the battery current is 9 milliamps.

Suppose, instead, that R — 600 ohms. Once again, Eq. 2.5-2 gives the current o f the ideal voltage source:

' =  600 =  15mA (2-5-4)

Because this current is greater than 10 milliamps, the ideal voltage source is not a good model for the battery In this 
.case, it is reasonable to expect that the battery current is different from the current for the ideal voltage source.

Engineers frequently face a trade-off when selecting a model for a device. Sim ple m odels

T a x  t ‘°  W° ™Wi‘h ^  A ccurate m ode,s are “ « “ >* ■»<« c o m p H c Z andharder to use. The conventional wisdom suggests that sim ple m odels be used first The results
obtained using the models must be checked to verify that use o f  these sim ple m odels is 
appropriate. More accurate models are used when necessary.
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The short circuit and open circuit are special cases of ideal sources. A short circuit is an ideal 
voltage source having v(t) = 0. The current in a short circuit is determined by the rest of the circuit. An 
open circuit is an ideal current source having i(t) = 0. The voltage across an open circuit is determined 
by the rest of the circuit. Figure 2.5-3 shows the symbols used to represent the short circuit and the open 
circuit. Notice that the power absorbed by each of these devices is zero.

Open and short circuits can be added to a circuit without disturbing the branch currents and 
voltages of all the other devices in the circuit. Figure 2.6-3 shows how this can be done. Figure 
2.6-3a shows an example circuit. In Figure 2.6-3b an open circuit and a short circuit have been added 
to this example circuit. The open circuit was connected between two nodes of the original circuit. In 
contrast, the short circuit was added by cutting a wire and inserting the short circuit. Adding open 
circuits and short circuits to a network in this way does not change the network.

Open circuits and short circuits can also be described as special cases of resistors. A resistor v(t) = 0 
with resistance R = 0 (G = oc) is a short circuit. A resistor with conductance G =  0 (R = oo) is an 
open circuit.

2.6 V O L T M E T E R S  A N D  A M M E T E R S

Element /

am
9  Ammeter q

(a)

HGURE 2.6-2 (a) Ideal ammeter, (b) Ideal voltmeter.

!i
+

v( t )

I

(a)

i ( t )  = i

i(f)

(b)

Measurements of dc current and voltage are made with direct-reading (analog) or digital meters, 
as shown in Figure 2.6-1. A direct-reading meter has an indicating pointer whose angular 
deflection depends on the magnitude of the variable it is measuring. A digital meter displays a set 
of digits indicating the measured variable value.

To measure a voltage or current, a meter is connected to a circuit, using terminals called 
probes. These probes are color coded to indicate the reference direction of the variable being 
measured. Frequently, meter probes are colored red and black. An ideal voltmeter measures the 
voltage from the red to the black probe. The red terminal is the positive terminal, and the black 
terminal is the negative terminal (see Figure 2.6-2b).

An ideal ammeter measures the current flowing through its terminals, as shown in Figure 
2.6-2a and has zero voltage, vm, across its terminals. An ideal voltmeter measures the voltage 
across its terminals, as shown in Figure 2.6-2b, and has terminal current, zm, equal to zero. 
Practical measuring instruments only approximate the ideal conditions. For a practical ammeter, 
the voltage across its terminals is usually negligibly small. Similarly, the current into a voltmeter 
is usually negligible.

Ideal voltmeters act like open circuits, and ideal ammeters act like short circuits. In other 
words, the model of an ideal voltmeter is an open circuit, and the model of an ideal ammeter is a 
short circuit. Consider the circuit of Figure 2.6-3a and then add an open circuit with a voltage v and 
a short circuit with a current i as shown in Figure 2.6-3b. In Figure 2.6-3c, the open circuit has been 
replaced by a voltmeter, and the short circuit has been replaced by an ammeter. The voltmeter will 
measure the voltage labeled v in Figure 2.6-3b whereas the ammeter will measure the current 
labeled /. Notice that Figure 2.6-3c could be obtained from Figure 2.6-3a by adding a voltmeter

FIGURE 2.5-3
(а) Open circuit.
(б ) Short circuit.

( a )

(b)

FIGURE 2.6-1 
{a) A direct- 
reading (analog) 
meter.
(6 ) A digital 
meter.
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FIGURE 2.6-3 (a) An example circuit, (b) plus an open circuit and a short circuit, (c) The open circuit is replaced by a 
voltmeter, and the short circuit is replaced by an ammeter.

and an ammeter. Ideally, adding the voltmeter and ammeter in this way does not disturb the circuit. 
One more interpretation of Figure 2.6-3 is useful. Figure 2.6-3b could be formed from Figure 2.6-3c by 
replacing the voltmeter and the ammeter by their (ideal) models.

The reference direction is an important part o f an element voltage or element current. Figures
2.6-4 and 2.6-5 show that attention must be paid to reference directions when measuring an element 
voltage or element current. Figure 2.6-4a shows a voltmeter. Voltmeters have two color-coded probes. 
This color coding indicates the reference direction o f the voltage being measured. In Figures 2.6-4b 
and Figure 2.6-4c the voltmeter is used to measure the voltage across the 6 -kH resistor. W hen the 
voltmeter is connected to the circuit as shown in Figure 2.6-4b, the voltmeter measures va, with +  on

(a) (b) (c)

I KUJRE 2.6-4 (a) The correspondence between the color-coded probes of the voltmeter and the reference direction of the 
measured voltage. In (ft), the + sign of va is on the left, whereas in (c), the +  sign of v„ is on the right. The colored probe is 
shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as ihe “ red probe."
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(a) (b) (c)

FIGURE 2.6-5 (a) The correspondence between the color-coded probes of the ammeter and the reference direction of 
the measured current. In (b) the current za is directed to the right, while in (c) the current zb is directed to the left. The 
colored probe is shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as the 
“red probe.”

the left, at the red probe. When the voltmeter probes are interchanged as shown in Figure 2.6-4c, the 
voltmeter measures v̂ ,, with +  on the right, again at the red probe. Note vb =  —va.

Figure 2.6-5a shows an ammeter. Ammeters have two color-coded probes. This color coding 
indicates the reference direction of the current being measured. In Figures 2.6-5b and c, the ammeter is 
used to measure the current in the 6 -kO resistor. When the ammeter is connected to the circuit as shown in 
Figure 2.6-5b, the ammeter measures za, directed from the red probe toward the black probe. When the 
ammeter probes are interchanged as shown in Figure 2.6-5c, the ammeter measures z‘b, again directed 
from the red probe toward the black probe. Note zb =  — ia-

2.7 D E P E N D E N T  S O U R C E S

Dependent sources model the situation in which the voltage or current of one circuit element is 
proportional to the voltage or current of the second circuit element. (In contrast, a resistor is a circuit 
element in which the voltage of the element is proportional to the current in the same element.) 
Dependent sources are used to model electronic devices such as transistors and amplifiers. For 
example, the output voltage of an amplifier is proportional to the input voltage of that amplifier, so an 
amplifier can be modeled as a dependent source.

Figure 2.7-la shows a circuit that includes a dependent source. The diamond symbol represents 
a dependent source. The plus and minus signs inside the diamond identify the dependent source as a 
voltage source and indicate the reference polarity of the element voltage. The label “ 5/”  represents 
the voltage of this dependent source. This voltage is a product of two factors, 5 and z. The second 
factor, z, indicates that the voltage of this dependent source is controlled by the current, z, in the 18-0 
resistor. The first factor, 5, is the gain of this dependent source. The gain of this dependent source is the 
ratio of the controlled voltage, 5z, to the controlling current, i. This gain has units of V /A  or O. 
Because this dependent source is a voltage source and because a current controls the voltage, the 
dependent source is called a current-controlled voltage source (CCVS).

Figure 2.7-16 shows the circuit from 2.7-la, using a different point of view. In Figure 2.7-16, a 
short circuit has been inserted in series with the 18-0 resistor. Now we think of the controlling current i 
as the current in a short circuit rather than the current in the 18-0 resistor itself In this way, we can 
always treat the controlling current of a dependent source as the current in a short circuit. We will use 
this second point of view to categorize dependent sources in this section.

Figure 2.7-lc shows a circuit that includes a dependent source, represented by the diamond 
symbol. The arrow inside the diamond identifies the dependent source as a current source and indicates 
the reference direction of the element current. The label “ 0.2v” represents the current of this
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(a)

5 i

(b)

— v w

>0.2v

(c) (d)

FIGURE 2.7-1 The controlling current of a dependent source shown as (a) the current in an element and as (6 ) the 
current in a short circuit in series with that element. The controlling voltage of a dependent source shown as (c) the 
voltage across an element and as (d ) the voltage across an open circuit in parallel with that element.

dependent source. This current is a product o f two factors, 0.2 and v. The second factor, v, indicates 
that the current o f this dependent source is controlled by the voltage, v, across the 18-fl resistor. The 
first factor, 0.2, is the gain o f this dependent source. The gain o f this dependent source is the ratio o f  the 
controlled current, 0.2v, to the controlling voltage, v. This gain has units o f ATV. Because this 
dependent source is a current source and because a voltage controls the current, the dependent source 
is called a voltage-controlled current source (VCCS).

Figure 2.7- \d  shows the circuit from Figure 2 .7-lc, using a different point o f  view. In Figure 2.7-
1 d, an open circuit has been added in parallel with the 18-fl resistor. Now we think o f the controlling 
voltage v as the voltage across an open circuit Figure 2.7-1, rather than the voltage across the 18-fl 
resistor itself. In this way, we can always treat the controlling voltage o f a dependent source as the 
voltage across an open circuit.

We are now ready to categorize dependent source. Each dependent source consists o f  two parts: 
the controlling part and the controlled part. The controlling part is either an open circuit or a short 
circuit. The controlled part is either a voltage source or a current source. There are four types o f 
dependent source that correspond to the four ways o f choosing a controlling part and a controlled part. 
These four dependent sources are called the voltage-controlled voltage source (VCVS), current- 
controlled voltage source (CC VS), voltage-controlled current source (VCCS), and current-controlled 
current source (CCCS). The symbols that represent dependent sources are shown in Table 2.7-1.

Consider the CCVS shown in Table 2.7-1. The controlling element is a short circuit. The 
element current and voltage o f the controlling element are denoted as ic and vc. The voltage across a 
short circuit is zero, so vc =  0. The short-circuit current, zc, is the controlling signal o f this dependent 
source. The controlled element is a voltage source. The element current and voltage o f the controlled 
element are denoted as and v .̂ The voltage is controlled by ic:

vd =  ri'c

The constant r  is called the gain o f the CCVS. The current id, like the current in any voltage source is
determined by the rest o f the circuit.
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T«ble 2 7 1 Dependent Sources

d e s c r ip t io n
SYMBOL

Current-Controlled Voltage Source (CCVS) 
r is the gain of the CCVS. 
r has units of volts/ampere.

+
Ur  =  0 I'c ► vd = ric

Voltage-Controlled Voltage Source (VCVS) 
b is the gain of the VCVS. 
b has units of volts/volt. vd = bvc

Voltage-Controlled Current Source (VCCS) 
g is the gain of the VCCS. 
g has units of amperes/volt.

!iic = 0

*'d =

Current-Controlled Current Source (CCCS) 
d is the gain of the CCCS. 
d has units of amperes/ampere.

+
vc = 0 /d = dic

Next, consider the VCVS shown in Table 2.7-1. The controlling element is an open circuit. The 
current in an open circuit is zero, so ic =  0. The open-circuit voltage, vc, is the controlling signal of this 
dependent source. The controlled element is a voltage source. The voltage vd is controlled by vc:

Vd =  bvc

The constant b is called the gain of the VCVS. The current id is determined by the rest of the circuit.
The controlling element of the VCCS shown in Table 2.7-1 is an open circuit. The current in this 

open circuit is ic =  0. The open-circuit voltage, vc, is the controlling signal of this dependent source. 
The controlled element is a current source. The current zd is controlled by vc:

*'d =  gvc

The constant g is called the gain of the VCCS. The voltage vd, like the voltage across any current 
source, is determined by the rest of the circuit.

The controlling element of the CCCS shown in Table 2.7-1 is a short circuit. The voltage across this 
open circuit is vc =  0. The short-circuit current, zc, is the controlling signal of this dependent source. The 
controlled element is a current source. The current zd is controlled by zc:

z’d =  dic
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(a) (b)

FIGURE 2.7-2 (a) A symbol for a transistor, (b) A model of the transistor, (c) A transistor amplifier. (d) A model of 
the transistor amplifier.

The constant d  is called the gain o f the CCCS. The voltage vd, like the voltage across any current 
source, is determined by the rest o f the circuit.

Figure 2.7-2 illustrates the use o f dependent sources to model electronic devices. In certain 
circumstances, the behavior o f the transistor shown in Figure 2.1-2a can be represented using the model 
shown in Figure 2.7-26. This model consists o f a dependent source and a resistor. The controlling 
element of the dependent source is an open circuit connected across the resistor. The controlling voltage 
is vbe. The gain of the dependent source is g m. The dependent source is used in this model to represent a 
property of the transistor, namely, that the current ic is proportional to the voltage vbe, that is,

*c =  gmVbe
where g m has units o f amperes/volt. Figures 2.7-2c and d  illustrate the utility o f  this model. Figure
2.7-2d  is obtained from Figure 2.7-2c by replacing the transistor by the transistor model.

E x a m p l e  2 . 7 - 1  P o w e r  and  D e p e n d e n t  S o u r c e s

Determine the power absorbed by the VCVS in Figure 2.7-3.

Solution
The V CV S consists o f an open circuit and a controlled-voltage source. There is no current in the open circuit, so
no power is absorbed by the open circuit.

The voltage, vc, across the open circuit is the controlling signal o f the VCVS. The voltmeter measures
vc to be

vc =  2 V

The voltage of the controlled voltage source is
Vd =  2 vc =  4 V

The ammeter measures the current in the controlled voltage source to be

id =  1.5 A
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FIGURE 2.7-3 A circuit containing a VC VS. The meters 
indicate that the voltage of the controlling element is vc =  2.0 
volts and that the current of the controlled element is id =  1.5 
amperes.

The element current, zd, and voltage, vd, adhere to the passive convention. Therefore,

p = idVd =  (1 -5)(4) =  6 W

is the power absorbed by the VC VS.

EXERCISE 2.7-1 Find the power absorbed by the CCCS in Figure E 2.7-1.

FIGURE E 2.7-1 A circuit containing a CCCS. The meters indicate that the current of the controlling element is ic =  
- 1.2 amperes and that the voltage of the controlled element is vd =  24 volts.

Hint: The controlling element of this dependent source is a short circuit. The voltage across a short 
circuit is zero. Hence, the power absorbed by the controlling element is zero. How much power is 
absorbed by the controlled element?

Answer: -115.2 watts are absorbed by the CCCS. (The CCCS delivers +115.2 watts to the rest of 
the circuit.)

2.8 T R A N S D U C E R S

Transducers are devices that convert physical quantities to electrical quantities. This section describes 
two transducers: potentiometers and temperature sensors. Potentiometers convert position to resist­
ance. and temperature sensors convert temperature to current.
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(a)

(1 -  a)R0

aRn

(b)

FIGURE 2.8-1 (a) The symbol 
and (b) a model for the 
potentiometer.

Figure 2 8-1 a shows the symbol for the potentiometer. The potentiom eter is a 
resistor having a third contact, called the wiper, that slides along the resistor. Two 
parameters, Rp and a, are needed to describe the potentiometer. The param eter Rp 
specifies the potentiometer resistance [Rp >  0). The param eter a represents the 
wiper position and takes values in the range 0 <  a <  1. The values a =  0 and a =  1 
correspond to the extreme positions o f  the wiper.

Figure 2.8-16 shows a model for the potentiometer that consists o f  two 
resistors. The resistances o f these resistors depend on the potentiometer parameters 
Rp and a.

Frequently, the position o f the wiper corresponds to the angular position o f  a 
shaft connected to the potentiometer. Suppose 9 is the angle in degrees and 0 < 9  < 
360. Then,

9

a =
360

E x a m p l e  2 . 8 - 1  P o t e n t i o m e t e r  C i r c u i t

Figure 2.8-2a shows a circuit in which the voltage measured by the m eter gives an indication o f  the angular 
position o f the shaft. In Figure 2.8-2b, the current source, the potentiom eter, and the voltm eter have been 
replaced by models o f these devices. Analysis o f Figure 2.8-2b yields

( l-a ) /? p

r - ^ W V -

■CD aRn

(a)

Solving for the angle gives

(b)

FIGURE 2.8-2 (a) A circuit containing a 
potentiometer, (b) An equivalent circuit containing 
a model of the potentiometer.

0 =
360

v ’

Suppose Rp -  10 k fi and / -  1 mA. An angle of 163° would cause an output o f vm =  4.53 V. A meter reading o f
7.83 V would indicate that 9 =  282°.

Temperature sensors, such as the AD590 m anufactured by Analog Devices are current 
sources having current proportional to absolute temperature. Figure 2.8-3a shows the symbol used

enTFoMbe\temPerr e ^  ^  ,he model *  the templesensor. For the temperature sensor to operate properly, the branch voltage v must satisfy the
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condition

4 volts < v < 30 volts

When this condition is satisfied, the current, /, in microamps, is numerically equal to 
the temperature T, in degrees Kelvin. The phrase numerically equal indicates that the current 
and temperature have the same value but different units. This relationship can be expressed 
as

i — k T
/>£ .A.

where k =  1 — , a constant associated with the sensor. 
°K

EXERCISE 2.8-1 For the potentiometer circuit of Figure 2 .8-2 , calculate the meter voltage, 
vm, when 0 = 45°, Rp = 20 kft, and 1 = 2  mA.

Answer: vm =  5 V

EXERCISE 2.8-2 The voltage and current of an AD590 temperature sensor of Figure 2.8-3 
are 10 V and 280 //A, respectively. Determine the measured temperature.

Answer: T =  280°K, or approximately 6.85°C

v(t)

(a)

O i(t) = kT

(b)

FIGURE 2.8-3
(a) The symbol and
(b ) a model for the

2.9 SWI TCHES

Switches have two distinct states: open and closed. Ideally, a switch acts as a short circuit 
when it is closed and as an open circuit when it is open.

Figures 2.9-1 and 2.9-2 show several types of switches. In each case, the time when the switch 
changes state is indicated. Consider first the single-pole, single-throw (SPST) switches shown in Figure
2.9-1. The switch in Figure 2.9-1 a is initially open. This switch changes state, becoming closed, at time 
t = 0 s. When this switch is modeled as an ideal switch, it is treated like an open circuit when t < 0 s and 
like a short circuit when t > 0 s. The ideal switch changes state instantaneously. The switch in Figure
2.9-16 is initially closed. This switch changes state, becoming open, at time / =  0 s.

Next, consider the single-pole, double-throw (SPDT) switch shown in Figure 2.9-la. This SPDT 
switch acts like two SPST switches, one between terminals c and a. another between terminals c and b. 
Before t =  0 s, the switch between c and a is closed and the switch between c and b is open. At t =  0 s, 
both switches change state; that is, the switch between a and c opens, and the switch between c and b 
closes. Once again, the ideal switches are modeled as open circuits when they are open and as short 
circuits when they are closed.

In some applications, it makes a difference whether the switch between c and b closes before, or 
after, the switch between c and a opens. Different symbols are used to represent these two types of

----- ; Y o ---- - ----- ----------- o ------- 0 -------
t = 0 t = o t = o o- - - o b / = 0 - - - o b

Initially open Initially closed

(a) (b)
Make before break 

(b)

f 1GURE 2-9-' SPST switches, (a) Initially open and (b) FIGURE 2.9-2 SPDT switches, (a) Break before make 
initially closed. an(j ma ê before break.
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sinele-pole. double-throw switch. The break-before-make switch is manufactured so that the switch 
between c and b closes after the switch between c and a opens. The symbol tor the break-betore-make 
switch is shown in Figure 2.9-2a. The make-before-break switch is manufactured so that the switch 
between c and b closes before the switch between c and a opens. The symbol tor the make-before- 
break switch is shown in Figure 2.9-26. Remember: the switch transition from terminal a to terminal b 
is assumed to take place instantaneously. This instantaneous transition is an accurate model when the 
actual make-before-break transition is very fast compared to the circuit time response.

1 E x a m p l e  2 . 9-1  S w i t c h e s

Figure 2.9-3 illustrates the use o f  open and short circuits for modeling ideal switches. In Figure 2.9-3a, a circuit 
containing three switches is shown. In Figure 2.9-3b, the circuit is shown as it would be modeled before t =  0 s. 
The two single-pole, single-throw switches change state at time t =  0 s. Figure 2.9-3c shows the circuit as it would 
be modeled when the time is between 0 s and 2 s. The single-pole, double-throw switch changes state at time t -  2 
s. Figure 2.9-3d  shows the circuit as it would be modeled after 2 s.

o-------W v -------
4 k Q5 kQ / = 2 s 

12 kQ

-AMr
4 k Q

»1— o— v w
t = 0  s

12 V

12 V

10 kO
o— V W — "t -  0  s

8 kQ- 6 V ( p  1 2 v ( j )

(o)

5kQ

12 kQ
^ W V -

o------ W v -------
4 kQ

10 kQ 
—o o— VVv—11

6 V(p 12v(p
(b)

5 kQ

12 kii 
-V W -

(c)

-AAAr
5 k£l

12 k£i

8 kQ •

( d )

10 kQ
o VW—"

4 kQ

10 kQ 
o— AAA/— 1 *

FIGURE 2.9-3
(a) A circuit 
containing 
several switches.
(b) The
equivalent circuit 
for t <  0  s.
(c) The
equivalent circuit 
for 0  <  t < 2 s.
(d ) The
equivalent circuit 
for / >  2  s.

EXERCISE 2.9-1 What is the value o f the current i in Figure E 2 .9-1  at time t  =  4  s?

Answer: i -  0 amperes at t =  4 s (both switches are open).

EXERCISE 2.9-2 What is the value o f the voltage v in Figure E 2 .9 -2  at time t =  4  s? At t =  6  s?

Answer:  v =  6  volts at t =  4 s, and v =  0 volts at / =  6  s.

» = 5 s  t = 3 s
t * 5 s

12 V© 3 kQ 6  Vo
— 0 7  \

] 1
3 kQ <

^ 2  mA

*\

FltillRF £ 2,9-1 A with SPST , . , Khe,. STOT ^  ^  ‘ n'*ke b' r"''->>' ' ak
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2.10 H O W  C A N  WE C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.

-------------------— ----------------------------------------------- —  \

E x a m p l e  2 . 1 0 - 1  H o w  C a n  We C h e c k  V o l t a g e  a n d  C u r r e n t  V a l u e s ?

The meters in the circuit of Figure 2.10-1 indicate that vj =  — 4 V, v2 =  8 V and that i =  1 A. H o w  can we check  
that the values of vls v2, and / have been measured correctly? Let’s check the values of v,, v2, and i in two ways:

(a) Verify that the given values satisfy Ohm’s law for both resistors.

(b ) Verify that the power supplied by the voltage source is equal to the power absorbed by the resistors.

FIGURE 2.10-1 A circuit with meters.

Solution
(a) Consider the 8-Cl resistor. The current i flows through this resistor from top to bottom. Thus, the current i and 

the voltage v2 adhere to the passive convention. Therefore, Ohm’s law requires that \>2 =  8/. The values v2 =  
8 V and i =  1 A satisfy this equation.

Next, consider the 4-11 resistor. The current / flows through this resistor from left to right. Thus, the 
current i and the voltage vj do not adhere to the passive convention. Therefore, Ohm’s law requires that 
Vj =  4(—/). The values V] =  —4 V and / =  1 A satisfy this equation.

Thus, Ohm’s law is satisfied.

(b) The current / flows through the voltage source from bottom to top. Thus the current i and the voltage 12 V do
not adhere to the passive convention. Therefore, 12/ =  12(1) =  12 W is the power supplied by the voltage
source. The power absorbed by the 4 -0  resistor is 4 i2 = 4(12) =  4W , and the power absorbed by the 8-1)
resistor is 8 / — 8(1 ) =  8 W. The power supplied by the voltage source is indeed equal to the power 
absorbed by the resistors.
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..... 2.11 d e s i g n  e x a m p l e

TE M P E R A TU R E  SENSOR

Currents can be measured easily, using ammeters. A temperature sensor, such as Analog 
Devices’ AD590. can be used to measure temperature by converting temperature to current. 
Figure 2.11-1 shows a symbol used to represent a temperature sensor. For this sensor to 
operate properly, the voltage v must satisfy the condition

4 volts <  v <  30 volts

Q
J *</)

AD590

FIGURE 2.11-1
A temperature sensor.

When this condition is satisfied, the current i, in /xA, is numerically equal to the 
temperature T, in °K. The phrase numerically equal indicates that the two variables have the 
same value but different units.

M A
i =  k  T  where k  =  1 ——

°K
The goal is to design a circuit using the AD590 to measure the temperature o f a container o f  

water. In addition to the AD590 and an ammeter, several power supplies and an assortment o f 
standard 2 percent resistors are available. The power supplies are voltage sources. Power supplies 
having voltages o f 10. 12, 15, 18, or 24 volts are available.

Describe the Situation and the Assum ptions
For the temperature transducer to operate properly, its element voltage must be between 4 
volts and 30 volts. The power supplies and resistors will be used to establish this voltage. An 
ammeter will be used to measure the current in the temperature transducer.

The circuit must be able to measure temperatures in the range from 0°C to 100°C 
because water is a liquid at these temperatures. Recall that the temperature in °C is equal to the 
temperature in °K minus 273°.

State the Goal
Use the power supplies and resistors to cause the voltage, v, o f the temperature transducer to 
be between 4 volts and 30 volts.

Use an ammeter to measure the current, i, in the temperature transducer.

G enerate a Plan
Model the power supply as an ideal voltage source and the temperature transducer as an ideal 
current source. The circuit shown in Figure 2.11-2a causes the voltage across the temperature 
transducer to be equal to the power supply voltage. Because all o f the available power supplies 
have voltages between 4 volts and 30 volts, any one o f the power supplies can be used. Notice 
that the resistors are not needed.

In Figure 2.11-26, a short circuit has been added in a way that does not disturb the 
network. In Figure 2.1l-2c, this short circuit has been replaced with an (ideal) ammeter. 
Because the ammeter will measure the current in the temperature transducer, the ammeter 
reading will be numerically equal to the temperature in °K.
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(a) (b)

FIGURE 2.11-2 (a) Measuring temperature with a temperature sensor. (b) Adding a short circuit, (c) 
Replacing the short circuit by an ammeter.

Although any of the available power supplies is adequate to meet the specifications, there 
may still be an advantage to choosing a particular power supply. For example, it is reasonable 
to choose the power supply that causes the transducer to absorb as little power as possible.

Act on the Plan
The power absorbed by the transducer is

p  =  v - I

where v is the power supply voltage. Choosing v as small as possible, 10 volts in this case, 
makes the power absorbed by the temperature transducer as small as possible. Figure 2.11-3a 
shows the final design. Figure 2.11-36 shows a graph that can be used to find the temperature 
corresponding to any ammeter current.

Verify the Proposed Solution
Let’s try an example. Suppose the temperature of the water is 80.6°F. This temperature is 
equal to 27°C or 300°K. The current in the temperature sensor will be

- (
! )30° oK =  300 mA

Next, suppose that the ammeter in Figure 2.11 -3a reads 300 /iA. A  sensor current of 300 
liA  corresponds to a temperature of

T = —--M:A =  300°K =  27°C =  80.6°FMA
°K

The graph in Figure 2.11-3b indicates that a sensor current of 300 /xA does correspond to a 
temperature of 27°C.

This example shows that the circuit is working properly.

(a)

Ammeter reading, 

(b)

— Q

FIGURE 2.11-3 (a) Final design of a circuit that measures temperature with a temperature sensor, (b) 
Graph of temperature versus ammeter current.
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2.12 S U M M A R Y
O The engineer uses models, called circuit elements, to repre­

sent the devices that make up a circuit. In this book, we 
consider only linear elements or linear models of devices. A 
device is linear if it satisfies the properties of both superpo­
sition and homogeneity.

O The relationship between the reference directions of the 
current and voltage of a circuit element is important. The 
voltage polarity marks one terminal + and the other - .  The 
element voltage and current adhere to the passive conven­
tion if the current is directed from the terminal marked +  to 
the terminal marked - .

O Resistors are widely used as circuit elements. When the 
resistor voltage and current adhere to the passive conven­
tion, resistors obey Ohm’s law; the voltage across the 
terminals of the resistor is related to the current into the 
positive terminal as v =  Ri. The power delivered to a 
resistance is p = i2R = v2/R  watts.

O An independent source provides a current or a voltage 
independent of other circuit variables. The voltage of an 
independent voltage source is specified, but the current is 
not. Conversely, the current of an independent current 
source is specified whereas the voltage is not. The voltages 
of independent voltage sources and currents of independent 
current sources are frequently used as the inputs to electric 
circuits.

O A dependent source provides a current (or a voltage) that is 
dependent on another variable elsewhere in the circuit. The 
constitutive equations of dependent sources are summarized 
in Table 2.7-1.

O The short circuit and open circuit are special cases of 
independent sources. A short circuit is an ideal voltage source 
having v(/) =  0. The current in a short circuit is determined by 
the rest of the circuit. An open circuit is an ideal current source 
having i(t) =  0. The voltage across an open circuit is determined 
by the rest of the circuit. Open circuits and short circuits can also 
be described as special cases of resistors. A resistor with 
resistance R =  0 (G =  oc) is a short circuit. A resistor with 
conductance G =  0 (R =  oc) is an open circuit.

O An ideal ammeter measures the current flowing through its 
terminals and has zero voltage across its terminals. An ideal 
voltmeter measures the voltage across its terminals and has 
terminal current equal to zero. Ideal voltmeters act like open 
circuits, and ideal ammeters act like short circuits.

O Transducers are devices that convert physical quantities, 
such as rotational position, to an electrical quantity such as 
voltage. In this chapter, we describe two transducers: poten­
tiometers and temperature sensors.

O Switches are widely used in circuits to connect and dis­
connect elements and circuits. They can also be used to 
create discontinuous voltages or currents.

PROBLEMS

Section 2,2 Engineering and Linear Models

P 2.2-1 An element has voltage v and current i as shown in 
Figure P 2.2-1 a. Values o f the current i and corresponding 
voltage v have been tabulated as shown in Figure P 2.2-1/?. 
Determine whether the element is linear.

? l
! i i ,  A

1 - 3 - 3

- 4 - 2
0 0

12 2
3 2 4

(!) 6 0 6

(a) (b)
Figure P 2.2-1

P 2.2-2 A linear element has voltage v and current / as shown 
in Figure P 2.2-2a. Values of the current i and corresponding 
votage v have been tabulated as shown in Figure P 2.2-2b. 
Represent the element by an equation that expresses v as a 
function of/. This equation is a model of the element, (a) Verily

that the model is linear, (b) Use the model to predict the value 
of v corresponding to a current of / =  40 mA. (c) Use the model 
to predict the value of / corresponding to a voltage of v =  3 V.

Hint: Plot the data. We expect the data points to lie on a 
straight line. Obtain a linear model of the element by repre­
senting that straight line by an equation.

I!
v, V i, A

-3 .6 -30
2.4 20
6.0 50

( a ) <b)

Figure P 2.2-2

P 2.2-3 A linear element has voltage v and current / as shown 
in Figure P 2.2-3a. Values of the current / and corresponding 
voltage v have been tabulated as shown in Figure P 2.2-3b. 
Represent the element by an equation that expresses v as a
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f u n c t i o n  o f  / .  T h i s  e q u a t i o n  i s  a  m o d e l  o f  t h e  e l e m e n t ,

( a )  V e r i f y  t h a t  t h e  m o d e l  i s  l i n e a r ,  ( b )  U s e  t h e  m o d e l  t o  p r e d i c t  

t h e  v a l u e  o f  v  c o r r e s p o n d i n g  t o  a  c u r r e n t  o f  / =  6 m A .  ( c )  U s e  

t h e  m o d e l  t o  p r e d i c t  t h e  v a l u e  o f  i  c o r r e s p o n d i n g  t o  a  v o l t a g e  

o f  v  =  1 2  V .

H i n t :  P l o t  t h e  d a t a .  W e  e x p e c t  t h e  d a t a  p o i n t s  t o  l i e  o n  a  

s t r a i g h t  l i n e .  O b t a i n  a  l i n e a r  m o d e l  o f  t h e  e l e m e n t  b y  r e p r e ­

s e n t i n g  t h a t  s t r a i g h t  l i n e  b y  a n  e q u a t i o n .

I ! '
V, V i, mA

3 .0 7 8 12
5.13 20

12.825 50

(a) ( b )

F i g u r e  P  2 . 2 - 3

0.4  A ( T : i o n

F i g u r e  P  2 . 2 - 5

( a )  W h e n  e l e m e n t  A  i s  a  4 0 - f l  r e s i s t o r ,  d e s c r i b e d  b y  i  =  v  /  4 0 ,  

t h e n  t h e  c i r c u i t  i s  r e p r e s e n t e d  b y

v  v
0 . 4  = ---------1---------

1 0  4 0

D e t e r m i n e  t h e  v a l u e s  o f  v  a n d  i .  N o t i c e  t h a t  t h e  a b o v e  

e q u a t i o n  h a s  a  u n i q u e  s o l u t i o n .

( b )  W h e n  e l e m e n t  A  i s  a  n o n l i n e a r  r e s i s t o r  d e s c r i b e d  b y

i  =  v,2/ 2 ,  t h e n  t h e  c i r c u i t  i s  r e p r e s e n t e d  b y

v  v 2

0 4 = to+ t

D e t e r m i n e  t h e  v a l u e s  o f  v  a n d  i .  I n  t h i s  c a s e ,  t h e r e  a r e  t w o  

s o l u t i o n s  o f  t h e  a b o v e  e q u a t i o n .  N o n l i n e a r  c i r c u i t s  e x h i b i t  

m o r e  c o m p l i c a t e d  b e h a v i o r  t h a n  l i n e a r  c i r c u i t s .

( c )  W h e n  e l e m e n t  A  i s  a  n o n l i n e a r  r e s i s t o r  d e s c r i b e d  b y  i  =

2
0.8 +  V ,  t h e n  t h e  c i r c u i t  i s  d e s c r i b e d  b y

v
04  =  -  + °.8 + t

S h o w  t h a t  t h i s  e q u a t i o n  h a s  n o  s o l u t i o n .  T h i s  r e s u l t  u s u a l l y  

i n d i c a t e s  a  m o d e l i n g  p r o b l e m .  A t  l e a s t  o n e  o f  t h e  t h r e e  

e l e m e n t s  i n  t h e  c i r c u i t  h a s  n o t  b e e n  m o d e l e d  a c c u r a t e l y .

P 2.4-1 A  c u r r e n t  s o u r c e  a n d  a  r e s i s t o r  a r e  c o n n e c t e d  i n  s e r i e s  

i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 4 - 1 .  E l e m e n t s  c o n n e c t e d  i n  

s e r i e s  h a v e  t h e  s a m e  c u r r e n t ,  s o  i  =  i s  i n  t h i s  c i r c u i t .  S u p p o s e  

t h a t  i s  =  3  A  a n d  R  =  7  O .  C a l c u l a t e  t h e  v o l t a g e  v  a c r o s s  t h e  

r e s i s t o r  a n d  t h e  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r .

A n s w e r :  v  =  2 1  V  a n d  t h e  r e s i s t o r  a b s o r b s  6 3  W .

S e c t io n  2.4 Res is to rs

P 2.2-4 A n  e l e m e n t  i s  r e p r e s e n t e d  b y  t h e  r e l a t i o n  b e t w e e n  

c u r r e n t  a n d  v o l t a g e  a s

v  =  3 /  +  5

D e t e r m i n e  w h e t h e r  t h e  e l e m e n t  i s  l i n e a r .

P 2.2-5 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 2 - 5  c o n s i s t s  o f  a  

c u r r e n t  s o u r c e ,  a  r e s i s t o r ,  a n d  e l e m e n t  A .  C o n s i d e r  t h r e e  c a s e s .

F i g u r e  P  2 . 4 - 1

P 2.4-2 A  c u r r e n t  s o u r c e  a n d  a  r e s i s t o r  a r e  c o n n e c t e d  i n  s e r i e s  

i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 4 - 1 .  E l e m e n t s  c o n n e c t e d  i n  

s e r i e s  h a v e  t h e  s a m e  c u r r e n t ,  s o  i  =  i s  i n  t h i s  c i r c u i t .  S u p p o s e  

t h a t  i  =  3  m A  a n d  v  =  4 8  V .  C a l c u l a t e  t h e  r e s i s t a n c e  R  a n d  t h e  

p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r .

P 2.4-3 A  v o l t a g e  s o u r c e  a n d  a  r e s i s t o r  a r e  c o n n e c t e d  i n  

p a r a l l e l  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 4 - 3 .  E l e m e n t s  

c o n n e c t e d  i n  p a r a l l e l  h a v e  t h e  s a m e  v o l t a g e ,  s o  v  =  v s  i n  

t h i s  c i r c u i t .  S u p p o s e  t h a t  v s  =  1 0  V  a n d  R  =  5  H .  C a l c u l a t e  t h e  

c u r r e n t  i  i n  t h e  r e s i s t o r  a n d  t h e  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r .

A n s w e r :  i  =  2  A  a n d  t h e  r e s i s t o r  a b s o r b s  2 0  W .

F i g u r e  P  2 . 4 - 3

P 2.4-4 A  v o l t a g e  s o u r c e  a n d  a  r e s i s t o r  a r e  c o n n e c t e d  i n  

p a r a l l e l  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 4 - 3 .  E l e m e n t s  

c o n n e c t e d  i n  p a r a l l e l  h a v e  t h e  s a m e  v o l t a g e ,  s o  v  =  v s  i n  

t h i s  c i r c u i t .  S u p p o s e  t h a t  v s  =  2 4  V  a n d  i  =  3  A .  C a l c u l a t e  t h e  

r e s i s t a n c e  R  a n d  t h e  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r .

P 2.4-5 A  v o l t a g e  s o u r c e  a n d  t w o  r e s i s t o r s  a r e  c o n n e c t e d  i n  

p a r a l l e l  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  2 . 4 - 5 .  E l e m e n t s  

c o n n e c t e d  i n  p a r a l l e l  h a v e  t h e  s a m e  v o l t a g e ,  s o  v t =  v s  a n d  

v 2 =  v s  i n  t h i s  c i r c u i t .  S u p p o s e  t h a t  v s  =  1 5 0  V ,  R y =  5 0  f l ,  a n d  

R i  =  2 5  n .  C a l c u l a t e  t h e  c u r r e n t  i n  e a c h  r e s i s t o r  a n d  t h e  p o w e r  

a b s o r b e d  b y  e a c h  r e s i s t o r .

H i n t :  N o t i c e  t h e  r e f e r e n c e  d i r e c t i o n s  o f  t h e  r e s i s t o r  c u r r e n t s .

A n s w e r :  i } =  3  A  a n d  i 2 =  —  6 A .  R \  a b s o r b s  4 5 0  W  a n d  R 2  

a b s o r b s  9 0 0  W .

F i g u r e  P  2 . 4 - 5



P 2.4-6 A current source and two resistors are connected in 
series in the circuit shown in Figure P 2.4-6. Elements 
connected in series have the same current, so /', =  /, and 
i2 = i, in this circuit. Suppose that is = 25 mA, R\ =  4 Cl, and 
R2 =  8 fi. Calculate the voltage across each resistor and the 
power absorbed by each resistor.

Hint: Notice the reference directions o f the resistor voltages.

0 -  C irc u i t  E le m e n ts

”1 +

C

~ \  *
R2 > V 0

P 2.4-10 The voltage source shown in Figure P 2.4-10 is an 
adjustable dc voltage source. In other words, the voltage vs is a 
constant voltage, but the value of that constant can be adjusted. 
The tabulated data were collected as follows. The voltage, vs, 
was set to some value, and the voltages across the resistor, va 
and vb, were measured and recorded. Next, the value of vs was 
changed, and the voltages across the resistors were measured 
again and recorded. This procedure was repeated several 
times. (The values of vs were not recorded.) Determine the 
value of the resistance, R.

Figure P 2.4-6

P 2.4-7 A n  e l e c t r i c  h e a t e r  i s  c o n n e c t e d  t o  a  c o n s t a n t  2 5 0 - V  

s o u r c e  a n d  a b s o r b s  l  C O O  W .  S u b s e q u e n t l y ,  t h i s  h e a t e r  i s  c o n ­

n e c t e d  t o  a  c o n s t a n t  2 2 0 - V  s o u r c e .  W h a t  p o w e r  d o e s  i t  a b s o r b  

f r o m  t h e  2 2 0 - V  s o u r c e ?  W h a t  i s  t h e  r e s i s t a n c e  o f  t h e  h e a t e r ?

Hint: M o d e l  t h e  e l e c t r i c  h e a t e r  a s  a  r e s i s t o r .

P 2.4-8 T h e  p o r t a b l e  l i g h t i n g  e q u i p m e n t  f o r  a  m i n e  i s  l o c a t e d

10 0  m e t e r s  f r o m  i t s  d c  s u p p l y  s o u r c e .  T h e  m i n e  l i g h t s  u s e  a  

t o t a l  o f  5  k W  a n d  o p e r a t e  a t  1 2 0  V  d c .  D e t e r m i n e  t h e  r e q u i r e d  

c r o s s - s e c t i o n a l  a r e a  o f  t h e  c o p p e r  w i r e s  u s e d  t o  c o n n e c t  t h e  

s o u r c e  t o  t h e  m i n e  l i g h t s  i f  w e  r e q u i r e  t h a t  t h e  p o w e r  l o s t  i n  t h e  

c o p p e r  w i r e s  b e  l e s s  t h a n  o r  e q u a l  t o  5  p e r c e n t  o f  t h e  p o w e r  

r e q u i r e d  b y  t h e  m i n e  l i g h t s .

H i n t :  M o d e l  b o t h  t h e  l i g h t i n g  e q u i p m e n t  a n d  t h e  w i r e  a s  r e s i s t o r s .

P 2.4-9 T h e  r e s i s t a n c e  o f  a  p r a c t i c a l  r e s i s t o r  d e p e n d s  o n  

t h e  n o m i n a l  r e s i s t a n c e  a n d  t h e  r e s i s t a n c e  t o l e r a n c e  a s  f o l l o w s :

/ ? n o m ( 1 _  T o o )  -  R -  Raom{ 1 + T ^ o )

where Rnom is the nominal resistance and t is the resistance 
tolerance expressed as a percentage. For example, a 100-0,
2 percent resistor will have a resistance given by

9 8  f l  <  R <  1 0 2  0

The circuit shown in Figure P 2.4-9 has one input, vs, and one 
output, vc. The gain of this circuit is given by

v0 R2gam =  — = ------—
vs R\ +  R2

Determine the range of possible values of the gain when R j is 
the resistance of a 100-0, 2 percent resistor and R2 is the 
resistance of a 400-0, 5 percent resistor. Express the gain in 
terms of a nominal gain and a gain tolerance.

V a , v ” b ’  v

1 1 . 7 5 7 . 0 5

7 . 5 4 . 5

5 . 6 2 5 3 . 3 7 5

10 6
4 . 3 7 5 2 . 6 2 5

Figure P 2.4-10

Section 2.5 Independent Sources

P 2.5-1 A current source and a voltage source are connected 
in parallel with a resistor as shown in Figure P 2.5-1. All of the 
elements connected in parallel have the same voltage, vs in this 
circuit. Suppose that vs =  15 V, is =  3 A, and R = 5 O.
(a) Calculate the current i in the resistor and the power 
absorbed by the resistor, (b) Change the current source current 
to is = 5 A and recalculate the current, i, in the resistor and the 
power absorbed by the resistor.

Answer: i = 3 A and the resistor absorbs 45 W both when 
L = 3 A and when zs =  5 A.

Figure P 2.5-1

P 2.5-2 A current source and a voltage source are connected 
in series with a resistor as shown in Figure P 2.5-2. All of the 
elements connected in series have the same current, zs, in this 
circuit. Suppose that vs =  10 V, i, =  3 A, and R =  5 O.
(a) Calculate the voltage v across the resistor and the power 
absorbed by the resistor, (b) Change the voltage source voltage 
to vs — 5 V and recalculate the voltage, v, across the resistor 
and the power absorbed by the resistor.

F i g u r e  P 2 . 4 - 9
Figure P 2.5-2
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P 2.5-3 The current source and voltage source in the circuit 
shown in Figure P 2.5-3 are connected in parallel so that they 
both have the same voltage, vs. The current source and voltage 
source are also connected in series so that they both have the 
same current, i’s. Suppose that vs =  12 V and /s =  3 A. Calculate 
the power supplied by each source.

Answer: The voltage source supplies 
source supplies 36 W.

-36 W, and the current

Figure P 2.5-4 

P 2.5-5

(a) Find the power supplied by the voltage source shown in 
Figure P 2.5-5 when for / > 0 we have

v =  2 cos t V
and

i — 10 cos / mA
(b) Determine the energy supplied by this voltage source for 

the period 0 < t < 1 s.

Figure P 2.5-5

P 2.5-6 Figure P 2.5.6 shows a battery connected to a load. 
The load in Figure P 2.5.6 might represent automobile head­
lights, a digital camera, or a cell phone. The energy supplied 
by the battery to load is given by

w =  f  vi dt
Jt\

When the battery voltage is constant and the load resistance is 
fixed, then the battery current will be constant and

w = vi(t2 - f i )
The capacity of a battery is the product of the battery current 
and time required to discharge the battery. Consequently, the

energy stored in a battery is equal to the product of the battery 
voltage and the battery capacity. The capacity is usually given 
with the units of Ampere-hours (Ah). A new 12-V battery 
having a capacity of 800 mAh is connected to a load that draws 
a current of 25 mA. (a) How long will it take for the load to 
discharge the battery? (b) How much energy will be supplied 
to the load during the time required to discharge the battery?

battery load

Figure P 2.5-3

P 2.5-4 The current source and voltage source in the circuit 
shown in Figure P 2.5-4 are connected in parallel so that they 
both have the same voltage, vs. The current source and voltage 
source are also connected in series so that they both have the 
same current, is. Suppose that vs =  12 V and is =  2 A. Calculate 
the power supplied by each source.

Figure P 2.5-6

Section 2.6 Voltm eters and Ammeters

P 2.6-1 For the circuit of Figure P 2.6-1:

(a) What is the value of the resistance R?
(b) How much power is delivered by the voltage source?

12 V

Figure P 2.6-1

P 2.6-2 The current source in Figure P 2.6-2 supplies 40 W. 
What values do the meters in Figure P 2.6-2 read?

P 2.6-3 An ideal voltmeter is modeled as an open circuit. A 
more realistic model of a voltmeter is a large resistance. Figure P
2.6-3tf shows a circuit with a voltmeter that measures the voltage 
v’m- In Figure P 2.6-3/>, the voltmeter is replaced by the model of 
an ideal voltmeter, an open circuit. Ideally, there is no current in 
the 100-1) resistor, and the voltmeter measures vmi = 12 V. the
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I ideal value of vm. In Figure P 2.6-3<\ the voltmeter is modeled by 
the resistance Rm. Now the voltage measured by the voltmeter is

12
' Urn + 100j

100 £2

100 £2

Figure P 2.6-3

P 2.6-4 An ideal ammeter is modeled as a short circuit. A 
more realistic model of an ammeter is a small resistance. Figure P
2.6-4a shows a circuit with an ammeter that measures the current
V  In Figure P 2.6-4b, the ammeter is replaced by the model of an 
ideal ammeter, a short circuit. Ideally, there is no voltage across 
the 1 -kfl resistor, and the ammeter measures /mi =  2 A, the ideal 
value of im. In Figure P 2.6-4c, the ammeter is modeled by the 
resistance Rm. Now the current measured by the ammeter is

. _  (  1000 
Vl000 +  tfn

As Rm -> 0, the ammeter becomes an ideal ammeter, and im —► 
im\ =  2 A. When Rm > 0, the ammeter is not ideal, and im < imi. 
The difference between im a n d  imi is a  m e a s u r e m e n t  error 
caused by the fact that the ammeter is not ideal.

(a) Express the measurement error that occurs when Rm =  
10 11 as a percent of *mi'

(b) Determine the maximum value of Rm required to ensure 
that the measurement error is smaller than 5 percent.

Because Rm oo, the voltmeter becomes an ideal voltmeter, and 
Vm _> Vmi =  12 V . When Rm < oo, the voltmeter is not ideal, and 
vm < vmi. The difference between vm and vmi is a measurement 
error caused by the fact that the voltmeter is not ideal.

(a) Express the measurement error that occurs when Rm =  900
O as a percent of vmi.

(b) Determine the minimum value of Rm required to ensure that 
the measurement error is smaller than 2 percent ot vmi.

3 ^  :

h--------o c ____h

> 1 k Q

r.

imi = 2  A

j ) 2 A  < I  1 kft

> ■ o --------

u
Ammeter Q

(b)

Figure P 2.6-4

P 2.6-5 The voltmeter in Figure P 2.6-5a measures the 
voltage across the current source. Figure P 2.6-5b shows 
the circuit after removing the voltmeter and labeling the 
voltage measured by the voltmeter as vm. Also, the other 
element voltages and currents are labeled in Figure P 2.6-5b.

25 Q iR

- A A A r — ^

vr+ Up -

1 2 V ( p i  2 A © „ ,  
T  Hs ^

(b)

Figure P 2.6-5
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Given that

and

12 =  vr 4- vm and — /r — i$ — 2 A

vR =  25/r

(a) Determine the value of the voltage measured by the meter.
(b) Determine the power supplied by each element.

P 2.6-6 The ammeter in Figure P 2.6-6a measures the current 
in the voltage source. Figure P 2.6-6b shows the circuit after 
removing the ammeter and labeling the current measured by 
the ammeter as zm. Also, the other element voltages and 
currents are labeled in Figure P 2.6-6b.
Given that

and

2 + im =  zr and vR =  vs =  12 V

vR =  25/r

(a) Determine the value of the current measured by the meter.
(b) Determine the power supplied by each element.

P 2.7-2 The ammeter in the circuit shown in Figure P 2.7-2 
indicates that ia =  2 A, and the voltmeter indicates that vb =  
8 V. Determine the value of g, the gain of the VCCS.

Answer: g = 0.25 A/V

Figure P 2.7-2

P 2.7-3 The ammeters in the circuit shown in Figure P 2.7-3 
indicate that ia =  32 A and zb =  8 A. Determine the value of d, 
the gain of the CCCS.

Answer: d — 4 A1A

(b)
Figure P 2.6-6

Section 2.7 Dependent Sources

P 2.7-1 The ammeter in the circuit shown in Figure P 2.7-1 
indicates that z'a =  2 A, and the voltmeter indicates that v*, =  
8 V. Determine the value of r, the gain of the CCVS. 
Answer: r — 4 V/A

| 3 | 2 | - | 0 |

P 2.7-4 The voltmeters in the circuit showii in Figure P 2.7-4 
indicate that va =  2 V and vb =  8 V. Determine the value of b, 
the gain of the VCVS.

Answer: b — 4 V/V
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12 V

Figure P 2.7-5

P 2.7-6 Find the power supplied by the VCCS in Figure P 2.7-6.

Answer: 17.6 watts are supplied by the VCCS. (-17.6 watts 
are absorbed by the VCCS.)

-AA/V

CD 250 mA 10 Q  

200 mA |

-10 V

Figure P 2.7-7

P 2.7 -8  The circuit shown in Figure P 2.7-8 contains a 
dependent source. Determine the value of the gain k of that 
dependent source.

P 2.7-5 The values of the current and voltage of each circuit 
element are shown in Figure P 2.7-5.

Determine the values of the resistance, R, and of the 
gain of the dependent source, A.

-  2 V +

P 2.7-9 The circuit shown in Figure P 2.7-9 contains a 
dependent source. The gain of that dependent source is

k =  25T  A
Determine the value of the voltage vb.

vb

P 2.7-7 The circuit shown in Figure P 2.7.7 contains a 
dependent source. Determine the value of the gain k of that 
dependent source.

P 2.7-10 The circuit shown in Figure P 2.7-10 contains a 
dependent source. The gain of that dependent source is

k ~  90 "7T =  0 09 —V V
Determine the value of the current i/,.
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100 Q 50 mA
— W v  "■

+ va ~

M  10 V 10 Q i ► 5 V

v « »  +  i o o y

Determine the value of v for each of the following cases.

(a) The switch is closed and Rs = 0 (a short circuit).
(b) The switch is closed and Rs = 5 f I.
(c) The switch is open and Rs =  oo (an open circuit).
(d) The switch is open and Rs =  10 kft.

Figure P 2.7-10 

Section 2.8 Transducers

P 2.8-1 For the potentiometer circuit of Figure 2.8-2, the 
current source current and potentiometer resistance are 1.1 mA 
and 100 kH, respectively. Calculate the required angle, 0, so 
that the measured voltage is 23 V.

P 2.8-2 An AD590 sensor has an associated constant k =
1 The sensor has a voltage v =  20 V; and the measured 
current, i(t)y as shown in Figure 2.8-3, is 4 /J.A < i<  13 fj. A in a 
laboratory setting. Find the range of measured temperature.

Section 2.9 Switches

P 2.9-1 Determine the current, /, at t =  1 s and at t =  4 s for 
the circuit of Figure P 2.9-1.

/ = 2 s

Figure P 2.9-3

Section 2-10 How Can We Check . . . ?

P 2.10-1 The circuit shown in Figure P 2 .10-1 is used to test 
the CCVS. Your lab partner claims that this measurement 
shows that the gain of the CCVS is —20 V/A instead of +20 
V/A. Do you agree? Justify your answer.

P 2.9-2 Determine the voltage, v, at / =  1 s and at t =  4 s for 
the circuit shown in Figure P 2.9-2.

P 2.10-2 The circuit of Figure P 2.10-2 is used to measure the 
current in the resistor. Once this current is known, the resistance 
can be calculated as R =  }f. The circuit is constructed using a 
voltage source with vs =  12 V and a 25-H, 1 /2-W resistor. After a 
puff of smoke and an unpleasant smell, the ammeter indicates that
i =  0 A. The resistor must be bad. You have more 25-17, 1 /2-W  
resistors. Should you try another resistor? Justify your answer.

P 2.9-3 Ideally, an open switch is modeled as an open circuit 
and a closed switch is modeled as a closed circuit. More 
realistically, an open switch is modeled as a large resistance, 
and a closed switch is modeled as a small resistance.

Figure P 2.9-3a shows a circuit with a switch. In Figure 
P 2.9-3b, the switch has been replaced with a resistance. In Figure 
P 2.9-3b, the voltage v is given by

Figure P 2.10-2

Hint: 1/2-W resistors are able to safely dissipate one 1 /2  W 
of power. These resistors may fail if required to dissipate 
more than 1/2 watt of power.
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Design Problems
DP 2-1 Specify the resistance R in Figure DP 2-1 so that both 
of the following conditions are satisfied:

1 .  i  >  4 0  m A .

2. The power absorbed by the resistor is less than 0.5 W.

0 — .

Figure DP 2-1

DP 2-2 Specify the resistance R in Figure DP 2-2 so that both 
of the following conditions are satisfied:

1 .  v  >  4 0  V .

2. The power absorbed by the resistor is less than 15 W.

Hint: There is no guarantee that specifications can always be 
satisfied.
DP 2-3 Resistors are given a power rating. For example, 
resistors are available with ratings of 1/8 W, 1/4 W, 1/2 W, 
and 1 W. A 1 /2-W resistor is able to safely dissipate 1 /2  W of 
power, indefinitely. Resistors with larger power ratings are more 
expensive and bulkier than resistors with lower power ratings. 
Good engineering practice requires that resistor power ratings be 
specified to be as large as, but not larger than, necessary.

Consider the circuit shown in Figure DP 2-3. The values 
of the resistances are

Rx =  1 0 0 0  n . R2 =  2 0 0 0  n , and /?3 =  4 0 0 0  11 

The value of the current source current is 
i s  =  3 0  m A  

Specify the power rating for each resistor.

Figure DP 2-2 Figure DP 2-3
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3.1 I N T R O D U C T I O N

In this chapter, we will do the following:

• Write equations using Kirchhoff s laws.
Not surprisingly, the behavior of an electric circuit is determined both by the types of 

elements that comprise the circuit and by the way those elements are connected together. The 
constitutive equations describe the elements themselves, and Kirchhoff s laws describe the way 
the elements are connected to each other to form the circuit.

• Analyze simple electric circuits, using only Kirchhoff s laws and the constitutive equations of the 
circuit elements.

• Analyze two very common circuit configurations: series resistors and parallel resistors.
We will see that series resistors act like a ‘ ‘voltage divider,’ ’ and parallel resistors act like a 4 ‘current 

divider.” Also, series resistors and parallel resistors provide our first examples of an “ equivalent circuit.” 
Figure 3.1-1 illustrates this important concept. Here, a circuit has been partitioned into two parts, A and B. 
Replacing B by an equivalent circuit, Z?eq, does not change the current or voltage of any circuit element in 
part A. It is in this sense that B^  is equivalent to B. We will see how to obtain an equivalent circuit when 
part B consists either of series resistors or of parallel resistors.

• Determine equivalent circuits for series voltage sources and parallel current sources.

• Determine the equivalent resistance of a resistive circuit.

Often, circuits consisting entirely of resistors can be reduced to a single equivalent resistor by
repeatedly replacing series and/or parallel resistors by equivalent resistors.

3.2 K I R C H H O F F ' S  L A W S

An electric circuit consists of circuit elements that are connected together. The places where the 
elements are connected to each other are called nodes. Figure 3.2-1 a shows an electric circuit that 
consists of six elements connected together at four nodes. It is common practice to draw electric

_ ©



FIGURE 3.1-1 Replacing B by an 
equivalent circuit, Beq, does not 
change the current or voltage of 
any circuit element in A.

circuits using straight lines and to position the elements horizontally or vertically as shown in Figure
3.2-1 b.

The circuit is shown again in Figure 3 .2 -lc , this time emphasizing the nodes. Notice that 
redrawing the circuit, using straight lines and horizontal and vertical elements, has changed the way 
that the nodes are represented. In Figure 3 .2 -la , nodes are represented as points. In Figures 3.2-1 b,c, 
nodes are represented using both points and straight-line segments.

The same circuit can be drawn in several ways. One drawing o f a circuit might look much 
different from another drawing o f the same circuit. How can we tell when two circuit drawings 
represent the same circuit? Informally, we say that two circuit drawings represent the same circuit if

'4
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FIGURE 3.2-1 (a) An electric 
circuit. (b) The same circuit, 
redrawn using straight lines and 
horizontal and vertical elements, 
(c) The circuit after labeling the 
nodes and elements.
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corresponding elements are connected to corresponding nodes. More formally, we say that circuit 
drawings A and B represent the same circuit when the following three conditions are met.

1. There is a one-to-one correspondence between the nodes of drawing A and the nodes of drawing 
B. (A one-to-one correspondence is a matching. In this one-to-one correspondence, each node in 
drawing A is matched to exactly one node of drawing B and vice versa. The position of the nodes is 
not important.)

2. There is a one-to-one correspondence between the elements of drawing A and the elements of 
drawing B.

3. Corresponding elements are connected to corresponding nodes.

E x a m p l e  3 . 2-1 D iffe r e n t D ra w in g s o f  the Sam e Circui t

Figure 3.2-2 shows four circuit drawings. Which of these drawings, if any, represent the same circuit as the circuit 
drawing in Figure 3.2-lc?

(a)

(c)
FIGURE 3.2-2 Four circuit drawings.

(b)

(d)
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The circuit drawing shown in Figure 3.2-2a has five nodes, labeled r. s, t, u, and v. The circuit drawing in Hgure
3 2-1 c has four nodes. Because the two drawings have different numbers o f nodes, there cannot be a one-to-one 
correspondence between the nodes o f the two drawings. Hence, these drawings represent different circuits.

The circuit drawing shown in Figure 3.2-2b has four nodes and six elements, the same numbers of nodes and 
elements as the circuit drawing in Figure 3.2-lc. The nodes in Figure 3.2-2b have been labeled in the same way as the 
corresponding nodes in Figure 3.2-lc. For example, node c in Figure 3.2-2/? corresponds to node c in Figure 3.2-lc. 
The elements in Figure 3.2-2/? have been labeled in the same way as the corresponding elements in Figure 3.2-lc. For 
example, element 5 in Figure 3.2-2/) corresponds to element 5 in Figure 3.2-lc. Corresponding elements are indeed 
connected to corresponding nodes. For example, element 2 is connected to nodes a and b, in both Figure 3.2-2b and in 
Figure 3.2-lc. Consequently, Figure 3.2-2/? and Figure 3.2-lc represent the same circuit.

The circuit drawing shown in Figure 3.2-2c has four nodes and six elements, the same number o f  nodes and 
elements as the circuit drawing in Figure 3.2-lc. The nodes and elements in Figure 3.2-2c have been labeled in the 
same way as the corresponding nodes and elements in Figure 3.2-lc. Corresponding elements are indeed 
connected to corresponding nodes. Therefore, Figure 3.2-2c and Figure 3 .2-lc  represent the same circuit.

The circuit drawing shown in Figure 3.2-2 d  has four nodes and six elements, the same numbers o f  nodes and 
elements as the circuit drawing in Figure 3.2-lc. However, the nodes and elements o f Figure 3.2-2d cannot be 
labeled so that corresponding elements o f Figure 3 .2-lc  are connected to corresponding nodes. (For example, in 
Figure 3.2-lc, three elements are connected between the same pair o f nodes, a and b. That does not happen in 
Figure 3.2-2d.) Consequently, Figure 3.2-2d  and Figure 3 .2-lc  represent different circuits.

FIGURE 3.2-3 Gustav 
Robert Kirchhoff (1824- 
1887). Kjrchhoff stated 
two laws in 1847 
regarding the current and 
voltage in an electrical 
circuit. Courtesy of 
the Smithsonian 
Institution.

In 1847, Gustav Robert Kirchhoff, a professor at the University o f Berlin, formulated 
two important laws that provide the foundation for analysis o f  electric circuits. These laws are 
referred to as K irchhoff’s current law  (KCL) and K irchho ff s voltage law  (KVL) in his honor. 
K irchhoff s laws are a consequence o f conservation o f charge and conservation o f  energy. 
Gustav Robert Kirchhoff is pictured in Figure 3.2-3.

K irchhoff s current law states that the algebraic sum o f the currents entering any node is 
identically zero for all instants o f time.

K irch h o ff s cu rren t law (K CL): The algebraic sum o f the currents into a node at
any instant is zero.

The phrase algebraic sum  indicates that we must take reference directions into account as 
we add up the currents o f elements connected to a particular node. One way to take 
reference directions into account is to use a plus sign when the current is directed away from 
the node and a minus sign when the current is directed toward the node. For exam ple, 
consider the circuit shown in Figure 3 .2-lc . Four elements o f  this circuit— elem ents 1, 2, 3, 
and 4— are connected to node a. By K irchhoff s current law, the algebraic sum o f  the 

element currents i2, i3, and ;4 must be zero. Currents i2 and /3 are directed away from node a, so we 
will use a plus sign for i2 and <3. In contrast, currents /, and iA are directed toward node a, so we will 
use a minus sign for / 1 and /4. The KCL equation for node a o f  Figure 3 .2 -lc  is

—i\ +  i2 +  h  — 74 =  0 (3.2-1)

An ^ mate ^  o f obtaining the algebraic sum o f the currents into a node is to set the sum o f  all 
he currents directed away from the node equal to the sum o f all the currents directed toward that node, 

sing this technique, we find that the KCL equation for node a o f Figure 3 .2 -lc  is

*‘2 + to = 1 1 + 1 4  ( 3  2 -->)
Clearly. Eqs. 3.2-1 and 3.2-2 are equivalent.
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Similarly, the Kirchhoff s current law equation for node b of Figure 3.2-1 c is
i\ — h  +  h  +  *6

Before we can state Kirchhoffs voltage law, we need the definition of a loop. A loop is a closed 
path through a circuit that does not encounter any intermediate node more than once. For example, 
starting at node a in Figure 3.2-lc, we can move through element 4 to node c, then through element 5 to 
node d, through element 6 to node b, and finally through element 3 back to node a. We have a closed 
path, and we did not encounter any of the intermediate nodes—b, c, or d—more than once. 
Consequently, elements 3, 4, 5, and 6 comprise a loop. Similarly, elements 1, 4, 5, and 6 comprise 
a loop of the circuit shown in Figure 3.2-lc. Elements 1 and 3 comprise yet another loop of this circuit. 
The circuit has three other loops: elements 1 and 2, elements 2 and 3, and elements 2, 4, 5, and 6.

We are now ready to state Kirchhoff s voltage law.

Kirchhoffs voltage law (KVL): The algebraic sum of the voltages around any loop in a 
circuit is identically zero for all time.

The phrase algebraic sum indicates that we must take polarity into account as we add up the voltages 
of elements that comprise a loop. One way to take polarity into account is to move around the loop in 
the clockwise direction while observing the polarities of the element voltages. We write the voltage 
with a plus sign when we encounter the +  of the voltage polarity before the —. In contrast, we write the 
voltage with a minus sign when we encounter the — of the voltage polarity before the + . For example, 
consider the circuit shown in Figure 3.2-lc. Elements 3, 4, 5, and 6 comprise a loop of the circuit. By 
Kirchhoff s voltage law, the algebraic sum of the element voltages v3, v4, v5, and v6 must be zero. As 
we move around the loop in the clockwise direction, we encounter the +  of v4 before the —, the — of v5 
before the +, the — of v6 before the + , and the — of v3 before the +. Consequently, we use a minus sign 
for v3, v5, and v6 and a plus sign for v4. The KCL equation for this loop of Figure 3.2-lc is

v4 — v5 — v6 — v3 =  0

Similarly, the Kirchhoffs voltage law equation for the loop consisting of elements 1, 4, 5, and 6 is
v4 -  v5 — v6 +  vj = 0  

The Kirchhoff s voltage law equation for the loop consisting of elements 1 and 2 is

Consider the circuit shown in Figure 3.2-4a. Determine the power supplied by element C and the power received 
by element D.

Figure 3.2-4o provides a value for the current in element C but not for the voltage, v, across element C. The voltage 
and current ot element C given in Figure 3.2-4a adhere to the passive convention, so the product of this voltage and 
current is the power received by element C. Figure 3.2-4a provides a value for the voltage across element D but not for 
the current, /, in element D. The voltage and current of element D given in Figure 3.2-4a do not adhere to the passive 
convention, so the product of this voltage and current is the power supplied by element D.

We need to determine the voltage, v, across element C and the current, i, in element D. We will use KirchhofFs 
laws to determine values of v and /. First, we identify and label the nodes of the circuit as shown in Figure 3.2-4b.

—v2 -f vj =  0

Solution
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+ 4 V -

110 A

( a )

+ 
6 V 110 A

d

(b)

FIGURE 3.2-4 (a) The circuit considered in Example
3.2-2 and (b) the circuit redrawn to emphasize the
nodes.

Apply K irchhoff s voltage law (KVL) to the loop consisting o f elements C, D, and B to get

—v — (—4) — 6 =  0 => v =  —2 V

The value of the current in element C in Figure 3.2-4 b is 7 A. The voltage and current o f element C given in Figure
3.2-4b adhere to the passive convention, so

Pc =  v(7) =  ( -  2)(7) =  —14 W
is the power received by element C. Therefore, element C supplies 14 W.

Next, apply K irchhoff s current law (KCL) at node b to get

7 +  ( -1 0 )  +  z =  0 =* i =  3 A

The value of the voltage across element D in Figure 3.2-4 b is - 4  V. The voltage and current o f element D  given in 
Figure 3.2-46 do not adhere to the passive convention, so the power supplied  by element D  is given by

P d =  ( - 4 ) / = ( - 4 ) ( 3 )  =  —12W

Therefore, element D receives 12 W.

Example 3 . 2 - 3  O h m ’s and  K i r c h h o f f ’s La ws

Consider the circuit shown in Figure 3.2-5. Notice that the passive convention was used to assign reference 
directions to the resistor voltages and currents. This anticipates using Ohm’s law. Find each current and 
each voltage when /?, = 8  SI, v2 =  - 1 0  V, /3 =  2 A, and R3 =  1 ft. Also, determine the resistance R 2

Solution
The sum of the currents entering node a is

i\ — *2 — 13 =  0
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Using Ohm’s law for R3, we find that
v3 =  R)h =  1(2) =  2 V

Kirchhoffs voltage law for the bottom loop incorporating vb v3, 
and the 10-V source is

-1 0  +  v\ +  v3 =  0 
Therefore. vi =  10 — v3 =  8 V

Ohm’s law for the resistor R i is
vi =  R\i\

or h — vi /^ i  =  8/8 =  1 A

Next, apply Kirchhoffs current law at node a to get
/2 — i\ — i3 =  1 — 2 =  — 1 A

We can now find the resistance R2 from
V2 =  R ih

or Ri — Vijii — —10 / —I =  10 0

12 V

10 V

FIGURE 3.2-5 Circuit with two 
constant-voltage sources.

E x a m p l e  3 . 2 - 4 O h m ’s an d  
K i r c h h o f f ’s L aw s

£  INTERACTIVE EXAMPLE

Determine the value of the current, in amps, measured by the ammeter in Figure 3.2-6a.

Solution
An ideal ammeter is equivalent to a short circuit. The current measured by the ammeter is the current in the short 
circuit. Figure 3.2-6b shows the circuit after replacing the ammeter by the equivalent short circuit.

The circuit has been redrawn in Figure 3.2-7 to label the nodes of the circuit. This circuit consists of a 
voltage source, a dependent current source, two resistors, and two short circuits. One of the short circuits is the 
controlling element of the CCCS, and the other short circuit is a model of the ammeter.

4 Q

12 V
4f l  b 2 Q <mt

-V W — 9 c
+ 2 im -

FIGL R t 3.2-6 (a) A circuit with dependent source and an 
ammeter, (b) The equivalent circuit after replacing the ammeter FIGURE 3.2-7 The circuit of Figure 3.2-6 after labeling the

nodes and some element currents and voltages.by a short circuit.
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Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the 
current in the 4 -0  resistor are both equal t o «.. These currents are labeled in Figure 3.2-7. Applying KCL again, at 
node c shows that the current in the 2-11 resistor is equal to im. This current is labeled Figure 3.2-7.

Next, Ohm’s law tells us that the voltage across the 4 -0  resistor is equal to 4/„ and that the voltage across the 
2 -0  resistor is equal to 2im. Both o f these voltages are labeled in Figure 3.2-7.

Applying KCL at node b gives
/'a 3/a l*m 0

Applying KVL to closed path a-b-c-e-d-a gives

0 =  —4;a 4- 2rm — 12  =  —4 +  2/m — 12  =  3/m — 12

Finally, solving this equation gives
im = 4 A

E x a m p l e  3 . 2 - 5 O h m ’s and  
K i r c h h o f f ’s L a ws

A  INTERACTIVE EXAMPLE

Determine the value of the voltage, in volts, measured by the voltmeter in Figure 3.2-8a.

4 a 5 a

FIGURE 3.2-8 (a) A circuit with dependent source and a 
voltmeter. (b) The equivalent circuit after replacing the 
voltmeter by an open circuit. FIGURE 3.2-9 The circuit of Figure 3.2-8b after labeling the 

nodes and some element currents and voltages.

Solution
An ideal voltmeter is equivalent to an open circuit. The voltage measured by the voltmeter is the voltage across the 
open circuit. Figure 3.2-Sb shows the circuit after replacing the voltmeter by the equivalent open circuit

The circuit has been redrawn in Figure 3.2-9 to label the nodes o f the circuit. This circuit consists o f  a 
voltage source, a dependent voltage source, two resistors, a short circuit, and an open circuit The short circuit is 
the contro ling element o f the CCVS, and the open circuit is a model o f the voltmeter

Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the 
current m .he 4-(l resisror are both equal These current* are labeled in F.gure 3.2-9. Applying KCL again!«
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node c, shows that the current in the 5-0 resistor is equal to the current in the open circuit, that is, zero. This 
current is labeled in Figure 3.2-9. Ohm’s law tells us that the voltage across the 5-fl resistor is also equal to zero. 
Next, applying KVL to the closed path b-c-f-e-b gives vm =  3/a.

Applying KVL to the closed path a-b-e-d-a gives

so

Finally

—4ia +  3/a — 12 — 0

/a =  -1 2  A 

Vm =  3/a =  3(—12) =  -3 6  V

EXERCISE 3 .2 -1  Determine the values of z3, i4, i6> v2, v4, and v6 in Figure E 3.2-1.

Answer: i$ = —3 A, i4 =  3 A, /6 =  4 A, v2 =  — 3 V, v4 =  — 6 V, v6 =  6 V
+ 3 V-

3 V

-  v A  + FIGURE E 3.2-1

3.3 S E R I E S  R E S I S T O R S  A N D  V O L T A G E  D I V I S I O N

Let us consider a single-loop circuit, as shown in Figure 3.3-1. In anticipation of using Ohm's 
law, the passive convention has been used to assign reference directions to resistor voltages 
and currents.

The connection of resistors in Figure 3.3-1 is said to be a series connection because 
all the elements carry the same current. To identify a pair of series elements, we look for 
two elements connected to a single node that has no other elements connected to it. Notice, 
for example, that resistors ft, and R2 are both connected to node b and that no other 
circuit elements are connected to node b. Consequently, /, =  i2, so both resistors have the 
same current. A similar argument shows that resistors R2 and R3 are also connected in 
series. Noticing that R2 is connected in series with both R\ and R^% we say that all three 
resistors are connected in series. The order of series resistors is not important. For 
example, the voltages and currents of the three resistors in Figure 3.3-1 will not change if 
we interchange the positions R2 and R3.

Using KCL at each node of the circuit in Figure 3.3-1, we obtain

a: h =  i\ 
b: / 1 =  i2 
c: i2 =  h  
d: 1*3 =  is

U =  i\ =  h — h

FIGURE 3.3-1 
Single-loop circuit with a 
voltage source vs.

Consequently,
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To determine j j, we use KVL around the loop to obtain

Vj -f V>2 -h V3 — vs =  0

where, for example, v, is the voltage across the resistor R {. Using Ohm’s law for each resistor, 

R\i\ +  Rzh  +  -  vs =  0 =*• R \i\ + R ii\ +  R ii\ =  vs

Solving for we have . _  vs
R\ +  R i +  Ry

Thus, the voltage across the nth resistor Rn is v„ and can be obtained as

_  • p Vsj?"
V" *' " /?, + R 2 + R 3

For example, the voltage across resistor R2 is

R 2 

V2 /?, +  R 2 +  R } Vs

Thus, the voltage across the series combination o f resistors is divided up between the individual 
resistors in a predictable way. This circuit demonstrates the principle o f voltage division , and the 
circuit is called a voltage divider.

In general, we may represent the voltage divider principle by the equation

, R”
R\ 4- R 2 4- • * • 4- Rn

where vn is the voltage across the nth resistor o f N  resistors connected in series.
We can replace series resistors by an equivalent resistor. This is illustrated in Figure 3.3-2. The 

series resistors R\, R2, and R3 in Figure 3.3-2a are replaced by a single, equivalent resistor Rs in Figure
3.3-2b. Rs is said to be equivalent to the series resistors R {, R2, and R3 when replacing R }, R2, and R 3 by Rs 
does not change the current or voltage o f any other element of the circuit. In this case, there is only one 
other element in the circuit, the voltage source. We must choose the value o f the resistance Rs so that 
replacing R UR2, and R3 by Rs will not change the current o f the voltage source. In Figure 3.3-2a, we have

i v*
R\ +  R 2 +  R3

In Figure 3.3-2b, we have

Because the voltage source current must be the same in both circuits, we require that

Rs = R\ + R2 + R3
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In general, the series connection of N  resistors having resistances Ru R2 ■ • • Rn is equivalent to the 
single resistor having resistance

Rs =  R\ 4- R2 4- * * • 4- Rn

Replacing series resistors by an equivalent resistor does not change the current or voltage of any other 
element of the circuit.

Next, let’s calculate the power absorbed by the series resistors in Figure 3.3-2a:

p  =  is2R\ 4  *s2̂ 2 +  h~Ri

Doing a little algebra gives

P — i s \ R \  4  ^2 4- R i)  =  U~Rs

which is equal to the power absorbed by the equivalent resistor in Figure 3.3-2b. We conclude 
that the power absorbed by series resistors is equal to the power absorbed by the equivalent 
resistor.

E x a m p l e  3.3-1 V o lta g e  D iv id e r

Let us consider the circuit shown in Figure 3.3-3 and determine the resistance R2 required so that the voltage 
across R2 will be 1/4 of the source voltage when ^ = 9 ( 1 .  Determine the current i when vs=  12 V.

i *1 

”1
v2> R 2

Solution
The voltage across resistor R2 will be

Because we desire v2/vs =  1/4, we have

FIGURE 3.3-3 Voltage divider circuit with R\ =  9 Cl.

R 2V2 =  ------- — V,
R 1 +  /?2 

Ri 1
R\ +  4

or R1 =  3/?2

Because «, =  9 f i ,w e  require that R2 = 3 Cl. Using KVL around the loop, we have

or

Therefore,

vs -f vi -h v2 =  0 

vs =  z R\ + i R2 

VS 12
R\ +  R2 9 -f 3 =  1 A (3.3-1)
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E x a m p l e  3 . 3 - 2  S e r i e s  R e s i s t o r s

For the circuit of Figure 3.3-4a, find the current measured by the ammeter. Then show that the power absorbed by 
the two resistors is equal to that supplied by the source.

J*rr

(a) (b)

FIGURE 3.3-4 (a) A circuit containing series resistors. (b) The circuit after the ideal ammeter has been replaced by the equivalent 
short circuit, and a label has been added to indicate the current measured by the ammeter, im.

Solution
Figure 3.3-4b shows the circuit after the ideal ammeter has been replaced by the equivalent short circuit and a 
label has been added to indicate the current measured by the ammeter, im. Applying KVL gives

15 4" 5zm -h 10/n

The current measured by the ammeter is
15

■ = —1 A
5 + 1 0

(Why is zm negative? Why can’t we just divide the source voltage by the equivalent resistance? Recall that when 
we use Ohm's law, the voltage and current must adhere to the passive convention. In this case, the current 
calculated by dividing the source voltage by the equivalent resistance does not have the same reference direction 
as im, so we need a minus sign.)

The total power absorbed by the two resistors is
p  R =  5/m2 +  10/m2 =  1 5 (l2) =  15W

The power supplied by the source is
Ps =  —vs /m =  —15(—1) =  15 W 

Thus, the power supplied by the source is equal to that absorbed by the series connection o f  resistors.

E x a m p l e  3 . 3 - 3  V o l t a g e  D i v i d e r  D e s i g n  )-

The input to the voltage divider in Figure 3.3-5 is the voltage, v„ o f the voltage source. The output is the voltage 
v measured by the voltmeter. Design the voltage divider; that is, specify values o f the resistances, /?, and R , to 
satisfy both of these specifications. 2
Specification 1: The input and output voltages are related by vo =  0.8 vs.

p:i s ^ r = 2 0 v e 15 reqi" r' d “  “ PP'y " °  m0re ,han ‘ mW 0 f  P0Wer When ,he ^
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rrm
.© Voltmeter q

Voltage Divider FIGURE 3.3-5 A voltage divider.

Solution
We’ll examine each specification to see what it tells us about the resistor values. 
Specification 1: The input and output voltages of the voltage divider are related by

Ri

So specification 1 requires Ri
R\ + R :

R 1 + R 2

=  0.8 => R2 = 4

Specification 2: The power supplied by the voltage source is given by

/  vs \  v' 2= IsVs =  _ j Vs =  —

So specification 2 requires

0.001 >
20

R\ +  R2

+ Ri

R i+ R i>  400 x 103 =  400 k n

Combining these results gives
5Rt > 400 kQ

The solution is not unique. One solution is
R t =  lOOkfl and«2 = 4 0 0 k 0

EXERCISE 3.3-1 Determine the voltage measured by the voltmeter in the circuit shown in 
Figure E 3.3-la.

Hint: Figure E 3.3-16 shows the circuit after the ideal voltmeter has been replaced by the equivalent 
open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.

Answer: vm =  2 V

7 5  n

FIGURE E 3.3-1 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the 
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.
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EXERCISE 3.3-2  Determine the voltage measured by the voltmeter in the circuit shown in 

Figure E 33-2a.

FIGURE E 3.3-2 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the 
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.

H int: Figure E 3.3-2b shows the circuit after the ideal voltmeter has been replaced by the equivalent 
open circuit and a label has been added to indicate the voltage measured by the voltmeter, vm.

Answer: vm =  — 2 V

3.4 P A R A L L E L  R E S I S T O R S  A N D  C U R R E N T  D I V I S I O N  ---------------

Circuit elements, such as resistors, are connected in parallel when the voltage across each element is 
identical. The resistors in Figure 3.4-1 are connected in parallel. Notice, for example, that resistors R\ 
and R2 are each connected to both node a and node b. Consequently, v { =  v2, so both resistors have the 
same voltage. A similar argument shows that resistors R2 and R 3 are also connected in parallel. 
Noticing that R2 is connected in parallel with both R\ and R$, we say that all three resistors are 
connected in parallel. The order o f parallel resistors is not important. For example, the voltages and 
currents o f the three resistors in Figure 3.4-1 will not change if we interchange the positions R 2 and R3.

The defining characteristic o f parallel elements is that they have the same voltage. To identify 
a pair of parallel elements, we look for two elements connected between the same pair o f  nodes.

Consider the circuit with two resistors and a current source shown in Figure 3.4-2. Note that 
both resistors are connected to terminals a and b and that the voltage v appears across each parallel 
element. In anticipation o f using Ohm s law, the passive convention is used to assign reference 
directions to the resistor voltages and currents. We may write KCL at node a (or at node b) to obtain

is — i\ — h  =  0

or

h  =  i\ +  *2

However, from Ohm ’s law

v j . v and ,2 =  _

b ---------o---------

f ig u r e  3.4-1 A circuit with parallel res.stors. FIGURE 3.4-2 Parallel circuit with a current source.
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Then

(3.4-1)

Recall that we defined conductance G as the inverse of resistance R. We may therefore rewrite Eq.
3.4-1 as

i8 = G\v -1- G2v =  (G\ 4- G2)v (3.4-2)

Thus, the equivalent circuit for this parallel circuit is a conductance Gp, as shown in 
Figure 3.4-3, where

Gp — G\ 4- G2

The equivalent resistance for the two-resistor circuit is found from

Because Gp =  1 /R p, we have

G r ~ T , + - k

1 1  J_
Fp ~ T ] + T2

FIGURE 3.4-3
Equivalent circuit for a 
parallel circuit.

or

R -  R 'Rl
p ~ R l + R 2

(3.4-3)

Note that the total conductance, Gp, increases as additional parallel elements are added and that the 
total resistance, Rp, declines as each resistor is added.

The circuit shown in Figure 3.4-2 is called a current divider circuit because it divides the source 
current. Note that

i i =  G\v

Also, because is = (G\ -f G2)v, we solve for v, obtaining

h
G i +  G2

Substituting v from Eq. 3.4-5 into Eq. 3.4-4, we obtain

G\h
G\ 4- G2 

G2h

(3.4-4)

(3.4-5)

(3.4-6)

Similarly,
G j 4- G2

Note that we may use G2 — \/R 2 and C7i =  l//?i to obtain the current i2 in terms of two resistances as 
follows:

12 =
Rii,

R\ -f R2

The current of the source divides between conductances Gj and G2 in proportion to their conductance 
values.



0 -  R e s is t ive  C ir c u i ts

Let us consider the more general case o f current division with a set o f TV parallel conductors as 

shown in Figure 3.4-4. The KCL gives
is ** h  +  *2 +  *3 +  ••*'+■ (

i
I : I

* ! ^I . I n -  GnV

o—VW “ 4 for n = 1, . . . , N. We may write Eq. 3.4-7 as
is =  (Gi -h C?2 +  G3 4* • • • 4* (3.4-9)

for which
(3.4-8)

Therefore,

h =  v '5 2 g * (3.4-10)
n—1

Because in = Gn\\ we may obtain v from Eq. 3.4-10 and substitute it in Eq. 3.4-8, obtaining

Gnis (3.4-11)In = N
G„

n—\

FIGURE 3.4-4 Recall that the equivalent circuit. Figure 3 .4 -12 , has an equivalent conductance Gp such that
Set of N parallel N
conductances 
with a current 
source L.

Gp — ^  Gn
n= 1

Therefore,

In =
Gni*

(3.4-12)

(3.4-13)

which is the basic equation for the current divider with N  conductances. O f course, Eq. 3.4-12 can be 
rewritten as

l N l
- = y -

R P n= 1 R n

(3.4-14)

E x a m p l e  3 . 4 - 1  Pa r a l l e l  R e s i s t o r s

For the circuit in Figure 3.4-5, find (a) the current in each 
branch, (b) the equivalent circuit, and (c) the voltage v. The
resistors are

= x-  n ,  * 2 =  1 a ,  k 3 =  I  n

Solution
The current divider follows the equation

_  Gnh
ln — -p r"

Gp

so it is wise to find the equivalent circuit, as shown in 
Figure 3.4-6, with its equivalent conductance Gp. We have

FIGURE 3.4-5 Parallel circuit for Example 3.3-2.

28 A ( T

W FIGURE 3.4-6 Equivalent circuit for the parallel circuit
Gp = 2_^Gn = G\ + G2 + G3 = 2 + 4 + 8 =  14 S of Figure 3-4' 5-

n= 1
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Recall that the units for conductance are siemens (S). Then

£ ( 2 8 ) - 4  A

G2is _  4(28) _
Similarly, 14

and /3 = § ^ = 1 6 A

Because i„ = Gnv, we have
_  _M_ _  4 _  2  v  

G\ 2

iv is io n  - 0

E x a m p l e  3 . 4 - 2  P a ra l le l  R e s is to r s INTERACTIVE EXAMPLE

For the circuit of Figure 3.4-7 a, find the voltage measured by the voltmeter. Then show that the power absorbed by 
the two resistors is equal to that supplied by the source.

(b) (c)

8 Q

FIGURE 3.4-7 (a) A circuit containing parallel resistors.
(b) The circuit after the ideal voltmeter has been replaced by 
the equivalent open circuit and a label has been added to 
indicate the voltage measured by the voltmeter, vm. (c) The 
circuit after the parallel resistors have been replaced by an 
equivalent resistance.

Solution
Figure 3.4-76 shows the circuit after the ideal voltmeter has been replaced by the equivalent open circuit, and a 
label has been added to indicate the voltage measured by the voltmeter, vm. The two resistors are connected in 
parallel and can be replaced with a single equivalent resistor. The resistance of this equivalent resistor is 
calculated as

40- 10 
4 0 +  10

=  8 (1

Figure 3.4-7c shows the circuit after the parallel resistors have been replaced by the equivalent resistor. The 
current in the equivalent resistor is 250 mA, directed upward. This current and the voltage vm do not adhere to the 
passive convention. The current in the equivalent resistance can also be expressed as -250  mA, directed
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downward. This current and the voltage vm do adhere to the passive convention. Ohm ’s law gives

vm =  8 (—0.25) =  - 2 V

The voltage vm in Figure 3.4-7/? is equal to the voltage vm in Figure 3.4-7c. This is a consequence o f  the 
equivalence o f the 8 -0  resistor to the parallel combination o f the 40-H and 10-ft resistors. Looking at Figure 3.4- 
1 b, we see that the power absorbed by the resistors is

v 2 v 2 22 22
p - ! ^  +  ! 5 L  =  i  +  i = 0 . 1 + 0 . 4  =  0 . 5 W  

Pr 4 0  1 0  4 0  1 0

The voltage vm and the current o f the current source adhere to the passive convention, so

Ps =  vm(0.25) =  (-2 )(0 .2 5 )  =  -0 .5  W

is the power received by the current source. The current source supplies 0.5 W.
Thus, the power absorbed by the two resistors is equal to that supplied by the source.

E x a m p l e  3 . 4 - 3  C u r r e n t  D i v i d e r  De s i g n

The input to the current divider in Figure 3.4-8 is the current, is, o f the current source. The output is the current, i0, 
measured by the ammeter. Specify values o f the resistances, R\ and R2, to satisfy both o f these specifications:

-o----- f - \ / \A r -©  Ammeter ©

i s ©

Current Divider FIGURE 3.4-8 A current divider circuit.

Specification 1: The input and output currents are related by /0 =  0.8 is.
Specification 2: The current source is required to supply no more than 10 mW of power when the input to the
current divider is /, =  2 mA.

Solution
W e’ll examine each specification to see what it tells us about the resistor values. 
Specification 1: The input and output currents o f the current divider are related by

^2

So specification 1 requires

*2

R\ +  R 2

— 0.8 => R2 =  4R tR\ -t- R2 " ” ^
Specification 2: The power supplied by the current source is given by

Ps h v s /'si /s R 1R2 
R\ +  R2

_  I 2 / A1^2
R \ + R 2
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0.01  > (0 .002): ( ^ )  «  s r r k ^ s o o

Combining these results gives

R] < 2500 =*• -R \ < 2500 =* /f, <3125 O
/?, +  4R2 ~  5

The solution is not unique. One solution is

/ ? i = 3 k O  and Ri =  12 ki2

So specification 2 requires

EXERCISE 3.4-1 A resistor network consisting of parallel resistors is shown in a package 
used for printed circuit board electronics in Figure E 3.4-1a. This package is only 2 cm x 0.7 cm, 
and each resistor is 1 kfl. The circuit is connected to use four resistors as shown in Figure E 3.4-16. 
Find the equivalent circuit for this network. Determine the current in each resistor when is = 1 mA.

(a) (b)

FIGURE E 3.4-1
(a) A parallel resistor 
network. Courtesy of 
Dale Electronics.
(b) The connected 
circuit uses four 
resistors where R =
1 kH.

Answer: Rp = 250 1)

EXERCISE 3.4-2 Determine the current measured by the ammeter in the circuit shown in 
Figure E 3.4-2a.

FIGURE E 3.4-2 (a) A current divider. (b) The 
current divider after the ideal ammeter has been 
replaced by the equivalent short circuit and a label 
has been added to indicate the current measured by 
the ammeter. zm.
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Hint: Figure E 3.4-2/) shows the circuit after the ideal ammeter has been replaced by the equivalent 
short circuit, and a label has been added to indicate the current measured by the ammeter, im.

Answer: im =  — 1 A

3.5 S E R I E S  V O L T A G E  S O U R C E S  A N D
P A R A L L E L  C U R R E N T  S O U R C E S  ---------------------------------------------------

Voltage sources connected in series are equivalent to a single voltage source. The voltage o f the
equivalent voltage source is equal to the algebraic sum o f voltages o f the series voltage sources.

Consider the circuit shown in Figure 3 .5 -la . Notice that the currents o f  both voltage sources are 
equal. Accordingly, define the current, is, to be

is =  *a =  *b (3.5-1)

Next, define the voltage, vs, to be
Vs =  Va -I- Vb (3.5-2)

Using KCL, KVL, and Ohm ’s law, we can represent the circuit in Figure 3 .5 -la  by the equations

V1 . . 
< c - ^  +  *s (3.5-3)

v2 , . 
, s - ^  +  i3

(3.5-4)

vc =  V, (3.5-5)

V] =  vs +  v2 (3.5-6)

v2 =  i}R} (3.5-7)

where is — i3 =  ib and vs =  va +  vb. These same equations result from applying KCL, KVL, and O hm ’s 
law to the circuit in Figure 3.5-16. If j's =  ja =  /b and vs =  va +  vb, then the circuits shown in Figures
3 .5-la and 3.5-16 are equivalent because they are both represented by the same equations.

For example, suppose that /c =  4 A, =  2 f t, R2 =  6 f t , R 3 =  3 f t , va =  1 V, and vb =  3 V . The 
equations describing the circuit in Figure 3 .5 -la  become

4 =  ^  +  is (3.5-8)

h  =  ?  +  '3 (3.5-9)

Vb

( a )

FIGURE 3.5-1 {a) A circuit containing 
voltage sources connected in series and 
(b) an equivalent circuit.
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Table 3 5-1 Parallel and Series Vo ltage and Current Sources

CIRCUIT

o—0  * O '-0
Va ”b

o - 0 —^ - 0 —°

*a zb

EQUIVALENT CIRCUIT

va + I>b 

C H - 0 - O

Va~vb
0 - 0 - 0

Not allowed

CIRCUIT EQUIVALENT CIRCUIT

*a + *b

CD ' a ' 1

Not allowed

vc =  vi 

vj =  4 +  v2 

v2 =  3/3

The solution to this set of equations is V] =  6 V, is =  1 A, i3 =  0.66 A, v2 =  2 V, and vc =  6 V. Eqs.
3.5-8 to 3.5-12 also describe the circuit in Figure 3.5-16. Thus, vj = 6  V, is = 1 A, z3 =  0.66 A, 
v2 =  2 V, and vc =  6 V in both circuits. Replacing series voltage sources by a single, equivalent 
voltage source does not change the voltage or current of other elements of the circuit.

Figure 3.5-2a shows a circuit containing parallel current sources. The circuit in Figure
3.5-2b is obtained by replacing these parallel current sources by a single, equivalent current 
source. The current of the equivalent current source is equal to the algebraic sum of the currents 
of the parallel current sources.

We are not allowed to connect independent current sources in series. Series elements have 
the same current. This restriction prevents series current sources from being independent. 
Similarly, we are not allowed to connect independent voltage sources in parallel.

Table 3.5-1 summarizes the parallel and series connections of current and voltage sources.

3.6 C I R C U I T  A N A L Y S I S  -----------------------------------------------------------------

In this section, we consider the analysis of a circuit by replacing a set of resistors with an 
equivalent resistance, thus reducing the netw'ork to a form easily analyzed.

Consider the circuit shown in Figure 3.6-1. Note that it includes a set of resistors that is in 
series and another set of resistors that is in parallel. It is desired to find the output voltage v0, so 
we wish to reduce the circuit to the equivalent circuit shown in Figure 3.6-2.

(b)
FIGURE 3.5-2 
(a) A circuit 
containing parallel 
current sources and (6) 
an equivalent circuit.
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*2 *3

FIGURE 3.6-1 Circuit with a set of series resistors and 
a set of parallel resistors.

FIGURE 3.6-2 Equivalent circuit for the circuit of 
Figure 3.6-2.

We note that the equivalent series resistance is
R s =  R\ +  R2 -f ^ 3

and the equivalent parallel resistance is

* - < rGp

=  G4 +  G5 -f G6where

Then, using the voltage divider principle, with Figure 3.6-2, we have

Rp
V° R s + R p Vs

Replacing the series resistors by the equivalent resistor R s did not change the current or voltage o f 
any other circuit element. In particular, the voltage vG did not change. Also, the voltage vG across the 
equivalent resistor Rp is equal to the voltage across each o f the parallel resistors. Consequently, the 
voltage vG in Figure 3.6-2 is equal to the voltage vG in Figure 3.6-1. We can analyze the simple 
circuit in Figure 3.6-2 to find the value o f  the voltage vG and know that the voltage vQ in the more 
complicated circuit shown in Figure 3.6-1 has the same value.

E x a m p l e  3 . 6 - 1  Ser i e s  a nd  Pa r a l l e l  R e s i s t o r s

Consider the circuit shown in Figure 3.6-3. Find the current ix when

R4 =  2 f l  and R2 =  R 3 — 8 f l

©
i ' i

» 3 Q  > 9 £ 2 18 £2

:*3 18 0

(<*) (b)

FIGURE 3.6-3 (a) Circuit for Example 3.6-1. (b) Partially reduced circuit for Example 3.6-1.

Solution
Because the objective is to find i u we will attempt to reduce the circuit so that the 341 resistor is in parallel with 
one resistor and the current source is. Then we can use the current divider principle to obtain /,. Because /?, and /?,
are in parallel, we find an equivalent resistance as

Rp\ = * 2 * 3

*2 +  *3
=  4 0
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FIGURE 3.6*4 Equivalent circuit for Figure 3.6-3.

This equivalent resistor is connected in series with R4. Then adding Rp\ to R4, we have a series equivalent resistor

i?s = ^ 4 +  /?p l = 2  +  4 =  6 n  
Now the Rs resistor is in parallel with three resistors as shown in Figure 3.6-3b. However, we wish to obtain the 
equivalent circuit as shown in Figure 3.6-4 so that we can find iV Therefore, we combine the 9-0  resistor, the 
18-0 resistor, and Rs shown to the right of terminals a-b in Figure 3.6-36 into one parallel equivalent conductance 
Gp2. Thus, we find

1 1 1 1 1 1 1
Gp2 =  9 +  l 8 +  ^ “ 9 +  T8 +  6 " 3 S 

Then, using the current divider principle,

l\ =
G\i<\h

where

Therefore,

jp = G\ + GP2 = - +  -

1/3.  
11= 2 / 3 ,s

E x a m p l e  3 . 6 - 2  E q u i v a l e n t  R e s i s t a n c e

The circuit in Figure 3.6-5a contains an ohmmeter. An ohmmeter is an instrument that measures resistance in 
ohms. The ohmmeter will measure the equivalent resistance of the resistor circuit connected to its terminals. 
Determine the resistance measured by the ohmmeter in Figure 3.6-5a.

Solution
Working from left to right, the 30-0 resistor is parallel to the 60-0 resistor. The equivalent resistance is

60 ‘ 30—— — =  2 0 0  
60 +  30

In Figure 3.6-56, the parallel combination of the 30-0 and 60-11 resistors has been replaced with the equivalent 
20-0 resistor. Now the two 20-0 resistors are in series.

The equivalent resistance is

20 4- 20 =  40 O
In Figure 3,6-5c, the series combination of the two 20-0 resistors has been replaced with the equivalent 40-0 
resistor. Now the 40-0 resistor is parallel to the 10-0 resistor. The equivalent resistance is

40 10 _
40 +  10 ~

In Figure 3.6-5d the parallel combination of the 40-0 and 10-0 resistors has been replaced with the equivalent 
8-0 resistor. Thus, the ohmmeter measures a resistance equal to 8 O.
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20 Q
-AAA----T------o O

FIGURE 3.6-5

• 60 Q <  30 fi <  10 n

(a)

(C)

rrm
-O Ohm m ete r©

'8 Q

- < < = >

(d)

nrm
-O Ohmmeter Q

E x a m p l e  3 . 6 - 3  Ci r cu i t  A n a l y s i s  U s i n g  E q u i v a l e n t  R e s i s t a n c e s

Determine the values o f /3, v4, i5, and v6 in circuit shown in Figure 3.6-6.

Solution
The circuit shown in Figure 3.6-7 has been obtained from the circuit shown in Figure 3.6-6 by replacing series and 
parallel combinations of resistances by equivalent resistances. We can use this equivalent circuit to solve this 
problem in three steps:

1. Determine the values of the resistances R\, and R 3 in Figure 3.6-7 that make the circuit in Figure 3.6-7 
equivalent to the circuit in Figure 3.6-6.

+ vi

f ig u r e  3.6-6 The circuit considered in Example 3.6-3.
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+ vi -
g  b

+ Vl -
— W v —

FIGURE 3.6-7 An equivalent circuit for the 
circuit in Figure 3.3-6.

12ft

6ft 18ft 
a 6—'VVV AAA/—  ̂ ^

- U4 H

(a)

FIGURE 3.6-8

12 ft

24 ft 
a d>—— <S b

(b)

8ft

(c)

2. Determine the values of vu v2, and / in Figure 3.6-7.

3. Because the circuits are equivalent, the values of v2, and z in Figure 3.6-6 are equal to the values of vj, 
v2, and z in Figure 3.6-7. Use voltage and current division to determine the values of z3, v4, z5, and v6 in 
Figure 3.6-6.

Step I: Figure 3.6-8a shows the three resistors at the top of the circuit in Figure 3.6-6. We see that the 6-O 
resistor is connected in series with the 18-O resistor. In Figure 3.6-8b, these series resistors have been replaced by 
the equivalent 24-0 resistor. Now the 24-0 resistor is connected in parallel with the 12-0 resistor. Replacing 
series resistors by an equivalent resistance does not change the voltage or current in any other element of the 
circuit. In particular, v1? the voltage across the 12-0 resistor, does not change when the series resistors are 
replaced by the equivalent resistor. In contrast, v4 is not an element voltage of the circuit shown in Figure 3.6-8 b.

In Figure 3.6-8c, the parallel resistors have been replaced by the equivalent 8-0  resistor. The voltage across
the equivalent resistor is equal to the voltage across each of the parallel resistors, vj in this case. In summary, the
resistance R\ in Figure 3.6-7 is given by

Ri =  12 || (6 +  18) =  8 0  
Similarly, the resistances R2 and R3 in Figure 3.6-7 are given by

R2 = 12+  (20 || 5) =  16 0

* 3 =  8 || (2 +  6) =  4 0

Step 2: Apply KVL to the circuit of Figure 3.6-7 to get

18 18R\i +  R2i +  R$i +  8z — 18 =  0 => i =  —----- ---------------= --------- -----------=  0.5 A
R\ +  R2 +  /?3 +  8 8 + 1 6  +  4 +  8

Next, Ohm’s law gives

v, =  R\i =  8(0.5) =  4 V and v2 =  R3i =  4(0.5) =  2 V

Step 3: The values of vj, v2, and z in Figure 3.6-6 are equal to the values of vj, v2, and z in Figure 3.6-7.
Returning our attention to Figure 3.6-6, and paying attention to reference directions, we can determine the values
of i3, v4, z5, and v6 using voltage division, current division, and Ohm’s law:

'* - r M f w 5 (0'5 ,= 0 '25A

v4 =  - 18
6 + 1 8

5

V l  =  - 1  ( 4 )  = -3 V

■ ~ G )
V6

20 +  5 
(20 || 5)i =  4(0.5) =  2 V

(0.5) =  -0 .1  A

J
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In general, we may find the equivalent resistance for a portion o f a circuit consisting only o f  
resistors and then replace that portion o f the circuit with the equivalent resistance. For example, 
consider the circuit shown in Figure 3.6-9. The resistive circuit in (a) is equivalent to the single 56 i 
resistor in (b). Let’s denote the equivalent resistance as Req. We say that Req is the equivalent 
resistance seen looking into the circuit o f Figure 3.6-9(a) from terminals a-b ."  Figure 3.6-9(c) shows a 
notation used to indicate the equivalent resistance. Equivalent resistance is an important concept that 
occurs in a variety of situations and has a variety o f names. “ Input resistance,”  “ output resistance, 
“ Thevenin resistance,”  and “ Norton resistance”  are some names used for equivalent resistance.

R e s is t ive  C i r c u i ts

a
o-

(a) (b) (c)

FIGURE 3.6-9 The resistive circuit in (a) is equivalent to the single resistor in (b). The notation used to indicate the 
equivalent resistance is shown in (c).

EXERCISE 3.6-1 Determine the resistance measured by the ohmmeter in Figure E 3.6-1.

FIGURE E 3.6-1

A nsw er:
(30 +  30) • 30 

(30 +  30) +  30
+  30 =  50 a

3.7 A N A L Y Z I N G  R E S I S T I V E  C I R C U I T S  
U S I N G  M A T L A B  --------------------------------

We can analyze simple circuits by writing and solving a set o f equations. We use K irchhoff s law and 
the element equations, for instance, Ohm ’s law, to write these equations. As the following example 
illustrates, MATLAB provides a convenient way to solve the equations describing an electric circuit.

E x a m p l e  3 . 7 - 1  M A T L A B  for  S i mp l e  C i r c u i t s

Determine the values o f the resistor voltages and currents for the circuit shown in Figure 3.7-1. 

40 n

12 V 32 0

FIGURE 3.7-1 The circuit considered in Example 3.7-1.
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40 n l2

12 V

48 Q *5
-AAA/——
_  v5 +

i>4> 80 Q

FIGURE 3.7-2 The circuit from Figure 3.7-1 after labeling the resistor voltages and currents.

Solution
Let’s label the resistor voltages and currents. In anticipation of using Ohm’s law, we will label the voltage and 
current of each resistor to adhere to the passive convention. (Pick one of the variables—the resistor current or the 
resistor voltage—and label the reference direction however you like. Label the reference direction of the other 
variable to adhere to the passive convention with the first variable.) Figure 3.7-2 shows the labeled circuit.

Next, we will use Kirchhoff s laws. First, apply KCL to the node at which the current source and the 40-11, 
48-0, and 80-0 resistors are connected together to wTite

12 +  15=0.5 +  14 (3.7-1)

Next, apply KCL to the node at which the 48-0 and 32-0 resistors are connected together to write

is =  *6 (3.7-2)

Apply KVL to the loop consisting of the voltage source and the 40-0 and 80-0 resistors to write

12 =  v2 +  v4 (3.7-3)

Apply KVL to the loop consisting of the 48-0, 32-0, and 80-0 resistors to write

v4 •+■ V5 +  v$ =  0 (3.7-4)

Apply Ohm’s law to the resistors.

v2 =  40 z2, v4 =  80 14, v5 =  48 /5, v6 =  3 2 16 (3.7-5)

We can use the Ohm’s law equations to eliminate the variables representing resistor voltages. Doing so enables us
to rewrite Eq. 3.7-3 as:

12 =  40 z2 +  80 z4 (3.7-6)
Similarly, we can rewrite Eq. 3.7-4 as

80 i4 +  48 z5 +  32 z6 =  0 (3.7-7)

Next, use Eq. 3.7-2 to eliminate z6 from Eq. 3.7-6 as follows

80z4 + 4 8 z 5 + 3 2 z 5 =  0  => 8 0 /4  +  8 0 /5 = 0  => z4 =  -z 5 (3.7-8)

Use Eq. 3.7-8 to eliminate z5 from Eq. 3.7-1.

z2 -  /4 =  0.5 +  z4 =* i2 =  0.5 +  2 z4 (3.7-9)

Use Eq. 3. -9 to eliminate z4 from Eq. 3.7-6. Solve the resulting equation to determine the value of z2.

12 =  40)2 +  80 ( ~  2° 5)  =  80 <2 ~  20 ^  ' 2 =  =  0,4 A (3.7-10)
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Now we are ready to calculate the values o f the rest o f the resistor voltages and currents as follows:

i2 -  0.5 0.4 -  0.5
'4 = =  -0 .0 5  A,

and

2 2
i6 =  is =  —1*4 =  0.05 A,

v2 =  4 0 / 2 =  40(0.4) =  1.6 V,

v4 =  80/4 =  80(—0.05) =  - 4  V,

v5 = 4 8  z5 = 4 8 (0 .0 5 ) =  2.4 V,

v6 =  32 / 6 =  32(0.05) =  1.6 V.

M A TLAB Solution 1
The preceding algebra shows that this circuit can be represented by these equations: 

i2 -  0.5
12 =  80 i2 -  20, z4 =  — - ------ , z6 =  i5 =  - 14, v2 =  40 /2, v4 =  80 z4,

v5 =  48 /*5 , and v6 =  32 is 

These equations can be solved consecutively, using MATLAB as shown in Figure 3.7-3.

MATLAB .JD lx J
File Edit Debug Desktop Window Help

p  c g (  %  %  m • c f : y  .
Shortcuts (3  How to Add 1} What's New

j »  12= ( 1 2 + 2 0 ) / 8 0
12 =

0 .4 0 0 0

; »  i4 =  ( i 2 - 0 . 5 } / 2
j 14 =

- 0 .0 5 0 0

Hi11to•HAA

»  1 6 = 1 5 ;
»  v 2 = 4 0 * i2
v2  =

16

V V
 

< .£>
 II GO O * H J-

v 4  =

- 4 . 0 0 0 0
»  v 5 = 4 8 * i5
v 5  =

2 .4 0 0 0
»  v 6 = 3 2 * 1 6
v 6  =

1 .6 0 0 0
» ▼
j ]  J ± r
4*  Start i- - r  ..I

j

H ( j L R E  3.7-3 Consecutive equations.

MATLAB , | p |  x j

File Edit Debug Desktop Window Help

D s #  *  m  -  - &  &  f

Shortcuts [S How to Add [£] What's New

j »  A = [ 1 - 1 1 0 ;  .±1
0 0 1 - 1 ;

4 0  8 0 0 0 ;

0  8 0 4 8  3 2 ]
A =

1 - 1 1 0
0 0 1 -1

4 0  8 0 0 0
0 8 0 4 8  32

»  B = [ 0 . 5 ;  0 ; 1 2 ;  0 ]
B =

0 .5 0 0 0

0

1 2 .0 0 0 0

0
»  i= A \  B

i  =

0 .4 0 0 0

- 0 . 0 5 0 0

0 .0 5 0 0

0 .0 5 0 0
;| » —
j J ......J i T♦  Start |

FIGURE 3.7-4 Simultaneous equations.
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MATLAB Solution 2
We can avoid some algebra if we are willing to solve simultaneous equations.

After applying Kirchhoff s laws and then using the Ohm’s law equations to eliminate the variables
representing resistor voltages, we have Eqs 3.7-1, 2, 6 , and 7:

i2 -f j5 ae 0.5 +  2*4 , 2*5 =  2*6, 12 =  40 2*2 +  80 2*4 ,

80 24 -b 48 2*5 4- 32 2*5 — 0
This set of four simultaneous equations in 2*2, 24, 2*5, and 2*5 can be written as a single matrix equation.

’ 1 - 1 1  0 
0 0 1 - 1

40 80 0 0
0 80 48 32

h 0.5
24 0

is 12
0

(3.7-11)

We can write this equation as

where

Ai = B (3.7-12)

' 1 - 1 1 0 ' h '0 .5 “
0 0 1 - 1 , 1 = 14 and B =

0

40 80 0 0 1 * is 12

0 80 48 32 J 6. 0

A =

This matrix equation can be solved using MATLAB as shown in Figure 3.7-4. After entering matrices A and B, 
the statement

i =  A\B

tells MATLAB to calculate 2 by solving Eq 3.7-12.

A circuit consisting of n elements has n currents and n voltages. A set of equations representing that 
circuit could have as many as 2n unknowns. We can reduce the number of unknowns by labeling the 
currents and voltages carefully. For example, suppose two of the circuit elements are connected in series. 
We can choose the reference directions for the currents in those elements so that they are equal and use 
one variable to represent both currents. Table 3.7-1 presents some guidelines that will help us reduce the 
number of unknowns in the set of equations describing a given circuit.

Guidelines for Labeling Circuit Variables

CIRCUIT FEATURE GUIDELINE

Resistors Label the voltage and current of each resistor to adhere to the passive convention. Use 
Ohm’s law to eliminate either the current or voltage variable.

Series elements Label the reference directions for series elements so that their currents are equal. Use one 
variable to represent the currents of series elements.

Parallel elements Label the reference directions for parallel elements so that their voltages are equal. Use one 
variable to represent the voltages of parallel elements.

Ideal Voltmeter Replace each (ideal) voltmeter by an open circuit. Label the voltage across the open circuit 
to be equal to the voltmeter voltage.

Ideal Ammeter Replace each (ideal) ammeter by a short circuit. Label the current in the short circuit to be

------- equal to the ammeter current.
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3.8 H O W  C A N  W E  C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f  the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness o f their work. For example, 
occasionally just a little time remains at the end o f an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions o f the sort o f 
problem discussed in this chapter.

E x a m p l e  3 . 8 - 1  Ho w Can  We  C h e c k  V o l t a g e  and  C u r r e n t  V a l u e s ?

The computer Mathcad (M athcad User's Guide, 1991) was used to solve the equations as shown in Figure 3.8- 
1 b. It was determined that

The circuit shown in Figure 3 .8-la  was analyzed by writing and solving a set o f simultaneous equations:

12 =  v2 +  4 /3,i4 =  y  4 - 13, vs =  4/3, and —  =  z'4 +  5/4

v2 =  - 6 0  V, i3 =  18 A, i4 =  6 A, and v5 =  72 V.

How can we check that these currents and voltages are correct?

«6 = 5/4

c

v2  := 0 i 3  := 0 i 4  := 0 v 5  := 0 

G iv en

12 *  v2  + 4 • i3  

v2
i4  ** —  +  i3

A p p ly  KVL t o  lo o p  A.

+ u5 -
A p p ly  KCL a t  n o d e  b .

v5  4 • i3  

v5
y  ~  14 + 5 • 14

A p p ly  KVL t o  lo o p  B.
4 q

b i — V A ------- i d
+ v3 - A p p ly  KCL a t  n o d e  c .

J

FIGURE 3.8-1 (a) An example circuit and (b) computer analysis using Mathcad.
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Solution
The current i2 can be calculated from v2f i3, i4, and v5 in a couple of different ways. First, Ohm’s law gives

Next, applying KCL at node b gives

1*2 =  1*3 -b 14 =  18 —b 6 =  24 A

Clearly, i2 cannot be both -1 2  and 24 A, so the values calculated for v2, i3, i4, and v5 cannot be correct. 
Checking the equations used to calculate v2, i3, i4, and v5, we find a sign error in the KCL equation 
corresponding to node b. This equation should be

After making this correction, v2, i*3, z'4, and v5 are calculated to be

This checks as we expected.
As an additional check, consider v3. First, Ohm’s law gives

v 3 = 4/3 = 4 ( 1 . 1 2 5 )  =  4 . 5  V

Next, applying KVL to the loop consisting of the voltage source and the 4-fl and 5-fl resistors gives

v3 =  1 2 - v2 =  1 2 - 7 . 5  =  4.5 V

Finally, applying KVL to the loop consisting of the 2 - D  and 4-H resistors gives

v 3 =  v 5 =  4 . 5  V

The results of these calculations agree with each other, indicating that

v2 =  7.5 V, 13 =  1.125 A. i4 =  0.375 A, v5 =  4.5 V

v2 =  7.5 V, 13 =  1.125 A, 14 =  0.375 A. v5 =  4.5 V

Now

and i2 = ,3 +  i4 =  1.125 +  0.375 =  1.5 A

are the correct values.
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j 3 . 9  D E S I G N  E X A M P L E  [---------------------

ADJUSTABLE V O LTA G E  SOURCE

A circuit is required to provide an adjustable voltage. The specifications for this circuit are 

that:

1. It should be possible to adjust the voltage to any value between - 5  V and + 5  V. It should 
not be possible accidentally to obtain a voltage outside this range.

2. The load current will be negligible.

3. The circuit should use as little power as possible.

The available components are:

1. Potentiometers: resistance values o f 10 k fl, 20 kO, and 50 k fi are in stock

2. A large assortment of standard 2 percent resistors having values between 10 H and 1 M Cl 
(see Appendix D)

3. Two power supplies (voltage sources): one 12-V supply and one — 12-V supply, both 
rated at 100 mA (maximum)

Describe the Situation and the Assum ptions
Figure 3.9-1 shows the situation. The voltage v is the adjustable voltage. The circuit that uses 
the output o f the circuit being designed is frequently called the load. In this case, the load 
current is negligible, so i =  0.

Load current 
i = 0

FIGURE 3.9-1 The circuit being 
designed provides an adjustable 
voltage, v, to the load circuit.

State the Goal
A circuit providing the adjustable voltage

—5V <  v <  + 5V  

must be designed using the available components.

G enerate a Plan
Make the following observations.

1. The adjustability o f a potentiometer can be used to obtain an adjustable voltage v.

2. Both power supplies must be used so that the adjustable voltage can have both positive
and negative values.

3. The terminals o f the potentiometer cannot be connected directly to the power supplies
because the voltage v is not allowed to be as large as 12 V or - 1 2  V.
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These observations suggest the circuit shown in Figure 3.9-2a. The circuit in Figure 3.9-2b is 
obtained by using the simplest model for each component in Figure 3.9-2a.

FIGURE 3.9-2 {a) A proposed circuit for producing the variable voltage, v, and (b) the equivalent circuit 
after the potentiometer is modeled.

To complete the design, values need to be specified for R u R2, and Rp. Then several 
results need to be checked and adjustments made, if necessary.

1. Can the voltage v be adjusted to any value in the range —5 V to -1-5V?

2. Are the voltage source currents less than 100 mA? This condition must be satisfied if the
power supplies are to be modeled as ideal voltage sources.

3. Is it possible to reduce the power absorbed by R u R2, and Rp?

Act on the Plan
It seems likely that R x and R2 will have the same value, so let R\ = R 2 = R . Then it is 
convenient to redraw Figure 3.9-2b as shown in Figure 3.9-3.

FIGURE 3.9-3 The circuit after setting R]= R2 = R.

Applying KVL to the outside loop yields

-1 2  +  Ria +  aRp ia +  (i -  a)Rp i. +  Ria - 1 2  =  0

t -  24 
a 2R + Rp

Next, applying KVL to the left loop gives

v =  12 -  (R + aRp)ia
Substituting for i, gives

24(R + aflp) 
2S + «„
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When a =  0, v must be 5 V, so
2 4 / ?

5  =  1 2 - ;
2/? +  /?p 

Solving for /? gives

R = OJRp

Suppose the potentiometer resistance is selected to be Rp =  20 k ft, the middle o f the three 

available values.
Then,

R =  14 kO

Verify the Proposed Solution
As a check, notice that when a =  1,

/  M.Q00 +  20.000 \  5
V28,000k +  20,000y

as required. The specification that

- 5  V <  v <  5 V

has been satisfied. The power absorbed by the three resistances is

2/—  242p  — i^ { 2R  -b Rp) —
2R + Rp

so p  =  12 mW

Notice that this power can be reduced by choosing R p to be as large as possible, 50 kO  in 
this case. Changing Rp to 50 kCl requires a new value o f R:

R = 0 J  x  Rp =  35 kO

Because

- 5  V =  12 -  f  35’0° °  +  50'00° )  24 <  v <  12 — ( - 35’00°  )  24 =  5 V
\70,000 +  50,000J  ~  ~  V70,000 +  50,000J

the specification that

- 5  V <  v <  5 V

has been satisfied. The power absorbed by the three resistances is now

242
P — --------------------------------=  5 mW
H 50,000 +  70,000

Finally, the power supply current is

• _  24
'* ~  50,000 +  70,000 “  ° '2

which is well below the 100 mA that the voltage sources are able to supply. The design is
complete.
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O Kirchhoff s current law (KCL) states that the algebraic sum 
of the currents entering a node is zero. Kirchhoff s voltage 
law (KVL) states that the algebraic sum of the voltages 
around a closed path (loop) is zero.

O Simple electric circuits can be analyzed using only Kirchhoff s 
laws and the constitutive equations of the circuit elements.

O Series resistors act like a “ voltage divider,” and parallel 
resistors act like a “ current divider.” The first two rows of 
Table 3.10-1 summarize the relevant equations.

O Series resistors are equivalent to a single “ equivalent resis­
tor.” Similarly, parallel resistors are equivalent to a single

3.10 S U M M A R Y
“ equivalent resistor.” The first two rows of Table 3.10-1 
summarize the relevant equations.

O Series voltage sources are equivalent to a single 
“ equivalent voltage source.” Similarly, parallel current 
sources are equivalent to a single “ equivalent current.” 
The last two rows of Table 3.10-1 summarize the rele­
vant equations.

O Often circuits consisting entirely of resistors can be 
reduced to a single equivalent resistor by repeatedly 
replacing series and/or parallel resistors by equivalent 
resistors.

Table 3 10 1 Equivalent Circuits for Series and Parallel Elements

Series resistors

Parallel resistors

Circuit

I Rl *1

+ V-[ +1
V2> R 2

J'2

R1 /?2I = ,1 = i2t vx = D D V, and v2 = - ----- — v/?j + /?2 + /?2

Circuit v $
-

Rs = Rl + R2 and v = Rsi

Series voltage 
sources

J'2
Circuit

Parallel current 
sources

Circuit V e i f h i ! Circuit • o :

v = i/j s v2 and i = i j  + i2 'p = *1 + *2
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P R O B L E M S 3 A

Section 3.2 Kirchhoff s Laws

P 3.2-1 Consider the circuit shown in Figure P 3.2-1. Deter­
mine the values of the power supplied by branch B and the 
power supplied by branch F.

+ 4 V -

t 1 A

20 V

Figure P 3.2-4

P 3.2-5 Determine the power absorbed by each of the resis­
tors in the circuit shown in Figure P 3.2-5.

Answer: The 4-0  resistor absorbs 16 W, the 6-11 resistor 
absorbs 24 W, and the 8-0 resistor absorbs 8 W.

-1 A

Figure P 3.2-1

P 3.2-2 Determine the values of z2, *4, v2, v3, and v6 in Figure
P 3.2-2.

8 V

v3 4 v-

|  —3 A

Figure P 3.2-5

P 3.2-6 Determine the power supplied by each current source 
in the circuit of Figure P 3.2-6.

Answer: The 2-mA current source supplies 6 mW, and the
1-mA current source supplies —7 mW.

5 V 2 mA

Figure P 3.2-2

P 3.2-3 Consider the circuit shown in Figure P 3.2-3.

(a) Suppose that /?! = 8 0  and R2 = 4 O. Find the current i and 
the voltage v.

(b) Suppose, instead, that i = 2.25 A and v =  42 V. Determine 
the resistances R\ and R2.

(c) Suppose, instead, that the voltage source supplies 24 W of 
power and that the current source supplies 9 W of power. 
Determine the current i, the voltage v, and the resistances 
R\ and R2.

P 3.2-7 Determine the power supplied by each voltage source 
in the circuit of Figure P 3.2-7.

Answer: The 2-V voltage source supplies 2 mW and the 3-V 
voltage source supplies —6 mW.

3 V 2 V

P 3.2-4 Determine the power absorbed by each of the resis­
tors in the circuit shown in Figure P 3.2-4.

Answer: The 4-0 resistor absorbs 100 W, the 6-0 resistor 
absorbs 24 W, and the 8-0 resistor absorbs 72 W.
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P 3.2-8 What is the value of the resistance R in Figure 
P 3.2-8.
Hint: Assume an ideal ammeter. An ideal ammeter is 
equivalent to a short circuit.

Answer: R — 4 0

Figure P 3.2-9

P 3.2-10 Determine the values of the resistances R\ and R2 in 
Figure P 3.2-10.

P 3.2-11 The circuit shown in Figure P 3.2-11 consists of five 
voltage sources and four current sources. Express the power 
supplied by each source in terms of the voltage source voltages 
and the current source currents.

I v7

P 3.2-9 The voltmeter in Figure P 3.2-9 measures the value of 
the voltage across the current source to be 56 V. What is the 
value of the resistance R?

Hint: Assume an ideal voltmeter. An ideal voltmeter is 
equivalent to an open circuit.

Answer: R =  10 H

Figure P 3.2-11

P 3.2-12 Determine the power received by each of the 
resistors in the circuit shown in Figure P 3.2-12.

+ i>i -

P 3.2-13 Determine the voltage and current of each of the 
circuit elements in the circuit shown in Figure P 3.2-13.

Hint: You’ll need to specify reference directions for the 
element voltages and currents. There is more than one way 
to do that, and your answers will depend on the reference 
directions that you choose.

15 V

Figure P 3.2-13

0.25 A

10 ft

P 3.2-14 Determine the voltage and current of each of the 
circuit elements in the circuit shown in Figure P 3.2-14.

Hint: You'll need to specify reference directions for the 
element voltages and currents. There is more than one way 
to do that, and your answers will depend on the reference 
directions that you choose.
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Figure P 3.2-14

P 3.2-15 Determine the value of the current that is measured 
by the meter in Figure P 3.2-15.

Figure P 3.2-15

P 3.2-16 Determine the value of the current that is measured 
by the meter in Figure P 3.2-16.

k z u —© Ammeter Q

P 3.2-19 The voltage source in Figure P 3.2-19 supplies
3.6 W of power. The current source supplies 4.8 W. Determine 
the values of the resistances, R\ and R2-

Figure P 3.2-16

P 3.2-17 Determine the value of the voltage that is measured 
by the meter in Figure P 3.2-17.

P 3.2-20 Determine the current / in Figure P 3.2-20. 

Answer: i =  4 A

4 a

V ( T ) 2 A

Figure P 3.2-20

P 3.2-21 Determine the value of the current im in Figure 
P 3.2-21ar.

6Q

va ( T )  3 A \  i  /  2/5 v,

4 n

(a)

1'"

P 3.2-18 Determine the value of the voltage that is measured 
by the meter in Figure P 3.2-18.

'1 60 ft

Figure P 3.2-21 (a) A circuit containing a VCCS. (b) The circuit 
after labeling the nodes and some element currents and voltages.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure 
P 3.2-21/? to determine va. Then apply KCL at node b to find im.
Answer: im = 9 A

P 3.2-22 Determine the value of the voltage vm in Figure
P 3.2-22a.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure 
P 3.2-22b to determine va.
Answer: vm =  24 V
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5 0

4 0

(a)

— K J ----- r—— - /  )
2 5  n

12 v O  50 a s♦ v2 -
----- O ___

45 Q 250 mA

Figure P 3.2-25

P 3.2-26 Determine the value of the voltage v5 for the circuit 
shown in Figure P 3.2-26.

Figure P 3.2-22 (a) A circuit containing a VCVS. (b) The circuit 
after labeling the nodes and some element currents and voltages.

P 3.2-23 Determine the value of the voltage v6 for the circuit 
shown in Figure P 3.2-23.

i/5 = 10 i2

Figure P 3.2-26

P 3.2-27 Determine the value of the voltage v6 for the circuit 
shown in Figure P 3.2-27.

v6

P 3.2-28 Determine the value of the voltage v5 for the circuit 
shown in Figure P 3.2-28.

220 mA 

Figure P 3.2-23

P 3.2-24 Determine the value of the voltage v6 for the circuit 
shown in Figure P 3.2-24.

15 mA v5 » l Ou2

250 mA

25 mA 0.5u2

Figure P 3.2-28

P 3.2-29 The voltage source in the circuit shown in Figure 
P 3.2-29 supplies 2 W of power. The value of the voltage 
across the 25-0 resistor is v2 =  4 V. Determine the values of 
the resistance R\ and of the gain, G, of the VCCS.

25 mA 

Figure P 3.2-24

P 3.2-25 Determine the value of the voltage v5 for the circuit 
shown in Figure P 3.2-25.

Figure P 3.2-29

P 3.2-30 Consider the circuit shown in Figure P 3.2-30. 
Determine the values of

(a) The current ia in the 20-11 resistor.
(b) The voltage vb across the 10-0 resistor.
(c) The current ic in the independent voltage source.
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L-VW
20 ft ia

Figure P 3.2-30

Section 3.3 Series Resistors and Voltage Division

P 3.3-1 Use voltage division to determine the voltages vb v2, 
v3, and v4 in the circuit shown in Figure P 3.3-1.

P 3.3-2 Consider the circuits shown in Figure P 3.3-2.

(a) Determine the value of the resistance R in Figure P 3.3-2 b 
that makes the circuit in Figure P 3.3-2b equivalent to the 
circuit in Figure P 3.3-2a.

(b) Determine the current / in Figure P 3.3-26. Because the 
circuits are equivalent, the current i in Figure P 3.3-2a is 
equal to the current i in Figure P 3.3-2b.

(c) Determine the power supplied by the voltage source.

6 f t  

A A A r -

3 ft
^ / W -

2ft
- v w -

4 ft

(a)

P 3.3-4 Determine the voltage v in the circuit shown in 
Figure P 3.3-4.

P 3.3-5 The model of a cable and load resistor connected to a 
source is shown in Figure P 3.3-5. Determine the appropriate 
cable resistance, R , so that the output voltage, vG, remains 
between 9 V and 13 V when the source voltage, vs, varies 
between 20 V and 28 V. The cable resistance can assume 
integer values only in the range 20 < R < 100 H.

-o----- V A — °-

Cable yo> 1 0 0 f t

Figure P 3.3-2

P 3.3-3 The ideal voltmeter in the circuit shown in Figure 
P 3.3-3 measures the voltage v.

(a) Suppose R2 = 50 fl. Determine the value of R\.
(b) Suppose, instead, 7^=50 Cl. Determine the value of

Ri.

(c) Suppose, instead, that the voltage source supplies 1.2 W of 
power. Determine the values of both R { and R2.

-o-----V v \—
R

Figure P 3.3-5 Circuit with a cable.

P 3.3-6 The input to the circuit shown in Figure P 3.3-6 is 
the voltage of the voltage source, va. The output of this circuit is 
the voltage measured by the voltmeter, vb. This circuit produces 
an output that is proportional to the input, that is,

Vb =  k va
where k is the constant of proportionality.

(a) Determine the value of the output, vb, when R =  180 Cl and
va=  18 V.

(b) Determine the value of the power supplied by the voltage 
source when R =  180 Cl and va =  18 V.

(c) Determine the value of the resistance, R , required to cause 
the output to be vb =  2 V when the input is va =  18 V.

(d) Determine the value of the resistance, R, required to cause 
vb =  0.2va (that is, the value of the constant of proportion­
ality is k = ±).



P r o b le m s -------I 93

P 3.3-7 Determine the value of voltage v in the circuit shown 
in Figure P 3.3-7.

15 ft 18 V

Figure P 3.3-7

P 3.3-8 Determine the power supplied by the dependent 
source in the circuit shown in Figure P 3.3-8.

(a)

t ( l - a) t fp
o------ W V --------<j>

»s ( p  aRP <  Urn

(b)
Figure P 3.3-9

P 3.3-10 Determine the value of the voltage measured by the 
meter in Figure P 3.3-10.

Figure P 3.3-8

P 3.3-9 A potentiometer can be used as a transducer to 
convert the rotational position of a dial to an electrical 
quantity. Figure P 3.3-9 illustrates this situation. Figure 
P 3.3-9a shows a potentiometer having resistance Rp con­
nected to a voltage source. The potentiometer has three 
terminals, one at each end and one connected to a sliding 
contact called a wiper. A voltmeter measures the voltage 
between the wiper and one end of the potentiometer.

Figure P 3.3-9b shows the circuit after the potentiome­
ter is replaced by a model of the potentiometer that consists of 
two resistors. The parameter a depends on the angle, #, of the 
dial. Here a =  and 0 is given in degrees. Also, in Figure P
3.3-96, the voltmeter has been replaced by an open circuit, and 
the voltage measured by the voltmeter, vm, has been labeled. 
The input to the circuit is the angle 0, and the output is the 
voltage measured by the meter, vm.

(a) Show that the output is proportional to the input.
(b) Let Rp = 1 kfl and v9 — 24 V. Express the output as a 

function of the input. What is the value of the output when
0 =  45°? What is the angle when vm=  10 V?

Figure P 3.3-10

P 3.3-11 For the circuit of Figure P 3.3-11, find the voltage v3 
and the current i and show that the power delivered to the three 
resistors is equal to that supplied by the source.

Answer: v3 =  3 V, I =  1 A

3 ft

v3 +

Figure P 3.3-11

P 3.3-12 Consider the voltage divider shown in Figure 
P 3.3-12 when Rx= 8 ft. It is desired that the output power 
absorbed by R\ be 4.5 W. Find the voltage vD and the 
required source vs.

2 ft 4 ft

Figure P 3.3-12
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P 3.3-13 Consider the voltage divider circuit shown in Figure 
P 3.3-13. The resistor R represents a temperature sensor. The 
resistance R. in fi, is related to the temperature T, in °C, by the 
equation

R = 50 + -T

(a) Determine the meter voltage, vm, corresponding to tem­
peratures 0°C, 75°C and 100°C.

(b) Determine the temperature. T, corresponding to the meter 
voltages 8 V, 10 V, and 15 V.

4  £1 6  A  ( f

(a) (b)
Figure P 3.4-2

P 3.3-14 Consider the circuit shown in Figure P 3.3-14.

(a) Determine the value of the resistance R required to cause 
v0 =  17.07 V.

(b) Determine the value of the voltage vD when R = 14 ft.
(c) Determine the power supplied by the voltage source when 

v0 =  14.22 V.

Figure P 3.3-14

Section 3.4 Parallel Resistors and Current Division

P 3.4-1 Use current division to determine the currents iu i2, 
/'3, and t4 in the circuit shown in Figure P 3.4-1.

P 3.4-3 The ideal voltmeter in the circuit shown in Figure
P 3.4-3 measures the voltage v.

(a) Suppose R2 =  6 ft. Determine the value of R j and of the 
current i.

(b) Suppose, instead, R\ = 6  ft. Determine the value of R2 and 
of the current /.

(c) Instead, choose R\ and R2 to minimize the power absorbed 
by any one resistor.

P 3.4-4 Determine the current / in the circuit shown in Figure 
P 3.4-4.

Figure P 3.4-4

P 3.4-5 Consider the circuit shown in Figure P 3.4-5 when
4 ft < /?, < 6 ft and R2 = 10 ft. Select the source is so that 
v0 remains between 9 V and 13 V.

Figure P 3.4-1

P 3.4-2 Consider the circuits shown in Figure P 3.4-2.

(a) Determine the value of the resistance R in Figure P 3.4-2/? 
that makes the circuit in Figure P 3.4-2/? equivalent to the 
circuit in Figure P 3.4-2a.

(b) Determine the voltage v in Figure P 3.4-2/?. Because the 
circuits are equivalent, the voltage v in Figure P 3.4-2a is 
equal to the voltage v in Figure P 3.4-2/?.

(c) Determine the power supplied by the current source.

Figure P 3.4-5

P 3.4-6 The input to the circuit shown in Figure P 3.4-6 is the 
current of the current source, z‘a. The output of this circuit is the 
current measured by the ammeter, ij,. This circuit produces an 
output that is proportional to the input, that is,

ib = k ia
where k is the constant of proportionality.
(a) Determine the value of the output, *b, when R =  24 ft and

/a =  2.1 A.
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(b) Determine the value of the resistance, R, required to cause 
the output to be ib =  1.5 A when the input is za =  2 A.

(c) Determine the value of the resistance, R, required to cause 
ib =  0.4 ia (that is, the value of the constant of proportion­
ality is k — -ĵ ).

12 Q A - 
■AAA/— °<___ H

Figure P 3.4-7

P 3.4-8 Determine the value of the current i in the circuit 
shown in Figure P 3.4-8.

2 A

P 3.4-9 Determine the value of the voltage v in Figure P 3.4-9. 

40 ft
—O—|— W \ r

20 ft 
-AAAr- -AAAr-

40 ft

b
-O—i

- e -
3 mA

Figure P 3.4-9

Figure P 3.4-6

P 3.4-7 Figure P 3.4-7 shows a transistor amplifier. The values 
of R i and R2 are to be selected. Resistances R i and R2 are used to 
bias the transistor, that is, to create useful operating conditions. 
In this problem, we want to select R i and R2 so that vb =  5 V. We 
expect the value of zb to be approximately 10 ĵlA. Wlien /j <  
10zb, it is customary to treat /b as negligible, that is, to assume 
zb =  0. In that case, R \ and R2 comprise a voltage divider.

(a) Select values for Rl and R2 so that vb =  5 V, and the 
total power absorbed by Rx and R2 is no more than 5 mW.

(b) An inferior transistor could cause /b to be larger than 
expected. Using the values of Rx and R2 from part (a), 
determine the value of vb that would result from ib =  15 jiA.

P 3.4-10 A solar photovoltaic panel may be represented by the 
circuit model shown in Figure P 3.4-10, where RL is the load 
resistor. Determine the values of the resistances R\ and RL.

12 ft a
I----------------------T----V A -----------9

( t )  30 mA Ri >  * 5 mA Rl >  2 V

b

Figure P 3.4-10

P 3.4-11 Determine the power supplied by the dependent 
source in Figure P 3.4-11.

Figure P 3.4-11

P 3.4-12 The voltmeter in Figure P 3.4-12 measures the value 
of the voltage vm.

(a) Determine the value of the resistance R.
(b) Determine the value of the power supplied by the current

Figure P 3.4-8

Figure P 3.4-12

P 3.4-13 Determine the values of the resistances R̂  and R2 
for the circuit shown in Figure P 3.4-13.
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*1

1.6 A

P 3.4-14 Determine the values of the resistances R i and R2 
for the circuit shown in Figure P 3.4-14.

+ 0.384 V -

P 3.4-17 Consider the combination of resistors shown in 
Figure P 3.4-17. Let Rp denote the equivalent resistance

(a) Suppose 40(1 < R  < 40011. Determine the correspond­
ing range of values of Rp.

(b) Suppose, instead, /? =  0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R =  oc (an open circuit). Determine the 
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp =  80 fl. 
Determine the value of R.

P 3.4-15 Determine the value of the current measured by the 
meter in Figure P 3.4-15. Figure P 3.4-17

P 3.4-16 Consider the combination of resistors shown in
Figure P 3.4-16. Let Rp denote the equivalent resistance.

(a) Suppose 20 fl < R < 32011. Determine the correspond­
ing range of values of Rp.

(b) Suppose, instead, R = 0 (a short circuit). Determine the 
value of Rp.

(c) Suppose, instead, R =  oo (an open circuit). Determine the 
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp = 4011. 
Determine the value of R.

Figure P 3.4-16

P 3.4-18 Consider the combination of resistors shown in
Figure P 3.4-18. Let Rp denote the equivalent resistance.

(a) Suppose 5011 < R < 80011. Determine the correspond­
ing range of values of Rp.

(b ) Suppose, instead, R = 0 (a short circuit). Determine the 
value of Rp.

(c) Suppose, instead, R =  oc (an open circuit). Determine the 
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp — 150 0 . 
Determine the value of R.

Figure P 3.4-18

P 3.4-19 The input to the circuit shown in Figure P 3.4-19 is 
the source current, /s. The output is the current measured by 
the meter, iQ. A current divider connects the source to the 
meter. Given the following observations:

(a) The input /, =  5 A causes the output to be iQ =  2 A.
(b) When i% =  2 A, the source supplies 48 W.
Determine the values of the resistances Rx and R2.
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Figure P 3.4-19

Section 3.5 Series Voltage Sources and Parallel 
Current Sources

P 3.5-1 Determine the power supplied by each source in 
the circuit shown in Figure P 3.5-1.

8 V

(a) Determine the value of the resistance R in Figure P 3.6-1 b 
that makes the circuit in Figure P 3.6-1 b equivalent to the 
circuit in Figure P 3.6-la.

(b) Find the current i and the voltage v shown in Figure P 3.6-
1 b. Because of the equivalence, the current i and the 
voltage v shown in Figure P 3.6-la are equal to the current
i and the voltage v shown in Figure P 3.6-1 b.

(c) Find the current z2, shown in Figure P 3.6-1 a, using current 
division.

) 1.25 A

- 0- -0-

(p

Figure P 3.5-2

P 3.5-3 Determine the power received by each resistor in the 
circuit shown in Figure P 3.5-3.

3 V

0 .25A (^ 2aO  7 n >  0 125A

o
8 V

Figure P 3.5-3

Section 3.6 Circuit Analysis

P 3 6-1 The circuit shown in Figure P 3.6-la has been 
divided into two parts. In Figure P 3.6-1 b, the right-hand 
part has been replaced with an equivalent circuit. The left- 
hand part of the circuit has not been changed.

8 0

Figure P 3.5-1

P 3.5-2 Determine the power supplied by each source in the 
circuit shown in Figure P 3.5-2.

2 V 0.5 A

Figure P 3.6-1

P 3.6-2 The circuit shown in Figure P 3.6-2a has been 
divided into three parts. In Figure P 3.6-2b, the rightmost 
part has been replaced with an equivalent circuit. The rest of 
the circuit has not been changed. The circuit is simplified 
further in Figure 3.6-2c. Now the middle and rightmost parts 
have been replaced by a single equivalent resistance. The 
leftmost part of the circuit is still unchanged.

(a) Determine the value of the resistance R{ in Figure P 3.6-2 b 
that makes the circuit in Figure P 3.6-2b equivalent to the 
circuit in Figure P 3.6-2a.

(b) Determine the value of the resistance R2 in Figure P 3.6-2 c 
that makes the circuit in Figure P 3.6-2c equivalent to the 
circuit in Figure P 3.6-2b.

(c) Find the current ix and the voltage Vj shown in Figure P
3.6-2c. Because of the equivalence, the current ij and the 
voltage vj shown in Figure P 3.6-2b are equal to the 
current /'i and the voltage V] shown in Figure P 3.6-2c.

Hint: 24 =  6 (/,-2 )  +  /,rt2

(d) Find the current i2 and the voltage v2 shown in Figure 
P 3.6-2b. Because of the equivalence, the current i2 
and the voltage v2 shown in Figure P 3.6-2a are equal 
to the current i2 and the voltage v2 shown in Figure 
P 3.6-2b.

Hint: Use current division to calculate i2 from i\.
(e) Determine the power absorbed by the 3-1) resistance 

shown at the right of Figure P 3.6-2a.
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Figure P 3.6-2

P 3.6-3 Find i, using appropriate circuit reductions and the 
current divider principle for the circuit of Figure P 3.6-3.

1 ft 1ft 1ft 1ft

P 3.6-4

(a) Determine values of and R2 in Figure P 3.6-46 that 
make the circuit in Figure P 3.6-46 equivalent to the 
circuit in Figure P 3.6-4a.

(b) Analyze the circuit in Figure P 3.6-46 to determine the 
values of the currents za and ib.

(c) Because the circuits are equivalent, the currents za 
and ib shown in Figure P 3.6-46 are equal to the currents 
ia and ib shown in Figure P 3.6-4a. Use this fact to 
determine values of the voltage vj and current i 2 shown 
in Figure P 3.6-4a.

-  Uj +

Figure P 3.6-4

P 3.6-5 The voltmeter in the circuit shown in Figure P 3.6-5 
shows that the voltage across the 30-0 resistor is 6 volts. 
Determine the value of the resistance R\.

Hint: Use the voltage division twice.

Answer: R\ =  40 H

P 3.6-6 Determine the voltages va and vc and the currents ib 
and id for the circuit shown in Figure P 3.6-6.

Answer: va =  - 2  V, vc =  6 V, ib =  -1 6  mA, and id =  2 mA

P 3.6-7 Determine the value of the resistance R in Figure
P 3.6-7.

Answer: R = 2SkCl

12 kft

Figure P 3.6-7

P 3.6-8 Most of us are familiar with the effects of a mild 
electric shock. The effects of a severe shock can be devastating 
and often fatal. Shock results when current is passed through 
the body. A person can be modeled as a network of resistances. 
Consider the model circuit shown in Figure P 3.6-8. Determine
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the voltage developed across the heart and the current flowing 
through the heart of the person when he or she firmly grasps 
one end of a voltage source whose other end is connected to the 
floor. The heart is represented by Rh. The floor has resistance to 
current flow equal to Rt, and the person is standing barefoot on 
the floor. This type of accident might occur at a swimming pool 
or boat dock. The upper-body resistance Ru and lower-body 
resistance RL vary from person to person.

Ru = 20 ft

Rh =100 ft

R< = 200 ft Rl = 30 ft

Figure P 3.6-8

P 3.6-9 Determine the value of the current i in Figure 3.6-9. 

Answer: i =  0.5 mA

3 kft 3 kft

P 3.6-10 Determine the values of ja, ib, and vc in Figure 
P 3.6-10.

10 ft

Figure P 3.6-10

P 3.6-11 Find i and Req a_b if vab =  40 V in the circuit of 
Figure P 3.6-11.

Answer: Req a_b = 8 H, / =  5 /6 A

6 f t

P 3.6-12 The ohmmeter in Figure P 3.6-12 measures the 
equivalent resistance, Req, of the resistor circuit. The value of 
the equivalent resistance, Req, depends on the value of the 
resistance R.
(a) Determine the value of the equivalent resistance, Rcq, 

when R = 9 H.
(b) Determine the value of the resistance R required to cause 

the equivalent resistance to be Req = 12 fl.

P 3.6-13 Find the Req at terminals a-b in Figure P 3.6-13. 
Also determine /, iu and z2.

Answer: Req =  8 H, i =  5 A, i\ =  5/3 A, i2 = 5 /2  A

' i  12 ft

P 3.6-14 All of the resistances in the circuit shown in Figure 
P 3.6-14 are multiples of R. Determine the value of R.

Figure P 3.6-11

Figure P 3.6-14

P 3.6-15 The circuit shown in Figure P 3.6-15 contains seven 
resistors, each having resistance R. The input to this circuit is the 
voltage source voltage, vs. The circuit has two outputs, va and 
Express each output as a function of the input.
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R R / \
+ |

va <> R ^  R<
1 /  R 1

R ~ \s  R

Figure P 3.6-15

P 3.6-16 The circuit shown in Figure P 3.6-16 contains three 
10-11, 1/4-W resistors. (Quarter-watt resistors can dissipate 
1/4 W safely. ) Determine the range of voltage source volt­
ages, vs, such that none of the resistors absorbs more than 1 /4 
W of power.

10 Q

Figure P 3.6-16

P 3.6-17 The four resistors shown in Figure P 3.6-17 represent 
strain gauges. Strain gauges are transducers that measure the 
strain that results when a resistor is stretched or compressed. 
Strain gauges are used to measure force, displacement, or pres­
sure. The four strain gauges in Figure P 3.6-17 each have a 
nominal (unstrained) resistance of200 O and can each absorb 0.5 
mW safely. Determine the range of voltage source voltages, vs, 
such that no strain gauge absorbs more than 0.5 mW of power.

Figure P 3.6-17

P 3.6-18 The circuit shown in Figure P 3.6-18b has been 
obtained from the circuit shown in Figure P 3.6-18a by 
replacing series and parallel combinations of resistances by 
equivalent resistances.

(a) Determine the values of the resistances R\, R2, and /?3 in 
Figure P 3.6-18b so that the circuit shown in Figure 
P 3.6-18/) is equivalent to the circuit shown in Figure
P 3.6-18a.

(b) Determine the values of vj, v2, and / in Figure
P 3.6-18/?.

(c) Because the circuits are equivalent, the values of vlf v2, 
and i in Figure P 3.6-18a are equal to the values of v2, 
and / in Figure P 3.6-1 Sb. Determine the values of v4, z5, 
and v7 in Figure P 3.6-18a.

+ if i -

(a)

+ i>i -

(b)
Figure P 3.6-18

P 3.6-19 Determine the values of vj, v2, z3, v4, v5, and /6 in 
Figure P 3.6-19.

+ vx -

Figure P 3.6-19

P 3.6-20 Determine the values of 1, v. and Rcq for the circuit 
shown in Figure P 3.6-20, given that vah= 18 V.
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measured by the meter, vG. Show that the output of this circuit 
is proportional to the input. Determine the value of the 
constant of proportionality.

Figure P 3.6-20

P 3.6-21 Determine the value of the resistance R in the circuit 
shown in Figure P 3.6-21, given that Req = 9 ft .

Answer: R =  15 ft

4 ft

Figure P 3.6-24

P 3.6-25 The input to the circuit in Figure P 3.6-25 is the 
voltage of the voltage source, vs. The output is the current 
measured by the meter, j0. Show that the output of this circuit 
is proportional to the input. Determine the value of the 
constant of proportionality.

Figure P 3.6-21

P 3.6-22 Determine the value of the resistance R in the circuit 
shown in Figure P 3.6-22, given that /?eq =  40 0 .

P 3.6-23 Determine the values of r, the gain of the CCVS, and 
g, the gain of the VCCS, for the circuit shown in Figure P 3.6-23.

Figure P 3.6-25

P 3.6-26 Determine the voltage measured by the voltmeter in 
the circuit shown in Figure P 3.6-26.

4 ft 'a

P 3.6-24 The input to the circuit in Figure P 3.6-24 is the 
voltage of the voltage source, vs. The output is the voltage Figure P 3.6-26
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P 3.6-27 Determine the current measured by the ammeter in 
the circuit shown in Figure P 3.6-27.

5 va

1 6 f i  9  
"— W V — o d U - i  H 1

Ammeter q

— V N A / —

Figure P 3.6-29

P 3.6-30 The ohmmeter in Figure P 3.6-30 measures the 
equivalent resistance of the resistor circuit connected to the 
meter probes.

(a) Determine the value of the resistance R required to cause
the equivalent resistance to be Req = 12 H.

^ 1. 1 r.u  * (b) Determine the value of the equivalent resistance whenP 3.6-28 Determine the value ot the resistance R that causes 1 M
the voltage measured by the voltmeter in the circuit shown in —
Figure P 3.6-28 to be 6 V.

3 A

P 3.6-31 The voltmeter in Figure P 3.6-31 measures the 
voltage across the current source.

(a) Determine the value of the voltage measured by the meter.
(b) Determine the power supplied by each circuit element.

Figure P 3.6-28

P 3.6-29 The input to the circuit shown in Figure P 3.6-29 is
the voltage of the voltage source, vs. The output is the current d o c  oo r\ + ,
measured bv the m e te r  , P 3 6 32 Determine the resistance measured by the ohmme-measured by the meter, zm.

(a) Suppose vs =  15 V. Determine the value of the resistance 
R that causes the value of the current measured by the 
meter to be im =  12 A.

(b) Suppose vs=  15 V and /* = 80 H  Determine the current 
measured by the ammeter.

(c) Suppose R = 24 11. Determine the value of the input 
voltage, v5, that causes the value of the current measured 
by the meter to be /m =  3 A.

ter in Figure P 3.6-32.
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P 3.6-33 Determine the resistance measured by the ohmme- 
ter in Figure P 3.6-33.

VA

18 0 32 0 . 32 0 .

10 O
-AAA/— V W

/?2 + v2 ~b + Uo -  Cf

original circuit

P 3.6-36 Consider the circuit shown in Figure P 3.6-36. 
Given

2 1 . . 3v2 =  - v s, z3 =  ^*1, and v4 =  - v 2,

determine the values of R\, R2, and R4.

Hint: Interpret v2 =  f vs, z3 =  \ i \ . and v4 =  §v2 as current 
and voltage division.

P 3.6-34 Consider the circuit shown in Figure P 3.6-34. 
Given the values of the following currents and voltages:

z, =  0.625 A, v2 =  -2 5  V, j3 =  -1 .25  A, 
and V4 =  —18.75 V,

determine the values of R2, Ri, and R4.

v4

Figure P 3.6-36

P 3.6-37 Consider the circuit shown in Figure P 3.6-37. Given

. 2 .  2 4 .
12 =  v3 =  - v i . andz4 =  - / 2,

determine the values of R\, R2, and R4.
Hint: Interpret i2 = | i s, v3 =  |  v\ , and *4 =  |z 2 as current and

voltage division.

Figure P 3.6-34

P 3.6-35 Consider the circuits shown in Figure P 3.6-35. The 
equivalent circuit is obtained from the original circuit by replac­
ing series and parallel combinations of resistors with equivalent 
resistors. The value of the current in the equivalent circuit is zs =  
0.8 A. Determine the values of Rx, R2, R5y v2, and i3.

40 V

- G -

Figure P 3.6-37

P 3.6-38 Consider the circuit shown in Figure P 3.6-38.

(a) Suppose z3 =  |z j. What is the value of the resistance R?
(b) Suppose, instead, v2 =  4.8 V. What is the value of the 

equivalent resistance of the parallel resistors?
(c) Suppose, instead, R = 20 fl. What is the value of the 

current in the 40-0 resistor?

Hint: Interpret z3 = \i\  as current division.

Figure P 3.6-35

Figure P 3.6-38

P 3.6-39 Consider the circuit shown in Figure P 3.6-39.

(a) Suppose v3 =  Jvj. What is the value of the resistance R?
(b) Suppose z2 =s 1.2 A. What is the value of the resistance R?
(c) Suppose R =  70 0 . What is the voltage across the 

2 0 -H resistor?
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(d) Suppose R =  3 0 1 1  What is the v a lu e  o f the current in this / / /„ , .  y se the guidelines given in Section 3.7 to label the

30-0  resistor?

Hint: Interpret v3 =  as voltage division.

*2 R

v3>  i o n

v a  =  2 0  zb

Figure P 3.6-40

5 Q  
rAA/V-i 8 Q 2Q

r
■ + i>i -  <- A W — ir— w v — i

k Ji  i

f

2 0  a

[ i
> 1 2 Q < 2 4  Q

circuit diagram. Use MATLAB to solve the equations repre­
senting the circuit.

P 3.6-40 Consider the circuit shown in Figure P 3.6-40. 
Given that the voltage o f the dependent voltage source is 
va =  8 V, determine the values o f R\ and vQ.

+ v0 -
8Q *b

F i g u r e  P  3 . 6 - 4 2

Section 3.7 Analyzing Resistive Circuits Using 
MATLAB

P 3.7-1 Determine the power supplied by each o f the 
sources, independent and dependent, in the circuit shown in
Figure P 3 .7-1.

P 3.7-2 Determine the power supplied by each o f the sources, 
independent and dependent, in the circuit shown in Figure 
P 3.7-2.

Hint: Use the guidelines given in Section 3.7 to label the 
circuit diagram. Use MATLAB to solve the equations repre­
senting the circuit.

P 3.6-41 Consider the circuit shown in Figure P 3.6-41. 
Given that the current of the dependent current source is 
za =  2 A, determine the values o f R\ and iQ.

L  =  0 . 2 v r

5 i i

Figure P 3.6-41

P 3.6-42 Determine the values o f za, /b, z2, and v, in the circuit 
shown in Figure P 3.6-42.

Section 3.8 How Can W e Check . . . ?

P 3.8-1 A computer analysis program, used for the circuit o f  
Figure P 3.8-1, provides the following branch currents and 
voltages: ix =  -0 .8 3 3  A, /2 = -0 .3 3 3  A, i3 =  -1 .1 6 7  A, and 
v =  2.0 V. Are these answers correct?

Hint: Verify that KCL is satisfied at the center node and 
that KVL is satisfied around the outside loop consisting o f  
the two 6 - 0  resistors and the voltage source.

6 Q

Figure P 3.8-1

P 3.8-2 The circuit o f Figure P 3.8-2 was assigned as a 
homework problem. The answer in the back o f the textbook 
says the current, /, is 1.25 A. Verify this answer, using current 
division.
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5 ft

Figure P 3.8-2

P 3.8-3 The circuit of Figure P 3.8-3 was built in the lab, 
and vQ was measured to be 6.25 V. Verify this measurement, 
using the voltage divider principle.

650 ft 
■ A M r

24 V 320 ft!

-AA/V
230 ft

Figure P 3.8-3

*H Headlights
- J W W

1.2 ft

0.05 ft 
'-AAAr

Battery

0.1 ft 
— V \A r

*B

*A

12 V

■ € H
14 V

- e - 1

P 3.8-6 Computer analysis of the circuit in Figure P 3 .8 -6 . 
shows that /a =  0.5 mA and /b =  4.5 mA. Was the computer 
analysis done correctly?
Hint: First, verify that the KCL equations for all five nodes 
are satisfied when ia =  0.5 mA, and zb =  4.5 mA. Next, verify 
that the KVL equation for the lower left mesh (a-e-d-a) is 
satisfied. (The KVL equations for the other meshes aren’t 
useful because each involves an unknown voltage.)

P 3.8-4 The circuit of Figure P 3.8-4 represents an auto’s 
electrical system. A report states that zH =  9 A, z'B =  —9 A, and 
i'A=  19.1 A. Verify that this result is correct.

Hint: Verify that KCL is satisfied at each node and that KVL is 
satisfied around each loop.

Figure P 3.8-6

P 3.8-7 Verify that the element currents and voltages shown 
in Figure P 3.8-7 satisfy KirchhofiTs laws:

(a) Verify that the given currents satisfy the KCL equations 
corresponding to nodes a, b, and c.

(b) Verify that the given voltages satisfy the KVL equations 
corresponding to loops a-b-d-c-a and a-b-c-d-a.

-  3 V

Alternator

Figure P 3.8-4 Electric circuit model of an automobile’s 
electrical system.

P 3.8-5 Computer analysis of the circuit in Figure P 3.8-5 
shows that za == —0.5 mA, and ib =  —2 mA. Was the computer 
analysis done correctly?

Hint: Verify that the KVL equations for all three meshes are 
satisfied when ia =  -0 .5  mA, and /b =  - 2  mA.

+

5 V

Figure P 3.8-5

Figure P 3.8-7

*P 3.8-8 Figure P 3.8-8 shows a circuit and some corre­
sponding data. The tabulated data provides values of the 
current, /, and voltage, v, corresponding to several values of 
the resistance R2.

(a) Use the data in rows 1 and 2 of the table to find the values 
of vs and Rx.

(b) Use the results of part (a) to verify that the tabulated data 
are consistent.

(c) Fill in the missing entries in the table.
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Figure P 3.8-8

(a)

r2m A i>,V
0 2.4 0
10 1.2 12
20 0.8 16
30 ? 18
40 0.48 7

(b)

current, i, and voltage, v, corresponding to several values of 
the resistance R2
(a) Use the data in rows 1 and 2 of the table to find the values 

of js and R\.
(b) Use the results of part (a) to verify that the tabulated data 

are consistent.
(c) Fill in the missing entries in the table.

*P  3.8-9 Figure P 3.8-9 shows a circuit and some corre­
sponding data. The tabulated data provide values of the

(a)
Figure P 3.8-9

r 2, Cl U A u,V

10 4/3 40/3

20 6/7 120/7
40 1/2 20

80 ? ?

(b)

Design Problems
DP 3-1 The circuit shown in Figure DP 3-1 uses a potentiom­
eter to produce a variable voltage. The voltage vm varies as a 
knob connected to the wiper of the potentiometer is turned. 
Specify the resistances R\ and R2 so that the following three 
requirements are satisfied:

1. The voltage vm varies from 8 V to 12 V as the wiper moves 
from one end of the potentiometer to the other end of the 
potentiometer.

2. The voltage source supplies less than 0.5 W of power.

3. Each of Ru R2, and RP dissipates less than 0.25 W.

to be 200 ft =i= 5 percent. That is, 190 ft <  Rh < 210 ft. The 
voltage source is a 12 V ±  1 percent source capable of supplying
5 W. Design this circuit, using 5 percent, 1 / 8-watt resistors for 
R , and R2i so that the voltage across RL is

v0 =  4 V ±  10%
(A 5 percent, 1/8-watt 100-ft resistor has a resistance between 
95 and 105 ft and can safely dissipate 1/8-W continuously.)

R2
o----- V W -

12 V

Figure DP 3-2

DP 3-3 A phonograph pickup, stereo amplifier, and speaker are 
shown in Figure DP 3-3a and redrawn as a circuit model as 
shown in Figure DP 3-3b. Determine the resistance R so that the 
voltage v across the speaker is 16 V. Determine the power 
delivered to the speaker.

Phonograph Amplifier
Speaker

DP 3-2 The resistance RL in Figure DP 3-2 is the equivalent 
resistance of a pressure transducer. This resistance is specified

(a)
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Figure DP 3-3 A phonograph stereo system.

DP 3-4 A Christmas tree light set is required that will operate 
from a 6-V battery on a tree in a city park. The heavy-duty 
battery can provide 9 A for the four-hour period of operation 
each night. Design a parallel set oflights (select the maximum 
number oflights) when the resistance of each bulb is 12 H.

DP 3-5 The input to the circuit shown in Figure DP 3-5 is the 
voltage source voltage, vs. The output is the voltage vQ. The 
output is related to the input by

* 2
R i +  Ri

gvs

The output of the voltage divider is proportional to the input. 
The constant of proportionality, g, is called the gain of the 
voltage divider and is given by

* 2
R\ Ri

The power supplied by the voltage source is

* ,rM +  Rl
where

* in  =  * i  +  Ri
is called the input resistance of the voltage divider.

(a) Design a voltage divider to have a gain, g =  0.65.
(b) Design a voltage divider to have a gain, g = 0.65, and an 

input resistance, Rin =  2500 H.

*1

Figure DP 3-5

DP 3-6 The input to the circuit shown in Figure DP 3-6 is the 
current source current, is. The output is the current i0. The 
output is related to the input by

, * l  .

The output of the current divider is proportional to the input. 
The constant of proportionality, g, is called the gain of the 
current divider and is given by

*1
^ R\ -I- Rj 

The power supplied by the current source is

p  =  vsis =  

where

* 1*2

*1 4- *2

* ir

* 1*2

*, + * 2
i  2  —  R  i  2

RtR 2

*1 + *2
is called the input resistance of the current divider.

(a) Design a current divider to have a gain, g =  0.65.
(b) Design a current divider to have a gain, g  =  0.65, and an 

input resistance, Rm= 10000  O.

+

)  <> Rl R2 <

-

Figure DP 3-6

DP 3-7 Design the circuit shown in Figure DP 3-7 to have an 
output vG =  8.5 V when the input is vs =  12 V. The circuit should 
require no more than 1 mW from the voltage source.

Figure DP 3-7

DP 3-8 Design the circuit shown in Figure DP 3-8 to have an 
output i0 =1.8 mA when the input is is =  5 mA. The circuit should 
require no more than 1 mW from the current source.

+

)  *  <> Rx R2 <
-

Figure DP 3-8
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4.1 I N T R O D U C T I O N

To analyze an electric circuit, we write and solve a set o f equations. We apply K irchhoffs current and 
voltage laws to get some o f the equations. The constitutive equations o f the circuit elements, such as
Ohm’s law, provide the remaining equations. The unknown variables are element currents and
voltages. Solving the equations provides the values o f the element current and voltages.

This method works well for small circuits, but the set o f equations can get quite large for even 
moderate-sized circuits. A circuit with only 6  elements has 6  element currents and 6  element voltages. 
We could have 12 equations in 12 unknowns. In this chapter, we consider two methods for writing a 
smaller set o f simultaneous equations:

• The node voltage method

• The mesh current method

The node voltage method uses a new' type o f variable called the node voltage. The “ node voltage 
equations or, more simply, the “ node equations,”  are a set o f simultaneous equations that represent a 
given electric circuit. The unknown variables o f the node voltage equations are the node voltages. 
After solving the node voltage equations, we determine the values o f the element currents and voltages
from the values of the node voltages.



It’s easier to write node voltage equations for some types of circuit than for others. Starting with 
the easiest case, we will learn how to write node voltage equations for circuits that consist of:

• Resistors and independent current sources

• Resistors and independent current and voltage sources

• Resistors and independent and dependent voltage and current sources

The mesh current method uses a new type of variable called the mesh current. The “ mesh current 
equations” or, more simply, the “ mesh equations,” are a set of simultaneous equations that represent 
a given electric circuit. The unknown variables of the mesh current equations are the mesh currents. 
After solving the mesh current equations, we determine the values of the element currents and voltages 
from the values of the mesh currents.

It’s easier to write mesh current equations for some types of circuit than for others. Starting with 
the easiest case, we will learn how to write mesh current equations for circuits that consist of:

• Resistors and independent voltage sources

• Resistors and independent current and voltage sources

• Resistors and independent and dependent voltage and current sources

4.2 NODE VOLTAGE ANAL YSI S  OF CI RCUI TS
WI TH CURRENT SOURCES ---------------------------------------------------

Consider the circuit shown in Figure 4.2-1 a. This circuit contains four elements: three resistors and a 
current source. The nodes of a circuit are the places where the elements are connected together. The 
circuit shown in Figure 4.2-1 a has three nodes. It is customary to draw the elements horizontally or 
vertically and to connect these elements by horizontal and vertical lines that represent wires. In other 
words, nodes are drawn as points or are drawn using horizontal or vertical lines. Figure 4.2-1 b shows 
the same circuit, redrawn so that all three nodes are drawn as points rather than lines. In Figure 4.2-1 b, 
the nodes are labeled as node a, node b, and node c.

Analyzing a connected circuit containing n. nodes will require n -  1 KCL equations. One way to 
obtain these equations is to apply KCL at each node of the circuit except for one. The node at which

Node Voltage Ana lys is  o f C ircu its  w i th  Current Sources

FIGURE 4.2-1 (a) A circuit with 
three nodes. (£>) The circuit after the 
nodes have been labeled and a 
reference node has been selected and 
marked, (c) Using voltmeters to 
measure the node voltages.

( a)

(b)

(c)
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KCL is not applied is called the reference node. Any node o f the circuit can be selected to be the 
reference node. We will often choose the node at the bottom o f the circuit to be the reference node. 
(When the circuit contains a grounded power supply, the ground node o f the power supply is usually 
selected as the reference node.) In Figure 4.2-1/?, node c is selected as the reference node and marked 
with the symbol used to identify the reference node.

The voltage at any node o f the circuit, relative to the reference node, is called a node voltage. In 
Figure 4.2-16, there, are two node voltages: the voltage at node a with respect to the reference node, 
node c, and the voltage at node b, again with respect to the reference node, node c. In Figure 4 .2-lc, 
voltmeters are added to measure the node voltages. To measure node voltage at node a, connect the red 
probe of the voltmeter at node a and connect the black probe at the reference node, node c. To measure 
node voltage at node b, connect the red probe o f the voltmeter at node b and connect the black probe at 
the reference node, node c.

The node voltages in Figure 4 .2 -lc  can be represented as vac and but it is conventional to 
drop the subscript c and refer to these as va and vb. Notice that the node voltage at the reference node is 
vcc =  vc =  0 V because a voltmeter measuring the node voltage at the reference node w'ould have both 
probes connected to the same point.

One of the standard methods for analyzing an electric circuit is to write and solve a set of 
simultaneous equations called the node equations. The unknown variables in the node equations are the 
node voltages of the circuit. We determine the values of the node voltages by solving the node equations.

To write a set o f node equations, we do two things:

1. Express element current as functions o f the node voltages.

2. Apply K irchhoff s current law (KCL) at each o f  the nodes o f the circuit except for the 
reference node.

Consider the problem of expressing element currents as functions o f the node voltages. Although 
our goal is to express element currents as functions of the node voltages, we begin by expressing element 
voltages as functions of the node voltages. Figure 4.2-2 shows how this is done. The voltmeters in Figure
4.2-2 measure the node voltages, v\ and v2, at the nodes o f the circuit element. The element voltage has 
been labeled as va. Applying Kirchhoff s voltage law to the loop shown in Figure 4.2-2 gives

Va =  Vl -  V2

This equation expresses the element voltage, va, as a function o f  the node voltages, and v2. (There 
is an easy way to remember this equation. Notice the reference polarity o f  the elem ent voltage, va. 
The element voltage is equal to the node voltage at the node near the o f  the reference polarity 
minus the node voltage at the node near the — o f the reference polarity.)

Now consider Figure 4.2-3. In Figure 4.2-3a, we use what we have learned to express the voltage 
of a circuit element as a function o f node voltages. The circuit element in Figure 4.2-3a could be

I IGURE 4.2-2 Node voltages, v, and v2, and element voltage, va, of a circuit element.



Node Vo ltage  A na lys is  o f C ircu its  w i th  Curren t Sources

v \ - v 2
l as -------------

V2 V l  ^  v 2 y l R  V 2

—O O-V\A/----- O

1 1 1

v i - v 2 -  + v i ~v 2 -  + vx - v 2 -  FIGURE 4.2-3 Node voltages, V!
and v2, and element voltage,
Vj -  v2, of a (a) generic circuit 
element, (b) voltage source, and

(a) (b) (c) (c) resistor.

anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.2-36 and c, 
we consider specific types of circuit element. In Figure 4.2-36, the circuit element is a voltage source. 
The element voltage has been represented twice, once as the voltage source voltage, Vs, and once as a 
function of the node voltages, v\ — v2. Noticing that the reference polarities for Vs and vi -  v2 are the 
same (both +  on the left), we write

Vs =  vi -  v2

This is an important result. Whenever we have a voltage source connected between two nodes of a 
circuit, we can express the voltage source voltage, VS9 as a function of the node voltages, vj and v2.

Frequently, we know the value of the voltage source voltage. For example, suppose that 
Vs = 12 V. Then

12 =  vi — v2

This equation relates the values of two of the node voltages.
Next, consider Figure 4.2-3c. In Figure 4.2-3c, the circuit element is a resistor. We will use 

Ohm’s law to express the resistor current, i, as a function of the node voltages. First, we express the 
resistor voltage as a function of the node voltages, vi — v2. Noticing that the resistor voltage, v\ — v2, 
and the current, i, adhere to the passive convention, we use Ohm’s law to write

. vi -  v2

1 ~  R
Frequently, we know the value of the resistance. For example, when R = SCI, this equation becomes

. _  v, -  v2

1 8

This equation expresses the resistor current, i, as a function of the node voltages, v{ and v2.
Next, let’s write node equations to represent the circuit shown in Figure 4.2-4a. The input to this 

circuit is the current source current, is. To write node equations, we will first express the resistor currents as 
functions of the node voltages and then apply KirchhofF s current law at nodes a and b. The resistor voltages 
are expressed as functions of the node voltages in Figure 4.2-46, and then the resistor currents are expressed 
as functions of the node voltages in Figure 4.2-4c.

The node equations representing the circuit in Figure 4.2-4 are obtained by applying Kirchhoff s 
current law at nodes a and b. Using KCL at node a gives

'» =  ^ + ^ T  (4'2- 1}
Similarly, the KCL equation at node b is

va -  Vb =  Vb 
*1

If Ri =  l /?2 =  /?3 =  0.5 fl, and zs =  4 A, and Eqs. 4.2-1 and 4.2-2 may be rewritten as
„ va - v b va

(4.2-2)
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”b

■ ©

S l  I | l » 3
”b < * 3

(c)

Solving Eq. 4.2-4 for vb gives

Substituting Eq. 4.2-5 into Eq. 4.2-3 gives

Solving Eq. 4.2-6 for va gives

Finally, Eq. 4.2-5 gives

Thus, the node voltages o f this circuit are

Va 8
4 =  va -  J  +  2va =  - v a

v . = j V

Vb =  j V

FIGURE 4.2-4 
{a) A circuit with three 
resistors. (b) The 
resistor voltages 
expressed as functions 
of the node voltages.
(c) The resistor currents 
expressed as functions 
of the node voltages.

(4.2-5)

(4.2-6)

E x a m p l e  4 . 2 - 1  N o d e  E q u a t i o n s

Determine the value o f the resistance R in the circuit shown in Figure 4.2-5a.

Solution
Let va denote the node voltage at node a and vj, denote the node voltage at node b. The voltmeter in Figure 4.2-5 
m easures the value o f the node voltage at node b, Vb. In Figure 4 .2 -5 /7. the resistor currents are expressed as
functions o f the node voltages. Apply K.CL at node a to obtain
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E x a m p l e  4 . 2-2  N o d e  E q u a t io n s

Obtain the node equations for the circuit in Figure 4.2-6.

Solution
Let va denote the node voltage at node a, vb denote 
the node voltage at node b, and vc denote the node 
voltage at node c. Apply KCL at node a to obtain

Separate the terms of this equation that involve va 
from the terms that involve and the terms that 
involve vc to obtain.

0 ‘*

FIGURE 4.2-6 The circuit for Example 4.2-2

i i + 1*2



There is a pattern in the node equations o f circuits that contain only resistors and current sources. In the node 
equation at node a, the coefficient o f va is the sum o f the reciprocals o f the resistances o f  all resistors connected to 
no(je a The coefficient o f is minus the sum o f the reciprocals o f the resistances o f all resistors connected 
between node b and node a. The coefficient vc is minus the sum o f the reciprocals o f the resistances o f  all resistors 
connected between node c and node a. The right-hand side o f this equation is the algebraic sum o f  current source 
currents directed into node a.

Apply KCL at node b to obtain

Separate the terms of this equation that involve va from the terms that involve and the terms that involve vc to obtain

- ( i ) v- + ( ^ + s + s ) vb- ( i ) v” = i i - i:
As expected, this node equation adheres to the pattern for node equations o f circuits that contain only resistors and 
current sources. In the node equation at node b, the coefficient o f vb is the sum o f the reciprocals o f the resistances 
of all resistors connected to node b. The coefficient o f va is minus the sum o f the reciprocals o f the resistances o f  all 
resistors connected between node a and node b. The coefficient o f  vc is minus the sum o f the reciprocals o f the 
resistances o f all resistors connected between node c and node b. The right-hand side o f this equation is the 
algebraic sum of current source currents directed into node b.

Finally, use the pattern for the node equations o f circuits that contain only resistors and current sources to 
obtain the node equation at node c:

M e th o d s  o f  A n a ly s is  o f  R e s is t iv e  C i r c u i t s

^ --------------------------------------- j E x a m p l e  4 . 2 - 3  N o d e  E q u a t i o n s

Determine the node voltages for the circuit in Figure 4.2-6 when i\ =  1 A, i2 =  2 A, i3 =  3 A, R } = 5  f t , R2 =
2 ft, Ri =  10 ft, R4 =  4 ft, /?5 =  5 ft, and Rb =  2 ft.

Solution
The node equations are

0.9va -  0.2vb -  0.7vc =  3 

- 0.2va +  0 .55vb -  0.1 vc =  1 

—0.7va — 0.1 Vb +  1.3vc =  — 1 

The node equations can be written using matrices as

A v — b
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where

0.9 -0 .2 —0.7 3" "v.
A = -0 .2 0.55 -0.1 ,b  = 1 and, v = Vb

-0 .7 0.1 1.3 -1 _ v<--

This matrix equation is solved using MATLAB in Figure 4.2-7.

“va - - 7 .1 5 7 9 -
V = Vb = 5.0526

-Vc. .3-4737.

Consequently, va =  7.1579 V, vb =  5.0526 V, and vc — 3.4737 V

■) MATLAB
File Edit Debug Qesktop Window Help
D Or * *  IB “ ' f t  Cf 0  t
Shortcuts 3  How to Add ®  What's New

»  A = [ 0.9 -0.2 -0 .7;
-0.2 0.55 -0.1;
-0.7 -0.1 1.3];

»  b - [ 3; 1; -1] ;
»  v = A\b

7.1579 
5.052 6 
3.4737

»  I 
<

Stan;

FIGURE 4.2-7 Using MATLAB to solve the 
node equation in Example 4.2-3.

EXERCISE 4.2-1 Determine the node voltages, va and vb, for the circuit of Figure E 4.2-1. 

Answer: va =  3 V and Vb =  11 V

EXERCISE 4.2-2 Determine the node voltages, va and vb, for the circuit of Figure E 4.2-2. 

Answer: va =  -4 /3  V and Vh =  4V

a 2 ** b
-AAA^

FIGURE E 4.2-1 FIGURE E 4.2-2

4.3 N O D E  V O L T A G E  A N A L Y S I S  OF C I R C U I T S
W I T H  C U R R E N T  A N D  V O L T A G E  S O U R C E S  ---------------------------

In the preceding section, we determined the node voltages of circuits with independent current sources 
only. In this section, we consider circuits with both independent current and voltage sources.

First we consider the circuit with a voltage source between ground and one of the other nodes. 
Because we are free to select the reference node, this particular arrangement is easily achieved.
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a R2 b
Supernode

v,

T

*3 0  h

T

O

FIGURE 4.3-1 Circuit with an independent 
voltage source and an independent current source.

FIGURE 4.3-2 Circuit with a supemode 
that incorporates va and vb.

Such a circuit is shown in Figure 4.3-1. We immediately note that the source is connected between 
terminal a and ground and, therefore,

Thus, va is known and only vb is unknown. We write the KCL equation at node b to obtain
V b v b V a 

' S ~  *3 *2

However, va =  vs. Therefore,

Then, solving for the unknown node voltage vb, we get

RzR3h +/?3Vs
V b ~  R i+ R )

Next, let us consider the circuit o f Figure 4.3-2, which includes a voltage source between two nodes. 
Because the source voltage is known, use KVL to obtain

va -  vb =  vs
or va -  vs =  vb

To account for the fact that the source voltage is known, we consider both node a and node b as 
part o f one larger node represented by the shaded ellipse shown in Figure 4.3-2. We require a larger 
node because va and vb are dependent. This larger node is often called a supernode or a generalized  
node. KCL says that the algebraic sum of the currents entering a supemode is zero. That means that we 
apply KCL to a supemode in the same way that we apply KCL to a node.

A supernode consists of two nodes connected by an independent or a dependent voltage source.

We then can write the KCL equation at the supemode as

Then, solving for the unknown node voltage vb, we get

R\Riis ~ RiVs 
Vb~ * l + * 2

We can now compile a summary o f both methods o f dealing with independent voltage sources in 
a circuit we wish to solve by node voltage methods, as recorded in Table 4.3-1.

However, because va =  vs +  vb, we have
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Table 4 Node Voltage Analysis Method with a Voltage Source

CASE METHOD

1. The voltage source connects node q and Set vq equal to the source voltage accounting for the polarities and
the reference node (ground). proceed to write the KCL at the remaining nodes.

2. The voltage source lies between two Create a supemode that incorporates a and b and equate the sum of all the
nodes, a and b. currents into the supemode to zero.

r E x a m p l e  4 . 3 - 1  N o d e  E q u a tio n s  fo r  a C ir c u i t  C o n ta in in g  
V o lta g e  S o u rc e s

Determine the node voltages for the circuit shown in Figure 4.3-3.

Solution
The methods summarized in Table 4.3-1 are exemplified in this ( + ) 4 v 12 Q ^  12 Q ( U  2 A
solution. The 4-V voltage source connected to node a exemplifies
method 1. The 8-V source between nodes b and c exemplifies method 2.

Using method 1 for the 4-V source, we note that 
v — —4V~  v FIGURE 4.3-3 A circuit containing two voltage

Using method 2 for the 8 -V source, we have a supemode at sources, only one of which is connected to the
nodes b and c. The node voltages at nodes b and c are related by reference node.

=  vc +  8
Writing a KCL equation for the supenode, we have

Vb ~ Va Vb Vc ^  2
6 12 1 2 ”

or 3 Vb -j- vc =  24 +  2 va
Using va =  —4 V and v>b =  vc +  8 to eliminate va and vb, we have

3(vc -f 8) +  vs =  24 +  2(—4)
Solving this equation for vc, we get

vc =  - 2  V
Now we calculate vb to be

Vb =  vc +  8 =  - 2  +  8 =  6V

E x a m p l e  4 . 3 - 2  S u p e rn o d e s  j -

Determine the values of the node voltages, va and vb, for the 
circuit shown in Figure 4.3-4.

Solution
We can write the first node equation by considering the voltage 
source. The voltage source voltage is related to the node voltages by

Vb -  va =  12 => vb =  va +  12

12 V

FIGURE 4.3-4 The circuit for Example 4.3-2.
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FIGURE 4.3-5 Method I For Example 4.3-2.

To write the second node equation, we must decide what to do about the voltage source current. (Notice that there 
is no easy way to express the voltage source current in terms o f the node voltages.) In this example, we illustrate 
two methods o f writing the second node equation.

M ethod 1: Assign a name to the voltage source current. Apply KCL at both o f the voltage source nodes. 
Eliminate the voltage source current from the KCL equations.

Figure 4.3-5 shows the circuit after labeling the voltage source current. The KCL equation at node a is

1.5 +  / =  ^

The KCL equation at node b is 

Combining these two equations gives

i +  3.5 +  — — 0

1 .5 -  (3.5 +  j )  = j  => - 2 .0  = ^  + Vb 

6 3

M ethod 2: Apply KCL to the supemode corresponding to the voltage source. Shown in Figure 4.3-6, this 
supemode separates the voltage source and its nodes from the rest o f the circuit. (In this small circuit, the rest o f 
the circuit is just the reference node.)

Apply KCL to the supemode to get

1-5 =  ^~ +  3.5 +  -y => _ 2 .0  =  ^  +  ^
6 3 6 3

This is the same equation that was obtained using method 1. Applying KCL to the supemode is a shortcut for 
doings three things:

1. Labeling the voltage source current as i

2. Applying KCL at both nodes o f the voltage source

3. Eliminating i from the KCL equations

In summary, the node equations are

Vb -  va =  12

and y  +  T  =  ~2-06 3

Solving the node equations gives

va =  - 1 2  V, and vb =  0 V

(w e might be surprised that vb is 0 V, but it is easy to check that these values are correct by substituting them
\  into the node equations.)

FIGURE 4.3-6 Method 2 for Example 4.3-2.
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E x a m p l e  4 . 3 - 3  N o d e  E q u a tio n s  fo r  a C ir c u i t  C o n ta in in g  
V o lta g e  S o u rc e s

Determine the node voltages for the circuit shown in Figure 4.3-7. 

Solution
We will calculate the node voltages of this circuit by writing a KCL 
equation for the supemode corresponding to the 10-V voltage source. 
First notice that

vj, =  —12 V

and that

va =  vc +  10

Writing a KCL equation for the supemode, we have
va - ^  +  2 +  vL- v ,  =  5

10 V 

- 0 -

io  n  b 40 n
a 6 V W  9 V\A< ,"<j)C

Q ) d ) 2 A

FIGURE 4.3-7 The circuit for Example 4.3-3.

10 40
or

4 va +  vc — 5 =  120

Using va =  vc +  10 and Vb =  —12 to eliminate va and vb, we have

4(vc +  10) +  vc - 5 ( - 1 2 )  =  120

Solving this equation for vc, we get
vc =  4 V

EXERCISE 4. 3-1 Find the node voltages for the circuit of Figure E 4.3-1.

Hint: Write a KCL equation for the supemode corresponding to the 10-V voltage source. 

 ̂ Vb +  10 VbAnswer: 2 +  — -Q + ^  =  5 => Vb =  30V and va =  40V

EXERCISE 4.3-2 Find the voltages va and vb for the circuit of Figure E 4 .3 -2 . 

Answer: f o  +  8) ~  (~ 12  ̂+  ^  =  3 v,, =  8 V and va = 1 6 V

FIGURE E 4J-1 FIGURE E 4.3-2
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4.4 N O D E  V O L T A G E  A N A L Y S I S
W I T H  D E P E N D E N T  S O U R C E S  ----------------------------------------------------

When a circuit contains a dependent source the controlling current or voltage o f that 
dependent source must be expressed as a function o f  the node voltages.

It is then a simple matter to express the controlled current or voltage as a function o f  the node voltages. 
The node equations are then obtained using the techniques described in the previous two sections.

M e th o d s  o f  A n a ly s is  o f  R e s is t iv e  C i r c u i t s

E x a m p l e  4 . 4 - 1  N o d e E q u a t i o n s f o r a C i r c u i t  C o n t a i n i n g  
a D e p e n d e n t  Sou r c e

Determine the node voltages for the circuit shown in Figure 4.4-1. a _ ^  6 fi b 3 0  c
-AA/V------ 9-

Solution
The controlling current o f the dependent source is ix. Our first task (T )  8 V ©  2 A 3 i x < /
is to express this current as a function o f the node voltages:

va -  Vb
Ix = ---- :----

The value of the node voltage at node a is set by the 8 - V  voltage F*GURE 4 . 4 - 1  A  circuit with a C C V S .  

source to be

So

va =  8 V
8 -

The node voltage at node c is equal to the voltage o f the dependent source, so

vc =  3/x =  3 Vb

2

Next, apply KCL at node b to get

(4.4-1)

+  2 =
6 3 

Using Eq. 4.4-1 to eliminate vc from Eq. 4.4-2 gives

» - H ? ) Vb _  4 
2 3

Solving for vb gives

vb =  7V

u. I

(4.4-2)
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E x a m p l e  4 . 4 - 2

Determine the node voltages for the circuit shown in Figure 4.4-2.

Solution
The controlling voltage of the dependent source is vx. Our first task 
is to express this voltage as a function of the node voltages:

vx =  - v a
The difference between the node voltages at nodes a and b is set 
by voltage of the dependent source:

va -  Vb =  4 vx =  4(—va) =  - 4  va 

Simplifying this equation gives
Vb =  5 va

Applying KCL to the supemode corresponding to the dependent voltage source gives

3 =  -

Using Eq. 4.4-3 to eliminate vt, from Eq. 4.4-4 gives

4ur

io  a

3 =  — +  — 
4 10

(4.4-3)

(4.4-4)

Solving for va, we get 

.Finally,

va 5va 3
4 " T o " =  4  Va

va =  4 V
Vb =  5va =  20V

E x a m p l e  4 . 4 - 3

Detemune the node voltages corresponding to nodes a and b for the circuit 
shown in Figure 4.4-3.

Solution
The controlling current of the dependent source is ia. Our first task is to express 
this current as a function of the node voltages. Apply KCL at node a to get

6 -  v, _  . t va -  Vb
10 ~ ' a 20

Node a is connected to the reference node by a short circuit, so va =  0 V. 
Substituting this value of va into the preceding equation and simplifying gives

12 +  Vb

Next, apply KCL at node b to get
0 -  Vb 

20

20

=  5 L

Using Eq. 4.4-5 to eliminate ia from Eq. 4.4-6 gives

0 — Vb /12 +  Vb>
20

Solving for vb gives

|----- V A----- '

p 6 V  'aJ

----- VW----- f

5<a<1

F IG U R E  4.4-3 A  circuit with a CCCS.

(4.4-5)

(4.4-6)

vi, =  -1 0  V
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EXERCISE 4.4-1 Find the node voltage vb for the circuit shown in Figure E 4 .4 -1.

Hint: Apply KCL at node a to express ia as a function o f the node voltages. Substitute the result into 
=  4/a and solve for vt,.

Answer: —-  +  — — ^  =  0 => ^  =  4.5 V 
8 4 12

EXERCISE 4.4-2 Find the node voltages for the circuit shown in Figure E 4.4-2.

Hint: The controlling voltage o f the dependent source is a node voltage, so it is already expressed as a 
function of the node voltages. Apply KCL at node a.

. ■ W „ . . ^  +  * L ^  =  0 *  v, =  - 2 V  
20 15

4.5 M E S H  C U R R E N T  A N A L Y S I S  W I T H  
I N D E P E N D E N T  V O L T A G E  S O U R C E S

In this and succeeding sections, we consider the analysis o f circuits using K irchhofFs voltage law 
(KVL) around a closed path. A closed path  or a loop is drawn by starting at a node and tracing a path 
such that we return to the original node without passing an intermediate node more than once.

A mesh is a special case o f a loop.

A mesh is a loop that does not contain any other loops within it.

Mesh current analysis is applicable only to planar networks. A planar circuit is one that can be 
drawn on a plane, without crossovers. An example o f a nonplanar circuit is shown in Figure 4.5-1, in 
which the crossover is identified and cannot be removed by redrawing the circuit. For planar networks, 
the meshes in the network look like windows. There are four meshes in the circuit shown in Figure 4.5-2.

'• & )

FIGURE 4.5-1 Nonplanar circuit with a crossover.

Crossover
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FIGURE 4.5-2 Circuit with four meshes. Each mesh is 
identified by dashed lines.

They are identified as A/,. Mesh 2 contains the elements /?3, /?4, and R5. Note that the resistor R3 is 
common to both mesh 1 and mesh 2.

We define a mesh current as the current that flows through the elements constituting the mesh. 
Figure 4.5-3tf shows a circuit having two meshes with the mesh currents labeled as i\ and i2. We will use 
the convention of a mesh current flowing clockwise as shown in Figure 4.5-3 a. In Figure 4.5-36, ammeters 
have been inserted into the meshes to measure the mesh currents.

One of the standard methods for analyzing an electric circuit is to write and solve a set of 
simultaneous equations called the mesh equations. The unknown variables in the mesh equations are 
the mesh currents of the circuit. We determine the values of the mesh currents by solv ing the mesh 
equations.

To write a set of mesh equations, we do two things:

1. Express element voltages as functions of the mesh currents

2. Apply KirchhofFs voltage law (KVL) to each of the meshes of the circuit

Consider the problem of expressing element voltages as functions of the mesh currents. Although 
our goal is to express element voltages as functions of the mesh currents, we begin by expressing element 
currents as functions of the mesh currents. Figure 4.5-3 6 shows how this is done. The ammeters in Figure
4.5-36 measure the mesh currents, i'j and i2. Elements C and E are in the right mesh but not in the left 
mesh. Apply KirchhofFs current law at node c and then at node f  to see that the currents in elements C and

(b)

FIGURE 4.5-3 (a) A circuit with two meshes. (/>) Inserting ammeters to measure the mesh currents.
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FIGURE 4.5-4 Mesh currents, i, and i2, and element current, i'i -  i2, o f a (a) generic circuit element, (b) current 
source, and (c) resistor.

E are equal to the mesh current o f the right mesh, /2, as shown in Figure 4.5-36. Similarly, elements A and 
D are only in the left mesh. The currents in elements A and D are equal to the mesh current o f the left 
mesh, i*!, as shown in Figure 4.5-36.

Element B is in both meshes. The current o f element B has been labeled as zb. Applying 
K irchhoff s current law at node b in Figure 4.5-3b gives

«b =  h ~  h

This equation expresses the elem ent current, zb, as a function o f the mesh currents, i\ and i2.
Figure 4.5-4a shows a circuit element that is in two meshes. The current o f the circuit element is 

expressed as a function of the mesh currents o f the two meshes. The circuit element in Figure 4.5-4a 
could be anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.5-46 
and c, we consider specific types o f circuit element. In Figure 4.5-46, the circuit element is a current 
source. The element current has been represented twice, once as the current source current, 3 A, and 
once as a function o f the mesh currents, i\ — i2. Noticing that the reference directions for 3 A and 
j] — 12 are different (one points up, the other points down), we write

This equation relates the values o f two o f the mesh currents.
Next consider Figure 4.5-4c. In Figure 4.5-4c, the circuit element is a resistor. We will use O hm ’s 

law to express the resistor voltage, v, as functions o f the mesh currents. First, we express the resistor 
current as a function of the mesh currents, i\ — i2. Noticing that the resistor current, i\ — i2, and the 
voltage, v, adhere to the passive convention, we use Ohm ’s law to write

Frequently, we know the value o f the resistance. For example, when *  =  8 0 ,  this equation becomes

This equation expresses the resistor voltage, v, as a function o f the mesh currents, i x and i2.
Next, let’s write mesh equations to represent the circuit shown in Figure 4.5-5a. The input to this 

circuit is the voltage source voltage, vs. To write mesh equations, we will first express the resistor 
voltages as functions o f the mesh currents and then apply K irchhoff s voltage law to the meshes. The 
resistor currents are expressed as functions o f the mesh currents in Figure 4.5-56, and then the resistor 
voltages are expressed as functions of the mesh currents in Figure 4.5-5c.

We may use K irchhoff s voltage law around each mesh. We will use the following convention 
for obtaining the algebraic sum of voltages around a mesh. We will move around the mesh in the 
clockwise direction. If we encounter the +  sign o f the voltage reference polarity o f an element voltage 
before the -  sign, we add that voltage. Conversely, if  we encounter the -  o f the voltage reference 
polarity of an element voltage before the +  sign, we subtract that voltage. Thus, for the circuit o f 
Figure 4.5-5c, we have

- 3  =  i\ -  i2

v =  R (ij -  i2)

v =  8(i*i -  i2)

mesh 1: - v s +  /?,/, +  R 2(i{ -  i2) =  0 
mesh 2: - R 3(i\ -  i2) +  R2i2 =  0

(4.5-1)
(4.5-2)
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(a) (b)

+ /Jj/j — + #2*2 '

FIGURE 4.5-5 (a) A circuit. (b) The resistor currents expressed as functions of the mesh currents, (c) The resistor 
voltages expressed as functions of the mesh currents.

Note that the voltage across R$ in mesh 1 is determined from Ohm's law, where

v =  RiU = R3(i\ -  ii)

where ia is the actual element current flowing downward through R3.
Equations 4.5-1 and 4.5-2 will enable us to determine the two mesh currents, ij and i2- Rewriting 

the two equations, we have

i\(R  i +  ^ 3) “  hR} — v5

—i\R$ -f 12(^3 *+■ R2) = 0 

2i\ -  f2 =  vs

and

If R\ =  R2 =  R3 =  1 n , we have 

and
—i‘i +  2/S =  0

Add twice the first equation to the second equation, obtaining 3/‘i =  2vs. Then we have
2vs , . vs/, =  —  and i2 = j

Thus, we have obtained two independent mesh current equations that are readily solved for the 
two unknowns. If we have N meshes and write N  mesh equations in terms of N  mesh currents, we can 
obtain N independent mesh equations. This set of N  equations is independent and thus guarantees a 
solution for the N  mesh currents.

A circuit that contains only independent voltage sources and resistors results in a specific format 
of equations that can readily be obtained. Consider a circuit with three meshes, as shown in Figure
4.5-6. Assign the clockwise direction to all of the mesh currents. Using KVL, we obtain the three mesh

R2
-A M r-

FIGURE 4.5-6 Circuit with three 
mesh currents and two voltage sources.
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equations
m esh l: - v s +  R\i\ +  /?4 (*i — *’2 ) =  0 
mesh 2: R2I2 +  R s(h  ~  h )  +  ^4 (*2 — i’i) =  0
mesh 3: R s(h  ~  h )  +  R ih  +  vg 388 0 

These three mesh equations can be rewritten by collecting coefficients for each mesh current as

mesh 1: (R\ + /?4)*i — ^4*2 =  vs
mesh 2 : —̂ 4/1 -b R 5 -f (R4 +  ^ 2  -f* R s)h  ~  R sh  — 0
mesh 3: —R 5I2 +  {R3 4- R s)h  — ~ vg

Hence, we note that the coefficient o f the mesh current i\ for the first mesh is the sum o f 
resistances in mesh 1, and the coefficient o f the second mesh current is the negative o f the resistance
common to meshes 1 and 2. In general, we state that for mesh current the equation for the nth mesh
with independent voltage sources only is obtained as follows:

Q p  n

-  ^  Rkiq +  ^ 2  Rji„ = -  Y 2  vsn (4.5-3)
q—\ j —l n= 1

That is, for mesh n we multiply in by the sum o f all resistances Rj around the mesh. Then we add the 
terms due to the resistances in common with another mesh as the negative o f the connecting resistance 
Rk, multiplied by the mesh current in the adjacent mesh iq for all Q adjacent meshes. Finally, the
independent voltage sources around the loop appear on the right side o f the equation as the negative of
the voltage sources encountered as we traverse the loop in the direction o f the mesh current. 
Remember that the preceding result is obtained assuming all mesh currents flow clockwise.

The general matrix equation for the mesh current analysis for independent voltage sources 
present in a circuit is

R i  =  vs (4.5-4)

where R is a symmetric matrix with a diagonal consisting o f the sum o f resistances in each mesh and
the off-diagonal elements are the negative o f the sum o f the resistances common to two meshes. The
matrix i consists o f the mesh current as

r *i
h

i =

For N  mesh currents, the source matrix vs is

v* =

lN

V51
V52

v sN

where vsj is the algebraic sum of the voltages o f the voltage sources in the yth mesh with the 
appropriate sign assigned to each voltage.

For the circuit o f Figure 4.5-6 and the matrix Eq. 4.5-4, we have

"{R1+R4) - R 4 0
—R4 {R2 +  R4 + R5) —R 5

0  - R 5 ( * 3 + * 5 ) .

Note that R is a symmetric matrix, as we expected.
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EXERCISE 4.5-1 Determine the value of the voltage measured by the voltmeter in Figure 
E 4.5-1.

6 0

FIGURE E 4.5-1

Answer: —1 V

4.6 M E S H  C U R R E N T  A N A L Y S I S  W I T H  
C U R R E N T  A N D  V O L T A G E  S O U R C E S

Heretofore, we have considered only circuits with independent voltage sources for analysis by the 
mesh current method. If the circuit has an independent current source, as shown in Figure 4.6-1, we 
recognize that the second mesh current is equal to the negative of the current source current. We can 
then write

h  =  ~ h
and we need only determine the first mesh current ix. Writing KVL for the first mesh, we obtain

{R\ +  R2)ii -  R iii =  vs

Because i2 =  — i*, we have

vs -  Rih
i\ = (4.6-1)

R\ +  Ri
where /'s and v5 are sources of known magnitude.

If we encounter a circuit as shown in Figure 4.6-2, we have a current source is that has an 
unknown voltage vab across its terminals. We can readily note that

n  ~  *i =  h
by writing KCL at node a. The two mesh equations are

mesh 1: +  vab =  v,

mesh 2: (R2 +  R))i2 -  vab =  0

(4-6-2)

(4.6-3)

(4.6-4)

FIGURE 4.6-1 Circuit with an independent voltage FIG U R E 4.6-2 Circuit with an independent current 
source and an independent current source. source common to both meshes.
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We note that if we add Eqs. 4.6-3 and 4.6-4, we eliminate vab, obtaining

R\i\ -f- (* 2  +  R i)h  — vs 

However, because i2 =  / s +  / 1, we obtain

R \i\ +  (R2 -f R ^)(h  4 - / 1) =  vs

or

=  v » - ( * 2 + * 3) 1,  (4 .6-5 )
*1 +  *2 “T *3

Thus, we account for independent current sources by recording the relationship between the mesh 
currents and the current source current. If the current source influences only one mesh current, we write 
the equation that relates that mesh current to the current source current and write the KVL equations for 
the remaining meshes. If the current source influences two mesh currents, we write the KVL equation for 
both meshes, assuming a voltage vab across the terminals o f the current source. Then, adding these two 
mesh equations, we obtain an equation independent o f vab.

M e th o d s  o f  A n a ly s is  o f  R e s is t iv e  C i r c u i t s

E x a m p l e  4 . 6 - 1  M e s h  E q u a t i o n s

4 A

Consider the circuit o f Figure 4.6-3 where R\ = R2 =  \ Cl and 
* 3 = 2  0 . Find the three mesh currents.

Solution
Because the 4-A source is in mesh 1 only, we note that

z'l =  4

For the 5-A source, we have

*2 - * 3 = 5 (4.6-6)

Writing KVL for mesh 2 and mesh 3, we obtain

mesh 2: R x (i2 — -f  vab =  10

mesh 3: R2(i3 -  i}) +  * 3z3 -  vab =  0

We substitute i\ =  4 and add Eqs. 4.6-7 and 4.6-8 to obtain

*1 (*2 -  4) +  * 2(13 -  4) +  * 3/3 =  10 
From Eq. 4.6-6, i2 =  5 +  1 3 , substituting into Eq. 4.6-9, we have

* 1  ( 5  +  *3 —  4 )  4 -  R z { h  —  4 )  +  * 3 / 3  =  1 0  

Using the values for the resistors, we obtain

13 a ^ • c • 3 3*3 =  — A and i2 =  5 +  /3 =  — A

FIGURE 4.6-3 Circuit with two independent 
current sources.

(4.6-7)

(4.6-8)

(4.6-9)

Another technique for the mesh analysis method when a current source is common to two 
meshes involves the concept o f a supermesh. A supermesh is one mesh created from two meshes that 
have a current source in common, as shown in Figure 4.6-4.
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2 LI

2 0 .

FIG U R E 4.6-4 Circuit with a supermesh 
that incorporates mesh 1 and mesh 2.
The supermesh is indicated by the dashed line.

A supermesh is one larger mesh created from two meshes that have an independent or 
dependent current source in common.

For example, consider the circuit of Figure 4.6-4. The 5-A current source is common to mesh I 
and mesh 2. The supermesh consists of the interior of mesh 1 and mesh 2. Writing KVL around the 
periphery of the supermesh shown by the dashed lines, we obtain

- 1 0  +  l ( i ‘i -  h )  +  3 ( i2 -  h )  +  2/2 =  0

For mesh 3, we have

1(*3 ~  l'l) +  2 i3 +  3 (l3  ~  *2) =  0

Finally, the equation that relates the current source current to the mesh currents is

1*1 -  /2 =  5

Then the three equations may be reduced to

supermesh: \i\ +  5/2 — 4/3 =  10
mesh 3: — \i\ — 3/2 +  6 / 3  =  0
current source: 111 — 11*2 = 5

Therefore, solving the three equations simultaneously, we find that i2 =  2.5A, i\ = 1.5 A, and
13 =  2.5A.

The methods of mesh current analysis used when a current source is present are summarized 
in Table 4.6-1.

Mesh Current Analysis Methods with a Current Source

CASE METHOD

1. A current source appears on the Equate the mesh current in to the current source current, accounting for the
periphery of only one mesh, n. direction of the current source.

2. A current source is common to two A. Assume a voltage vab across the terminals of the current source, write the
meshes. k v l  equations for the two meshes, and add them to eliminate vab,

or,
B. create a supermesh as the periphery of the two meshes and write one KVL 

equation around the periphery of the supermesh. In addition, write the 
constraining equation for the two mesh currents in terms of the current 
source.
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E x a m p l e  4 . 6 - 2  S u p e r m e s h e s

Determine the values o f the mesh currents, /, and i2, for the circuit shown in Figure 4.6-5.

9fl
- v w -

3!)
- v w -

3 0
-AAAr

1-5 a ( )  | e n  12 V ©  ^ 7 )  15 A( ) ’ C ) 6Q

FIGURE 4.6-5 The circuit for Example 4.6-2. FIGURE 4.6-6 Method 1 o f Example 4.6-2.

Solution
We can write the first mesh equation by considering the current source. The current source current is related to the 
mesh currents by

i\ — /2 — 1.5 i\ — /2 -j- 1.5

To write the second mesh equation, we must decide what to do about the current source voltage. (Notice that there 
is no easy way to express the current source voltage in terms o f the mesh currents.) In this example, we illustrate 
two methods of writing the second mesh equation.

M ethod 1: Assign a name to the current source voltage. Apply KVL to both o f the meshes. Eliminate the
current source voltage from the KVL equations.

Figure 4.6-6 shows the circuit after labeling the current source voltage. The KVL equation for mesh 1 is

9/! + v — 12 = 0
The KVL equation for mesh 2 is

3/2 +  6/2 — v =  0

Combining these two equations gives

9/i +  (3/2 +  6 /2) - 1 2  =  0 9/i +  9/2 =  12

Method 2: Apply KVL to the supermesh corresponding to the current source. Shown in Figure 4.6-7, this 
supermesh is the perimeter o f the two meshes that each contain the current source. Apply KVL to the supermesh to get

9/i +  3/2 +  6/2 - 1 2  =  0  => 9h  +  9/2 =  12

This is the same equation that was obtained using method 1 . Applying KVL to the supermesh is a shortcut for 
doing three things:

1. Labeling the current source voltage as v

2. Applying KVL to both meshes that contain the current source

3. Eliminating v from the KVL equations

12 v

9 ft  3Q
T^A V -- f r V W -

’ 6 Q

FIGURE 4 .6 -7  Method 2 of Example 4.6-2.
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In summary, the mesh equations are

and

i 1 =  h  +  1.5 

9i\ 4-9/2 =  12

Solving the node equations gives

/, =  1.4167A and i2 = -83 .3  mA J
EXERCISE 4.6-1 Determine the value of the voltage measured by the voltmeter in 
Figure E 4.6-1.

FIGURE E 4.6-1

Hint: Write and solve a single mesh equation to determine the current in the 3 H resistor. 

Answer: —4 V

Hint: Write and solve a single mesh equation. 

Answer: —3.67 A

4.7 M E S H  C U R R E N T  A N A L Y S I S  
W I T H  D E P E N D E N T  S O U R C E S

When a circuit contains a dependent source the controlling current or voltage of that 
dependent source must be expressed as a function of the mesh currents.

It is then a simple matter to express the controlled current or voltage as a function of the mesh 
currents. The mesh equations can then be obtained by applying Kirchhoff s voltage law to the 
meshes of the circuit.

9 V

EXERCISE 4.6-2 Determine the value of the current measured by the ammeter in Figure

FIGURE E 4.6-2



M e th o d s  o f  A n a ly s is  o f  R e s is t iv e  C i r c u i t s

E x a m p l e  4 . 7 - 1  Mesh  E q u a t i o n s  and  
D e p e n d e n t  So u r c e s

INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 4.7-1 a. Find the value o f the voltage measured by the voltmeter.

(a)

FIGURE 4.7-1 (a) The circuit 
considered in Example 4.7-1.
(b) The circuit after replacing the 
voltmeter by an open circuit.
(c) The circuit after labeling the 
meshes.

Solution
Figure 4.7-16 shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the 
voltage, vm, measured by the voltmeter. Figure 4.7-lc shows the circuit after numbering the meshes. Let i\ and i2 
denote the mesh currents in meshes 1 and 2, respectively.

The controlling current o f the dependent source, ia, is the current in a short circuit. This short circuit is 
common to meshes 1 and 2. The short-circuit current can be expressed in terms o f the mesh currents as

h  =  M -  h
The dependent source is in only one mesh, mesh 2. The reference direction o f the dependent source current does 
not agree with the reference direction o f i2. Consequently,

5/a =  ~ h

Solving for i2 gives

h  — — 5/a — — 5 (z i — i2)

Therefore, - 4 i2 = -5 z , =► i'2 =  | / j

Apply KVL to mesh 1 to get

Consequently, the value of i2 is

Apply KVL to mesh 2 to get

32/1 — 24 =  0 => / j =  — A

• -  5 f 3\  15 A
‘2 4 V 4/ 16

2 4  V

(b) (c)

3 2  Q 3 2  0

Finally,

32/2 vm — 0 vm — 32/2

V .  =  32 ( I | )  = 3 ° V
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E x a m p l e  4 . 7 - 2  M esh  E q u a tio n s  and  
D e p e n d e n t S o u rc e s

I N T E R A C T I V E  E X A M P L E

Consider the circuit shown in Figure 4.7-2a. Find the value of the gain, A , of the CCVS.

(a)
10 Q 4Q

(b)
FIGURE 4.7-2 (a) The circuit considered in Example 4.7-2. (b) The circuit after replacing the voltmeter by an open circuit, 
(c) The circuit after labeling the meshes.

Solution
Figure 4 7-26 shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage 
measured by the voltmeter. Figure 4.7-2c shows the circuit after numbering the meshes. Let i\ and i2 denote the 
mesh currents in meshes 1 and 2, respectively.

The voltage across the dependent source is represented in two ways. It is Aia with the +  of reference 
direction at the bottom and —7.2 V with the 4- at the top. Consequently,

Aia =  —(—7.2) =  7.2 V

The controlling current of the dependent source, za, is the current in a short circuit. This short circuit is common to 
meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

Apply KVL to mesh 1 to get 

Apply KVL to mesh 2 to get

lOf’i — 36 =  0 => i\ = 3.6 A

4/2 +  (-7 .2 ) =  0 i 2 =  1.8 A

Finally, a  =  =  =  =  4 v/A
*a h — 12 3.6 — 1.8
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4.8 THE N O D E  V O L T A G E  M E T H O D  A N D
M E S H  C U R R E N T  M E T H O D  C O M P A R E D  — ---------------------------------

The analysis o f a complex circuit can usually be accomplished by either the node voltage or the mesh 
current method. The advantage o f using these methods is the systematic procedures provided for 
obtaining the simultaneous equations.

In some cases, one method is clearly preferred over another. For example, when the circuit contains 
only voltage sources, it is probably easier to use the mesh current method. When the circuit contains only 
current sources, it will usually be easier to use the node voltage method.

If a circuit has both current sources and voltage sources, it can be analyzed by either method. 
One approach is to compare the number o f equations required for each method. If the circuit has fewer 
nodes than meshes, it may be wise to select the node voltage method. If the circuit has fewer meshes 
than nodes, it may be easier to use the mesh current method.

Another point to consider when choosing between the two methods is what information is 
required. If you need to know several currents, it may be wise to proceed directly with mesh current 
analysis. Remember, mesh current analysis only works for planar networks.

It is often helpful to determine which method is more appropriate for the problem requirements 
and to consider both methods.

E x a m p l e  4 . 8 - 1  M e s h  E q u a t i o n s I N T E R A C T I V E  E X A M P L E

Consider the circuit shown in Figure 4.8-1. Find the value o f the resistance, R.

2 ti

f

0.5 A 1 

Ammeter Q

FIGURE 4.8-1 The circuit considered in Example 4.8-1.

Solution
Figure 4.8-2a shows the circuit from Figure 4.8-1 after replacing the ammeter by an equivalent short circuit and 
labeling the current measured by the ammeter. This circuit can be analyzed using mesh equations or using node 
equations. To decide which will be easier, we first count the nodes and meshes. This circuit has five nodes. Selecting a

1 A

3 A

- e -

2  £2 
------ V W

2 n  
- A A A r

©
6 tl 

— w v
12 O

-W v ------ 1

{0 .5  A

1 A

■ e -

2 a  
"— W V

2 n  
-W V------..

6 a  
------- W N r

12 Q
-AAA-----

(a) ib)

FIGURE 4.8-2 (a) The 
circuit from Figure 4.8- 

| q  ̂A 1 after replacing the 
ammeter by a short 
circuit. (b) The circuit 
after labeling the 
meshes.
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reference node and then applying KCL at the other four nodes will produce a set of four node equations. The circuit 
has three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Hence, analyzing 
this circuit using mesh equations instead of node equations will produce a smaller set of equations. Further, notice that 
two of the three mesh currents can be determined directly from the current source currents. This makes the mesh 
equations easier to solve. We will analyze this circuit by writing and solving mesh equations.

Figure 4.8-26 shows the circuit after numbering the meshes. Let iu i2, and i3 denote the mesh currents in 
meshes 1, 2, and 3, respectively. The mesh current /j is equal to the current in the 1-A current source, so

i! =  1 A

The mesh current i2 is equal to the current in the 3-A current source, so

labeling the voltage measured by the voltmeter. This circuit can be analyzed using mesh equations or node equations. 
To decide which will be easier, we first count the nodes and meshes. This circuit has four nodes. Selecting a reference 
node and then applying KCL at the other three nodes will produce a set of three node equations. The circuit has three 
meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Analyzing this circuit using 
mesh equations requires the same number of equations as are required to analyze the circuit using node equations. 
Notice that one of the three mesh currents can be determined directly from the current source current, but two of the 
three node voltages can be determined directly from the voltage source voltages. This makes the node equations 
easier to solve. We will analyze this circuit by writing and solving node equations.

Figure 4.8-46 shows the circuit after selecting a reference node and numbering the other nodes. Let vb v2, 
and v3 denote the node voltages at nodes 1,2, and 3, respectively. The voltage of the 16-V voltage source can be 
expressed in terms of the node voltages as

v j

Consider the circuit showm in Figure 4.8-3. Find the value of the resistance, R. 
2(1

16 =  v, - 0  =» v, =  16 V
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2 Q

<D

(a) <b)

FIGURE 4.8-4 (a) The 
circuit from Figure 4.8-3 
after replacing the 
voltmeter by an open 
circuit. (b) The circuit 
after labeling the 
nodes.

The voltage of the 18-V voltage source can be expressed in terms o f the node voltages as
18 =  vi — V2 => 1 8 = 1 6  — V2 => V2 =  —2 V

The voltmeter measures the node voltage at node 3, so
v3 =  16 V

Applying KCL at node 3 to get
Vl  ~  v3 2  _  V3

2 R
Substituting the values o f the node voltages gives

1 6 - 1 6  16 n o m
-----------+  2 =  —  => R = s n

2 R

4.9 M E S H  C U R R E N T  A N A L Y S I S  U S I N G  M A T L A B  -------------------------

We have seen that circuits that contain resistors and independent or dependent sources can be analyzed 
in the following way:

1. Writing a set o f node or mesh equations

2. Solving those equations simultaneously

In this section, we will use the MATLAB computer program to solve the equations.
Consider the circuit shown in Figure 4.9-1 a. This circuit contains a potentiom eter. In Figure 

4.9-16, the potentiometer has been replaced by a model o f a potentiom eter. Rp is the resistance o f

fl4 = tf/?p R5 = ( l - a ) R p R2
AAA/— o—VW—

C i v  ' v

(b)

FIGURE 4.9-1 (a) A circuit that contains a potentiometer and (b) an equivalent circuit formed by replacing the
potentiometer with a model of a potentiometer (0  < a < 1).
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t h e  p o t e n t i o m e t e r .  T h e  p a r a m e t e r  a  v a r i e s  f r o m  0  t o  1  a s  t h e  w i p e r  o f  t h e  p o t e n t i o m e t e r  i s  m o v e d  

f r o m  o n e  e n d  o f  t h e  p o t e n t i o m e t e r  t o  t h e  o t h e r .  T h e  r e s i s t a n c e s  R 4  a n d  R s  a r e  d e s c r i b e d  b y  t h e

e q u a t i o n s

a n d

R A  =  a R v  ( 4 . 9 - 1 )

/ f  5  =  ( 1  —  a ) R p  ( 4 . 9 - 2 )

O u r  o b j e c t i v e  i s  t o  a n a l y z e  t h i s  c i r c u i t  t o  d e t e r m i n e  h o w  t h e  o u t p u t  v o l t a g e  c h a n g e s  a s  t h e  p o s i t i o n  o f  

t h e  p o t e n t i o m e t e r  w i p e r  i s  c h a n g e d .

---------------------------------------------------------------------------------- 'X
% m e s h . m  solves m e s h  e q u a t i o n s

% E n t e r  v a l u e s  of the p a r a m e t e r s  that d e s c r i b e  the circuit.

% c i r c u i t  p a r a m e t e r s
R l = 1 0 0 0 ; % ohms
R2 =100 0 ; % ohms
R3 =  5000; % ohms
V l =  15; % v o l t s
V2 =  — 15 ; % v o l t s

% p o t e n t i o m e t e r  p a r a m e t e r s
Rp =  2 0 e 3 ; % ohms

% the p a r a m e t e r a v a r i e s  f r o m  0 to 1 in 0.05 i n c r e m e n t s .
%

a = 0 :0.05:1; % d i m e n s i o n l e s s

for k = l i l e n g t h ( a )
%----------------------------------------------------------
% H ere is the m e s h  equation, R I = V :  
% ----------------------------------------------------------

R =  [Rl +  a (k) *Rp +  R3 - R 3 ;
- R 3  (l-a(k) ) *Rp +  R 2 + R 3 ]

V  =  [ VI;
-V2] ;

% ---------
% e q n .
% 4.9 - 6  
% ---------

% Tell M A T L A B  to s o lve the m e s h  e q u ation:
%----------------------------------------------------------------------
I =  V'/R;

% C a l c u l a t e  the o u t p u t  v o l t a g e  f r o m  the m e s h  curre n t s .%--------------------------------------------------------------------------------------------

V o  (k) =  R 3 *(I (1) -  I (2)) ; % eqn. 4 . 9-7

end

% Plot V o  v e r s u s  a
%-------------------------------------------
plot(a, Vo) 
a x i s ([0 1 - 1 5  15]) 
xlabel('a, d i m e n s i o n l e s s ') 
y l a b e l ('Vo, V')

FIGURE 4.9-2 MATLAB input file used to analyze the circuit shown in Figure 4.9-1.



(4 .9 -3 )

(4.9-4)

(4.9-5)

The circuit in Figure 4.9-1 b can be represented by mesh equations as
R[i\ +  R4i\ 4- (i\ — h )  — Vi =  0

R sh  4- R ih  4- [v2 — R$(i\ — *2 )] =  0

These mesh equations can be rearranged as
(R\ 4- Ra 4- R$)i\ — R ih  — vi 

—J?3lf -h {R5 + ^ 2 +  ^3)^2 — ~ v2 
Substituting Eqs. 4.9-1 and 4.9-2 into Eq. 4.9-4 gives

4- aRp 4  R$)i\ ~~ * 3*2 =  vi
—/?3i*i -f [(1 — a)Rp 4  Ri +  * 3] h  — v2

Equation 4.9-5 can be written using matrices as

R\ 4- aRp 4- R3 —/?3
—/?3 (1 — 4- R2 4- R3

(4.9-6)

Next, z j and i2 are calculated by using MATLAB to solve the mesh 
equation, Eq. 4.9-6. Then the output voltage is calculated as

vc =  * 3 (1*1 - * 2) (4.9-7)

Figure 4.9-2 shows the MATLAB input file. The parameter 
a varies from 0 to 1 in increments o f 0.05. At each value o f a , 
MATLAB solves Eq. 4.9-6 and then uses Eq. 4.9-7 to calculate the 
output voltage. Finally, MATLAB produces the plot o f vG versus a 
that is shown in Figure 4.9-3.

M e th o d s  o f  A n a ly s is  o f  R e s is t iv e  C i r c u i t s

h Vl
*2 _ v2 _

a, dimensionless

FIGURE 4.9-3 Plot of vQ versus a for the circuit shown 
in Figure 4.9-1.

4.10 U S I N G  P S P I C E  T O  D E T E R M I N E
N O D E  V O L T A G E S  A N D  M E S H  C U R R E N T S

To determine the node voltages o f a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace

2. Specify a ‘Bias Point’ simulation

3. Run the simulation

PSpice will label the nodes with the values o f the node voltages.
An extra step is needed to use PSpice to determine the mesh currents. PSpice does not label the 

values o f the mesh currents, but it does provide the value of the current in each voltage source. Recall 
that a 0-V voltage source is equivalent to a short circuit. Consequently, we can insert 0-V current 
sources into the circuit without altering the values of the mesh currents. We will insert those sources 
into the circuit in such a way that their currents are also the mesh currents. To determine the mesh 
currents o f a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.

2. Add 0-V voltage sources to measure the mesh currents.

3. Specify a Bias Point simulation.

4. Run the simulation.

PSpice will write the voltage source currents in the output file.
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E x a m p l e  4 . 1 0 - 1  U s i n g P S p i c e t o F i n d N o d e  V o l t a g e s  
and  M esh  C u r r e n t s

v_

Use PSpice to determine the values of the node voltages and mesh currents for the circuit shown in Figure 4.10-1.

10 Q

---- VW

25 Q

FIGURE 4.10-1 A circuit having node voltages vb v2, v3, 
and v4 and mesh currents ij, i2, 13, and i4.

15 i t i i a a
-AAAr

10 0 2A ( 3

FIGURE 4.10-2 The circuit from Figure 4.10-1 drawn 
in the OrCAD workspace. The white numbers shown 
on black backgrounds are the values of the node voltages.

Solution
Figure 4.10-2 shows the result of drawing the circuit in the OrCAD workspace (see Appendix A) and performing a 
Bias Point simulation. (Select PSpiceYNew Simulation Profile from the OrCAD Capture menu bar; then choose 
Bias Point from the Analysis Type drop-down list in the Simulation Settings dialog box to specify a bias point 
simulation. Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to run the simulation.) 
PSpice labels the nodes with the values of the node voltages using white numbers shown on black backgrounds. 
Comparing Figures 4.10-1 and 4.10-2, we see that the node voltages are

vi =  -6.106 V,v2 =  -10.61 V, v3 =  22.34 V, andv4 =  -7 .660 V.

Figure 4.10-3 shows the circuit from Figure 4.10-2 after inserting a 0-V current source on the outside of each 
mesh. The currents in these 0-V sources will be the mesh currents shown in Figure 4.10-1. In particular, source V2 
measures mesh current i j, source V3 measures mesh current z2, source V4 measures mesh current /3, and source 
V5 measures mesh current i4.

After we rerun the simulation (Select PSpiceYRun from the OrCAD Capture menu bar), OrCAD Capture 
will open a Schematics window. Select View\Output File from the menu bar in the Schematics window. Scroll

-AAAr-
5

V2 OVdc 

' i h —

■ e -

V1 30 V

0.5A

0 .2 A '
20 25

V5 OVdc — q V4 OVdc V3 OVdc

FIGURE 4.10-3 The circuit from Figure 4.10-1 drawn in 
the OrCAD workspace with 0-V voltage sources added 
to measure the mesh currents.
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down through the output file to find the currents in the voltage sources:

VOLTAGE SOURCE CURRENTS
NAME CURRENT

V_V1 -  6 .1 7 0 E  - 01
V_V2 3 .1 0 6 E  - 01
V_V3 -  3 . 064E - 01
V_V4 8 .1 0 6 E  - 01
V_V5 6 .1 0 6 E  - 01

TOTAL POWER D ISSIPA T IO N  1.85E  +  01 WATTS 

JOB CONCLUDED

PSpice uses the passive convention for the current and voltage o f all circuit elements, including voltage sources. 
Noticing the small +  and -  signs on the voltage source symbols in Figure 4.10-3, we see that the currents 
provided by PSpice are directed form left to right in sources VI and V2 and are directed from right to left in 
sources V3, V4, and V5. In particular, the mesh currents are

i x = 0 .3 1 0 6  A, i2 =  0.6106 A, i3 =  0.8106 A. an d /4 =  -0 .3 0 6 4  A.

4.11 H O W  C A N  W E  C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness o f their work. For example, 
occasionally just a little time remains at the end o f an exam. It is useful to be able quickly to identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions o f the sort o f 
problem discussed in this chapter.

-------------------  E x a m p l e  4 . 1 1 - 1  Ho w  Ca n  We  C h e c k  N o d e  V o l t a g e s ?

The circuit shown in Figure 4.1 l - l a was analyzed using PSpice. The PSpice output file. Figure 4.11-16, includes 
the node voltages of the circuit. How can we check that these node voltages are correct?

Solution
The node equation corresponding to node 2 is

V(2) — V ( l)  V(2) V ( 2 ) - V ( 3 ) _
100 200 100
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8 V

N o d e  V o l t a g e  E x a m p l e

VI 1 0 12
Rl 1 2 100
R2 2 0 200
R3 2 3 200
R4 3 0 200
R5 3 4 200
V2

.END

4 0 8

N O D E  V O L T A G E S  

N O D E  V O L T A G E

(1)
(2)
(3)
(4)

12.0000
7 . 2 7 2 7
5 .0 9 0 9
8 . 00 00

(b)

FIGURE 4.11-1 (a) A circuit and (b) the node voltages calculated using PSpice. The bottom node has been chosen as the 
reference node, which is indicated by the ground symbol and the node number 0. The voltages and resistors have units of voltages 
and ohms, respectively.

where, for example, V(2) is the node voltage at node 2. When the node voltages from Figure 4.11-16 are 
substituted into the left-hand side of this equation, the result is

7.2727 -
100

12 7.2727 7.2727
—  +  + ~

5.0909
200 100

=  0.011

The right-hand side of this equation should be 0 instead of 0.011. It looks like something is wrong. Is a current of 
only 0.011 negligible? Probably not in this case. If the node voltages were correct, then the currents of the 100-H 
resistors would be 0.047 A and 0.022 A, respectively. The current of 0.011 A does not seem negligible when 
compared to currents of 0.047 A and 0.022 A.

Is it possible that PSpice would calculate the node voltages incorrectly? Probably not, but the PSpice 
input file could easily contain errors. In this case, the value of the resistance connected between nodes 2 and
3 has been mistakenly specified to be 200 fl. After changing this resistance to 100 O, PSpice calculates the 
node voltages to be

V (\) =  12.0, V(2) = 7.0, F(3) =  5.5, V(4) = 8.0 

Substituting these voltages into the node equation gives

7 .0 -1 2 .0  7.0 7 .0 -5 .5
100 + 200 + 100 0.0

^so these node voltages do satisfy the node equation corresponding to node 2.
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E x a m p l e  4 . 1 1 - 2  Ho w Ca n  We C h e c k  Me s h  C u r r e n t s ?

The circuit shown in Figure 4 .11 -2a was analyzed using PSpice. The PSpice output file, Figure 4.11 -26, includes 
the mesh currents o f  the circuit. How can we check that these mesh currents are correct?

M e s h C u r r e n t E x a m p l e

R l 1 2 1 0 0

R 2 1 3 2 0 0

V I 2 4 8

R 3 3 4 2 0 0

R 5 3 5 5 0 0

V 2 4 6 0

R 6 5 6 2 5 0

R 7 5 7 2 5 0

V 3 6 0 0

R 8

. E N D

7 0 2 5 0

(a)

M E S H  C U R R E N T S  

N A M E  C U R R E N T

1 1  1 . 7 6 3 E - 0 2

1 2  — 4 . 0 6 8 E - 0 3

1 3  — 1 . 3  5 6 E - 0 3

(b)

FIGURE 4.11-2 (a) A circuit and (b) the mesh currents calculated using PSpice. The voltages and resistances are given in volts 
and ohms, respectively.

(The PSpice output file will include the currents through the voltage sources. Recall that PSpice uses the 
passive convention, so the current in the 8-V source will be - i \  instead o f i {. The two 0-V sources have been added 
to include mesh currents i2 and i3 in the PSpice output file.)

Solution
The mesh equation corresponding to mesh 2 is

200(/2 — i*i) +  500/2 4- 250(/2 — i3) =  0

When the mesh currents from Figure 4.11-26 are substituted into the left-hand side o f this equation, the result is

200(—0.004068— 0.01763) +  500(-0 .004068) +  250(-0 .004068  -  (-0 .0 0 1 3 5 6 )) =  1.629

The right-hand side of this equation should be 0 instead o f 1.629. It looks like something is wrong. Most likely, the 
PSpice input file contains an error. This is indeed the case. The nodes o f both 0- V voltage sources have been 
entered in the wrong order. Recall that the first node should be the positive node o f the voltage source. After
correcting this error, PSpice gives

i, «  0.01763, i2 =  0.004068, /3 =  0.001356 

Using these values in the mesh equation gives

200(0.004068— 0.01763) +  500(0.004068) +  250(0.004068 -  0.001356) =  0.0 

These mesh currents do indeed satisfy the mesh equation corresponding to mesh 2.
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| 4 . 1 2  D E S I G N  E X A M P L E

POTENTIOMETER ANGLE DISPLAY

A circuit is needed to measure and display the angular position of a potentiometer shaft. The 
angular position, 0, will vary from -180° to 180°.

Figure 4.12-1 illustrates a circuit that could do the job. The +15-V and -15-V power 
supplies, the potentiometer, and resistors R i and R2 are used to obtain a voltage, v„ that is 
proportional to G. The amplifier is used to change the constant of proportionality to obtain a 
simple relationship between 0 and the voltage, vG, displayed by the voltmeter. In this example, 
the amplifier will be used to obtain the relationship

v0 =  k -0 where k = 0.1 — (4. 12-1) 
degree

so that 0 can be determined by multiplying the meter reading by 10. For example, a meter 
reading of -7.32 V indicates that 0 =  —73.2°.

Describe the Situation and the Assumptions
The circuit diagram in Figure 4.12-2 is obtained by modeling the power supplies as ideal 
voltage sources, the voltmeter as an open circuit, and the potentiometer by two resistors. 
The parameter, a, in the model of the potentiometer varies from 0 to 1 as 0 varies from 
-180° to 180°. That means

(4.12-2)

+15 V

FIGL RE 4.12-1 Proposed circuit for measuring and displaying the angular position of the potentiometer shaft.

voltmeter, and potentiometer.
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Solving for 9 gives

0 = ( a  - 0 - 3 6 0 °  (4.12-3)

State the Goal
Specify values o f resistors R\ and R2, the potentiometer resistance RP, and the ampl ifier gain b 
that will cause the meter voltage, vG, to be related to the angle 9 by Eq. 4.12-1.

Generate a Plan
Analyze the circuit shown in Figure 4.12-2 to determ ine the relationship between v, and 9. 
Select values o f R u R 2, and Rp. Use these values to simplify the relationship between Vj and 
9. If possible, calculate the value o f  b that will cause the m eter voltage, vQ, to be related to 
the angle 9 by Eq. 4.12-1. If  this isn’t possible, adjust the values o f  R\, R2, and R p and try 
again.

Act on the Plan
The circuit has been redrawn in Figure 4.12-3. A single node equation will provide the 
relationship between between v, and 9:

vj vj — 15 vj — (—15)
2 +  /?, +  aRp +  R 2 +  (1 -  a)Rp =

Solving for vj gives

2 M n ( * „ ( 2 a — 1) +  * , —* 2)15

1 (/?, +  aRp) (R2 + ( \ ~  a)Rp) +  2 +  R 2 4- * p)

This equation is quite complicated. L et’s put some restrictions on R \,R 2, and Rp that will make 
it possible to simplify this equation. First, let R\ = R2= R. Second, require that both R and Rp be 
much smaller than 2 M fl (for example, R < 2 0 k fl) . Then,

(R +  aRp) (R +  (1 -  a)Rp) <  2 M H(2i? +  Rp)

That is, the first term in the denominator o f the left side o f Eq. 4.12-4 is negligible compared to 
the second term. Equation 4.12-4 can be simplified to

_  Rp(2a — 1)15 
2R  *+■

aRp (1 -  a)Rp

b IGURE 4.12-3 The redrawn circuit showing the mode vj.
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It is time to pick values for R and Rp. Let R — 5 kH and Rp — 10 kft; then

- C w )
Refemng to Figure 4.12-2, the amplifier output is given by

v0 =  bv>

Next, using Eq. 4.12-3,

Comparing this equation to Eq. 4.12-1 gives

$

< w ) = °
volt

degree

or *  =  i | ( 0 . I ) = 2 . 4

The final circuit is shown in Figure 4.12-4.

V erify the Proposed Solution
As a check, suppose 9 = 150°. From Eq. 4.12-2, we see that

150" 1
a = 360° +  2 =  0-9167

Using Eq. 4.12-4, we calculate
2Mn(10kn<2 x 0.9167- 1)) 15

15 kO -  0.9167 x 10 kft)15 kft -  1 -  0.9167)10kft) + 2 Mft(2 x 5 kft + 10 kft 

Finally, Eq. 4.12-5 indicates that the meter voltage will be
v0 x 2.4 - 6 . 24= 14.98 

This voltage will be interpreted to mean that the angle was
0 =  10 v0 =  149.8° 

which is correct to three significant digits.

+15 v

(4-12-5)

6.:4

FIGURE 4.12-4 The final designed circuit.
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4.13 S U M M A R Y
O The node voltage method of circuit analysis identifies the 

nodes of a circuit where two or more elements are connected. 
When the circuit consists of only resistors and current 
sources, the following procedure is used to obtain the 
node equations.
1. We choose one node as to the reference node. Label the 

node voltages at the other nodes.
2. Express element currents as functions of the node volt­

ages. Figure 4.13-la illustrates the relationship between 
the current in a resistor and the voltages at the nodes of the 
resistor.

3. Apply KCL at all nodes except for the reference node. 
Solution of the simultaneous equations results in knowl­
edge of the node voltages. All the voltages and currents in 
the circuit can be determined when the node voltages are 
known.

O When a circuit has voltage sources as well as current sources, 
we can still use the node voltage method by using the concept 
of a supemode. A supemode is a large node that includes two 
nodes connected by a known voltage source. If the voltage 
source is directly connected between a node q and the 
reference node, we may set vq = vs and write the KCL 
equations at the remaining nodes.

O If the circuit contains a dependent source, we first express the 
controlling voltage or current of the dependent source as a 
function of the node voltages. Next, we express the controlled 
voltage or current as a function of the node voltages. Finally, 
we apply KCL to nodes and supemodes.

O Mesh current analysis is accomplished by applying KVL to 
the meshes of a planar circuit. When the circuit consists of 
only resistors and voltage sources, the following procedure 
is used to obtain the mesh equations.

1. Label the mesh currents.
2. Express element voltages as functions of the mesh 

currents. Figure 4.13-1 b illustrates the relationship be­
tween the voltage across a resistor and the currents of the 
meshes that include the resistor.

3. Apply KVL to all meshes.
Solution of the simultaneous equations results in knowl­
edge of the mesh currents. All the voltages and currents in 
the circuit can be determined when the mesh currents are 
known.

O If a current source is common to two adjoining meshes, we 
define the interior of the two meshes as a supermesh. We 
then write the mesh current equation around the periphery of 
the supermesh. If a current source appears at the periphery of 
only one mesh, we may define that mesh current as equal to 
the current of the source, accounting for the direction of the 
current source.

O If the circuit contains a dependent source, we first express the 
controlling voltage or current of the dependent source as a 
function of the mesh currents. Next, we express the controlled 
voltage or current as a function of the mesh currents. Finally, 
we apply KVL to meshes and supermeshes.

O In general, either node voltage or mesh current analysis can 
be used to obtain the currents or voltages in a circuit. 
However, a circuit with fewer node equations than mesh 
current equations may require that we select the node 
voltage method. Conversely, mesh current analysis is read­
ily applicable for a circuit with fewer mesh current equations 
than node voltage equations.

O MATLAB greatly reduces the drudgery of solving node or 
mesh equations.

va ~ 

- *1

- l l* 2*1
?----------V A ----------c

+  (va -  V b ) -

>

1 + + [

r 2 < > va yb <

*3

(a) (b)

f IGL RE 4.13-1 Expressing resistor currents and voltages in terms of (a) node voltage or (b) mesh currents.
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P R O B L E M S

Section 4.2 Node Voltage Analysis of Circuits with  
Current Sources
P 4.2-1 The node voltages in the circuit of Figure P 4.2-1 are
Vl =  - 4  V and v2 =  2 V. Determine z, the current of the 
current source.

Answer: i =  1.5 A

v 3

v 3

P 4.2-4 Consider the circuit shown in Figure P 4.2-4. Find 
values of the resistances R] and R2 that cause the voltages vi 
and v2 to be V\ =  IV and v2 =  2 V.

500 Q 
-AAAr

3 m A f p  v^>R^  5 mA

Figure P 4.2-4

P 4.2-5 Find the voltage v for the circuit shown in Figure 
P 4.2-5.

Answer: v =  21.7 mV

Figure P 4.2-1

P 4.2-2 Determine the node voltages for the circuit of Figure 
P 4.2-2.

Answer: vi =  2 V. v2 =  30 V, and V3 =  24 V

P 4.2-6 Simplify the circuit shown in Figure P 4.2-6 by 
replacing series and parallel resistors with equivalent resistors; 
then analyze the simplified circuit by writing and solving node 
equations, (a) Determine the power supplied by each current 
source, (b) Determine the power received by the 12-0 resistor.

Figure P 4.2-2

P 4.2-3 The node voltages in the circuit of Figure P 4.2-3 are 
vj =  4 V, v2 =  15 V, and v3 =  18 V. Determine /j and j2, the 
currents of the current sources.

Answer: /, =  - 2  A and i2 =  2 A

120 Q

Figure P 4.2-6

P 4.2-7 The node voltages in the circuit shown in Figure 
P 4.2-7 are va =  7 V and vb =  10 V. Determine values of the 
current source current, is, and the resistance, R.

Figure P 4.2-3 Figure P 4.2-7
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Section 4.3 Node Voltage Analysis of Circuits 
w ith Current and Voltage Sources

P 4.3-1 The voltmeter in Figure P 4.3-1 measures vc, the node 
voltage at node c. Determine the value of vc.

Answer: vc =  2 V

Figure P 4.3-1

P 4.3-2 The voltages va, vb, vc, and vd in Figure P 4.3-2 are the 
node voltages corresponding to nodes a, b, c, and d. The current i 
is the current in a short circuit connected betw een nodes b and c. 
Determine the values of va, vc, and vd and of /'.

Answer: va =  —12 V, Vb =  vc =  4 V, vd =  —4 V, / =  2 mA

Figure P 4.3-2

P 4.3-3 Determine the node voltage va for the circuit of 
Figure P 4.3-3.

Answer: va — 7 V

Figure P 4.3-3

P 4.3-4 Determine the node voltage va for the circuit of
! Figure P 4.3-4.

Answer: va =  4V
8 V

Figure P 4.3-4

P 4.3-5 The voltages va, vb, and vc in Figure P 4.3-5 are the 
node voltages corresponding to nodes a, b, and c. The values of 
these voltages are:

va =  12 V, vb =  9.882 V, and vc =  5.294 V 

Determine the power supplied by the voltage source.

6Q

Figure P 4.3-5

P 4.3-6 The voltmeter in the circuit of Figure P 4.3-6 
measures a node voltage. The value of that node voltage 
depends on the value of the resistance R.

(a) Determine the value of the resistance R that will cause the 
voltage measured by the voltmeter to be 4 V.

(b) Determine the voltage measured by the voltmeter when 
R =  1.2 kO =  1200 0 .

Answers: (a) 6 kfl (b) 2V

P 4.3-7 Determine the values of the node voltages, V| and 
v2, in Figure P 4.3-7. Determine the values of the currents /a 
and ih.
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Figure P 4.3-7

P 4.3-8 The circuit shown in Figure P 4.3-8 has two inputs, v, 
and v2, and one output, vQ. The output is related to the input by 
the equation

v0 =  tfvi 4- bv2

where a and b are constants that depend on Ru R2, and R3.

(a) Determine the values of the coefficients a and b when 
R\ =  1 0 f i ,/?2 —40 0 , and R3 = 8 0 .

(b) Determine the values of the coefficients a and b when 
R\ = R2 and R$ = R \ 11/?2-

5 V

r - O -
8 0

v\ — V W

20 Q
-V A ----

12 n 
“AA/V— 1̂ 4

( j  1.25 A 40 O 1 )15  V

?

Figure P 4.3-10

*P 4.3-11 Determine the values of the node voltages of the 
circuit shown in Figure P 4.3-11.

3 A

Figure P 4.3-8

P 4.2-9 Determine the values of the node voltages of the 
circuit shown in Figure P 4.3-9.

P 4.3-12 Determine the values of the node voltages of the 
circuit shown in Figure P 4.3-12.

Figure P

Figure P 4 3-9 _ .Section 4.4 Node Voltage Analysis w ith Dependent
Sources

P 4.3-10 Figure P 4.3-10 shows a measurement made in the D a a 1 tu  u j  t- ™ ,
laboratory. Vour lab partner forgot to record the values of R„ P * The V0'tageS V“’. ‘V and V' m F,gure P 4  4 ‘ 1 are the
* 2, and He thtnks that the two resistors were 10-kfl node vol|aees correspond.ng to nodes a, b, and c. The values of
resistors and the other was a 5-kfl resistor. Is this possible? 6 voltages are:
Which resistor is the 5-kn resistor? v, =  8.667 V, vt, =  2 V. and v-c =  10 V
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Determine the value o f A, the gain o f the dependent source.
■AAV

4 a  u

2 n  (2) 
— VW —

110 v 6

— "<D 

2 A 1 2 V ©

Figure P 4.4-4

P 4.4-5 Determine the value of the current ix in the circuit of 
Figure P 4.4-5.

Answer: L = 2.4 A
Figure P 4.4-1

P 4.4-2 Find ib for the circuit shown in Figure P 4.4-2. 

Answer: ib = —12 mA

1 kft 3 kQ

Figure P 4.4-5

P 4.4-6 Determine the power supplied by the 12-V voltage 
source in Figure P 4.4-6.

Figure P 4.4-2

P 4.4-3 Determine the node voltage vb for the circuit of 
Figure P 4.4-3.

Answer: vb =  1.5 V
Figure P 4.4-6

P 4.4-7 Determine the value of the current ic in Figure 
P 4.4-7.

Figure P 4.4-3

P 4 .4 -4  The circled numbers in Figure P 4.4-4 are node
numbers. The node voltages of this circuit are vi =  10 V, 
v2 =  14 V, and v3 =  12 V.

(a) Determine the value of the current zb.
(b) Determine the value of r, the gain of the CCVS.

Answers: (a) - 2  A (b) 4 V/A

Figure P 4.4-7

P 4.4-8 Determine the value of the power supplied by the 
dependent source in Figure P 4.4-8
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p 4.4-12 Determine values of the node voltages, Vj, v2, v3, 
v4, and v5 in the circuit shown in Figure P 4.4-12.

Figure P 4.4-8

P 4.4-9 The node voltages in the circuit shown in Figure 
P 4.4-9 are

Vj =  4 V, V2 =  0 V, and v3 =  — 6 V 

Determine the values of the resistance, /?, and of the gain, b, of pigure p 4.4-12

10 V
the CCCS.

4.4-13 Determine values of the node voltages, vls v2, v3, 
v4, and v5 in the circuit shown in Figure P 4.4-13.

Figure P 4.4-9

P 4.4-10 The value of the node voltage at node b in the circuit 
shown in Figure P 4.4-10 is vb =  18 V.

(a) Determine the value of A, the gain of the dependent source.
(b) Determine the power supplied by the dependent source.

Figure P 4.4-13

P 4.4-14 Determine values of the node voltages, vj, v2, v3, 
v4, and v5 in the circuit shown in Figure P 4.4-14.

Figure P 4.4-10

*P 4.4-11 Determine the power supplied by the dependent 
source in the circuit shown in Figure P 4.4-11.

O.lu-

4 A

Figure P 4.4-11

Figure P 4.4-14

P 4.4-15 The voltages v,, v2, v3, and v4 are the node voltages 
corresponding to nodes 1, 2, 3, and 4 in Figure P 4.4-15. 
Determine the values of these node voltages.
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P 4.4-18 The voltages vb v2, and v3 in Figure P 4.4-18 are the 
node voltages corresponding to nodes 1, 2, and 3. The values 
of these voltages are

vj =  12 V, v2 =  9.6 V, and v3 =  —1.33 V

(a) Determine the values of the resistances R\ and R2.
(b) Determine the power supplied by each source.

8 Q

Figure P 4.4-15

P 4.4-16 The voltages vj, v2, v3, and v4 in Figure P 4.4-16 are 
the node voltages corresponding to nodes 1, 2, 3, and 4. The 
values of these voltages are

Vl =  10 V, v2 =  75 V, v3 =  -1 5  V, and v4 =  22.5 V

Determine the values of the gains of the dependent sources, A 
and 5, and of the resistance R j.

Figure P 4.4-18

P 4.4-19 The voltages v2, v3, and v4 for the circuit shown in 
Figure P 4.4-19 are:

v2 =  16 V, v3 =  8 V, and V4 =  6 V

Determine the values of the following:

(a) The gain. A, of the VC VS
(b) The resistance R5
(c) The currents ib and zc
(d) The power received by resistor R4

+
v4

P 4.4-17 The voltages v1? v2, and v3 in Figure P 4.4-17 are the 
node voltages corresponding to nodes 1, 2, and 3. The values 
of these voltages are

vi 12V,v2 =  21 V, and v3 =  - 3 V

(a) Determine the values of the resistances R} and R2.
(b) Determine the power supplied by each source.

1.25 A

Figure P 4.4-19

P 4.4-20 Determine the values of the node voltages V] and v2 
for the circuit shown in Figure P 4.4-20.

3ui

<D

R?

4l>q

Figure P 4.4-17 Figure P 4.4-20
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P 4.4-21 The encircled numbers in Figure P 4.4-21 are node 
numbers. Determine the values of vh v2, and v3, the node 
voltages corresponding to nodes 1, 2, and 3.

P 4.5-2 The values of the mesh currents in the circuit shown 
in Figure P 4.5-2 are i\ =  2 A, /2 =  3 A, and f3 = 4 A. De­
termine the values of the resistance R and of the voltages vj 
and v2 of the voltage sources.

Answers: R — 12 H, v\ =  —4 V, and v2 =  —28 V

P 4.4-22 Determine the values of the node voltages v,, v2, 
and v3 for the circuit shown in Figure P 4.4-22.

► 1 A

P 4.4-23 Determine the values of the node voltages vb v2, 
and v3 for the circuit shown in Figure P 4.4-23.

Figure P 4.5-2

P 4.5-3 The currents i\ and i2 in Figure P 4.5-3 are the mesh 
currents. Determine the value of the resistance R required to 
cause va =  —6  V.

Answer: R = 4 H

- v w

18 V

I 1 A

Figure P 4.4-23

Section 4.5 Mesh Current Analysis with  
Independent Voltage Sources

P 4.5-1 Determine the mesh currents, iu i2 and i3 for the 
circuit shown in Figure P 4.5-1.

Answers: i, =  3 A, i2 =  2 A. and i3 =  4 A

Figure P 4.5-3

P 4.5-4 Determine the mesh currents ia and ib in the circuit 
shown in Figure P 4.5-4.

75 Q 100 Q

15 V 21 V Figure P 4.5-4

P 4.5-5 Find the current i for the circuit of Figure P 4.5-5.

Figure P 4.5-1 Hint: A short circuit can be treated as a 0-V voltage source.
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P 4.6-3 Find v2 for the circuit shown in Figure P 4.6-3. 

Answer: v2 =  2 V

+ v2 ~ 60 ft
-^ W \,-----------------------f----W V

20 ft 10 V
Figure P 4.5-5

P 4.5-6 Simplify the circuit shown in Figure P 4.5-6 by 
replacing series and parallel resistors by equivalent resistors. 
Next, analyze the simplified circuit by writing and solving 
mesh equations.
(a) Determine the power supplied by each source,
(b) Determine the power absorbed by the 30-0 resistor.

0 5  A I1 U V  L

3 0 a f  G  ?  G  y  C v  r n

Section 4.6 Mesh Current Analysis w ith  Current 
and Voltage Sources

P 4.6-1 Find z'b for the circuit shown in Figure P 4.6-1. 

Answer: zb =  0.6 A

0.5 A 0

Figure P 4.6-1

10 V

50 f t 25 f t

P 4.6-2 Find vc for the circuit shown in Figure P 4.6-2. 

Answer: vc — 15 V

7 5 f t  1 0 0 ft

Figure P 4.6-2

Figure P 4.6-3

P 4.6-4 Find vc for the circuit show™ in Figure P 4.6-4.

P 4.6-5 Determine the value of the voltage measured by the 
voltmeter in Figure P 4.6-5.

Answer: 8 V

P 4.6-6 Determine the value of the current measured by the 
ammeter in Figure P 4.6-6.

Hint: Write and solve a single mesh equation.

P 4.6-7 The currents i lt z2 and z3 in Figure P 4.6-7 are the 
mesh currents. Determine the value of the resistance R.



P ro b le m s ------ ( 155

2Q

Figure P 4.6-7

P 4.6-8 Determine values of the mesh currents, ij, i2 and z3 in 
the circuit shown in Figure P 4.6-8.

Figure P 4.6-8

P 4.6-9 The circuit shown in Figure P 4.6-9 has three inputs: 
zx, iy, and vz. The output of the circuit is j0. The output is related 
to the inputs by

i0 =  a ix +  b iy + c vz

where a, b, and c are constants. Determine the values of a, b, 
and c.

*1

P 4.6-11 Determine the value of the voltage measured by the 
voltmeter in Figure P 4.6-11.

Hint: Apply KVL to a supermesh to determine the current in 
the 2 -H resistor.

Answer: 4 /3  V

P 4.6-12 Determine the value of the current measured by the 
ammeter in Figure P 4.6-12.

Hint: Apply KVL to a supermesh.

Answer: —0.333 A

- e -
4 Q

V A -----(+j)~

( t H 12 n 6n«

Figure P 4.6-9

P 4.6-10 The mesh currents in the circuit shown in Figure 
P 4.6-10 are

it =  -2.2213 A, i2 =  0.7787 A, and/3 =  0.0770 A

(a) Determine the values of the resistances /?, and R3.
(b) Determine the value of the pow'er supplied by the current 

source.

P 4.6-13 The values of the mesh currents in the circuit shown 
in Figure P 4.6-13 are

/'i =  0.2 A, i*2 =  0.7 A. and i‘3 =  0.8 A 

Determine the values of the following:

(a) The power supplied by each voltage source
(b) The resistance R
(c) The current source current
(d) The voltage vs across the current source
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20 Q

60 250 Q

3i>h

Figure P 4.6-13

Section 4.7 Mesh Current Analysis w ith  
Dependent Sources

P 4.7-1 Find v2 for the circuit shown in Figure P 4.7-1. 

Answer: v2 =  10 V

O.OAv?

Figure P 4.7-1

P 4.7-2 Determine the mesh current ia for the circuit shown in 
Figure P 4.7-2.

Answer: ia =  —48 mA

200 0  

AAAr

4/h

Figure P 4.7-2

P 4.7-3 Find vG for the circuit shown in Figure P 4.7-3. 

Answer: vG =  2.5 V

Figure P 4.7-4

P 4.7-5 Although scientists continue to debate exactly why 
and how it works, the process of using electricity to aid in the 
repair and growth of bones—which has been used mainly with 
fractures—may soon be extended to an array of other prob­
lems, ranging from osteoporosis and osteoarthritis to spinal 
fusions and skin ulcers.

An electric current is applied to bone fractures that have 
not healed in the normal period of time. The process seeks to 
imitate natural electrical forces within the body. It takes only a 
small amount of electric stimulation to accelerate bone recov­
ery. The direct current method uses an electrode that is 
implanted at the bone. This method has a success rate ap­
proaching 80 percent.

The implant is shown in Figure P 4.7-5<z, and the circuit 
model is shown in Figure P 4.7-56. Find the energy delivered 
to the cathode during a 24-hour period. The cathode is repre­
sented by the dependent voltage source and the 100-kfl 
resistor.

Figure P 4.7-3

P 4.7-4 Determine the mesh current ja for the circuit shown in 
Figure P 4.7-4.

Answer: iA = — 24 mA

(b)

Figure P 4.7-5 (a) Electric aid to bone repair. (b ) Circuit model.

P 4.7-6 The model of a bipolar junction transistor (BJT) 
amplifier is shown in Figure P 4.7-6.

(a) Determine the gain v0/vj.
(b) Calculate the required value of g  to obtain a gain vG/v, =  

-170 when RL = 5 k  Ci,R] =  100 O, and R2 =  1 kO.

Cathode

100 kQ

Micro Connector

10 kQ
AAAr
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i k a

gv R{. ^  v0

Figure P 4.7-6

P 4.7-7 The currents iu z2, and z3, are the mesh currents of the 
circuit shown in Figure P 4.7-7. Determine the values o f/,, i2, 
and /3.

5 kfl 10 kQ

Figure P 4.7-10

P 4.7-11 Determine values of the mesh currents if, i1, i2, i3, 
and i4 in the circuit shown in Figure P 4.7-11.

Figure P 4.7-7

P 4.7-8 Determine the value of the power supplied by the 
dependent source in Figure P 4.7-8. P 4.7-12 Determine the values of the mesh currents of the 

circuit shown in Figure P 4.7-12.

b

Figure P 4.7-8

P 4.7-9 Determine the value of the resistance R in the circuit 
shown in Figure P 4.7-9.

25 VC I )  - ^  I  > 4  ih /?> | 0.5 mA

Figure P 4.7-9

P 4.7-10 The circuit shown in Figure P 4.7-10 is the small signal 
model of an amplifier. The input to the amplifier is the voltage 
source voltage, v9. The output of the amplifier is the voltage vc.

(a) The ratio of the output to the input, vQ/  vs, is called the gain 
of the amplifier. Determine the gain of the amplifier.

(b) The ratio of the current of the input source to the input 
voltage, age /‘b/vs, is called the input resistance of the 
amplifier. Determine the input resistance.

Figure P 4.7-12

P 4.7-13 The currents iu i2, and i3 are the mesh currents 
corresponding to meshes 1, 2, and 3 in Figure P 4.7-13. 
Determine the values of these mesh currents.

30 Q

-A /W

5u,

20n

25 V

Figure P 4.7-13

2 A
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P 4.7-14 The currents iu i2, and i3 are the mesh currents 
corresponding to meshes 1, 2, and 3 in Figure P 4.7-14. The 
values of these currents are

j, =  -1.375 A, i*2 =  -2 .5  A and i3 =  - 3  25 A

Determine the values of the gains of the dependent sources, A 
and B.

Section 4.8 The Node Voltage M ethod and Mesh 
Current M ethod Compared

P 4.8-1 The circuit shown in Figure P 4.8-1 has two inputs, 
the voltage source voltages, Vi and v2. The circuit has one 
output, the dependent source voltage, vG. Design this circuit so 
that the output is related to the inputs by

vD =  2 vj +  0.5v2 

Hint: Determine the required values of A, R\, R2, R3, and R4.

Figure P 4.7-14

P 4.7-15 Determine the current i in the circuit shown in 
Figure P 4.7-15.

Answer: i =  3 A 4 q

—vw—

12 A ( T )  28 ft >8ft

P 4.8-2 The circuit shown in Figure P 4.8-2 has two inputs, vs 
and is and one output vG. The output is related to the inputs by 
the equation

v0 =  ais +  bvs

where a and b are constants to be determined. Determine the 
values a and b by (a) writing and solving mesh equations and
(b) writing and solving node equations.

Figure P 4.7-15

P 4.7-16 Determine the values of the mesh currents i\ and i2 
for the circuit shown in Figure P 4.7-16

Figure P 4.7-16

P 4.7-17 Determine the values of the mesh currents i\ and i2 
for the circuit shown in Figure P 4.7-17

Figure P 4.8-2

P 4.8-3 Determine the power supplied by the dependent 
source in the circuit shown in Figure P 4.8-3 by writing 
and solving (a) node equations and (b) mesh equations.

L = 0.2 v9

+ va -

— VW-----------v w —
50 ft 1 0 ft

- e -
120 V

Figure P 4.7-17 F igure P 4.8-3
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P 4.11-1 Computer analysis of the circuit shown in Figure 
P 4.11-1 indicates that the node voltages are va =  5.2 V, 
Vb — _ 4  8 v , and vc =  3.0 V. Is this analysis correct?

Hint: Use the node voltages to calculate all the element 
currents. Check to see that KCL is satisfied at each node.

10 V

Section 4.11 H o w  Can W e Check . . . ?

Figure P 4.11-1

P 4.11-2 An old lab report asserts that the node voltages of 
the circuit of Figure P 4.11-2 are va =  4 V, ^  =  20 V. 
and vc =  12 V. Are these correct?

b

Figure P 4.11-2

P 4.11-3 Your lab partner forgot to record the values of/?!, 
and R3. He thinks that two of the resistors in Figure 

P 4.11 -3 had values of 10 kH and that the other had a value of
5 kH. Is this possible? Which resistor is the 5-kf) resistor?

P 4.11-4 Computer analysis of the circuit shown in Figure 
P 4.11-4 indicates that the node voltages are vj =  —8 V, V2 =  
—20 V, and V3 =  - 6  V. Verify that this analysis is correct.

Hint: Use the node voltages to calculate the element currents. 
Verify' that KCL is satisfied at each node.

Figure P 4.11-4

P 4.11-5 Computer analysis of the circuit shown in Figure 
P 4.11-5 indicates that the mesh currents are i\ = 2 A. i2 =
4 A, and 13 =  3 A. Verify that this analysis is correct.

Hint: Use the mesh currents to calculate the element voltages. 
Verify that KVL is satisfied for each mesh.

12 Q

Figure P 4.11-3
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PSpice Problems
SP 4-1 Use PSpice to determine the node voltages o f  the 
circuit shown in Figure SP 4-1.

c

Figure SP 4-1

SP 4-2 Use PSpice to determine the mesh currents o f the 
circuit shown in Figure SP 4-2.

Figure SP 4-2

SP 4-3 The voltages va, vb, vc, and vd in Figure SP 4-3 are the 
node voltages corresponding to nodes a, b, c and d. The current 
/ is the current in a short circuit connected between nodes b 
and c. Use PSpice to determine the values o f va, vb, vc, and vd 
and o f  /.

Figure SP 4-3

SP 4-4 Determine the current, /, shown in Figure SP 4-4. 

A n s w e r :  i =  0.56 A

2 Q

Figure SP 4-4

Design Problems
DP 4-1 An electronic instrument incorporates a 15-V power 
supply. A digital display is added that requires a 5-V power 
supply. Unfortunately, the project is over budget, and you are 
instructed to use the existing power supply. Using a voltage 
divider, as shown in Figure DP 4-1, you are able to obtain 5 V. The 
specification sheet for the digital display shows that the display 
will operate properly over a supply voltage range o f 4.8 V to 
5.4 V. Furthermore, the display will draw 300 mA (/) when the 
display is active and 100 mA when quiescent (no activity).

(a) Select values o f R } and R2 so that the display will be supplied 
with 4.8 V to 5.4 V under all conditions o f current /.

(b) Calculate the maximum power dissipated by each resistor, R\ 
and R2< and the maximum current drawn from the 15-V supply.

(c) Is the use o f the voltage divider a good engineering solu­
tion? If not, why? What problems might arise?

Figure DP 4-1

DP 4-2 For the circuit shown in Figure DP 4-2, it is desired to 
set the voltage at node a equal to 0 V control an electric motor. 
Select voltages i’i and v2 to achieve va =  0 V when v{ and v2 are 
less than 20 V and greater than zero and R =  2 11.
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Figure DP 4-2

DP 4-3 A wiring circuit for a special lamp in a home is shown 
in Figure DP 4-3. The lamp has a resistance of 2 O, and the 
designer selects R =  100 H. The lamp will light when /  >  
50 mA but will bum out when I  > 75 mA.

(a) Determine the current in the lamp and whether it will light 
for R = 100 0 .

(b) Select R so that the lamp will light but will not bum out if R 
changes by ± 1 0  percent because of temperature changes in 
the home.

50 Q R

D P 4-4 To control a device using the circuit shown in Figure 
DP 4-4, it is necessary that vab =  10 V. Select the resistors when 
it is required that all resistors be greater than 1 fi and 
r 3 +  R4 =  20 a .

10 Q r 3 a

DP 4-5 The current i shown in the circuit of Figure DP 4-5 is 
used to measure the stress between two sides of an earth fault 
line. Voltage V] is obtained from one side of the fault, and v2 is 
obtained from the other side of the fault. Select the resistances 
Ri, R2, and R3 so that the magnitude of the current i will 
remain in the range between 0.5 mA and 2 mA when V! and 
v2 may each vary independently between +1 V and -1-2 V 
(1 V < v„ < 2 V).

R  i R 2

Figure DP 4-3 A lamp circuit. Figure DP 4-5 A circuit for earth fault-line stress measurement.
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Equivalent Circuit Design Problems

5.1 I N T R O D U C T I O N

In this chapter, we consider five circuit theorems:

• A source transformation allows us to replace a voltage source and series resistor by a current 
source and parallel resistor. Doing so does not change the element current or voltage o f any other 
element o f the circuit.

• Superposition says that the response o f a linear circuit to several inputs working together is 
equal to the sum o f the responses to each o f the inputs working separately.

• Thevenin’s theorem allows us to replace part o f a circuit by a voltage source and series resistor. 
Doing so does not change the element current or voltage o f any other element o f the circuit.

• Norton’s theorem allows us to replace part o f a circuit by a current source and parallel resistor. 
Doing so does not change the element current or voltage o f any other element o f the circuit.

• The maximum power transfer theorem describes the condition under which one circuit transfers 
as much power as possible to another circuit.

Each o f these circuit theorems can be thought o f as a shortcut, a way to reduce the complexity o f an 
electric circuit so that it can be analyzed more easily. More important, these theorems provide insight 
into the nature o f linear electric circuits.

5.2 S O U R C E  T R A N S F O R M A T I O N S

The ideal voltage source is the simplest model o f  a voltage source, but occasionally we need a 
more accurate model. Figure 5.2-1 a shows a more accurate but more com plicated model o f  a 
voltage source. The circuit shown in Figure 5.2-1 is sometimes called a nonideal voltage source. 

—/ i 62 i voltage o f a practical voltage source decreases as the voltage source supplies more power.
J  The nonideal voltage source models this behavior, whereas the ideal voltage source does not. The
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(b)

FIGURE 5.2-1 (a) A nonideal 
voltage source. (£) A nonideal 
current source, (c) Circuit B 
connected to the nonideal voltage 
source, (d) Circuit B connected to 
the nonideal current source.

nonideal voltage source is a more accurate model of a practical voltage source than the ideal 
voltage source, but it is also more complicated. We will usually use ideal voltage sources to model 
practical voltage sources but will occasionally need to use a nonideal voltage source.) Figure 5.2- 
\b shows a nonideal current source. It is a more accurate but more complicated model of a practical 
current source.

Under certain conditions (Rp = Rs and vs =  Rsis), the nonideal voltage source and the nonideal 
current source are equivalent to each other. Figure 5.2-1 illustrates the meaning of “ equivalent/' In 
Figure 5.2-lc, a nonideal voltage source is connected to circuit B. In Figure 5.2-\d, a nonideal 
current source is connected to that same circuit B. Perhaps Figure 5.2-1 d was obtained from Figure
5.2-lc, by replacing the nonideal voltage source with a nonideal current source. Replacing the 
nonideal voltage source by the equivalent nonideal current source does not change the voltage or 
current of any element in circuit B. That means that if you looked at a list of the values of the 
currents and voltages of all the circuit elements in circuit B, you could not tell whether circuit B was 
connected to a nonideal voltage source or to an equivalent nonideal current source. Similarly, we 
can imagine that Figure 5.2-Ic was obtained from Figure 5.2-1 d by replacing the nonideal current 
source with a nonideal voltage source. Replacing the nonideal current source by the equivalent 
nonideal voltage source does not change the voltage or current of any element in circuit B. The 
process of transforming Figure 5.2-lc into Figure 5.2-Id, or vice versa, is called a source 
transformation.

We want the circuit of Figure 5.2-1 a to transform into that of Figure 5.2-1 b. We then require that both 
circuits have the same characteristic for all values of an external resistor R connected between terminals a-b 
(Figures 52-laJj). We will try the two extreme values R =  0 and R = oc.

When the external resistance R = 0, we have a short circuit across terminals a-b. First, we 
require the short-circuit current to be the same for each circuit. The short-circuit current for Figure
5.2-2a is

1 Rs
(5.2-1)

(a)

« -s(t

FIGURE 5.2-2 (a) Voltage source with an 
external resistor R. (/>) Current source with 
an external resistance R.
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The short-circuit current for Figure 5.2-2/) is i — /s. Therefore, we require that

For the open-circuit condition, R is infinite, and from Figure 5.2-2a, we have the voltage v =  vs. 
For the open-circuit voltage o f Figure 5.2-2b, we have

v =  hR P

Because v must be equal for both circuits to be equivalent, we require that

vs =  isRp (5.2-3)

Also, from Eq. 5.2-2, we require is =  vs/R s. Therefore, we must have

and, therefore, we require that

R s = R p (5.2-4)

Equations 5.2-2 and 5.2-4 must be true simultaneously for the two nonideal sources to be equivalent. 
O f course, we have proved that the two sources are equivalent at two values (R =  0 and R =  oc). We 
have not proved that the circuits are equal for all R , but we assert that the equality relationship holds for 
all R for these two circuits as we show below.

For the circuit o f Figure 5.2-2a, we use KVL to obtain

vs =  iRs +  v

Dividing by Rs gives

If we use KCL for the circuit o f Figure 5.2-2b, we have

v

Thus, the two circuits are equivalent when is = vs/R s and Rs = Rp.

A voltage source vs connected in series with a resistor Rs and a current source is connected in 
parallel with a resistor Rp are equivalent circuits provided that

Rp = Rs and vs =  Rsis

Replacing a voltage source in series with a resistor by its equivalent circuit will not change the element 
currents or voltages in the rest o f the circuit. Similarly, replacing a current source in parallel with a 
resistor by its equivalent circuit will not change the element currents or voltages in the rest o f the
circuit.

Source transformations are useful for circuit simplification and may also be useful in node or 
mesh analysis. The method o f transforming one form of source into the other form is summarized in
Figure 5.2-3.



Source T rans fo rm at ions — 0

Method

Set 's=

= >

Norton

FIGURE 5.2-3 Method of 
Thevenin ~ ~ source transformations.

E x a m p l e  5 . 2 - 1  S o u rc e  T ra n s fo rm a t io n s

Find the source transformation for the circuits shown in Figures 5.2-4a,b.

14 n

■=> 's(f

(a)

2ACD <12£1 [=£>

(b)
F I G U R E  5 . 2 - 4  T h e  

circuits of E x a m p l e  5.2-1.

Solution
Using the method summarized in Figure 5.2-3, we note that the voltage source of Figure 5.2-4a can be 
transformed to a current source with Rp =  Rs = 14 ft. The current source is

ys 28
' • = R ,=  U  =  2A

The resulting transformed source is shown on the right side of Figure 5.2-4a.
Starting with the current source of Figure 5.2-46, we have Rs =  Rp =  12 Cl. The voltage source is

vs =  is/?p =  2(12) =  24 V

The resulting transformed source is shown on the right side of Figure 5.2-46. Note that the positive sign of the 
voltage source vs appears on the lower terminal because the current source arrow points downward.

E x a m p l e  5 . 2 - 2  Sou rce  T ra n sfo rm a tio n s

A circuit is shown in Figure 5.2-5. Find the current i by reducing the 
circuit to the right of terminals a-b to its simplest form, using source 
transformations.

FIGURE 5.2-5 The circuit of Example 5.2-2.
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Solution
The first step is to transform the 3 0 -0  series resistor and the 3-V source to a current source with a parallel 
resistance. First, we note that Rp =  =  30 ft. The current source is

‘' • = £ = s r 0 1 A

as shown in Figure 5.2-6a. Combining the two parallel resistances in Figure 5.2-6a, we have R p2 =  12 ft, as shown 
in Figure 5.2-6b.

The parallel resistance o f  12 ft and the current source o f  0.1 A can be transformed to a voltage source in 
series with R& =  12 f l, as shown in Figure 5.2-6c. The voltage source vs is found using Eq. 5.2-3:

vs =  isR& =  0 . 1 ( 1 2 ) =  1.2  V

Source transformations do not disturb the currents and voltages in the rest o f  the circuit. Therefore, the 
current i in Figure 5.2-5 is equal to the current i in Figure 5.2-6c. The current i is found by using KVL around the 
loop o f Figure 5.2-6c, yielding i =  3 .8 /17  =  0.224 A.

.1 A

(b)

FIGURE 5.2-6 
Source transformation 
steps for Example 5.2-2.

EXERCISE5.2-1 Determine values o f  R and is so that the circuits shown in Figures E 5.2-1 a,b 
are equivalent to each other due to a source transformation.
A nsw er: R  =  10 ft  and is =  1.2 A

EXERCISE 5.2-2 Determine values o f  R and is so that the circuits shown in Figures E 5.2-2a,b  
are equivalent to each other due to a source transformation.

H int: Notice that the polarity o f  the voltage source in Figure E 5.2-2a is not the same as in Figure
E 5.2-la.

A nsw er: R =  10 Cl and zs =  — 1 .2 A
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EXERCISE 5.2-3 Determine values of R and vs so that the circuits shown in Figures E 5.2-3a, 
b are equivalent to each other due to a source transformation.

8Q

(a) (b) FIGURE E 5.2-3

Answer: R =  8 H and vs =  24 V

EXERCISE 5.2-4 Determine values of R and vs so that the circuits shown in Figures E 5.2-4a, 
b are equivalent to each other due to a source transformation.

8 Q

(a) (b) FIGURE E 5.2-4

Hint: Notice that the reference direction of the current source in Figure E 5.2-4b is not the same as 
in Figure E 5.2-3b.

Answer: R =  8 fl and vs =  —24 V

5.3 SUPERPOSI T I ON

The output of a linear circuit can be expressed as a linear combination of its inputs. For example, 
consider any circuit having the following three properties:

1. The circuit consists entirely of resistors and dependent and independent sources.

2. The circuit inputs are the voltages of all the independent voltage sources and the currents of all 
the independent current sources.

3. The output is the voltage or current of any element of the circuit.

Such a circuit is a linear circuit. Consequently, the circuit output can be expressed as a linear
combination of the circuit input. For example,

v0 =  a\V\ +  a2V2 H-------hflnvn (5.3-1)

where v0 is the output of the circuit (it could be a current instead of a voltage) and vj, v2__ _ vn are the
inputs to the circuit (any or all the inputs could be currents instead of voltages). The coefficients 
01,02,... ,<zn of the linear combination are real constants called gains.

Next, consider w hat would happen if we set all but one input to zero. Let v0/ denote output when
all inputs except the rth input have been set to zero. For example, suppose we set v2, v3....... vn to zero.
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We can interpret v0i =  a\V\ as the circuit output due to input v \acting separately. In contrast, the v0 in 
Eq 5.3-1 is the circuit output due to all the inputs working together. We now have the following 
important interpretation o f Eq. 5.3-1:

v0i — ct\V\ ( 5 .3 -2 )

The output o f a linear circuit due to several inputs working together is equal to the sum o f the 
outputs due to each input working separately.

The inputs to our circuit are voltages o f  independent voltage sources and the currents o f  
independent current sources. W hen we set all but one input to zero the o ther inputs becom e 0-V 
voltage sources and 0-A current sources. Because 0-V voltage sources are equivalent to short 
circuits and 0-A current sources are equivalent to open circuits, we replace the sources 
corresponding to the other inputs by short or open circuits.

Equation 5.3-2 suggests a method for determining the values o f the coefficients a \ , . . . ,  an o f
the linear combination. For example, to determine a \, set V2 , V3 , . . . ,  vn to zero. Then, dividing both 
sides o f Eq. 5.5-2 by vj, we get

vi

The other gains are determined similarly.

E x a m p l e  5 . 3 - 1  S u p e r p o s i t i o n

The circuit shown in Figure 5.3-1 has one output, v0, and three inputs, vj, ij, and V3 . (As expected, the inputs are 
voltages o f independent voltage sources and the currents o f independent current sources.) Express the output as a 
linear combination o f the inputs.

Solution
Let’s analyze the circuit using node equations. Label the node voltage at the top node o f the current source and 
identify the supemode corresponding to the horizontal voltage source as shown in Figure 5.3-2.
Apply KCL to the supemode to get

vi -  (v3 +  v0)
40 + h = fo

Multiply both sides o f this equation by 40 to eliminate the fractions. Then we have

V i -  ( V 3 +  V o )  +  40/2 =  4v0 =» Vj  +  40/2 -  v3 =  5v0

FIGURE 5.3-1 The linear circuit for Example 5.3-1. FIGURE 5.3-2 A supernode.
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Dividing both sides by 5 expresses the output as a linear combination of the inputs:
V1 , o ■ v3V„ =  y  +  8 ,2 - y

Also, the coefficients of the linear combination can now be determined to be

a, =  —  =  -V /V ,a2 =  — =  8V/A.anda3 =  — =  -^ V /V  
Vj 5 /2 v3 5

Alternate Solution
Figure 5.3-3 shows the circuit from Figure 5.3-1 when i2 — 0 A and v3 =  0V. (A zero current source is equivalent 
to an open circuit, and a zero voltage source is equivalent to a short circuit.)

Zero Voltage Score

Using voltage division

In other words,

Zero Current Source FIGURE 5.3-3 Output due to the first input.

10 1

V o , = 4 0 T T 0 V , = 5 Vl

fli =  —  =  -  v / v
vi 5

Next, Figure 5.3-4 shows the circuit when =  0 V and v3 =  0 V. The resistors are connected in parallel. Applying 
Ohm's law to the equivalent resistance gives

40 x 10
V02 4 0 + 1 0 h  =  8/2

In other words,

a2 = —  = 8V/A

Finally, Figure 5.3-5 shows the circuit when vj =  0 V and i2 =  0 A. Using voltage division,

10 / x 1
V°3 =  40~+~10 =  — j v3

Zero Voltage Score

40 Q
— V A --------------1

( )  *2 10 n  <

\  J

Zero Voltage
Score 40 Q

— V A ------ f-

Another Zero Voltage Source 
FIGURE 5.3-4 Output due to the second input.

±
■ Zero Current Source

FIGURE 5.3-5 Output due to the third input.



170 J-------C i r c u i t  T h e o r e m s

In other words.

v°* 1 \rt\ra3 =  —  =  - - V / V
v3 5

Now the output can be expressed as a linear combination o f the inputs

v0 = a \V 1 -f d2l2 4- 03 v3 — 7  V1 -f 8/2 4- ( ~ I v3
( - O '

before.

E x a m p l e  5 . 3 - 2

Find the current / for the circuit o f Figure 5.3-6a.

3/

(b) (c)

FIGURE 5.3-6 (a) The circuit for Example 5.3-2. (b) The independent voltage source acting alone, (c) The independent current 
source acting alone.

Solution
Independent sources provide the inputs to a circuit. The circuit in Figure 5.3-6a has two inputs: the voltage o f the 
independent voltage source and the current o f the independent current source. The current, /, caused by the two 
sources acting together is equal to the sum o f the currents caused by each independent source acting separately.

Step 1 : Figure 5.3-6b shows the circuit used to calculate the current caused by the independent voltage 
source acting alone. The current source current is set to zero for this calculation. (A zero current source is 
equivalent to an open circuit, so the current source has been replaced by an open circuit.) The current due to the 
voltage source alone has been labeled as i\ in Figure 5.3-6b.

Apply K irchhoffs voltage law to the loop in Figure 5.3-6b to get

—24 -}■ (3 2)ij *+• 311 -|- 0 i| =  3 A

(Notice that we did not set the dependent source to zero. The inputs to a circuit are provided by the independent 
sources, not by the dependent sources. When we find the response to one input acting alone, we set the other inputs 
to zero. Hence, we set the other independent sources to zero, but there is no reason to set the dependent source to
zero.)
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Step 2: Figure 5.3-6c shows the circuit used to calculate the current caused by the current source acting 
alone. The voltage of the independent voltage is set to zero for this calculation. (A zero voltage source is 
equivalent to a short circuit, so the independent voltage source has been replaced by a short circuit.) The current 
due to the voltage source alone has been labeled as <2 in Figure 5.3-6c.

First, express the controlling current of the dependent source in terms of the node voltage, va, using Ohm’s
law:

va -j .
i2 =  -  — => Va =  - 3 /2

Next, apply Kirchhoff s current law at node a to get
va — 3/2 _ —3*2 — 3/2 . _  7

z*2 +  7 = ---------  => /2 -h 7 — -  => *2 — ^ A

Step 3: The current, /, caused by the two independent sources acting together is equal to the sum of the 
currents, i\ and /2, caused by each source acting separately:

, =  / ,+ ,2  =  3 - 1  = 1 A

5.4 T H E V E N I N ' S  T H E O R E M

In this section, we introduce the Thevenin equivalent circuit, based on a theorem developed 
by M. L. Thevenin, a French engineer, who first published the principle in 1883. Thevenin, 
who is credited with the theorem, probably based his work on earlier work by Hermann von 
Helmholtz (see Figure 5.4-1).

Figure 5.4-2 illustrates the use of the Thevenin equivalent circuit. In Figure 5.4-2a, a 
circuit is partitioned into two parts—circuit A and circuit B—that are connected at a single 
pair of terminals. (This is the only connection between circuits A and B. In particular, if the 
overall circuit contains a dependent source, then either both parts of that dependent source 
must be in circuit A or both parts must be in circuit B.) In Figure 5.4-26, circuit A is replaced 
by its Thevenin equivalent circuit, which consists of an ideal voltage source in series with a 
resistor. Replacing circuit A by its Thevenin equivalent circuit does not change the voltage 
or current of any element in circuit B. This means that if you looked at a list of the values of 
the currents and voltages of all the circuit elements in circuit B, you could not tell whether 
circuit B was connected to circuit A or connected to its Thevenin equivalent circuit.

Finding the Thevenin equivalent circuit of circuit A involves three parameters: the 
open-circuit voltage, v^, the short-circuit current, /sc, and the Thevenin resistance, Rt. 
Figure 5.4-3 illustrates the meaning of these three parameters. In Figure 5.4-3a, an open 
circuit is connected across the terminals of circuit A. The voltage across that open circuit is

FIG I1 RE 5.4-1 Hermann 
von Helmholtz (1821- 
1894), who is often 
credited with the basic 
work leading to 
Thevenin’s theorem. 
Courtesy of the New York 
Public Library.

(<*) (b)
FIGURE 5.4-2 (a) A circuit partitioned into two parts: circuit A 
and circuit B. (/>) Replacing circuit A by its Thevenin equivalent 
circuit.

(a ) (b) (c)
FIGURE 5.4-3 The Thevenin equivalent circuit involves three 
parameters: (a) the open-circuit voltage, Voc, (b) the short-circuit 
current, i8C, and (c) the Thevenin resistance, R{.
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(a)

a a
—~o

? X
Circuit A*

- o  *

Circuit A*

n
b b

(b)

FIGURE 5.4-4 (a) The Thevenin resistance, 
Ru and (b) a method for measuring or 
calculating the Thevenin resistance, Rt.

the open-circuit voltage, voc. In Figure 5.4-36, a short circuit is connected across the terminals o f 
circuit A. The current in that short circuit is the short-circuit current, i^ .

Figure 5.4-3c indicates that the Thevenin resistance, Rx, is the equivalent resistance o f circuit A*. 
Circuit A* is formed from circuit A by replacing all the independent voltage sources by short circuits 
and replacing all the independent current sources by open circuits. (Dependent current and voltage 
sources are not replaced with open circuits or short circuits.) Frequently, the Thevenin resistance, Ru 
can be determined by repeatedly replacing series or parallel resistors by equivalent resistors. 
Sometimes, a more formal method is required. Figure 5.4-4 illustrates a formal method for 
determining the value o f the Thevenin resistance. A current source having current it is connected 
across the terminals o f circuit A*. The voltage, vt, across the current source is calculated or measured. 
The Thevenin resistance is determined from the values o f  it and vt, using

The open-circuit voltage, v^., the short-circuit current, and the Thevenin resistance, R t, 
are related by the equation

v oc ~  R thc

Consequently, the Thevenin resistance can be calculated from the open-circuit voltage and the short- 
circuit current.

In summary, the Thevenin equivalent circuit for circuit A consists o f an ideal voltage source, 
having voltage voc, in series with a resistor, having resistance Rx. Replacing circuit A by its Thevenin 
equivalent circuit does not change the voltage or current o f any element in circuit B.

E x a m p l e  5 . 4 - 1  T h e v e n i n  E q u i v a l e n t  C i r c u i t  

Using Thevenin’s theorem, find the current i through the resistor R
in the circuit o f Figure 5.4-5. 5 ^  4 ft /

|-----WV-----T-----WV---- o --
Solution
Because we are interested in the current z, we identify the resistor 
R as circuit B. Then circuit A is as shown in Figure 5A-6a. The 
Thevenin resistance Rx is found from Figure 5.4-6/?, where we have FIGURE 5.4-5 Circuit for Example 5.4-1. 
set the voltage source voltage to zero and then replaced the 0-V
source by a short circuit. We calculate the equivalent resistance looking into the terminals, obtaining Rx =  8 fl.

50 V 20 Q
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R> =  8  Q

) yoo = 40 V

J WV-

(c)

40 V FIGURE 5.4-6 Steps for determining the 
Thevenin equivalent circuit for the circuit 
left of the terminals of Figure 5.4-5.

Using the voltage divider principle with the circuit of Figure 5.4-6a, we find — 40 V. 
Reconnecting circuit B to the Thevenin equivalent circuit as shown in Figure 5.4-6d, we obtain

i =
40 

/? +  8

E x a m p l e  5 . 4 - 2  T h e v e n in  E q u iv a le n t  C ir c u i t

Find the Thevenin equivalent circuit for the circuit shown in Figure 5.4-7.
12 Q

10 Q 4 O
A/Vv-----° a

FIGURE 5.4-7 Circuit for Example 5.4-2.
FIGURE 5.4-8 Circuit of Figure 5.4-7 with all the 
sources deactivated.

FIGURE 5.4-9 Thevenin 
equivalent circuit for the 
circuit of Figure 5.4-7.

Solution
One approach is to find the open-circuit voltage and the circuit’s Thevenin equivalent resistance Rx. First, let us 
find the resistance Rt. Figure 5.4-8 shows the circuit after replacing the voltage source by a short circuit and 
replacing the current source by an open circuit. Look into the circuit at terminals a-b to find Rt. The 10-0 resistor 
in parallel with the 40-0 resistor results in an equivalent resistance of 8 O. Adding 8 O to 4 O in series, we obtain

Rt = 12 0
Next, we wish to determine the open-circuit voltage at terminals a-b. Because no current flows through the 

4-0 resistor, the open-circuit voltage is identical to the voltage across the 40-0 resistor, vc. Using the bottom node 
as the reference, we write KCL at node c of Figure 5.4-7 to obtain

vc -  10 vc
10 40 =

Solving for vc yields

vc =  - 8  V

Therefore, the Thevenin equivalent circuit is as shown in Figure 5.4-9.



174 )-------  C i r c u i t  T h e o r e m s

F I G U R E  5 . 4 - 1 0

T h e v e n i n  c i r c u i t  

a  s h o r t  c i r c u i t  a t  

t e r m i n a l s  a - b .

w i t h

Some circuits contain one or more dependent sources as well as independent sources. 
The presence o f the dependent source prevents us from directly obtaining Rt from simple 
circuit reduction using the rules for parallel and series resistors.

A procedure for determining Rt is: (1) determine the open-circuit voltage v^ , and (2) 
determine the short-circuit current when terminals a -b  are connected by a short circuit, as 
shown in Figure 5.4-10; then

Rx = —
l sc

This method is attractive because we already need the open-circuit voltage for the 
Thevenin equivalent circuit. We can show that Rt =  v ^ / i ^  by writing the KVL equation for 
the loop o f Figure 5.4-10, obtaining

Vqc Rtisc —■ 0
Clearly, Rt =  / i S(

E x a m p l e  5 . 4 - 3  T h e v e n i n  E q u i v a l e n t  C i r c u i t s  and  D e p e n d e n t  S o u r c e s

Find the Thevenin equivalent circuit for the circuit shown in 
Figure 5.4-11, which includes a dependent source.

Solution
First, we find the open-circuit voltage =  vab. W riting KVL 
around the mesh o f Figure 5.4-11 (using / as the mesh current), 
we obtain

2/
6 Q  c  10 Q a

AAA/--------------------------------------------------------<^J> -----------------9 - — AAA/-o

2 0  V

Therefore,

“20 -f- 6/ — 2/ —|— 6/ — 0

i =  2 A

F I G U R E  5 . 4 - 1 1  C i r c u i t  o f  E x a m p l e  5 . 4 - 3 .

2  i

6Q 10 Q a
AAA-----

Because no current is flowing through the 10-0  resistor, the 
open-circuit voltage is identical to the voltage across the 
resistor between terminals c and b. Therefore,

voc =  6 / =  12 V
F I G U R E  5 . 4 - 1 2  C i r c u i t  o f  

F i g u r e  5 . 4 - 1 1  w i t h  o u t p u t  

t e r m i n a l s  a - b  s h o r t - c i r c u i t e d .

The next step is to determine the short-circuit current 
for the circuit o f Figure 5.4-12. Using the two mesh currents indicated, we have

—20 +  6i\ — 2 i +  6(i\ — ii)  =  0 

and 6(i2 -  * 'i)+  10/2 =  0

Substitute i =  i\ — i2 and rearrange the two equations to obtain

10/f -  4/2 =  20
and _  6 / ,+  16 /2 = 0

Therefore, we find that i2 =  =  120/136 A. The Thevenin resistance is

=  13.6 a
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(b)

FIGURE 5.4-13 (a) Circuit under 
test with laboratory source vs and 
resistor R. (b) Circuit of (a) with 
Thevenin equivalent circuit 
replacing the test circuit.

A laboratory procedure for determining the Thevenin equivalent of a black box circuit (see 
Figure 5.4.13a) is to measure / and v for two or more values of vs and a fixed value of R. For the circuit 
of Figure 5.4.13/?, we replace the test circuit with its Thevenin equivalent, obtaining

V =  Voc+l/?t (S-4-1)

The procedure is to measure v and i for a fixed R and several values of vs. For example, let R =  10 0  
and consider the two measurement results

(1) ys =  49 V : i =  0.5 A, v =  44V 
and (2) vs =  76V: i =  2 A, v =  56V

Then we have two simultaneous equations (using Eq. 5.51):

44 =  voc -f 0.5/?t 
56 =  Vqc -h 2/?t

Solving these simultaneous equations, we get Rt = 8 f l  and =  40 V, thus obtaining the Thevenin 
equivalent of the black box circuit.

EXERCISE 5.4-1 Determine values of Rt and voc that cause the circuit shown in Figure 
E 5.4-1/? to be the Thevenin equivalent circuit of the circuit in Figure E 5.4-la.

Answer: Rt = S fl and Vqc =  2 V

(a)

FIGURE E 5.4-1
(b) (a)

FIGURE E 5.4-2
(b)

EXERCISE 5.4-2 Determine values of R, and voc that cause the circuit shown in Figure 
E 5.4-26 to be the Thevenin equivalent circuit of the circuit in Figure E 5.4-2a.

Answer: Rx =  3 ft and =  - 6  V

5.5 NORTON S EQUI VALENT CIRCUIT ------------------------------------

An American engineer, E. L. Norton at Bell Telephone Laboratories, proposed an equivalent circuit 
for circuit A of Figure 5.4-2, using a current source and an equivalent resistance. The Norton 
equivalent circuit is related to the Thevenin equivalent circuit by a source transformation. In other
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words, a source transformation converts a Thevenin equivalent circuit into a Norton equivalent circuit 
or vice versa. Norton published his method in 1926, 43 years after Thevenin.

Norton s theorem may be stated as follows: Given any linear circuit, divide it into two circuits, A 
and B. If either A or B contains a dependent source, its controlling variable must be in the same circuit. 
Consider circuit A and determine its short-circuit current iK at its terminals. Then the equivalent circuit o f 
A is a current source ix  in parallel with a resistance Rn, where Rn is the resistance looking into circuit A 
with all its independent sources deactivated.

Norton's theorem requires that, for any circuit o f resistance elements and 
energy sources with an identified terminal pair, the circuit can be replaced by a 
parallel combination o f an ideal current source isc and a conductance Gn, where 
isc is the short-circuit current at the two terminals and Gn is the ratio o f the short- 
circuit current to the open-circuit voltage at the terminal pair.

FI(j I RE 5.5-1 Norton therefore have the Norton circuit for circuit A as shown in Figure 5.5-1. Finding
equivalent circuit for a linear ^  Theven[n equivalent circuit o f the circuit in Figure 5.5-1 shows that Rn = R t and =

Rtisc. The Norton equivalent is simply the source transformation o f the Thevenin 
equivalent.

circuit A.

E x a m p l e  5 . 5 - 1  N o r t o n  E q u i v a l e n t  C i r c u i t  

Find the Norton equivalent circuit for the circuit o f Figure 5.5-2.

Solution
We can replace the voltage source by a short circuit and find Rn by circuit reduction. Replacing the voltage source 
by a short circuit, we have a 6-kO resistor in parallel with (8 k fl +  4 kO) =  12 kH. Therefore,

* n =  6 T l 2  =  4 k a

To determine /sc, we short-circuit the output term inals with the voltage source activated as shown in Figure
5.5-3. W riting KCL at node a, we have

15V
“f  h e  — 012 k fl

or iK =  1.25 mA

Thus, the Norton equivalent (Figure 5.5-1) has Rn =  4 kO and zsc =  1.25 mA.

4 k ft equivalent

5.5-2 Circuit of Example 5.5-1. FIGURE 5.5-3 Short circuit connected to output terminals.
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E x a m p l e  5 . 5 - 2  N o rto n  E q u iv a le n t  C irc u i t

Find the Norton equivalent circuit for the circuit of Figure 5.5-4.

FIG U R E 5.5-5 Short circuit connected to terminals a -b  o f  the 

FIG URE 5.5-4 Circuit o f Example 5.5-2. Resistances in ohms. circuit o f Figure 5.5-4. Resistances in ohms.

Solution
First, determine the current /sc for the short-circuit condition shown in Figure 5.5-5. Writing KCL at a, we obtain

2 4  .  •— -—  3 +  jSc — 0 
4

Note that no current flows in the 12-0 resistor because it is in parallel with a short circuit. Also, because of the 
short circuit, the 24-V source causes 24 V to appear across the 4-0  resistor. Therefore,

24
/sc =  — +  3 =  9 A

4
Now determine the equivalent resistance Rn = Rt. Figure 5.5-6 shows the circuit after replacing the voltage 

source by a short circuit and replacing the current source by an open circuit. Clearly, Rn = 3 0 . Thus, we obtain the 
Norton equivalent circuit as shown in Figure 5.5-7.

>4 ft > 1 2  ft

-O

►3 ft

FIGURE 5.5-6 Circuit o f Figure 5.5-4 with its sources FIG U R E 5.5-7 Norton equivalent o f  the circuit o f
deactivated. The voltage source becomes a short circuit, and the Figure 5.5-4.
current source is replaced by an open circuit.

^  E x a m p l e  5 . 5 - 3  N o rto n  E q u iv a le n t  C ir c u i ts  an d  D e p e n d e n t  S o u rc e s  

Find the Norton equivalent to the left of terminals a—b for the circuit of Figure 5.5-8.

Solution
First, we need to determine the short-circuit current /sc, using Figure 5.5-9. Note that vab =  0 when the terminals 
are short circuited. Then,

i = 5 /5 0 0  =  10 mA
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500 Q

10/ e 2 5 £ l

-O
b

F I G U R E  5 . 5 - 8  T h e  c i r c u i t  o f  E x a m p l e  5 . 5 - 3 .

Therefore, for the right-hand portion o f the circuit,

zsc =  - 1 0 /  =  —100 mA

Now, to obtain /?t, we need voc =  vab from Figure 5.5-8, where / is the current in the first (left-hand) mesh. Writing 
the mesh current equation, we have

—5 +  500/ -f- vab =  0 

Also, for the right-hand mesh o f Figure 5.5-8, we note that

vab =  - 2 5 ( 1 0 0 =  -2 5 0 /

Therefore, i =

Substituting / into the first mesh equation, we obtain

500(-iir)+v- = 5
Therefore, vab =  — 5 V

and R{ -= —  =  — =  50 O
/sc —0.1

The Norton equivalent circuit is shown in Figure 5.5-10.

a

— o

0 1 A  C O  < 5 o q

- o  F I G U R E  5 . 5 - 1 0  T h e  N o r t o n  e q u i v a l e n t

b  c i r c u i t  f o r  E x a m p l e  5 . 5 - 3 .

EXERCISE 5.5-1 Determine values o f Rt and /sc that cause the circuit shown in Figure 
E 5.5-16 to be the Norton equivalent circuit o f the circuit in Figure E 5 .5 -la .

a
— o

b

(a) (b) FIGURE E 5.5-1

F I G U R E  5 . 5 - 9  C i r c u i t  o f  F i g u r e  5 . 5 - 8  w i t h  a  s h o r t  c i r c u i t  

a t  t h e  t e r m i n a l s  a - b .

Answer: Rt =  8 f l  and /sc =  0.25 A
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5.6 M A X I M U M  P O W E R  T R A N S F E R

Many applications of circuits require the maximum power available from a source to be transferred to a 
load resistor RL. Consider the circuit A shown in Figure 5.6-1, terminated with a load RL. As demonstrated 
in Section 5.4, circuit A can be reduced to its Thevenin equivalent, as shown in Figure 5.6-2.

Circuit A

*L

FIGURE 5.6-1 Circuit A contains resistors and FIGURE 5.6-2 The Thevenin equivalent is
independent and dependent sources. The load is the substituted for circuit A. Here we use vs for the
resistor R, . Thevenin source voltage.

The general problem of power transfer can be discussed in terms of efficiency and effectiveness. 
Power utility systems are designed to transport the power to the load with the greatest efficiency by 
reducing the losses on the power lines. Thus, the effort is concentrated on reducing Rt, which would 
represent the resistance of the source plus the line resistance. Clearly, the idea of using super­
conducting lines that would exhibit no line resistance is exciting to power engineers.

In the case of signal transmission, as in the electronics and communications industries, the 
problem is to attain the maximum signal strength at the load. Consider the signal received at the 
antenna of an FM radio receiver from a distant station. It is the engineer’s goal to design a receiver 
circuit so that the maximum power ultimately ends up at the output of the amplifier circuit connected 
to the antenna of your FM radio. Thus, we may represent the FM antenna and amplifier by the 
Thevenin equivalent circuit shown in Figure 5.6-2.

Let us consider the general circuit of Figure 5.6-2. We wish to find the value of the load 
resistance RL such that maximum power is delivered to it. First, we need to find the power from

p  = i 2R l
Because the current i is

. _  vs
/?L +  Rt

we find that the power is

Assuming that vs and R, are fixed for a given source, the maximum power is a function of /?[ . To find 
the value of R^ that maximizes the power, we use the differential calculus to find where the derivative 
dp/dRl  equals zero. Taking the derivative, we obtain

dp _  2 (fr +  /?l)2 -  2(7?, + flL)flL 
dRi  Vs (RL +  R , f

The derivative is zero when

(.Rt + RL)2 -  2(Rt + RL)RL =  0 (5.6-2)
or (*, +  RLXRt + R i -  2Rl ) =  0 (5.6-3)
Solving Eq. 5.6-3, we obtain

Ri = R< (5.6-4)
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P  max

F I G U R E  5 . 6 - 3  P o w e r  a c t u a l l y  a t t a i n e d  

a s  R L  v a r i e s  i n  r e l a t i o n  t o  R t .

To confirm that Eq. 5.6-4 corresponds to a maximum, it should be shown that S p /d R i  <  0. 
Therefore, the maximum power is transferred to the load when RL is equal to the Thevenin equivalent 
resistance Rt.

The maximum power, when R L = R t, is then obtained by substituting R L = Rx in Eq. 5.6-1 to
yield

Pm&x
vs2ftt _  vv  
(2R t)2 ~  4Rt

The power delivered to the load will differ from the maximum attainable as the load resistance 
R l departs from R L — Rt. The power attained as RL varies from Rt is portrayed in Figure 5.6-3.

The m axim um  pow er tran sfe r  theorem states that the maximum power delivered to a load 
by a source is attained when the load resistance, RL, is equal to the Thevenin resistance, Rt, o f  
the source.

/?L FIGURE 5.6-4 N o r t o n ’ s  e q u i v a l e n t  c i r c u i t  r e p r e s e n t i n g  

t h e  s o u r c e  c i r c u i t  a n d  a  l o a d  r e s i s t o r  R L . H e r e  w e  u s e  i s  

a s  t h e  N o r t o n  s o u r c e  c u r r e n t .

We may also use N orton’s equivalent circuit to represent circuit A in Figure 5.6.1. We then have 
a circuit with a load resistor RL as shown in Figure 5.6-4. The current i may be obtained from the 
current divider principle to yield

Therefore, the power p  is

is2R?RL

(R, + Rl )2
Using calculus, we can show that the maximum power occurs when

R l = R x

Then the maximum power delivered to the load is

fit's2

(5.6-5)

( 5 .6 - 6 )
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E x a m p l e  5 . 6 - 1  M ax im u m  P o w e r T ra n s fe r
J

Find the load resistance RL that will result in maximum power delivered 
to the load for the circuit of Figure 5.6-5. Also, determine the maximum 
power delivered to the load resistor.

Solution
First, we determine the Thevenin equivalent circuit for the circuit to the 
left of terminals a-b. Disconnect the load resistor. The Thevenin voltage f i g u r e  5 .6-5 Circuit for Example
source vt is

The Thevenin resistance Rt is

5.6-1. Resistances in ohms.

v, =  —  x 180 =  150 V 
180

30+ 1 5 0
The Thevenin circuit connected to the load resistor is shown in Figure 
5.6-6. Maximum power transfer is obtained when RL = Rt =  25 O.

Then the maximum power is

P max
vs2 (150) 

4Rl 4 x 25
=  225 W

FIGURE 5.6-6 Thevenin equivalent 
circuit connected to RL for Example 
5.6-1.
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S o lu tio n
We will obtain the Thevenin equivalent circuit for the part o f the circuit to the left o f terminals a,b in Figure
5.6-7a. First, we find as shown in Figure 5.6-76. The KVL gives

—6 “I- 10/ — 2Vab =  0

Also, we note that vab =  voc =  4i. Therefore,
10/  -  8/  =  6

or j =  3 A. Therefore, v^. — 4i =  12 V.
To determine the short-circuit current, we add a short circuit as shown in Figure 5.6-7c. The 4-fI resistor is 

short circuited and can be ignored. W riting KVL, we have
—6 +  6/g; =  0

Hence, =  1 A.
Therefore, /?, =  v ^ / i x  =  12 fi. The Thevenin equivalent circuit is shown in Figure 5.6-ld  with the load resistor. 
Maximum load power is achieved when R\_ — Rt =  1211. Then,

12“
p  = ——  =  3WP max 4Rl 4(12)

EXERCISE 5. 6-1 Find the m axim um  pow er that can be delivered to RL for the circuit o f 
Figure E 5.6-1, using a Thevenin equivalent circuit.

3 Q  2 Q
A A A ------------------------------------------ 1 ---------------------- V W -o -

6 Q

FIGURE E 5.6-1

Answer: 9 W when R L =  4 Cl

EXERCISE 5.6 2  Find the maximum power delivered to R L for the circuit o f Figure E 5.6-2, 
using a Norton equivalent circuit.

30 Q
A A A / -------------o -

5.6 A ( j

FIGURE E 5.6-2

Answer: 175 W when R L =  28 f l

5.7 U S I N G  M A T L A B  T O  D E T E R M I N E  T H E  T H E V E N I N
E Q U I V A L E N T  C I R C U I T  ---------------------------------------------------------------------

MATLAB can be used to reduce the work required to determine the Thevenin equivalent o f a circuit 
such as the one shown in Figure 5.7- la. First, connect a resistor, /?, across the terminals o f the network, 
as shown in Figure 5.7-16. Next, write node or mesh equations to describe the circuit with the resistor
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10 O

FIGURE 5.7-1 The circuit in (b) is obtained by connecting a resistor, R, across the terminals of the circuit in (a).

connected across its terminals. In this case, the circuit in Figure 5.7-1 b is represented by the mesh 
equations

12 =  28/i ~  10/2 -  8/3

12 =  —10/i + 2 8 /2  - 8 / 3  (5.7-1)
0 =  —8z'i — 8/2 +  (16 ~h /?)z3 

The current z in the resistor R is equal to the mesh current in the third mesh, that is,

i = h (5.7-2)

The mesh equations can be written using matrices such as

(5.7-3)

Notice that i = z3 in Figure 5.7-16.
Figure 5.7-2a shows a MATLAB file named ch5ex.m that solves Eq. 5.7-1. Figure 5.7-3 

illustrates the use of this MATLAB file and shows that when R =  6 H, then z =  0.7164 A, and that 
when R = 12 W, then z =  0.5106 A.

" 28 -1 0  - 8 i l " "12“
-1 0  28 - 8 h = 12
- 8  - 8  16 + R J3_ 0

% ch5ex.m

z = [ 28 
-10  

-8

v * [ 1 2 ; 
12; 
0] ;

MATLAB input file for Section 5-7 

-8;-10
28

-8 16+R];

Mesh Equation 

Equation 5.7-3

Im » Z\V; 

I * I m (3)

% Calculate the mesh currents. 

% Equation 5.7-2

V IGl RE 5.7-2 MATLAB file used to solve the mesh equation representing the circuit shown in Figure 5.7-1/?.
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File Edit Debug Desktop Window Help

D  i2? ^

Shortcuts j£] How to Add I ]  What's New  

>> R“ 6;
>> c h 5 e x

I  =

0 . 7 1 6 4

»  R =12;
>> ch S e x

i  =

0 . 5 1 0 6

Start

FIGURE 5.7-3 Computer screen showing the use of MATLAB to analyze the circuit shown in Figure 5.7-1.

Next, consider Figure 5.7-4, which shows a resistor R connected across the terminals o f  a 
Thevenin equivalent circuit. The circuit in Figure 5.7-4 is represented by the mesh equation

Vt =  Rti +  Ri (5.7-4)

R a. Similarly, let i =  ib when R = Rb. Equation 5.7-4As a m atter o f notation, let i =  ia when R 
indicates that

V t — R\_ia +  R^ia 
Vt = R tib -f

Equation 5.7-5 can be written using matrices as

(5.7-5)

(5.7-6)

Given ia, R ,d, z'b, and Rb, this matrix equation can be solved for Vt and Rh the parameters of the Thevenin 
equivalent circuit. Figure 5.7-5 shows a MATLAB file that solves Eq. 5.7-6, using the values zb =  0.7164 
A, Rb = 6 f l, ia =  0.5106 A, and Ra =  12 0 .  The resulting values o f V{ and Rt are

Vt =  10.664 V and Rt =  8.8863 O

R^a 1 Za
Rbk - 1  “ fb.

I / FIGURE 5.7-4 The circuit obtained by 
connecting a resistor, R, across the 
terminals of a Thevenin equivalent circuit.
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% Find the T h e v e n i n  e q u i v a l e n t  of the c i r c u i t
% c o n n e c t e d  to the r e s i s t e r  R.

Ra = 12; ia * 0.5106; % W h e n  R = R a  t h e n  i = ia

Rb = 6; ib = 0.7164; % W h e n  R = R b  t h e n  i = ib

A  = [1 -ia;
1 - i b ] ;

b = [Ra*ia;
R b * i b j ;

%
% Eq n  5.7-6 
%
%

X = A\b;

Vt = X(l) % O p e n - C i r c u i t  V o l t a g e  

Rt = X(2) % T h e v e n i n  R e s i s t a n c e

FIGURE 5.7-5 MATLAB file used to calculate the open-circuit voltage and Thevenin resistance.

5.8 U S I N G  P SP I C E  TO D E T E R M I N E  T H E  T H E V E N I N
E Q U I V A L E N T  C I R C U I T  ----------------------------------------------------------------

We can use the computer program PSpice to find the Thevenin or Norton equivalent circuit for 
circuits even though they are quite complicated. Figure 5.8-1 illustrates this method. We calculate 
the Thevenin equivalent of the circuit shown in Figure 5.8-la by calculating its open-circuit 
voltage, Voc, and its short-circuit current, isc. To do so, we connect a resistor across its terminals as 
shown in Figure 5.8-16. When the resistance of this resistor is infinite, the resistor voltage will be 
equal to the open-circuit voltage, voc, as shown m Figure 5.8-16. On the other hand, when the 
resistance of this resistor is zero, the resistor current will be equal to the short-circuit current, /sc, as 
shown in Figure 5.8-lc .

We can’t use either infinite or zero resistances in PSpice, so we will approximate the infinite 
resistance by a resistance that is several orders of magnitude larger than the largest resistance in circuit 
A. We can check whether our resistance is large enough by doubling it and rerunning the PSpice 
simulation. If the computed value of voc does not change, our large resistance is effectively infinite. 
Similarly, we can approximate a zero resistance by a resistance that is several orders of magnitude 
smaller than the smallest resistance in circuit A. Our small resistance is effectively zero when halving 
it does not change the computed value of zsc.

(a) (b) (C)
FIGURE 5.8-1 A method for computing the values of and i*-, using PSpice.
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E x a m p l e  5 . 8 - 1 U s i n g - P S p i c e  to find a T h e v e n i n  
E q u i v a l e n t  C i r c u i t

Use PSpice to determine the values o f the open-circuit voltage, v^;, and the short-circuit current, ix , for the circuit 
shown in Figure 5.8-2.

FIGURE 5.8-3 The circuit from Figure 5.8-2 after adding 
a resistor across its terminals.

Solution
Following our method, we add a resistor across the terminals o f the circuit as shown in Figure 5.8-3. Noticing that 
the largest resistance in our circuit is 20 0  and the smallest is 5 ft, we will determine voc and z^, using

Voc ~  vr when R 20 f l

and
V*P

zR =  —  when R 5 ft 
R

Using PSpice begins with drawing the circuit in the OrCAD Capture workspace as shown in Figure 5.8-4 
(see Appendix A). The VCVS in Figure 5.8-3 is represented by a PSpice “ Part E ”  in Figure 5.8-4. Figure 5.8-5 
illustrates the correspondence between the VCVS and the PSpice “ Part E .”

To determine the open circuit voltage, we set the resistance R  to a very large value and perform a ‘Bias 
Point’ simulation (see Appendix A). Figure 5.8-6 shows the simulation results when R — 20 MO. The voltage 
across the resistor R is 33.6 V, so =  33.6 V. (Doubling the value o f R and rerunning the simulation did not 
change the value o f the voltage across R , so we are confident that =  33.6 V.)

FIGURE 5.8-4 The circuit from 
Figure 5.8-3 drawn in the OrCAD 
Capture workspace.
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2 A

(a)

I 1_ 3t>kv‘ :  0
4

6 4

(b)
FIGURE 5.8-5 A VCVS (a) and 
the corresponding PSpice “ Part E” (/>).

si!* OrCAD Capture CIS - Demo Edition - [/ - (SCHEMATIC1 : PAGE1)]
File g&t View Place Maoo PSpice Accessories Options Window Help

J) Or y  3  - ti ** - - iT “ R

-  S' X 

V & ft
SCHEMATIC! -thev fa n  ► iS & : v j -  1 * w

20 r T 33.60V

d^24Vdc

GAIN = 10 | 'V'vA*/~
i _ F ~ i  ii:k*iaa <5 20 20Meg

J<

S B
t>

J
-f-

A

□
OP

0 terns selected Scaie=200% X-5.70 Y-2.90
FIGURE 5.8-6 Simulation results for 
R = 20 MH.

To determine the short-circuit current, we set the resistance R to a very small value and perform a ‘Bias 
Point’ simulation (see Appendix A). Figure 5.8-7 shows the simulation results when R =  1 ml). The voltage 
across the resistor R is 12.6 mV. Using Ohm’s law, the value of the short-circuit current is

. _  12.6 x 1(T3 _
/sc — i — 12.6 A

1 x 10’ 3
(Halving the value of R and rerunning the simulation did not change the value of the voltage across /?, so we are 
confident that i*. =  12.6 A.)

»  OrCAD Capture CIS Demo Edition [/ (SCHEMATIC1 : PAGE1)]
Fjte View Place Macro PSpice Accessories Options Window Hetp _ n X

S  e  B [r ...V
SCHEMATIClW " - n a  ► 5  v  i w

X _L_

20

-yw v — f

2— w v -

v’l:liTikTi
12.60mV

GAIN = 1 ,

A 'B
x>

HI

FIGURE 5.8-7 Simulation results for 
R = 1 MH =  0.001 n. J
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5.9 H O W C A N W E C H E C K  . . . ?  ---------------------------------------------------------

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f  the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness o f  their work. For example, 
occasionally just a little time remains at the end o f an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions o f the sort o f 
problem discussed in this chapter.

E x a m p l e  5 . 9 - 1 H o w  Ca n  We  C h e c k  T h e v e n i n  
E q u i v a l e n t  C i r c u i t s ?

Suppose that the circuit shown in Figure 5 .9-la  was built in the lab, using R =  2 k ft, and that the voltage labeled v 
was measured to be v =  — 1.87 V. Next, the resistor labeled R  was changed to R =  5 k ft, and the voltage v was 
measured to be v =  —3.0 V. Finally, the resistor was changed to R =  10 k ft, and the voltage was measured to be 
v =  —3.75 V. How can we check that these measurements are consistent?

8 kQ 6 kQ

(b)

FIGURE 5.9-1 (a) A circuit with data obtained by measuring the voltage across the resistor R, and (b) the circuit obtained by 
replacing the part of the circuit connected to R by its Thevenin equivalent circuit.

Solution
Let’s replace the part o f the circuit connected to the resistor R  by its Thevenin equivalent circuit. Figure 5.9-l£> 
shows the resulting circuit. Applying the voltage division principle to the circuit in Figure 5.9-lfe gives

R
v =

R + Rx

When R — 2 k fi, then v =  —1.87 V, and Eq. 5.9-1 becomes

2000
-1 .8 7  =

2000 +  /?, “ ■

Similarly, when R =  5 k fi, then v =  —3.0 V, and Eq. 5.9-1 becomes

5000-3 .0  =
5000 +  R,

(5.9-1)

(5.9-2)

(5.9-3)
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Equations 5.9-2 and 5.9-3 constitute a set of two equations in two unknowns, voc and R,. Solving these equations 
gives Voc = - 5  V and R' =  3333 ^  Substituting these values into Eq. 5.9-1 gives

v = ----- ------( - 5 )  (5.9-4)
R +  3333

Equation 5.9-4 can be used to predict the voltage that would be measured if R = 10 kft. If the value of v obtained 
using Eq. 5.9-4 agrees with the measured value of v, then the measured data are consistent. Letting R = 10 kO in 
Eq. 5.9-4 gives

------ 1 0 I 0 0 0 ------(  _  5) _  _ 3  7 5  v  ( 5 .9 - 5 )
10,000 +  3333

Because this value agrees with the measured value of v, the measured data are indeed consistent.

— | 5 . 1 0  D E S I G N  E X A M P L E

STRAIN GAUGE BRIDGE

Strain gauges are transducers that measure mechanical strain. Electrically, the strain gauges 
are resistors. The strain causes a change in resistance that is proportional to the strain.

Figure 5.10-1 shows four strain gauges connected in a configuration called a bridge. 
Strain gauge bridges measure force or pressure (Doebelin, 1966).

Voltmeter q

+ v0 ~

Strain gauge bridge Amplifier

FIGURE 5.10-1 Design problem involving a strain gauge bridge.

The bridge output is usually a small voltage. In Figure 5.10-1, an amplifier multiplies 
the bridge output, v„ by a gain to obtain a larger voltage, vG, which is displayed by the 
voltmeter.

Describe the Situation and the Assumptions
A strain gauge bridge is used to measure force. The strain gauges have been positioned so that 
the force will increase the resistance of two of the strain gauges while, at the same time, 
decreasing the resistance of the other two strain gauges.

The strain gauges used in the bridge have nominal resistances of R = 120 fi. (The 
nominal resistance is the resistance when the strain is zero.) This resistance is expected to 
increase or decrease by no more than 2 fl due to strain. This means that

R

R

-2  n  <  a/?  <  2 n (5.10-1)
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The output voltage, vQ, is required to vary from — 10 V to -I-10 V as AR varies from —2 0  
to 2 0 .

State the Goal
Determine the amplifier gain, needed to cause vQ to be related to AR by

v0 =  5 ^ \ R  (5.10-2)
ohm

G enerate a Plan
Use Thevenin’s theorem to analyze the circuit shown in Figure 5.10-1 to determine the 
relationship between v* and \R .  Calculate the amplifier gain needed to satisfy Eq. 5.10-2.

Act on the Plan
We begin by finding the Thevenin equivalent o f the strain gauge bridge. This requires two 
calculations: one to find the open-circuit voltage, vt, and the other to find the Thevenin 
resistance Rt. Figure 5.10-2a shows the circuit used to calculate vt. Begin by finding the 
currents /'i and i2.

50 mV 50 mV
11 ~  (R -  AR) + W +  A/f) ~  2R

. , 50 mV 50 mV
s,ra,larly =

Then vt =  (R  +  A/?)i| — (R — A i?)/2
^  50 mV

-  2R  (5-10-3)

=  ^ 5 0  mV =  7 ^ * ^ "  AR =  (0.4167 x 10_3)Ai?
R 120 i i

Figure 5.10-2/? shows the circuit used to calculate Rt. This figure shows that Rt is 
composed o f a series connection o f two resistances, each o f which is a parallel connection

i =  0

M ,
R Rf =

(a) (b)
FIGURE 5.10-2 Calculating (a) the open-circuit voltage, and (b) the Thevenin resistance of the strain gauge
bridge.
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FIGURE 5.10-3 Solution to the design problem.

of two strain gauge resistances

(R -  AR)(R +  AR) (R 4- AR)(R -  AR) _ ^ R 2 - A R 2 
Rt ~  (R -  AR) 4  (R +  AR) + (R 4- AR) +  (R -  AR) 2R

Because R is much larger than AR, this equation can be simplified to

RX = R

In Figure 5.10-3 the strain gauge bridge has been replaced by its Thevenin equivalent 
circuit. This simplification allows us to calculate Vj using voltage division

i  o o  k n

Vi =  i6 o k n  +  /?;Vl =  ° " 88v' =  ̂ °'4162 x ,0 ' 3)A/? (510 ' 4)

Model the voltmeter as an ideal voltmeter. Then the voltmeter current is / =  0 as shown in
Figure 5.10-3. Applying KVL to the right-hand mesh gives

vc 4- 50(0) — bvi =  0

or v0 =  bv j =  6(0.4162 x 10~3)A/? (5.10-5)

Comparing Eq. 5.10-5 to Eq. 5.10-2 shows that the amplifier gain, b, must satisfy

6(0.4162 x 10~3) = 5

Hence, the amplifier gain is

b =  12,013

Verify the Proposed Solution
Substituting b =  12,013 into Eq. 5.10-5 gives

v0 =  (12,013)(0.4162 x 10~3)A/? =  4.9998 AR (5.10-6)

which agrees with Eq. 5.10-2.
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5.11 S U M M A R Y
O Source transformations, summarized in Table 5.11-1, are used 

to transform a circuit into an equivalent circuit. A voltage 
source Voc in series with a resistor Rt can be transformed into a 
current source ix  = voc/R{ and a parallel resistor /?,. Conversely, 
a current source ix  in parallel with a resistor Rx can be trans­
formed into a voltage source v** =  Rtix  in series with a resistor 
R{. The circuits in Table 5.11-1 are equivalent in the sense that 
the voltage and current of all circuit elements in circuit B are 
unchanged by the source transformation.

O The superposition theorem permits us to determine the 
total response of a linear circuit to several independent 
sources by finding the response to each independent source 
separately and then adding the separate responses 
algebraically.

O Thevenin and Norton equivalent circuits, summarized in 
Table 5.11-2, are used to transform a circuit into a smaller, 
yet equivalent, circuit. First the circuit is separated into two 
parts, circuit A and circuit B, in Table 5.11-2. Circuit A can

be replaced by either its Thevenin equivalent circuit or its 
Norton equivalent circuit. The circuits in Table 5.11-2 are 
equivalent in the sense that the voltage and current of all 
circuit elements in circuit B are unchanged by replacing 
circuit A with either its Thevenin equivalent circuit or its 
Norton equivalent circuit.

O Procedures for calculating the parameters i*., and Rx of 
the Thevenin and Norton equivalent circuits are summarized 
in Figures 5.4-3 and 5.4-4.

O The goal of many electronic and communications circuits is 
to deliver maximum power to a load resistor RL. Maximum 
power is attained when RL is set equal to the Thevenin 
resistance, Rt, of the circuit connected to RL. This results in 
maximum power at the load when the series resistance Rt 
cannot be reduced.

O The computer program MATLAB can be used to reduce the 
computational burden of calculating the parameters i ^  
and R{ of the Thevenin and Norton equivalent circuits.

Table 5 111  Source Transform ations

THEVENIN CIRCUIT NORTON CIRCUIT

Table 5 1 1 2  Thevenin and Norton Equivalent Circuits

ORIGINAL CIRCUIT THEVENIN CIRCUIT NORTON EQUIVALENT CIRCUIT

P R O B L E M S

Section 5.2 Source Transformations

P 5.2-1 The circuit shown in Figure P 52-\a  has been divided 
into two parts. The circuit shown in Figure P 5.2-1/? was obtained 
by simplifying the part to the right of the terminals using source

transformations. The part of the circuit to the left of the terminals 
was not changed.

(a) Determine the values of Rx and vt in Figure P 5.2-1 b.
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(b) Determine the values of the current i and the voltage v in 
Figure P 5.2-1/). The circuit in Figure P 5.2-1/? is equivalent 
to the circuit in Figure P 5.2-1 a. Consequently, the current / 
and the voltage v in Figure P 5.2- la have the same values as 
do the current i and the voltage v in Figure P 5.2-16.

(c) Determine the value of the current za in Figure P 5.2-1 a.

4 Q

Figure F 5.2-1

P 5.2-2 Consider the circuit of Figure P 5.2-2. Find za by 
simplifying the circuit (using source transformations) to a 
single-loop circuit so that you need to write only one KVL 
equation to find za.

8 Q

P 5.2-3 Find v0 using source transformations if i =  5/2 A in 
the circuit shown in Figure P 5.2-3.

Hint: Reduce the circuit to a single mesh that contains the 
voltage source labeled vc.

Answer: vc =  28 V

3 A

P 5.2-4 Determine the value of the current za in the circuit 
shown in Figure P 5.2-4.

P 5.2-5 Use source transformations to find the current za in 
the circuit shown in Figure P 5.2-5.

Answer: ia =  1 A

Figure P 5.2-5

P 5.2-6 Use source transformations to find the value of the 
voltage va in Figure P 5.2-6.

Answer: va =  7 V

*P 5.2-7 Determine the power supplied by each of the 
sources in the circuit shown in Figure P 5.2-7.

8 V

Figure P 5.2-7

P 5.2-8 The circuit shown in Figure P 5.2-8 contains an 
unspecified resistance R.
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(a) Determine the value of the current i when R =  4 fl.
(b) Determine the value of the voltage v when R =  8 O.
(c) Determine the value of R that will cause i = 1 A.
(d) Determine the value of R that will cause v = 16 V.

/ R

Figure P 5.2-8

P 5.2-9 Determine the value of the power supplied by the 
current source in the circuit shown in Figure P 5.2-9.

1 5 f t

24 >

------- W V ------- 1

^ 2  A <  

r AAA 1

32 v r

► 'V V v  1
24 f t

5  i

25 f t

12 n

P 5.3-3 The circuit shown in Figure P 5.3-3 has two inputs, vs 
and js, and one output i0. The output is related to the inputs by 
the equation

*o =  a h  +  bvs 
Given the following two facts:

The output is i0 = 0.45 A when the inputs are is =  0.25 A 
and vs =  15 V

and
The output is iQ = 0.30 A when the inputs are i8 =  0.50 A 
and vs — 0 V

Determine the values of the constants a and b and the values of 
the resistances are R { and R2.

Answers: a = 0.6 AJA,b = 0.02 A J\,R \ = 30H,andR2 =  20n .

R?

P 5.3-4 Use superposition to find v for the circuit of Figure 
P 5.3-4.

10 Q

Figure P 5.3-4

1 5 f t

Figure P 5.2-9

Section 5.3 Superposition

P 5.3-1 The inputs to the circuit shown in Figure P 5.3-1 are 
the voltage source voltages Vj and v2. The output of the circuit 
is the voltage vG. The output is related to the inputs by

v0 =  av i +  bv2

where a and b are constants. Determine the values of a and h.

P 5.3-5 Use superposition to find i for the circuit of Figure
P 5.3-5.

Answer: i — —2 mA

20 kft f J  9 mA

Figure P 5.3-1

P 5.3-2 A particular linear circuit has two inputs, vi and v2, and 
one output, v0. Three measurements are made. The first mea­
surement shows that the output is vQ =  4 V when the inputs are vj 
— 2 V and v2 =  0. The second measurement shows that the 
output is vG =  10 V when the inputs are v, =  0 and v2 =  —2.5 V. 
In the third measurement, the inputs are vj =  3 V and v2 =  3 V. 
What is the value of the output in the third measurement?

Figure P 5.3-5

P 5.3-6 Use superposition to find i for the circuit of 
Figure P5.3-6.

Answer: i = 3.5 mA

15 mA



*». 6 Q 3 £2

Prob lems — 0

P 5.3-7 Use superposition to find the value of the voltage va in 
Figure P 5.3-7.

Answer: va =  7 V

*P 5.3-10 The input to the circuit shown in Figure P 5.3-10 is 
the voltage source voltage, vs. The output is the voltage vQ. The 
current source current, za, is used to adjust the relationship 
between the input and output. Design the circuit so that input 
and output are related by the equation vQ =  2vs -I- 9.

Figure P 5.3-7

P 5.3-8 Use superposition to find the value of the current zx in 
Figure P 5.3-8.

Answer: ix — 1/6 A

Figure P 5.3-8

P 5.3-9 The input to the circuit shown in Figure P 5.3-9a is 
the voltage source voltage vs. The output is the voltage vQ. The 
current source current, /a, is used to adjust the relationship 
between the input and output. The plot shown in Figure 
P 5.3-9b specifies a relationship between the input and output 
of the circuit. Design the circuit shown in Figure P 5.3-9a to 
satisfy the specification shown in Figure P 5.3-96.

Hint: Use superposition to express the output as vD =  cvs +  dia 
where c and d are constants that depend on Ru R2, and A. 
Specify values of R j, R2, and A to cause the required value of c.

Finally, specify a value of ia to cause the required 
value of dL.

Hint: Determine the required values of A and ia.

P 5.3-11 The circuit shown in Figure P 5.3-11 has three 
inputs: vb v2, and /3. The output of the circuit is vG. The output 
is related to the inputs by

v0 =  av\ +  bv2 +  c/3

where a, 6 , and c are constants. Determine the values of a, 6 , and c. 
8 Q "2

-AAA/----- 1------

Figure P 5.3-11

P 5.3-12 Determine the voltage vQ(f) for the circuit shown in 
Figure P 5.3-12.

12 cos 2t V

Figure P 5.3-12

P 5.3-13 Determine the value of the voltage vD in the circuit 
shown in Figure P 5.3-13.

Figure P 5.3-9 Figure P 5.3-13
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*P  5.3-14 The circuit shown in Figure P 5.3-14 has two 
inputs, vj and v2, and one output, vc. The output is related to the 
input by the equation

v0 =  avi -I- bv2

where a and b are constants that depend on /?i, R2, and R$.

(a) Use superposition to show that when R3 = R{ || R2 and 
R2 =  nRu

1
a = and

2 n + 2
(b) Design this circuit so that a =  4b.

b =
2n +  2

P 5.3-17 The circuit shown in Figure P 5.3-17 has three 
inputs: v,, i2, and v3. The output of the circuit is the current i0. 
The output of the circuit is related to the inputs by

i\ = av0 +  bv2 -f c/3

where a , b, and c are constants. Determine the values of
a , by and c.

20 Q

Figure P 5.3-14

P 5.3-15 The input to the circuit shown in Figure P 5.3-15 
is the current ix. The output is the voltage vQ. The current i2 
is used to adjust the relationship between the input and 
output. Determine values of the current i2 and the resist­
ance, R , that cause the output to be related to the input by 
the equation

v0 =  - 0 .5/1 +  4

Figure P 5.3-17

P 5.3 -18 Using the superposition principle, find the value of 
the current measured by the ammeter in Figure P 5.3-18a.

Hint: Figure P 5.3-18/? shows the circuit after the ideal 
ammeter has been replaced by the equivalent short circuit 
and a label has been added to indicate the current measured 
by the ammeter, im.

25 3
Answer: im =

3 + 2  2 + 3
5 =  5 — 3 =  2A

Figure P 5.3-15

P 5.3-16 Determine values of the current, za, and the resist­
ance, R, for the circuit shown in Figure P 5.3-16.

8 V

25 V

Figure P 5.3-18 (a) A circuit containing two independent 
sources, (b) The circuit after the ideal ammeter has been replaced 
by the equivalent short circuit and a label has been added to 
indicate the current measured by the ammeter, zm.

P 5.3-19 Using the superposition principle, find the value of 
the voltage measured by the voltmeter in Figure P 5.3-19a.
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Hint: Figure P 5.3-19/) shows the circuit after the ideal 
voltmeter has been replaced by the equivalent open circuit 
and a label has been added to indicate the voltage measured 
by the voltmeter, vm.

Vm = 3 ( 3 +7 3 + 3) 5)  ” •
Answer: v„

,3 + (3 + 3)'
= 5 - 6 =  - I V

3 + (3 +  3)
18

18 V

L JL + I
t ) 5 A I  3 n  "m <

f 1 3 ft  ~ 1

3ft

(a)
Figure P 5.4-1

P 5.4-2 The circuit shown in Figure P 5.4-26 is the Thevenin 
equivalent circuit of the circuit shown in Figure P 5 .4-2a. Find 
the value of the open-circuit voltage, v^, and Thevenin 
resistance, Rx.

10 ft 8ft

Answer: =  —12 V and Rt =  16 ft

Figure P 5.4-2

P 5.4-3 The circuit shown in Figure P 5.4-36 is the Thevenin 
equivalent circuit of the circuit shown in Figure P 5.4-3a. Find the 
value of the open-circuit voltage, Vqc, and Thevenin resistance, Rt.

Answer: voc = 2W and Rt = 4 fl

12 V r .
-o

(b)

Figure P 5.3-19 (a) A circuit containing two independent 
sources. (b) The circuit after the ideal voltmeter has been 
replaced by the equivalent open circuit and a label has been 
added to indicate the voltage measured by the voltmeter, vm.

Section 5.4 Thevenin's Theorem

P 5.4-1 Determine values of Rt and that cause the circuit 
shown in Figure P 5.4-16 to be the Thevenin equivalent circuit 
of the circuit in Figure P 5.4-la.

Hint: Use source transformations and equivalent resistances 
to reduce the circuit in Figure P 5.4-1 a until it is the circuit in 
Figure P 5.4-16.

Answer: Rt =  5 ft and voc =  2 V

(a)
Figure P 5.4-3

P 5.4-4 Find the Thevenin equivalent circuit for the circuit 
shown in Figure P 5.4-4.

12 ft
--------- V A ---------

6ft 
— w v -

10 ft 
-AAAr-

18 V * 3 ft

Figure P 5.4-4

P 5.4-5 Find the Thevenin equivalent circuit for the circuit 
shown in Figure P 5.4-5.

Answer: voc = - 2  V and R{ =  - 8 /3  ft 

0.75i;,

Figure P 5.4-5
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P 5.4-6 Find the Thevenin equivalent circuit for the circuit 
shown in Figure P 5.4-6.

Figure F 5.4-6

P 5.4-7 The circuit shown in Figure P 5.4-7 has four un­
specified circuit parameters: vs, R2, and d, where d is the 
gain of the CCCS.

(a) Show that the open-circuit voltage, v^, the short-circuit 
current, i^, and the Thevenin resistance, Rt% of this circuit 
are given by

_ R2(d+ 1)
Voc R i+ ( d + l ) R 2Vs

{ d + l)
Isc =  ----=-----Vs

was changed, and the current was measured again. The results 
are shown in the table.

(a) Specify the value of R required to cause i =  2 mA.
(b) Given that R > 0, determine the maximum possible value 

of the current z.

Hint: Use the data in the table to represent the circuit by a 
Thevenin equivalent.

R I

2  k Q 4  m A

4  k n 3  m A

Figure P 5.4-9

P 5.4-10 Measurements made on terminals a-b of a linear 
circuit, Figure P 5.4-10a, which is known to be made up only 
of independent and dependent voltage sources and current 
sources and resistors, yield the current-voltage characteristics 
shown in Figure P 5.4-106. Find the Thevenin equivalent 
circuit.

and

Rt =
R\Ri

R i+ ( d - h 1 )*2

(b) Let Ri = R2 = 1 kft. Determine the values of vs and d 
required to cause =  5 V and Rx =  625 ft.

Figure P 5.4-7

P 5.4-8 A resistor, /?, was connected to a circuit box as 
shown in Figure P 5.4-8. The voltage, v, was measured. The 
resistance was changed, and the voltage was measured again. 
The results are shown in the table. Determine the Thevenin 
equivalent of the circuit within the box and predict the 
voltage, v, when R = 8 kft.

R V

2  k £ 2 6  V

4  k Q 2  V

(a)

i  ( m A )

4 0

3 0 -

2 0 ,

L °

I I j y ^ T  i i i i i i

- 4 / 5  - 2  - 1 1  2  3  4  5

- 1 0 v ( V )

- 2 0 -

- 3 0 —

(b)

Figure P 5.4-10

F i g u r e  P  5 . 4 - 8

P 5.4-9 A resistor, R, was connected to a circuit box as shown 
in Figure P 5.4-9. The current, z, was measured. The resistance

P 5.4-11 For the circuit of Figure P 5.4-11, specify the 
resistance R that will cause current zb to be 2 mA. The current 
za has units of amps.
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Hint: Find the Thevenin equivalent circuit of the circuit 
connected to R.

2000ia

Figure P 5.4-11

P 5.4-12 For the circuit of Figure P 5.4-12, specify the value 
of the resistance RL that will cause current zL to be - 2  A.

Answer: Rl — 12ft
41-

Figure P 5.4-12

P 5.4-13 The circuit shown in Figure P 5.4-13 contains an 
adjustable resistor. The resistance R can be set to any value in 
the range 0 < R <  100 kft.

(a) Determine the maximum value of the current ia that can be 
obtained by adjusting R. Determine the corresponding 
value of R.

(b) Determine the maximum value of the voltage va that can 
be obtained by adjusting R. Determine the corresponding 
value of R.

(c) Determine the maximum value of the power supplied to 
the adjustable resistor that can be obtained by adjusting R. 
Determine the corresponding value of R.

12 kQ
- A W — |

18 kO 

24 kO
—AA/V—

P 5.4-14 The circuit shown in Figure P 5.4-14 consists of two 
parts, the source (to the left of the terminals) and the load. The 
load consists of a single adjustable resistor having resistance
0 ^ S  20 ft. The resistance R is fixed but unspecified. When 
Rl =  4 ft, the load current is measured to be ic =  0.375 A. 
When Rl — 8 ft, the value of the load current is iQ =  0.300 A.

(a) Determine the value of the load current when RL =  1 0 ft.
(b) Determine the value of R.

48 Q

Figure P 5.4-14

P 5.4-15 The circuit shown in Figure P 5.4-15 contains an 
unspecified resistance, R. Determine the value of R in each of 
the following two ways.

(a) Write and solve mesh equations.
(b) Replace the part of the circuit connected to the resistor R 

by a Thevenin equivalent circuit. Analyze the resulting 
circuit.

Figure P 5.4-15

P 5.4-16 Consider the circuit shown in Figure P 5.4-16. 
Replace the part of the circuit to the left of terminals a-b 
by its Thevenin equivalent circuit. Determine the value of the 
current i Q .

a

Figure P 5.4-16

P 5.4-17 An ideal voltmeter is modeled as an open circuit. A 
more realistic model of a voltmeter is a large resistance. Figure 
P 5.4-17a shows a circuit with a voltmeter that measures the 
voltage vm. In Figure P 5.4-17/), the voltmeter is replaced by 
the model of an ideal voltmeter, an open circuit. The voltmeter 
measures vmi, the ideal value of vm.
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200 Q io n r i m
(p Voltmeter Q

200 Q 10 Q

Figure P 5.4-19

P 5.4-20 Consider the circuit shown in Figure P 5.4-20. 
Determine

(a) The value of vR that occurs when R =  9 O.
(b ) The value of R that causes vR =  5.4 V.
(c) The value of R that causes /R =  300 mA.

20 Cl
AA/V

300 mA

6Q
-AAAr-

lR

(P 30 Q vR

Figure P 5.4-17

As Rm —» oo, the voltmeter becomes an ideal voltmeter 
and vm —> vmi. When Rm < oo, the voltmeter is not ideal and 
vm > vmi. The difference between vm and vmi is a measurement 
error caused by the fact that the voltmeter is not ideal.

(a) Determine the value of vmi.
(b) Express the measurement error that occurs when Rm = 

lOOOH as a percentage of vmi.
(c) Determine the minimum value of Rm required to ensure 

that the measurement error is smaller than 2 percent of vmi.

P 5.4-18 Determine the Thevenin equivalent circuit for the 
circuit shown in Figure P 5.4-18.

Figure P 5.4-20

Section 5.5 Norton's Equivalent Circuit

P 5.5-1 The part of the circuit shown in Figure P 5.5-la to the 
left of the terminals can be reduced to its Norton equivalent 
circuit using source transformations and equivalent resistance. 
The resulting Norton equivalent circuit, shown in Figure 
P 5.5-16, will be characterized by the parameters:

/sc =  0.5 A and Rt =  20 O

(a) Determine the values of vs and R }.
(b) Given that 0 < R2 < 00 , determine the maximum values 

of the voltage, v, and of the power, p  =  vi.

Answers: vs =  37.5 V, R\ = 25 0 , max v =  10 V and max 
p =  1.25 W

50 a
A M 1— » — 0-

F i g u r e  P  5 . 4 - 1 8

P 5.4-19 Given that 0 < R < 00 in the circuit shown in 
Figure P 5.4-19, consider these two observations:

Observation 1: When R =  2 Cl then vR =  4 V and iR =  2 A.

Observation 1: When R =  6 fi then vR =  6 V and iR =  1 A.
Determine the following:

(a) The maximum value of zR and the value of R that causes /R 
to be maximal.

(b) The maximum value of vR and the value of R that causes 
vR to be maximal.

(c) The maximum value ofp R =  zRvR and the value of R that
causes pR to be maximal.

0.25 A ( T ) R i ^  v ^  Ro

G — H r

(a)

(b)

Figure P 5.5-1



P r o b le m s ------ ( 201

P 5.5-2 Two black boxes are shown in Figure P 5.5-2. Box A 
contains the Thevenin equivalent of some linear circuit, and box 
B contains the Norton equivalent of the same circuit. With 
access to just the outsides of the boxes and their terminals, how 
can you determine which is which, using only one shorting wire?

Box A Box B

6 A

1 Q «

d)
^ ) 3 a

-o b

Figure P 5.5-4

P 5.5-5 The circuit shown in Figure P 5.5-56 is the Norton 
equivalent circuit of the circuit shown in Figure P 5.5-5a. Find 
the value of the short-circuit current, /sc, and Thevenin resist­
ance, /?,.

Answer: isc= 1.13 A and Rt =  7.57(1

(b)
Figure P 5.5-5

P 5.5-6 The circuit shown in Figure P 5.5-6b is the Norton 
equivalent circuit of the circuit shown in Figure P 5.5-6 a. Find 
the value of the short-circuit current, /sc, and Thevenin resist­
ance, Rt.
Answer: i =  — 24 A and =  —3 Q

3Q 6 Q

(b)

Figure P 5.5-6

P 5.5-3 Find the Norton equivalent circuit for the circuit 
shown in Figure P 5.5-3.

Answer: Rt = 2 0  and /sc =  — 7.5 A

P 5.5-7 Determine the value of the resistance R in the circuit 
shown in Figure P 5.5-7 by each of the following methods:

(a) Replace the part of the circuit to the left of terminals a-b 
by its Norton equivalent circuit. Use current division to 
determine the value of R.

(b) Analyze the circuit shown Figure P 5.5-7 using mesh 
equations. Solve the mesh equations to determine the 
value of R.

10 kQ

Figure P 5.5-3

P 5.5-4 Find the Norton equivalent circuit for the circuit 
shown in Figure P 5.5-4.

5 Q
A /W —° a

2 5 V ( M  ‘b < T > 4 / b R ^  I 0.5 mA

Figure P 5.5-7

*P 5.5-8 The device to the right of terminals a -b  in Figure 
P 5.5-8 is a nonlinear resistor characterized by

v2 
1 ~  2

Determine the values of / and v.

2 A

1
-=- Figure P 5.5-8

P 5.5-9 Find the Norton equivalent circuit for the circuit 
shown in Figure P 5.5-9.
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< 0 > — v w
4  f l  1  n  a

—V A — o

6  i i  Q j  2 . 5  A ‘x | ^ 3 n

-o
b

Figure P 5.5-9

P 5.5-10 Find the Norton equivalent circuit for the circuit 
shown in Figure P 5.5-10.

4 Q

As Rm —► 0, the ammeter becomes an ideal ammeter and 
im imv When Rm > 0, the ammeter is not ideal and im < imi. 
The difference between im and im* is a measurement error 
caused by the fact that the ammeter is not ideal.

(a) Determine the value of imi.
(b) Express the measurement error that occurs when Rm = 

20 O as a percentage of imi.
(c) Determine the maximum value of Rm required to ensure 

that the measurement error is smaller than 2 percent of zmi.

P 5.5-12 Determine values of Rt and iK that cause the circuit 
shown in Figure P 5.5-12/? to be the Norton equivalent circuit 
of the circuit in Figure P 5.5-12a.

Answer: Rt = 3 H and ix  =  —2 A

P 5.5-11 An ideal ammeter is modeled as a short circuit. A 
more realistic model of an ammeter is a small resistance. 
Figure P 5.5-1 la shows a circuit with an ammeter that 
measures the current im. In Figure P 5.5-10/?, the ammeter 
is replaced by the model of an ideal ammeter, a short circuit. 
The ammeter measures /mi, the ideal value of im.

(a)

Figure P 5.5-12

P 5.5-13 Use Norton’s theorem to formulate a general 
expression for the current i in terms of the variable resistance 
R shown in Figure P 5.5-13.

Answer: i =  20/(8 4- R) A

8 a

30 V

Figure P 5.5-13

16 a

4 kn

(b)

*m
4 kQ —*

Figure P 5.5-11

Section 5.6 M axim um  Power Transfer

P 5.6-1 The circuit shown in Figure P 5.6-1 consists of two 
parts separated by a pair of terminals. Consider the part of the 
circuit to the left of the terminals. The open circuit voltage is 
voc =  8 V, and short-circuit current is zsc =  2 A. Determine the 
values of (a) the voltage source voltage, vs, and the resistance 
R2, and (b) the resistance R that maximizes the power deliv­
ered to the resistor to the right of the terminals, and the 
corresponding maximum power.

F igure P 5.6-1



P r o b le m s ------ ( 203

P 5.6-2 The circuit model for a photovoltaic cell is given in 
Figure P 5.6-2 (Edelson, 1992). The current i8 is proportional 
to the solar insolation (kW/m2).
(a) Find the load resistance, RL, for maximum power transfer.
(b) Find the maximum power transferred when /s 1 A.

Figure P 5.6-2 Circuit model of a photovoltaic cell.

P 5.6-3 For the circuit in Figure P 5.6-3, (a) find R such that 
maximum power is dissipated in R, and (b) calculate the value 
of maximum power.

Answer: R = 60 Cl and Pmax =  54 mW

150 Q 100 a

Figure P 5.6-3

P 5.6-4 For the circuit in Figure P 5.6-4, prove that for Rs 
variable and RL fixed, the power dissipated in RL is maximum 
when R* =  0 .

Figure P 5.6-4

P 5.6-5 Find the maximum power to the load R{ if the 
maximum power transfer condition is met for the circuit of 
Figure P 5.6-5.

Answer: max pL =  0.75 W

P 5.6-6 Determine the maximum power that can be absorbed 
by a resistor, /?, connected to terminals a-b of the circuit 
shown in Figure P 5.6-6. Specify the required value of R.

Figure P 5.6-6 Bridge circuit.

P 5.6-7 Figure P 5.6-7 shows a source connected to a load 
through an amplifier. The load can safely receive up to 15 W of 
power. Consider three cases:

(a) A = 20 V/V and RQ =  10 0 . Determine the value of RL that 
maximizes the power delivered to the load and the corre­
sponding maximum load power.

(b) A = 20 V/V and RL =  8 fl. Determine the value of R0 that 
maximizes the power delivered to the load and the corre­
sponding maximum load power.

(c) R0 = 100  and RL = 8 Cl. Determine the value of A that 
maximizes the power delivered to the load and the corre­
sponding maximum load power.

amplifier load

Figure P 5.6-7

P 5.6-8 The circuit in Figure P 5.6-8 contains a variable 
resistance, R, implemented using a potentiometer. The resistance 
of the variable resistor varies over the range 0 <  R <  1000 fl. The 
variable resistor can safely receive 1 /4  W power. Determine the 
maximum power received by the variable resistor. Is the circuit 
safe?

P 5.6-9 For the circuit of Figure P 5.6-9, find the power 
delivered to the load when RL is fixed and Rt may be varied
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between 1 O and 5 fl. Select Rt so that maximum power is 
delivered to RL.

Answer: 13.9 W

r l= s q

Figure P 5.6-9

P 5.6-10 A resistive circuit was connected to a variable resistor, 
and the power delivered to the resistor was measured as shown in 
Figure P 5.6-10. Determine the Thevenin equivalent circuit.

Answer: Rt = 20 Cl and =  20 V

R (ohms)

Figure P 5.6-10

-M /Vn --------V A -------
i o n 40 Q 60 Q

U v w - •-- f--O--<

) 15 V 250 mA 

12 Q
6

20 3

m m /(mA)

5000 16.5
500 43.8

0 97.2

Figure P 5.9-1

P 5.9-2 Your lab partner built the circuit shown in Figure 
P 5.9-2 and measured the current i and voltage v corresponding 
to several values of the resistance R. The results are shown in 
the table in Figure P 5.9-2. Your lab partner says that RL =  
8000 fl is required to cause i =  1 mA. Do you agree? Justify 
your answer.

Section 5.8 Using PSpice to Determ ine the  
Thevenin Equivalent Circuit

P 5.8-1 The circuit shown in Figure P 5.8-1 is separated into two 
parts by a pair of terminals. Call the part of the circuit to the left of 
the terminals circuit A and the part of the circuit to the right of the 
terminal circuit B. Use PSpice to do the following:

(a) Determine the node voltages for the entire circuit.
(b) Determine the Thevenin equivalent circuit of circuit A.
(c) Replace circuit A by its Thevenin equivalent and deter­

mine the node voltages of the modified circuit.
(d) Compare the node voltages of circuit B before and after 

replacing circuit A by its Thevenin equivalent.

R i V
open 0 mA 12 V
10 kQ 0.857 mA 8.57 V
short 3 mA 0 V

Figure P 5.9-2

P 5.9-3 In preparation for lab, your lab partner determined the 
Thevenin equivalent of the circuit connected to RL in Figure 
P 5.9-3. She says that the Thevenin resistance is Rt = yy R and the 
open-circuit voltage is Voc =  yy V. In lab, you built the circuit 
using R — llO fi and RL = 40 H and measured that i =  54.5 mA. 
Is this measurement consistent with the prelab calculations? 
Justify your answers.

3 R

Figure P 5.8-1

Section 5.9 H o w  Can W e Check . . . ?

P 5.9-1 For the circuit of Figure P 5.9-1, the current i has 
been measured for three different values of R and is listed in 
the table. Are the data consistent?
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P 5.9-4 Your lab partner claims that the current i in Figure 
P 5 .9 . 4  will be no greater than 12.0 mA, regardless of the value 
of the resistance R. Do you agree?

i 500 O

1500 Q

P 5.9-5 Figure P 5.9-5 shows a circuit and some corresponding 
data. Two resistances, R\ and R, and the current source current are 
unspecified. The tabulated data prov ide values of the current, /', 
and voltage, v, corresponding to several values of the resistance R.
(a) Consider replacing the part of the circuit connected to the 

resistor R by a Thevenin equivalent circuit. Use the data in 
rows 2 and 3 of the table to find the values of Rt and v^, the 
Thevenin resistance, and the open-circuit voltage.

(b) Use the results of part (a) to verify that the tabulated data 
are consistent.

(c) Fill in the blanks in the table.
(d) Determine the values of R\ and zs.

(b)

RM 1, A v,\/

0 3 0
10 1.333 13.33
2 0 0.857 17.14
40 0.5 ?
80 ? 21.82

Figure P 5.9-5

PSpice Problems
SP 5-1 The circuit in Figure SP 5-1 has three inputs: vj, v2, 
and i3. The circuit has one output, vc. The equation

v0 =  a v\ +  b V2 4- c 13

expresses the output as a function of the inputs. The 
coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to determine 
the values of a, b, and c.

(b) Suppose vi =  10 V and v2 =  8 V, and we want the output to 
be v0 =  7 V. What is the required value of /3?

Hint: The output is given by v0 =  a when v, =  1 V, v2 =  0 V, 
and 13 =  0 A.

100 Q

A nsw er:(a) vD =  0.3333vY 4  0.3333v2 4  33.33z3, (b) i3 =  30 
mA

SP 5-2 The pair of terminals a-b partitions the circuit in 
Figure SP 5-2 into two parts. Denote the node voltages at 
nodes 1 and 2 as v, and v2. Use PSpice to demonstrate that 
performing a source transformation on the part o f the 
circuit to the left of the terminal does not change anything 
to the right of the terminals. In particular, show that the 
current, iQ, and the node voltages, Vj and v2, have the same 
values after the source transformation as before the source 
transformation.

Figure SP 5-1
SP 5-3 Use PSpice to find the Thevenin equivalent circuit for 
the circuit shown in Figure SP 5-3.
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Answer: =  - 2  V and Rt — - 8 /3  (1

0.75v~

Find the value of the short-circuit current, fsc, and Thevenin 
resistance, Rv

Answer: ix  — 1.13 V and Rx = 7.57 H

Figure SP 5-3

SP 5-4 The circuit shown in Figure SP 5-46 is the Norton 
equivalent circuit of the circuit shown in Figure SP 5-4a.

(a)
Figure SP 5-4

(b)

Design Problem s
DP 5-1 The circuit shown in Figure DP 5-la has four un­
specified circuit parameters: vs, R u R2, and Rt,. To design this 
circuit, we must specify the values of these four parameters. The 
graph shown in Figure DP 5-16 describes a relationship between 
the current i and the voltage v.

R1 R3 / t
—VNA/— o—

/?2 v

— b— y

(a)

Figure DP 5-1

Specify values of vs, R j, R2, and R3 that cause the current / 
and the voltage v in Figure DP 5-la to satisfy the relationship 
described by the graph in Figure DP 5-16.

First Hint: The equation representing the straight line in Figure 
DP 5-16 is

v =  - R xi +  Voc 

That is, the slope of the line is equal to -1  times the Thevenin 
resistance, and the v-intercept is equal to the open-circuit voltage.

Second Hint: There is more than one correct answer to this 
problem. Try setting R\ — R2.

DP 5-2 The circuit shown in Figure DP 5-2a has four un­
specified circuit parameters: is, R u R2, and /?3. To design this 
circuit, we must specify the values of these four parameters. The 
graph shown in Figure DP 5-26 describes a relationship between 
the current / and the voltage v.

Specify values of is, R \,R 2, and R3 that cause the current i 
and the voltage v in Figure DP 5-2a to satisfy the relationship 
described by the graph in Figure DP 5-26.

First Hint: Calculate the open-circuit voltage, v^, and the 
Thevenin resistance, Rt, of the part of the circuit to the left 
of the terminals in Figure DP 5-2a.

Second Hint: The equation representing the straight line in 
Figure DP 5-26 is

V  =  — R t i  +  Voc

That is, the slope of the line is equal to -1  times the Thevenin 
resistance, and the v-intercept is equal to the open-circuit 
voltage.

Third Hint: There is more than one correct answer to this 
problem. Try setting both R3 and R\ + R2 equal to twice the 
slope of the graph in Figure DP 5-26.

R2
— A /W -

/?i r 3

(a)
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v. V

Figure DP 5-2

DP 5-3 The circuit shown in Figure DP 5-3a has four un­
specified circuit parameters: vs, R\, R2, and R$. To design this 
circuit, we must specify the values of these four parameters. The 
graph shown in Figure DP 5-36 describes a relationship between 
the current i and the voltage v.

v, V

Figure DP 5-3

Is it possible to specify values of vs, Ru R2, and /?3 that 
cause the current / and the voltage v in Figure DP 5-\a to satisfy 
the relationship described by the graph in Figure DP 5-36? 
Justify your answer.

DP 5-4 The circuit shown in Figure DP 5-4a has four un­
specified circuit parameters: vs, R \, R2, and d, where d is the gain 
of the CCCS. To design this circuit, we must specify the values 
of these four parameters. The graph shown in Figure DP 5-46 
describes a relationship between the current j and the voltage v.

Specify values of vs, R\, R2, and d that cause the current i  

and the voltage v in Figure DP 5-4a to satisfy the relationship 
described by the graph in Figure DP 5-46.

First Hint: The equation representing the straight line in Figure 
DP 5-46 is

v =  - R t i  +  Voc

That is, the slope of the line is equal to — 1 times the Thevenin 
resistance and the v-intercept is equal to the open-circuit 
voltage.

Second Hint: There is more than one correct answer to this 
problem. Try setting R} = R2-

*a

v, V

Figure DP 5-4
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6.1 I N T R O D U C T I O N  ------------------------------------------------------------------------------

This chapter introduces another circuit element, the operational amplifier, or op amp. We will learn
how to analyze and design electric circuits that contain op amps. In particular, we will see that:

• Several models, o f varying accuracy and complexity, are available for operational amplifiers. 
Simple models are easy to use. Accurate models are more complicated. The simplest model o f the 
operational amplifier is the ideal operational amplifier.

• Circuits that contain ideal operational amplifiers are analyzed by writing and solving node 
equations.

• Operational amplifiers can be used to build circuits that perform mathematical operations. Many o f 
these circuits are widely used and have been named. Figure 6.5-1 provides a catalog o f some useful 
operational amplifier circuits.

• Practical operational amplifiers have properties that are not included in the ideal operational 
amplifier. These include the input offset voltage, bias current, dc gain, input resistance, and output 
resistance. More complicated models are needed to account for these properties.

6.2 THE O P E R A T I O N A L  A M P L I F I E R

The operational amplifier is an electronic circuit element designed to be used with other circuit 
208 ) elements to perform a specified signal-processing operation. The ^ A 7 4 1 operational amplifier is 

shown in Figure 6.2-1 a. It has eight pin connections, whose functions are indicated in Figure 6.2-1 b.
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FIGURE 6.2-1 (a) A (iA741 integrated circuit has eight connecting pins. (b) The correspondence between the circled 
pin numbers of the integrated circuit and the nodes of the operational amplifier.

The operational amplifier shown in Figure 6.2-2 has five terminals. The names of these terminals 
are shown in both Figure 6.2-16 and Figure 6.2-2. Notice the plus and minus signs in the triangular part 
of the symbol of the operational amplifier. The plus sign identifies the noninverting input, and the 
minus sign identifies the inverting input.

The power supplies are used to bias the operational amplifier. In other words, the pow er supplies 
cause certain conditions that are required for the operational amplifier to function properly. It is 
inconvenient to include the power supplies in drawings of operational amplifier circuits. These power 
supplies tend to clutter drawings of operational amplifier circuits, making them harder to read. 
Consequently, the power supplies are frequently omitted from drawings that accompany explanations 
of the function of operational amplifier circuits, such as the drawings found in textbooks. It is 
understood that power supplies are part of the circuit even though they are not shown. (Schematics, the 
drawings used to describe how to assemble a circuit, are a different matter.) The power supply voltages 
are shown in Figure 6.2-2, denoted as v+ and v_.

Because the power supplies are frequently omitted from the drawing of an operational amplifier 
circuit, it is easy to overlook the power supply currents. This mistake is avoided by careful application 
of Kirchhoff s current law (KCL). As a general rule, it is not helpful to apply KCL in a way that 
involves any power supply current. Two specific cases are of particular importance. First, the ground 
node in Figure 6.2-2 is a terminal of both power supplies. Both power supply currents would be 
involved if KCL were applied to the ground node. These currents must not be overlooked. It is best 
simply to refrain from applying KCL at the ground node of an operational amplifier circuit. Second,

H IGl RE 6.2-2 An op amp, including power supplies v+ and v
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KCL requires that the sum o f all currents into the operational amplifier be zero:

11 /*2 4" l*o +  *+ +  =  0

Both power supply currents are involved in this equation. Once again, these currents must not be 
overlooked. It is best simply to refrain from applying KCL to sum the currents into an operational 
amplifier when the power supplies are omitted from the circuit diagram.

6.3 T H E  I D E A L  O P E R A T I O N A L  A M P L I F I E R

Operational amplifiers are complicated devices that exhibit both linear and nonlinear behavior. The 
operational amplifier output voltage and current, vG and i0, must satisfy three conditions for an 
operational amplifier to be linear, that is:

IV0 1 <  Vsat

|*o | ^  *sat

dv0(t)
dt

< SR (6.3-1)

The saturation voltage, vsat, the saturation current, /sat, and the slew rate limit, SR , are all parameters o f 
an operational amplifier. For example, if  a /zA741 operational amplifier is biased using +15-V  and
— 15-V power supplies, then

V
vsat =  14 V, zsat =  2 mA, and SR =  500,000 — (6.3-2)

s
These restrictions reflect the fact that operational amplifiers cannot produce arbitrarily large voltages 
or arbitrarily large currents or change output voltage arbitrarily quickly.

Figure 6.3-1 describes the ideal operational amplifier. The ideal operational amplifier is a 
simple model o f an operational amplifier that is linear. The ideal operational amplifier is characterized 
by restrictions on its input currents and voltages. The currents into the input terminals o f an ideal 
operational amplifier are zero. Consequently, in Figure 6.3-1,

i i =  0 and 1*2 =  0

The node voltages at the input nodes o f an ideal operational amplifier are equal. Consequently, in 
Figure 6.3-1,

V'2 =  V]

The ideal operational amplifier is a model o f a linear operational amplifier, so the operational amplifier 
output current and voltage must satisfy the restrictions in Eq. 6.3-1. If  they do not, then the ideal 
operational amplifier is not an appropriate model o f the real operational amplifier. The output current 
and voltage depend on the circuit in which the operational amplifier is used. The ideal op amp 
conditions are summarized in Table 6.3-1.

Inverting 
input node

Output

T FIGURE 6.3-1 The ideal operational amplifier.
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Operating Conditions for an Ideal Operational Amplifier

VARIABLE IDEAL CONDITION

Inverting node input current * i =0

Noninverting node input current i2 =  0

Voltage difference between inverting node voltage v>i and v2—Vi = 0

noninverting node voltage v2

E x a m p l e  6 . 3 - 1  Id e a l O p e ra t io n a l  A m p lif ie r
J

Consider the circuit shown in Figure 6.3.2a. Suppose the operational amplifier is a /xA741 operational amplifier. 
Model the operational amplifier as an ideal operational amplifier. Determine how the output voltage, vG, is related 
to the input voltage, vs.

v 1 = v 0 6  

V2~ V\ -  "o

Inverting 
' input node h -  o

Output
node

*L:

(a)

X

(b)

FIGURE 6.3-2 (a) The 
operational amplifier 
circuit for Example 6.3-1 
and (6 ) an equivalent 
circuit showing the 
consequences of 
modeling the operational 
amplifier as an ideal 
operational amplifier. The 
voltages v'i, v2, and vG are 
node voltages.

Solution
Figure 6.3-2b shows the circuit when the operational amplifier of Figure 6.3-2a is modeled as an ideal operational 
amplifier.

1. The inverting input node and output node of the operational amplifier are connected by a short circuit, so the 
node voltages at these nodes are equal:

vi =  v0

2. The voltages at the inverting and noninverting nodes of an ideal op amp are equal:
V2 =  Vl =  v0

3. The currents into the inverting and noninverting nodes of an operational amplifier are zero, so
i*i =  0 and i*2 =  0

4. The current in resistor Rs is i2 =  0, so the voltage across Rs is 0 V. The voltage across R  ̂is vs -  v2 =  vs -  v0;
hence,

or

vs -  v0 =  0
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Does this solution satisfy the requirements o f Eqs. 6.3-1 and 6.3-2? The output current o f the operational amplifier 
must be calculated. Apply KCL at the output node o f  the operational amplifier to get

*i +  *o +  — 0
AL

Because i t =  0,

Now Eqs. 6.3-1 and 6.3-2 require

l o — -
R  L

| Vet <  14 V

R L

d t Vs

< 2 mA

<  500,000 -
S

For example, when vs =  10 V and R i =  20 k fi, then

Iv.l =  10V  <  14 V

1 0 V  1 A ^  A-  mA <  2 mA

dt

20 kfl 2

=  0 <  500,000

This is consistent with the use o f the ideal operational amplifier. On the other hand, when vs =  10 V and 
R i =  2 k fi, then

=  5 mA >  2 mA

so it is not appropriate to model the ^uA741 as an ideal operational amplifier when vs =  10 V and R l  — 2 k fi. 
When vs =  10 V, we require R^ > 5 k fi to satisfy Eq. 6.3-1.

6.4 N O D A L  A N A L Y S I S  O F  C I R C U I T S  C O N T A I N I N G  
I D E A L  O P E R A T I O N A L  A M P L I F I E R S  ---------------------

It is convenient to use node equations to analyze circuits containing ideal operational
amplifiers.

There are three things to remember.

1. The node voltages at the input nodes of ideal operational amplifiers are equal. Thus, one o f these 
two node voltages can be eliminated from the node equations. For example, in Figure 6.4-1, the 
voltages at the input nodes o f the ideal operational amplifier are v { and v2. Because

vi =  v2

v2 can be eliminated from the node equations.
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2. The currents in the input leads of an ideal operational amplifier are zero. These currents are 
involved in the KCL equations at the input nodes of the operational amplifier.

3. The output current of the operational amplifier is not zero. This current is involved in the KCL 
equations at the output node of the operational amplifier. Applying KCL at this node adds another 
unknown to the node equations. If the output current of the operational amplifier is not to be 
determined, then it is not necessary to apply KCL at the output node of the operational amplifier.

E x a m p l e  6 . 4 - 1  D iffe re n c e  A m p lif ie r y
The circuit shown in Figure 6.4-1 is called a difference amplifier. The operational amplifier has been modeled as 
an ideal operational amplifier. Use node equations to analyze this circuit and determine vD in terms of the two 
source voltages, va and vb.

-AAA^
10 kQ vl

Inverting
input node 30 kQ

■AAAr

i l « 0

v2 = ui

10 kQ I |\|onjnvert jng l2 0
vb 30 kQ >  input node

Output 
X  node

50 kQ >  v0

FIGURE 6.4-1 Circuit of Example 6.4-1.

Solution
The node equation at the noninverting node of the ideal operational amplifier is

v2 v2 -  vb

=  0

30.000 10,000 
Because v2 =  vj and i2 =  0, this equation becomes

vi vi -  Vb
30,000 10,000

Solving for vj, we have

vi =  0.75 •
The node equation at the inverting node of the ideal operational amplifier is

Vl ~  Va Vl ~  Vp .
10.000 30,000 

Because V| =  0.75vb and i'i =  0, this equation becomes

Solving for vQ, we have

0-75 ■ Vb -  va 0.75 • Vb -  v0
10,000 30,000

v0 =  3(vb -  va)

The difference amplifier takes its name from the fact that the output voltage, v0, is a function of the difference, 
v r  va, oi the input voltages.
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1
E x a m p l e  6 . 4 - 2  A n a l y s i s  o f  a Br i d g e  Ampl i f i e r

Next, consider the circuit shown in Figure 6.4-2tf. This circuit is called a bridge amplifier. The part o f the circuit that is 
called a bridge is shown in Figure 6.4-26. The operational amplifier and resistors, R 5 and # 6, are used to amplify the 
output of the bridge. The operational amplifier in Figure 6.4-2a has been modeled as an ideal operational amplifier. As a 
consequence, v\ =  0 and i\ =  0, as shown. Determine the output voltage, vD, in terms of the source voltage, vs.

(a) (b)

► r  -  RlR2 + R3Ra
x R l +R2 r 3 +r 4

( C )

FIG l RE 6.4-2 (a) A bridge amplifier, including 
the bridge circuit. (b) The bridge circuit and (c) 
its Thevenin equivalent circuit, {d) The bridge 
amplifier, including the Thevenin equivalent of 
the bridge.

Solution
Here is an opportunity to use Thevenin's theorem. Figure 6.4-2c shows the Thevenin equivalent o f  the bridge 
circuit. Figure 6.4-2J shows the bridge amplifier after the bridge has been replaced by its Thevenin equivalent. 
Figure 6.4-2d  is simpler than Figure 6.4-2a. It is easier to write and solve the node equations representing Figure
6.4-2J than it is to write and solve the node equations representing Figure 6A-2a. Thevenin’s theorem assures us 
that the voltage v0 in Figure 6A -2d  is the same as the voltage v0 in Figure 6.4-2a.

Let us write node equations representing the circuit in Figure 6A-2d. First, notice that the node voltage va is 
given by (using KVL)

Va =  V! +  Voc +  R t i \

Because vi =  0 and i\ = 0 ,

va — voc
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E x a m p l e  6 . 4 - 3  A n a ly s is  o f  an  O p A m p C ir c u i t  
U s in g  N o d e  E q u a tio n s

Consider the circuit shown in Figure 6.4-3. Find 
the value of the voltage measured by the 
voltmeter.

Solution
Figure 6.4-4 shows the circuit from Figure 6.4-3 
after replacing the voltmeter by an equivalent 
open circuit and labeling the voltage measured 
by the voltmeter. We will analyze this circuit by 
writing and solving node equations. The nodes of 
the circuit are numbered in Figure 6.4-4. Let vt, 
v2, v3, and v4 denote the node voltages at nodes 1,
2, 3, and 4, respectively.

The output of this circuit is the voltage 
measured by the voltmeter. The output voltage 
is related to the node voltages by

vm =  v4 -  0 =  v4

The inputs to this circuit are the voltage of 
the voltage source and the currents of the current 
sources. The voltage of the voltage source is 
related to the node voltages at the nodes of the 
voltage source by

0 -  v3 =  2.75 => v3 =  -2.75 V

Apply KCL to node 2 to get
v3 ~ v2

2.75 V

FIGURE 6.4-3 The circuit considered in Example 6.4-3.

20J ^  ©  40 kii
j — - 0 ---- 1-----WV-

FIGURE 6.4-4 The circuit from Figure 6.4-3 after replacing the 
voltmeter by an open circuit and labeling the nodes. (Circled numbers 
are node numbers.)

30,000 =  0 +  60 x 10~6 v3 -  v2 =  1.8 V

Using v3 =  —2.75 V gives
v2 =  -4.55 V
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The noninverting input o f the op amp is connected to node 2. The node voltage at the inverting input o f an 
ideal op amp is equal to the node voltage at the noninverting input. The inverting input o f the op amp is connected 
to node 1. Consequently,

Vl =  v2 =  -4 .5 5  V

Apply KCL to node 1 to get

20 x 10-6 =  0 +
vi -  v4

v, — v4 =  0.8 V
40,000

Using vm =  v4 and v\ =  -4 .5 5  V gives the value o f the voltage measured by the voltmeter to be
vm — -4 .5 5  -  0.8 =  -5 .3 5  V

E x a m p l e  6 . 4 - 4  A n a l y s i s  o f  an Op A m p  Ci r c u i t

Consider the circuit shown in Figure 6.4-5. Find 
the value o f the voltage measured by the 
voltmeter.

Solution
Figure 6.4-6 shows the circuit from Figure 6.4-5 
after replacing the voltmeter by an equivalent 
open circuit and labeling the voltage measured 
by the voltmeter. We will analyze this circuit by 
writing and solving node equations. Figure 6.4-6 
show s the circuit after numbering the nodes. Let 
Vi, v2, v3, and v4 denote the node voltages at nodes
1, 2, 3, and 4, respectively.

The input to this circuit is the voltage o f the 
voltage source. This input is related to the node 
voltages at the nodes o f the voltage source by

0 - v ,  = 3 .3 5  =► vi =  -3 .3 5  V

The output o f this circuit is the voltage measured 
by the voltmeter. The output voltage is related to 
the node voltages by

vm =  v4 -  0 =  v4

The noninverting input of the op amp is connected to 
the reference node. The node voltage at the inverting 
input of an ideal op amp is equal to the node voltage 
at the noninverting input. The inverting input o f the 
op amp is connected to node 2. Consequently,

40 kQ 8  kU

Apply KCL to node 2 to get
Vl ~  V2 

20,000

40 kQ (3) 8  kQ

=  0 + V2 ~  V3 
40,000

FIGURE 6.4-6 The circuit from Figure 6.4-5 after replacing the 
voltmeter by an open circuit and labeling the nodes. (Circled 
numbers are node numbers.)

v2 =  0 V

v3 =  —2vj +  3 v 2 =  —2vj
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— — —  =  — — ---------1- — — —  = >  5 v 4 =  — V2 +  1 0 v i  =  1 0 v i
40,000 10,000 8000

Combining these equations gives

v’4 =  2 v 3 =  — 4 v i

Using vm =  v4 and vj =  -3.35 V gives the value of the voltage measured by the voltmeter to be

vm =  —4(—3.35) =  13.4 V

Apply KCL to node 3 to get

- ©

6.5 D E S I G N  U S I N G  O P E R A T I O N A L  A M P L I F I E R S

One of the early applications of operational amplifiers was to build circuits that performed mathematical 
operations. Indeed, the operational amplifier takes its name from this important application. Many of the 
operational amplifier circuits that perform mathematical operations are used so often that they have been 
given names. These names are part of an electrical engineer’s vocabulary. Figure 6.5-1 shows several 
standard operational amplifier circuits. The next several examples show how to use Figure 6.5-1 to design 
simple operational amplifier circuits.

n
uout “ yin

1

(c) Voltage follower (buffer amplifier)

M l-

L’out - + K21'2 + ^ 3̂ 3)

RJKX 
1 1 O—VV\r

RJK-2
i>2 O—'̂ 11

RJK 3
L’3 o--*VW--1 1

iKX + k2 ♦ k3)) :

(d) Summing amplifier (e) Noninverting summing amplifier

* IGKRE 6.5-1 A brief catalog of operational amplifier e.rcuits. Note that all node voltages are referenced to the ground node.
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*>OUt =-*1*3

*2

r

r

AAA— i
*3

AAA— 1
r2

f / i )  Negative resistance convertor

r T "
-AAA/—

*2

o—AAA/ y ~AAAr
1 _ vir
'out ~ D

(i) Voltage-controlled 
current source (VCCS)

FIGURE 6.5-1 (Continued)

\
E x a m p l e  6 . 5 - 1  P r e v e n t i n g  L o a d i n g  U s i n g  a V o l t a g e  F o l l o w e r

This example illustrates the use of a voltage follower to prevent loading. The voltage follower is shown in Figure
6.5-lc. Loading can occur when two circuits are connected. Consider Figure 6.5-2. In Figure 6.5-2a, the output o f 
circuit 1 is the voltage va. In Figure 6.5-2b, circuit 2 is connected to circuit 1. The output o f circuit 1 is used as the 
input to circuit 2. Unfortunately, connecting circuit 2 to circuit 1 can change the output o f circuit 1. This is called 
loading. Referring again to Figure 6.5-2, circuit 2 is said to load circuit 1 if  vb ^  va. The current z'b is called the load 
current. Circuit 1 is required to provide this current in Figure 6.5-2 b but not in Figure 6.5-2 a. This is the cause o f  the 
loading. The load current can be eliminated using a voltage follower as shown in Figure 6.5-2c. The voltage 
follower copies voltage va from the output o f circuit 1 to the input o f circuit 2 without disturbing circuit 1.

U = 0
------ --------- ----------------

Circuit
+

Circuit
1 2

(a) (b) (c)

FIGIRE 6.5-2 Circuit 1 (a) before and (b) after circuit 2 is connected, (c) Preventing loading, using a voltage follower.
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20 kQ i  *a 20 kQ i

60 kQ«

-o
+
L'a în

1

60 kQ. • 30 kQ

~ r

(a) (b) (c)

FIGURE 6.5-3 A voltage divider (a) before and (b) after a 30-kQ resistor is added. (c) A voltage follower is added to prevent 
loading.

Solution
As a specific example, consider Figure 6.5-3. The voltage divider shown in Figure 6.5-3<z can be analyzed by 
writing a node equation at node 1:

+  -

Solving for va, we have

20,000 60,000

3
V* =  4 V"

In Figure 6.5-36, a resistor is connected across the output of the voltage divider. This circuit can be analyzed 
by writing a node equation at node 1:

Vb -  Vin Vb Vb =  Q

20,000 60,000 + 30,000

Solving for vb, we have

1
Vb =  ^Vtn

Because vb ^  va, connecting the resistor directly to the voltage divider loads the voltage divider. This loading is 
caused by the current required by the 30-kfl resistor. Without the voltage follower, the voltage divider must 
provide this current.

In Figure 6.5-3c, a voltage follower is used to connect the 30-kfl resistor to the output of the voltage divider. 
Once again, the circuit can be analyzed by writing a node equation at node 1:

-c-~ Vin +  — =  0
20,000 60,000

Solving for vc, we have

3
vc =  - v m

Because vc =  va, loading is avoided when the voltage follower is used to connect the resistor to the 
voltage divider. The voltage follower, not the voltage divider, provides the current required by the 30-kfl

V resistor.
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E x a m p l e  6 . 5 - 2  Ampl i f i e r  De s i gn

A common application o f  operational amplifiers is to scale a voltage, that is, to multiply a voltage by a constant, K, 
so that

v0 =  K v  i,

This situation is illustrated in Figure 6.5-4a. The input voltage, vin, is provided by an ideal voltage source. The 
output voltage, vQ, is the element voltage o f a 100-kfl resistor.

Circuits that perform this operation are usually called amplifiers. The constant K  is called the gain o f the amplifier. 
The required value o f the constant K  will determine which o f the circuits is selected from Figure 6.5-1.

There are four cases to consider: K < 0, K  > I, K  = I,  and 0 <  K  <  1.

Operational
amplifier

circuit 100 k f t <  "o

10 kft 50 kft
^ w v

100 k t i <  t>0

(a) (b)

"0

(c) (d) (e)

FIGURE 6.5-4 (a) An amplifier is required to make v0 = Kv,„. The choice of amplifier circuit depends on the value of the gain K. 
Four cases are shown: (b) K =  -5 , (c) K =  5, (d) K =  1, and (e) K = 0.8.

Solution
Because resistor values are positive, the gain o f the inverting amplifier, shown in Figure 6 .5 -la , is negative. 
Accordingly, when K < 0 is required, an inverting amplifier is used. For example, suppose we require K =  - 5 .  
From Figure 6 .5 -la ,

R<•

R i
so Rf -  5R\

As a rule o f thumb, it is a good idea to choose resistors in operational amplifier circuits that have values 
between 5 kQ and 500 kQ when possible. Choosing

rt, =  10 k fl
gives R( =  50 kO

The resulting circuit is shown in Figure 6.5-46.

- 5  =
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Next, suppose we require A = 5. The noninverting amplifier, shown in Figure 6.5-16, is used to obtain gains 
greater than I. From Figure 6.5-16

Rf
5 =  , + ^

so Rf — 4R\
Choosing R\ =  10 kft gives R, = 4 0 kft. The resulting circuit is shown in Figure 6.5-4c.

Consider using the noninverting amplifier of Figure 6.5-16 to obtain a gain A = 1. From Figure 6.5-16,
Rf

1 =  1 + ^

so
Rl
Ri

=  0

This can be accomplished by replacing Rf by a short circuit (Rf = 0) or by replacing /?, by an open circuit 
(Ri =  oc) or both. Doing both converts a noninverting amplifier into a voltage follower. The gain of the voltage 
follower is 1. In Figure 6.5-4d, a voltage follower is used for the case K = 1.

There is no amplifier in Figure 6.5-1 that has a gain between 0 and 1. Such a circuit can be obtained using a 
voltage divider together with a voltage follower. Suppose we require A =  0.8. First, design a voltage divider to 
have an attenuation equal to A:

0.8 =  R l  
R\ +  Rj

so Ri = 4 R\
Choosing R\ = 20 kft gives R2 = 80 kft. Adding a voltage follower gives the circuit shown in Figure 6.5-4e.

E x a m p l e  6 . 5 - 3  D e s ig n in g  a N on  i n v e r t i n g  S u m m i n g  Amp l i f i e r

Design a circuit having one output, vQ, and three inputs, v u v2, and v3. The output must be related to the inputs by

v0 =  2vi +  3v2 4- 4v3

In addition, the inputs are restricted to having values between — 1 V and 1 V, that is,

I vj | < IV  / *  1,2,3

Consider using an operational amplifier having /sat =  2 mA and vsat=  15 V and design the circuit.

Solution
The required circuit must multiply each input by a separate positive number and add the results. The noninverting 
summer shown in Figure 6.5-le can do these operations. This circuit is represented by six parameters: K \ % A•>, A3, 
A4, /?a, and Rb. Designing the noninverting summer amounts to choosing values for these six parameters. Notice 
that K { +  K2 4- K3 <  1 is required to ensure that all of the resistors have positive values. Pick K 4 =  10 (a 
convenient value that is just a little larger than 2 +  3 4  4 =  9). Then,

vQ =  2vj -J- 3y>2 4- 4v3 =  10(0.2vj -4 0.3v2 4- 0.4v3)

That is, A4 — 10, Aj =  0.2, K 2 — 0.3, and A3 =  0.4. Figure 6.5-le? does not provide much guidance in picking 
values of Ra and Rb. Try =  Rh =  100 ft. Then,

(A4 -  l)/?b =  ( 1 0 -  1)100 =  900ft



^ 2 2 2 ^ ----- The O p e ra t io n a l  A m p l i f ie r

Figure 6.5-5 shows the resulting circuit. It is necessary to check this circuit 
to ensure that it satisfies the specifications. Writing node equations

500 Q 
vx o— W r

va -  Vl t va -  v2
+  -

250
V3 vs

500 333

- * * Z 2!!L +  —  =  0 
900 100

1000
0

3 3 3  Q  

v2 o-—-̂ V/VV— »

2 5 0  Q  

1̂ 3 o— 11 a 6-

> ,‘a*

~ n
900 q ;

i

and solving these equations yield
1000 Q. 100 q :

1
v0 =  2vi -I- 3v2 +  4 v 3 and va =

10

The output current o f the operational amplifier is given by
va -  v0 v0

FIGl RE 6.5-5 The proposed noninverting 
summing amplifier.

ôa — 900 1000

How large can the output voltage be? We know that

(6.5-1) 5 0 0  Q  

vi o— V V \r

so
Iv01 =  |2vi +  3v2 +  4 v 3 |

|v0| <  2 |v i| +  3|v2| +  4 |v j| <  9 V

The operational amplifier output voltage will always be less than 
Vsat. That’s good. Now what about the output current? Notice that 
|v0| <  9 V. From Eq. 6.5-1,

—9 V

3 3 3  Q  

v2 o— V A — 0

2 5 0  Q  

v3 o— V W —"

1000 o :

>Joa

~ n

1

1 .
-V Q

1000 n
<

100011
=  9m A FIG l RE 6.5-6 The final design of the 

nomnvertmg summing amplifier.

The operational amplifier output current exceeds /^  =  2 mA. This is not allowed. Increasing Rb will reduce iQ. Try 
Rb =  1000 O. Then,

(K4 -  l)Rb =  ( 1 0 -  1)1000 =  9 0 0 0 n

This produces the circuit shown in Figure 6.5-6. Increasing Rd and Rb does not change the operational amplifier 
output voltage. As before,

vG =  2vi +  3v2 -f 4v3 
and |v0| <  2 |v i| +  3|v2| -f 4 | v 3 | <  9 V

Increasing Rb does reduce the operational amplifier output current. Now,

—9 V
10,000 0

=  0.9 mA

so |i’oa| <  2 mA and |v0| <  15 V, as required.

6.6 O P E R A T I O N A L  A M P L I F I E R  C I R C U I T S  A N D  L I N E A R  
A L G E B R A I C  E Q U A T I O N S  ----------------------------------------------

This section describes a procedure for designing operational amplifier circuits to implement linear 
algebraic equations. Some o f the node voltages o f the operational amplifier circuit will represent the
variables in the algebraic equation. For example, the equation

z =  4x — 5>’ +  2 (6.6-1)

will be represented by an operational amplifier circuit that has node voltages vx, vy, and vz that are
related by the equation

vz =  4vx -  5Vy +  2 (6.6-2)
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A voltage or current that is used to represent something is called a signal.

That ‘something’ could be a temperature or a position or a force or something else. In this case, v x ,  v y ,  

and vz are signals representing the variables x, y, and z.
Equation 6.6-1 shows how the value ofz can be obtained from values ofx and>>. Similarly, Eq.

6.6-2 shows how the value of vz can be obtained from values of vx and vy. The operational amplifier 
circuit will have one output, vz, and two inputs, vx and vy.

The design procedure has two steps. First, we represent the equation by a diagram called a block 
diagram. Second, we implement each block of the block diagram as an operational amplifier circuit.

We will start with the algebraic equation. Equation 6.6-1 indicates that the value of variable z  

can be calculated from the values of the variables x and>> using the operations of addition, subtraction, 
and multiplication by a constant multiplier. Equation 6.6-1 can be rewritten as

z =  4x +  (—5 )y 4- 2 (6.6-3)

Equation 6.6-3 indicates that z can be obtained from x  and y  using only addition and multiplication, 
though one of the multipliers is now negative.

Figure 6.6-1 shows symbolic representations of the operations of addition 
and multiplication by a constant. In Figure 6.6-1 a, the operation of multiplication 
by a constant multiplier is represented by a rectangle together with two arrows, one 
pointing toward and one pointing away from the rectangle. The arrow pointing 
toward the rectangle is labeled by a variable representing the input to the operation, 
that is, the variable that is to be multiplied by the constant. Similarly, the arrow' 
pointing away from the rectangle is labeled by a variable representing the output, or 
result, of the operation. The rectangle itself is labeled with the value of the 
multiplier. The symbol shown in Figure 6.6-16 represents the operation of addition.
The rectangle is labeled with a plus sign. The arrows that point toward the rectangle 
are labeled by the variables that are to be added. There are as many of these arrows 
as there are variables to be added. One arrow points away from the rectangle. This 
arrow is labeled by the variable representing the sum.

The rectangles that represent addition and multiplication by a constant are 
called blocks. A diagram composed of such blocks is called a block diagram.
Figure 6.6-2 represents Eq. 6.6-3 as a block diagram. Each block in the block 
diagram corresponds to an operation in the equation. Notice, in particular, that the 
product 4x has two roles in Eq. 6.6-3. The product 4jc is both the output of one 
operation, multiplying x by the constant 4, and one of the inputs to another 
operation, adding 4x to —5y and 2 to obtain z. This observation is used to construct 
the block diagram. The product 4x is the output of one block and the input to 
another. Indeed, this observation explains why the output of the block that 
multiplies x by 4 is connected to an input of the block that adds 4x to - 5 y and 2.

Next, consider designing an operational amplifier circuit to implement the block diagram in 
Figure 6.6-2. The blocks representing multiplication by a constant multiplier can be implemented 
using either inverting or noninverting amplifiers, depending on the sign of the multiplier. To do so, 
design the amplifier to have a gain that is equal to the multiplier of the corresponding block. 
(Noninverting amplifiers can be used when the constant is both positive and greater than 1. Example
6.5-2 shows that a circuit consisting of a voltage divider and voltage follower can be used when the 
constant is positive and less than I.)

Figures 6.6-36,d f  show operational amplifier circuits that implement the blocks shown in 
Figures 6.6-3a,c,e, respectively. The block in Figure 6.6-3# requires multiplication by a positive 
constant, 4. Figure 6.6-36 shows the corresponding operational amplifier circuit, a noninverting 
amplifier having a gain equal to 4. This noninverting amplifier is designed by referring to Figure 6.5-16

-A x

(a)

Ax ■ 
-5v ■ 

2 ■

(b)
FIGURE 6.6-1 Symbolic 
representations of (a) multiplication by 
a constant and (6 ) addition.

FIGURE 6.6-2 A block 
diagram representing Eq. 6.6-3.
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20 kft 100 kft
4 i \

■4jt -5

(€)

4.V ■
-5y ■ 

2 •

2 0  kft 
4i,’x o—V W —

2 0  kft 
~5l?y O * •

2 0  kft 
2 V M / V \ r ^ »

2 0  kft •

o ”z

60 kft .

2 0  kft .

(e) (f)
FIGURE 6.6-3 (a), (c), and (e) show the blocks from Figure 6.6-2, whereas (6 ), (d ), and (/') show the corresponding operational 
amplifier circuits.

and setting

R x =  20 k ft and R f =  3R { =  60 k ft
(A useful rule o f thumb suggests selecting resistors for operational amplifier circuits to have
resistances in the range 5 k ft to 500 k ft.)

In Figure 6.6-3b, the notation vx — x  indicates that vx is a voltage that represents x.  A voltage or 
current that is used to represent something else is called a signal, so vx is the signal representing x.

The block in Figure 6.6-3c requires multiplication by a negative constant, —5. Figure 6.6-3d
shows the corresponding operational amplifier circuit, an inverting amplifier having a gain equal to 
—5. Design this inverting amplifier by referring to Figure 6.5-1 a and setting

R\ =  2 0 k ft and R f =  5 R { =  100 k ft

The block in Figure 6.6-3e requires adding three terms. Figure
6.6-3f  shows the corresponding operational amplifier circuit, a 
noninverting summer. Design the noninverting summer by referring 
to Figure 6.6-4 and setting

Ri =  20 k ft, n =  3, and nR =  3(20,000) =  60 k ft

(The noninverting summer is a special case o f the noninverting- 
summing amplifier shown in Figure 6 .5 -le. Take K ] = K 2 = K 3 = \ /  
(n -f 1), K4 = n, Rb = R, and Ra = R /(n  -f 1) in Figure 6.5-1 e to get 
the circuit shown in Figure 6.6-4.)

FIGURE 6.6-4 The noninverting summer. The FlSure 6'6‘5 shows the circuit obtained by replacing each
integer n indicates the number of inputs to the block ,n FlSure 6 -6’2 by the corresponding operational amplifier
circuit. circuit from Figure 6.6-3. The circuit in Figure 6.6-5 does indeed

implement Eq. 6.6-3, but it’s possible to improve this circuit.
The constant input to the summer has been implemented using a 2-V voltage source. Although 

correct, this may be more expensive than necessary. Voltage sources are relatively expensive 
devices, considerably more expensive than resistors or operational amplifiers. We can reduce the 
cost o f this circuit by using a voltage source we already have instead o f  getting a new one. Recall 
that we need power supplies to bias the operational amplifier. Suppose that ± 15-V  voltage sources

2 0  kft 60 kft



O perat iona l A m p l i f ie r  C ircu its  and Linear A lgebra ic  Equat ions

20 kQ 60 kQ
j —-VW—

20 kQ 100 kQ
VyO--- VW--- T---

2 V ^  2 0 k Q ^

» 2 V

FIGURE 6.6-5 An operational amplifier circuit that implements Eq. 6.6-2.
FIGURE 6.6-6 Using the operational 
amplifier power supply to obtain a 2-V signal.

are used to bias the operational amplifier. We can reduce costs by using the ±15-V voltage source 
together with a voltage divider and a voltage follower to obtain the 2-V input for the summer. Figure
6.6-6 illustrates the situation. The voltage divider produces a constant voltage equal to 2 V. The 
voltage follower prevents loading (see Example 6.5-1).

Applying the voltage division rule in Figure 6.6-6 requires that

15
=  0.133 Ra = 6.5 Rb

The solution to this equation is not unique. One solution is Ra = 130 kO and Rb — 20 kfl. Figure 6.6-7 
shows the improved operational amplifier circuit. We can verify, perhaps by writing node equations, 
that

vz =  4vx -  5vy +  2

Voltage saturation of the operational amplifiers should be considered when defining the relationship 
between the signals vx, vy, and vz and the variables jc, y, and z. The output voltage of an operational

20 kQ 60 kQ

FIGURE 6.6-7 An improved 
operational amplifier circuit that 
implements Eq. 6.6-2.
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amplifier is restricted by |v0| <  v^t- Typically, is approximately equal to the magnitude o f the 
voltages o f the power supplies used to bias the operational amplifier. That is, vsat is approximately 15 V 
when ±15-V  voltage sources are used to bias the operational amplifier. In Figure 6.6.7, vz, 4vx, and 
- 5 v y are each output voltages o f one o f the operational amplifiers. Consequently,

=  3.75 V, |vy| < ^ « y  =  3 V , and |v,| <  v** as 15 V (6.6-4)

The simple encoding o f x , v, and z by vx, vy, and vz is

vx =  x , vy =  y , and vz =  z  (6.6-5)

This is convenient because, for example, vz =  4.5 V indicates that z =  4.5. However, using Eq. 6.6-3 to 
replace vx, vy, and vz in Eq. 6.6-4 with x, y , and z gives

\x\ <  3.75, \y\ <  3.0, and |z| <  15

Should these conditions be too restrictive, consider defining the relationship between the signals vx, vy, 
and vz and the variables, x, y , and z differently. For example, suppose

=  v’  =  ' i o ’ and v'  =  ^  ( 6 6 ‘6)
Now we need to multiply the value o f vz by 10 to get the value o f z. For example, vz =  4.5 V indicates
that z =  45. On the other hand, the circuit can accommodate larger values o fx ,y ,  and z. Equations 6.6-4 
and 6 .6 -6  imply that

\x\ <  37.5, |y| <  30.0, and |z| <  150.0

EXERCISE 6.6-1 Specify the values o f R\ and R 2 in Figure E 6.6-1 that are required to cause v3 
to be related to v x and v2 by the equation v3 =  (4)vi — (j)v2 .

Answer: R\ =  10 kO and R2 =  2.5 kO

EXERCISE 6.6-2 Specify the values o f R\ and R 2 in Figure E 6.6-1 that are required to cause v3 

to be related to V! and v2 by the equation v3 =  (6)vj — ( f )v 2.

Answer: R\ =  20 k fi and R2 — 40 k fi
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6.7 C H A R A C T E R I S T I C S  OF P R A C T I C A L  O P E R A T I O N A L
A M P L I F I E R S

The ideal operational amplifier is the simplest model of an operational amplifier. This simplicity is obtained 
by ignoring some imperfections of practical operational amplifiers. This section considers some of these 
imperfections and provides alternate operational amplifier models to account for these imperfections. 

Consider the operational amplifier shown in Figure 6.7-la. If this operational amplifier is ideal,
then

parameters of practical operational amplifiers, namely:

• Nonzero bias currents

• Nonzero input offset voltage

• Finite input resistance

• Nonzero output resistance

• Finite voltage gain

This model more accurately describes practical operational amplifiers than does the ideal operational 
amplifier. Unfortunately, the more accurate model of Figure 6.1-\d is much more complicated and

/ j =  0 , z'2 =  0 , and v\ — v2 =  0 (6.7-1)

In contrast, the operational amplifier model shown in Figure 6.7- \d  accounts for several nonideal

ib)

(c)
FIGURE 6.7-1 (a) An operational amplifier and {/>) the offsets model of 
model of an operat.onal amplifier, (d) The offsets and finite gain model of a.

iffsets model of an operational amplifier, (c) The finite gam 
gain model of an operational amplifier.

id)
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much more difficult to use than the ideal operational amplifier. The models in Figures 6.7-16 and
6 .7-lc  provide a compromise. These models are more accurate than the ideal operational amplifier but 
easier to use than the model in Figure 6.1 A d . It will be convenient to have names for these models. The 
model in Figure 6.7-16 will be called the offsets model o f  the operational amplifier. Similarly, the 
model in Figure 6 .7 -lc  will be called the finite gain model o f  the operational amplifier, and the model 
in Figure 6.7- \d  will be called the offsets and finite gain model o f the operational amplifier.

The operational amplifier model shown in Figure 6.7-16 accounts for the nonzero bias current 
and nonzero input offset voltage o f practical operational amplifiers but not the finite input resistance, 
the nonzero output resistance, or the finite voltage gain. This model consists o f three independent 
sources and an ideal operational amplifier. In contrast to the ideal operational amplifier, the 
operational amplifier model that accounts for offsets is represented by the equations

i\ =  *bi, *2 =  *b2, and v x -  v2 =  vos (6.7-2)

The voltage vos is a small, constant voltage called the input offset voltage. The currents ibl and zb2 are 
called the bias currents o f the operational amplifier. They are small, constant currents. The difference 
between the bias currents is called the input offset current, zos, o f the amplifier:

*os — *bl -  *b2

Notice that when the bias currents and input offset voltage are all zero, Eq. 6.7-2 is the same as Eq. 6.7-
1. In other words, the offsets model reverts to the ideal operational amplifier when the bias currents and 
input offset voltage are zero.

Frequently, the bias currents and input offset voltage can be ignored because they are very small. 
However, when the input signal to a circuit is itself small, the bias currents and input voltage can 
become important.

Manufacturers specify a maximum value for the bias currents, the input offset current, and the 
input offset voltage. For the /iA741, the maximum bias current is specified to be 500 nA, the 
maximum input offset current is specified to be 200 nA, and the maximum input offset voltage is 
specified to be 5 mV. These specifications guarantee that

|/*bi | <  500 nA and |z'b21 <  500 nA 

|z’bi — *b2 1 <  200 nA

| vos I <  5 mV

Table 6.7-1 shows the bias currents, offset current, and input offset voltage typical o f several types of 
operational amplifier.

Selected Parameters of Typical Operational Amplifiers

PARAMETER UNITS /uA741 LF351 TL051C OPAIOI AM OP-07E

Saturation voltage, V 13 13.5 13.2 13 13
Saturation current, zsat mA 2 15 6 30 6

Slew rate, SR v /^ s 0.5 13 23.7 6.5 0.17
Bias current, ib nA 80 0.05 0.03 0 .012 1.2

Offset current, /os nA 20 0.025 0.025 0.003 0.5
Input offset voltage, vos mV 1 5 0.59 0.1 0.03
Input resistance, /?, M n 2 106 106 106 50
Output resistance, R0 n 75 1000 250 500 60
Differential gain, A V/mV 200 100 105 178 5000
Common mode rejection ratio, CMRR V/mv 31.6 100 44 178 1413
Gain bandwidth product, B MHz 1 4 3.1 20 0.6
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E x a m p l e  6.7-1 O ffs e t V o lta g e  an d  B ias  C u rre n ts

The inverting amplifier shown in Figure 6.7-2a contains a ^A741 operational amplifier. This inverting amplifier 
designed in Example 6.5-2 has a gain of -5 , that is,

v0 =  - 5  • vin

The design of the inverting amplifier is based on the ideal model of an operational amplifier and so did not account 
for the bias currents and input offset voltage of the /iA741 operational amplifier. In this example, the offsets 
model of an operational amplifier will be used to analyze the circuit. This analysis will tell us what effect the bias 
currents and input offset voltage have on the performance of this circuit.

10 kQ
H W V

50 kQ
AA/V

-  -5 v.r

(a) (b) (c)

10 kQ 50 kQ 
—W v  t  W V—

I r - s l d e a l

10 kQ
—W V

vn= 6 va

10 kQ
— W V

v0= 50 kQ • ibl vn= 0

(d) (e) (f)

FIGURE 6.7-2 (a) An inverting amplifier and (b) an equivalent circuit that accounts for the input offset voltage and bias currents of 
the operational amplifier. (c)-(f) Analysis using superposition.

Solution
In Figure 6.7-26, the operational amplifier has been replaced by the offsets model of an operational amplifier. 
Notice that the operational amplifier in Figure 6.7-26 is the ideal operational amplifier that is part of the model of 
the operational amplifier used to account for the offsets. The circuit in Figure 6.7-26 contains four inputs that 
correspond to the four independent sources, vin, /bl, /b2, and vos. (The input vin is obtained by connecting a voltage 
source to the circuit. In contrast, the “ inputs” ibl, /b2, and vos are the results of imperfections of the operational 
amplifier. These inputs are part of the operational amplifier model and do not need to be added to the circuit.) 
Superposition can be used to good advantage in analyzing this circuit. Figures 6 .7-2c-6.7-2/illustrate this process. 
In each of these figures, all but one input has been set to zero, and the output due to that one input has been 
calculated.

Figure 6.7-2c shows the circuit used to calculate the response to vm alone. The other inputs, /bl, zb2, and 
vos, have all been set to zero. Recall that zero current sources act like open circuits and zero voltage sources 
act like short circuits. Figure 6.7-2c is obtained from Figure 6.7-26 by replacing the current sources ibj, /b2 by 
open circuits and by replacing the voltage source vos by a short circuit. The operational amplifier in Figure



230 }— The O p e ra t io n a l  A m p l i f ie r

6.1-2c is the ideal operational am plifier that is part o f  the offsets model. A nalysis o f  the inverting am plifier in 
Figure 6.7-2c gives

v’o =  - 5  • vin

Next, consider Figure 6.7-2d. This circuit is used to calculate the response to vos alone. The other inputs, v,n, 
ibi, and ib2, have all been set to zero. Figure 6.7-2d  is obtained from Figure 6.7-26 by replacing the current sources 
ibl and ib2 by open circuits and by replacing the voltage source vin by a short circuit. Again, the operational 
amplifier is the ideal operational amplifier from the offsets model. The circuit in Figure 6.7-2d  is one we have seen 
before; it is the noninverting amplifier (Figure 6.5-16). Analysis o f this noninverting amplifier gives

/ ,  5 0 k n \

v" 1  v  Tokflj 'v“ v“
Next, consider Figure 6.1-2e. This circuit is used to calculate the response to ibx alone. The other inputs, vin, 

vos, and zb2, have all been set to zero. Figure 6.7-2e is obtained from Figure 6.7-26 by replacing the current source 
zb2 by an open circuit and by replacing the voltage sources vin and vos by short circuits. Notice that the voltage 
across the lO-kH resistor is zero because this resistor is connected between the input nodes o f  the ideal operational 
amplifier. O hm 's law says that the current in the lO-kO resistor must be zero. The current in the 
50-kfl resistor is zbl. Finally, paying attention to the reference directions,

v0 =  50 kH • /bi

Figure 6.7-2/is used to calculate the response to zb2 alone. The other inputs, vin, vos, and zbl, have all been set 
to zero. Figure 6.7-2/is obtained from Figure 6.7-26 by replacing the current source zbl by an open circuit and by 
replacing the voltage sources vin and vos by short circuits. Replacing vos by a short circuit inserts a short circuit 
across the current source zb2. Again, the voltage across the 10-kfl resistor is zero, so the current in the 10-kfl 
resistor must be zero. K irchhoffs current law shows that the current in the 50-kfl resistor is also zero. Finally,

v0 =  0

The output caused by all four inputs working together is the sum o f the outputs caused by each input 
working alone. Therefore,

v0 =: 5 • Vjn -{- 6  • vos -j- (50 kO)zbi

When the input o f the inverting amplifier, vin, is zero, the output vG also should be zero. However, vG is nonzero 
when we have a finite vos or zbl. Let

output offset voltage =  6  • +  (50 kfl)zbi

Then v0 =  — 5 • Vin +  output offset voltage

Recall that when the operational amplifier is modeled as an ideal operational amplifier, analysis o f this inverting 
amplifier gives

v0 =  - 5  • vin

Comparing these last two equations shows that bias currents and input offset voltage cause the output offset 
voltage. Modeling the operational amplifier as an ideal operational amplifier amounts to assuming that the output 
offset voltage is not important and thus ignoring it. Using the operational amplifier model that accounts for offsets 
is more accurate but also more complicated.

How large is the output offset voltage o f this inverting amplifier? The input offset voltage o f a fxA74\ 
operational amplifier will be at most 5 mV, and the bias current will be at most 500 nA, so

output offset voltage < 6 - 5  mV +  (50 k fi) 500 nA =  55 mV

We note that we can ignore the effect o f the offset voltage only when |5 vin\ > 500 mV or |vin| >  100 mV. The 
output offset error can be reduced by using a better operational amplifier, that is, one that guarantees smaller bias
currents and input offset voltage.



C h a ra c te r i s t i c s  o f  P ra c t ic a l  O p e r a t io n a l  A m p l i f i e r s --------( 231

Now, let us turn our attention to different parameters of practical operational amplifiers. The 
operational amplifier model shown in Figure 6.7-lc accounts for the finite input resistance, the nonzero 
output resistance, and the finite voltage gain of practical operational amplifiers but not the nonzero bias 
current and nonzero input offset voltage. This model consists of two resistors and a VCVS.

The finite gain model reverts to an ideal operational amplifier when the gain. A, becomes infinite. 
To see that this is so, notice that in Figure 6.7-lc

v0 = A (y2 -  vi) +  RQio 
Vo Roio

SO V2 — Vl = -------- --------
A

The models in Figure 6.7-1, as well as the model of the ideal operational amplifier, are valid only when 
vc and iQ satisfy Eq. 6.3-1. Therefore,

|vG| < v^t and \iQ\ <  /sat 
l l ^  Vsat +  RohaxThen |V2 — vj | < --------------

A
Therefore, lim (v2 — v\ ) =  0

Next, because

we conclude that
lim /‘i =  0 and lim z2 =  0

A —* oo A —>oc

Thus, z‘i, z2, and v2 -  v\ satisfy Eq. 6.7-1. In other words, the finite gain model of the operational 
amplifier reverts to the ideal operational amplifier as the gain becomes infinite. The gain for practical 
op amps ranges from 100,000  to 107.

i j =  - -V2 ~  Vl
Ri

and z'2 = V2 ~  Vl
Ri

E x a m p l e  6 . 7 - 2  F in ite  G a in
/

In Figure 6.7-3, a voltage follower is used as a buffer amplifier. Analysis based on the ideal operational amplifier 
shows that the gain of the buffer amplifier is

=  1

What effects will the input resistance, output resistance, and finite voltage gain of a practical operational amplifier 
have on the performance of this circuit? To answer this question, replace the operational amplifier by the 
operational amplifier model that accounts for finite voltage gain. This gives the circuit shown in Figure 6.7-3b.

(b)

FIGURE 6.7-3 (a) A voltage 
follower used as a buffer amplifier 
and (b) an equivalent circuit with 
the operational amplifier model that 
accounts for finite voltage gain.
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Solution
To be specific, suppose R\ =  1 kQ; =  10 k ft; and the parameters o f the practical operational amplifier are 
R, =  100 k ft, R0 =  10011. and A =  105V/V.

Suppose that v0 =  10 V. We can find the current, iL in the output resistor as

• v° l0 V  ,o -3  A(L =  —  — — 3- — = 1 0  A
Rl 104 f t

Apply KCL at the top node o f /JL to get

i\ +  i0 +  i’l  =  0
It will turn out that iy will be much smaller than both iQ and iL. It is useful to make the approximation that f'i =  0. 
(We will check this assumption later in this example.) Then,

i0 =  - k

Next, apply KVL to the mesh consisting o f the VCVS, R0, and R L to get

- A ( v 2 -  vi) -  i0R0 +  iLR L =  0 

Combining the last two equations and solving for (V2 -  vt ) gives

„  _  .  » 0 - 3 ( I Q 0 +  » 0 . 0 0 0 )  =  , . 0 1  x  , 0 - 4 y

A  105
Now /] can be calculated using O hm ’s law:

, = ^  =  z M L ^  =  _ 1.o ,K ,< r > A
Ri 100 k fl

This justifies our earlier assumption that i\ is negligible compared with i0 and zL.
Applying KVL to the outside loop gives

vs -  i xRi -  i xRi +  v0 =  0

Now, let us do some algebra to determine vs:

vs — v0 — i 1 (R\ -f R\) — v0 4- *2(^1 +  

=  v0 H-------—  x (R\ 4 - R{)
^1

/ l  (R0 +  Rl) {R\ +  ^ j )
4 X R> 
(Ro+ R l) ( * i + * 0

— v0 4- ■

The gain of this circuit is

v° +  R l X A Ri

A R l R i

This equation shows that the gain will be approximately l when A is very large, RQ <C R l* and R\ Rv In this 
example, for the specified A , R0, and R{, we have

v0 l l
I 10 0  4- 10 ,0 0 0  105 4 - 10 0 0  1.0 0 0 0 1

=  0.99999
X -- F X  ----— — ----- X

105 1 0 ,0 0 0  lo 5

Thus, the input resistance, output resistance, and voltage gain o f the practical operational amplifier have only a 
small, essentially negligible, combined effect on the performance o f the buffer amplifier.
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Table 6.7-1 lists two other parameters of practical operational amplifiers that have not yet 
been mentioned. They are the common mode rejection ratio (CMRR) and the gain bandwidth 
product. Consider first the common mode rejection ratio. In the finite gain model, the voltage of the 
dependent source is

A ( v 2 -  vi)
In practice, we find that dependent source voltage is more accurately expressed as

/ Vl 4- V2\
A(v2 - V|) - M c m ( — 2— ) 

vi — V| is called the differential input voltage.where

and

vi +  v2 .is called the common mode input voltage. 

Acm is called the common mode gain.

The gain A is sometimes called the differential gain to distinguish it from Acm. The common mode 
rejection ratio is defined to be the ratio of A to Acm

CMRR =  ~
^cm

The dependent source voltage can be expressed using A and CMRR as

Vl +  V2
^ ( v 2 -  Vi) - M c m Vl t - V2- =  ^ ( v 2 — Vi) + CMRR

1 +
1

2 CMRR
v2 vi

CMRR can be added to the finite gain model by changing the voltage of the dependent source. The 
appropriate change is

replace A(v2 -  vj) by
1

2 CMRR) V2 0  2 CMRr ) vi

This change will make the model more accurate but also more complicated. Table 6.7-1 shows 
that CMRR is typically very large. For example, a typical LF351 operational amplifier has A = 100W 
mV and CMRR= 100 V/mV. This means that

( 1 + 2 C M R r) V'2 ( '  2 C M R r) vi

compared to

2 CMRR

A(v2 -  Vl) =  100,000v;

-  100.000.5v2 -  99.999.5vi

100 ,0 0 0v,

In most cases, negligible error is caused by ignoring the CMRR of the operational amplifier. The 
CMRR does not need to be considered unless accurate measurements of very small differential 
voltages must be made in the presence of very large common mode voltages.

Next, we consider the gain bandwidth product of the operational amplifier. The finite gain model 
indicates that the gain, A , of the operational amplifier is a constant. Suppose

vi =  0 and v2 =  M  sin cot

80 ^ at v2 — vi — M sin cot

The voltage of the dependent source in the finite gain model will be

A ( v2 — vj) =  A • M  sin cot
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The amplitude, A M , o f this sinusoidal voltage does not depend on the frequency, co. Practical 
operational amplifiers do not work this way. The gain o f a practical amplifier is a function of 
frequency, say A(co). For many practical amplifiers, A(co) can be adequately represented as

It is not necessary to know now how this function behaves. Functions o f this sort will be discussed in 
Chapter 13. For now, it is enough to realize that the parameter B is used to describe the dependence o f 
the operational amplifier gain on frequency. The parameter B is called the gain bandwidth product o f 
the operational amplifier.

EXERCISE 6.7-1 The input offset voltage o f a typical ixA 14\ operational amplifier is 1 mV, 
and the bias current is 80 nA. Suppose the operational amplifier in Figure 6.7-2a is a typical /iA 1 4 \.  
Show that the output offset voltage o f the inverting amplifier will be at most 10 mV.

EXERCISE 6.7-2 Suppose the 10-kfi resistor in Figure 6.1-2a is changed to 2  k fl and the 50-kfi 
resistor is changed to 10 k f l  (These changes will not change the gain o f the inverting amplifier. It will still 
be —5.) Show that the maximum output offset voltage is reduced to 35 mV. (Use z'b =  500 nA and vos =  5 
mV to calculate the maximum  output offset voltage that could be caused by the /xA741 amplifier.)

EXERCISE 6.7-3 Suppose the /xA741 operational amplifier in Figure 6.1-2a is 
replaced with a typical OPA101AM  operational amplifier. Show that the output offset 
voltage o f the inverting amplifier will be at most 0.6 mV.

EXERCISE 6.7-4
a. Determine the voltage ratio v0/v s for the op amp circuit shown in Figure E 6.7-4.

b. Calculate vQ/v s for a practical op amp with A =  105, /?0 =  100 fi, and R\ =  500 kfi. 
The circuit resistors are Rs =  10 k fi, Rf =  50 k fi, and /?a =  25 kfi.

Answ er: (b) vG/v s =  —2

6.8 A N A L Y S I S  O F  O P  A M P  C I R C U I T S  
U S I N G  M A T L A B  --------------------------------

Figure 6.8-1 shows an inverting amplifier. Model the operational amplifier as an ideal op amp. Then 
the output voltage o f the inverting amplifier is related to the input voltage by

=  ~ ^ vs( 0 (6 .8-1)

Suppose that /?, =  2 k fi, R2 =  50 k fi, and vs =  - 4  cos 
(2000 ret) V. Using these values in Eq. 6.8-1 gives vQ(t) =  
100 cos(20007r0 V. This is not a practical answer. It’s likely 
that the operational amplifier saturates, and, therefore, the ideal 
op amp is not an appropriate model o f the operational amplifier. 
When voltage saturation is included in the model o f the 
operational amplifier, the inverting amplifier is described by
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vsat w h e n
Ri
R\

Vs(0 ^  VSat

V«(0 =  <
, a

~ J h

w h e n ~  Vsat
Rl / \

< <  V s a t  
A  1

(6 .8 -2 )

“ Vsat w h e n  -
Ri

^s(0 ^  Vsat

w h e r e  v s a t  d e n o t e s  t h e  s a t u r a t i o n  v o l t a g e  o f  t h e  o p e r a t i o n a l  a m p l i f i e r .  E q u a t i o n  6 . 8 - 2  i s  a  m o r e  

a c c u r a t e ,  b u t  m o r e  c o m p l i c a t e d ,  m o d e l  o f  t h e  i n v e r t i n g  a m p l i f i e r  t h a n  E q .  6 . 8 - 1 .  O f  c o u r s e ,  w e  p r e f e r  

t h e  s i m p l e r  m o d e l ,  a n d  w e  u s e  t h e  m o r e  c o m p l i c a t e d  m o d e l  o n l y  w h e n  w e  h a v e  r e a s o n  t o  b e l i e v e  t h a t  

a n s w e r s  b a s e d  o n  t h e  s i m p l e r  m o d e l  a r e  n o t  a c c u r a t e .

F i g u r e s  6 . 8 - 2  a n d  6 . 8 - 3  i l l u s t r a t e  t h e  u s e  o f  M A T L A B  t o  a n a l y z e  t h e  i n v e r t i n g  a m p l i f i e r  w h e n  t h e  

o p e r a t i o n a l  a m p l i f i e r  m o d e l  i n c l u d e s  v o l t a g e  s a t u r a t i o n .  F i g u r e  6 . 8 - 2  s h o w s  t h e  M A T L A B  i n p u t  f i l e ,  a n d  

F i g u r e  6 . 8 - 3  s h o w s  t h e  r e s u l t i n g  p l o t  o f  t h e  i n p u t  a n d  o u t p u t  v o l t a g e s  o f  t h e  i n v e r t i n g  a m p l i f i e r .

FIGURE 6.8-2 MATLAB 
input file corresponding to 
the circuit shown in Figure 
6 .8- 1.

% S a t u r a t e . m  s i m u l a t e s  op amp v o l t a g e  s a t u r a t i o n

%-------------------------------------------------------------------------------------------------------
% Enter v a l u e s  of the p a r a m e t e r s  that d e s c r i b e  the circuit.
%--------------------------------------------------------------------------------------------------------

% c i r c u i t  p a r a m e t e r s  
R l = 2 e 3 ;  % resistance, o hms
R 2 = 5 0 e 3 ;  % r esistance, o hms
R 3 = 2 0 e 3 ;  % r esistance, o hms

% op am p  p a r a m e t e r  
v s a t = 1 5 ;  % s a t u r a t i o n  voltage, V

% s o u r c e  p a r a m e t e r s  
M = 4 ;  % amplitude, V
f =  1000; % frequency, Hz
w = 2 * p i * f ; % frequency, r a d/s
t h e t a =  (pi/180)*180; % p h a s e  angle, rad

%-----------------------------------------------------------------------------------------------------------------------------------------------
% D ivide the time i nterval (0, tf) into N  i n c r e m e n t s%-----------------------------------------------------------------------------------------------------------------------------------------------
t f = 2 / f ;  % final time
N = 2 0 0 ;  % n u m b e r  of i n c e r m e n t s
t=0:tf/N:tf; % time, s

%-----------------------------------------------------------------------------------------------------------------------------------------------
% at e a c h  time t =  k*(tf/N) , c a l c u l a t e  v o  f r o m  vs
% ---------------------------------------------------------------------------------------

vs =  M*cos (w*t +  theta) ; % input v o l t a g e

for k = l : length (vs)

if (- (R2/R1) *vs (k) <  — vsat) vo(k) =  — vsat; % --------
elseif (—  ( R 2 / R 1 ) *vs (k) >  vsat) vo(k) =  vsat; % eqn.
else vo(k) =  -  ( R 2 / R 1 ) * v s ( k ) ; % 6.8-2
e n d  % --------

end

%--------------------------------------------------------------------------------------------------------
% Plot Vo an d  vs v e r s u s  t%----------------------------------------------------------------------------------------------------------------------------------------------
plot(t, vo, t, vs) % pl o t  the t r a n s f e r  c h a r a c t e r i s t i c
axis ( [0 tf - 2 0  20]) 
x l a b e l (' t i m e , s')

\ ^ y l a b e l  (' vo (t) , V ' )
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6.9 U S I N G  P S P I C E  T O  A N A L Y Z E  O P  A M P  C I R C U I T S

Consider an op amp circuit having one input, vi9 and one output, vG. L et’s plot the output voltage as a 
function o f the input voltage using PSpice. We need to do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a DC Sweep simulation.

3. Run the simulation.

4. Plot the simulation results.

The DC Sweep simulation provides a way to vary the input o f a circuit and then plot the output as 
a function o f the input.

E x a m p l e  6 . 9 - 1  U s i n g  P S p ic e  to A n a l y z e  an Op A m p  C i r c u i t

The input to the circuit shown in Figure 6.9-1 is the voltage source 
voltage, vj. The response is the voltage, vG. Use PSpice to plot the output 
voltage as a function o f the input voltage.

r-O------------------
t N > _

R, = 2 k £ i r
—V W —'
R2 = 98 kQ 

:-40 .816  mV

FIGURE 6.9-1 The circuit considered in
Example 6.9-1.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in 
Figure 6.9-2 (see Appendix A). The op amp in Figure 6.9-2 is represented 
by the PSpice part named OPAMP from the ANALOG library. The circuit 
output is a node voltage. It’s convenient to give the output voltage a 
PSpice name. In Figure 6.9-2, a PSpice part called an off-page connector is used to label the output node as “ o .”  
Labeling the output node in this way gives the circuit output the PSpice name, V(o).

We will perform a DC Sweep simulation. (Select PSpiceVNew Simulation Profile from the OrCAD Capture menu 
bar, then DC Sweep from the Analysis Type drop-down list. Specify the Sweep variable to be the input voltage by 
selecting Voltage Source and identifying the voltage source as Vi. Specify a linear sweep and the desired range of input 
voltages.) Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to ran the simulation.

After a successful DC Sweep simulation, OrCAD Capture will automatically open a Schematics window. 
Select Trace/Add Trace from the Schematics menus to pop up the Add Traces dialog box. Select V(o) from the
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FIGURE 6.9-2 The circuit of Figure 6.9-1 as 
drawn in the OrCAD workspace.

□ v (o)

FIGURE 6.9-3 The plot of the output voltage as a function of the input voltage.

Simulation Output Variables list. Close the Add Traces dialog box. Figure 6.9-3 shows the resulting plot after 
removing the grid and labeling some points. The plot is a straight line. Consequently, the circuit output is related 
to the circuit input by an equation of the form

v0 =  mv j +  b
where the values of the slope m and intercept b can be determined from the points labeled in Figure 6.9-3. In particular,

50
V

0.100-0 .050
and 1.9999  =  59.996(0) +  b => b =  1.9999 « 2 V

The circuit output is related to the circuit input by the equation
v0 =  50vj +  2

6.10 H O W C A N W E C H E C K  . . . ?  ----------------------------------

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of 
problems discussed in this chapter.

E x a m p l e  6 . 1 0 - 1  H ow  C an  W e C h e c k  O p A m p C irc u i ts ?

The circuit in Figure 6 .10-1 a was analyzed by writing and solving the following set of simultaneous equations

IO/5 =  V4



238 )-------The O p e ra t io n a l  A m p l i f ie r

a- Vq + *5
-AAAri— V W — i

10 kQ 10 kQ G iv en

i2  :=  0 i3  :=  0 v4 : =  0 i 5  :=  0 v 6  : =  0

10 10 • i 5  v4

*2 5 kQ 10 kQ 3 *  5 • i2  + 10 • i3 20 • i3  *  v 6

vi = 3  V

+  v A  -  

20 kQ

AAA— 1

V

F in d  ( i 2 ,  i 3 , v 4 , i 5 ,  v 6 )

- 0.6
0.6
-12

- 1.2
12 J

(a)

FIGURE 6.10-1 (a) An example circuit and (b) computer analysis using Mathcad.

(b)

3 =  5/2 *+■ IO/3 

20 /3  =  v6

(These equations use units o f volts, milliamps, and kohms.) A computer and the program M athcad were used to 
solve these equations as shown in Figure 6.10-16. The solution o f these equations indicates that

i2 =  —0.6 mA, 1*3 =  0.6 mA, v4 =  - 1 2  V,
is =  —1.2 mA, and =  12 V

How can we check that these voltage and current values are correct?

Solution
Consider the voltage v3. Using O hm ’s law,

v3 = 20/3  =  20(0.6) =  12 V 

Remember that resistances are in k f i and currents in milliamps. Applying KVL to the mesh consisting o f the 
voltage source and the 5-kfl and 20-kfl resistors gives

v3 *= 3 -  5/2 =  3 -  5 (—0.6) =  6  V 

Clearly, v3 cannot be both 12 and 6 , so the values obtained for i2, /3, v4, z5, and v6 cannot all be correct. Checking 
the simultaneous equations, we find that a resistor value has been entered incorrectly. The KVL equation 
corresponding to the mesh consisting o f the voltage source and the 5-kfl and 20-kfl resistors should be

3 =  5/2 +  20/3

Note that 10/ 3 was incorrectly used in the fourth line o f the M athcad program o f Figure 6.10-1. After making this
correction, z2, z'3, v4, /5, and v6 are calculated to be

i2 =  —0.2 mA, z*3 =  0.2 mA, v4 =  —4 V, 
z5 =  0.4 mA, and v6 =  4 V 

Now v3 =  20/3  =  20(0.2) =  4
and v3 =  3 -  5/2 =  3 -  5 (—0.2) =  4
This agreement suggests that the new values o f /2, /*3, v4, i5, and v6 are correct. As an additional check, consider v5.
First, Ohm ’s law gives

v5 =  IO/5 =  10(—0.4) =  - 4

Next, applying KVL to the loop consisting of the two 10-kfl resistors and the input o f the operational amplifier gives
V5 =  0 -f v4 =  0 +  ( - 4 )  =  - 4  

This increases our confidence that the new values o f z2, /3, v4, i5, and v6 are correct.
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— | 6 . 11  D E S I G N  E X A M P L E  |----

TRANSDUCER INTERFACE CIRCUIT

A customer wants to automate a pressure measurement, which requires converting the output 
of the pressure transducer to a computer input. This conversion can be done using a standard 
integrated circuit called an analog-to-digital converter (ADC). The ADC requires an input 
voltage between 0 V and 10 V, whereas the pressure transducer output varies between —250 
mV and 250 mV. Design a circuit to interface the pressure transducer with the ADC. That is, 
design a circuit that translates the range —250 mV to 250 mV to the range 0 V to 10 V.

Describe the Situation and the Assumptions
The situation is shown in Figure 6.11-1.

FIGURE 6.11-1 Interfacing a pressure transducer with an analog-to-digital converter (ADC).

The specifications state that

-250 mV < vj < 250 mV
0 V < v2 < 10 V

A simple relationship between v2 and vj is needed so that information about the pressure is not 
obscured. Consider

\>2 = a v\ + b

The coefficients, a and 6 , can be calculated by requiring that v2 =  0 when vj =  -250  mV and 
that v2 =  10 V when v, =  250 mV, that is,

0 V =  a (—250 mV) -j- b 
10 V =  a (250 mV) +  fc 

Solving these simultaneous equations gives a = 20 V/V and b = 5 V.

State the Goal
Design a circuit having input voltage v, and output voltage v2. These voltages should be 
related by

v2 =  2 0 v, +  5 V (6 .11-1)

Generate a Plan
Figure 6.11-2 shows a plan (or a structure) for designing the interface circuit. The operational
amplifiers are biased using +  15-V and -15-V  power supplies. The constant 5-V input is
generated from the 15-V power supply by multiplying by a gain of 1/3. The input voltage, vu
is multiplied by a gain of 20. The summer (adder) adds the outputs of the two amplifiers to 
obtain v2.
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15 V

11»2 = 20^! + 5 V

FIGURE 6 .1 1-2 A structure (or plan) for the interface circuit.

Each block in Figure 6.11-2 will be im plem ented using an operational amplifier 
circuit.

A ct on the Plan
Figure 6.11-3 shows one proposed interface circuit. Some adjustm ents have been m ade 
to the plan. The sum m er is im plem ented using the inverting sum m ing am plifier from 
Figure 6 .5 -Id. The inputs to this inverting sum m ing am plifier m ust be — 20vj and —5 V 
instead o f  20vi and 5 V. C onsequently , an inverting am plifier is used to m ultiply V] by 
—20. A voltage follow er prevents the sum m ing am plifier from loading the voltage 
divider. To m ake the signs work out correctly , the — 15-V pow er supply provides the 
input to the voltage divider.

Inverting amplifier

2.5 kft 50 kft 
v\ o— W v — — V A —

x i
"I 1 0  kft

1 0  kft 
-15 V o - A W

Voltage
divider

-201;!
10  kft 

-5  Vo— V V \r

10  kft 
-A M r- -o  i; 2 = 20 vi + 5 V

Summing amplifier

FIGURE 6 .1 1-3 One implementation of the interface circuit.

The circuit shown in Figure 6.11-3 is not the only circuit that solves this design 
challenge. There are several circuits that implement

V2 =  20vi +  5 V

We will be satisfied with having found one circuit that does the job.

V erify the P roposed Solution
The circuit shown in Figure 6 .11 -3 was simulated using PSpice. The result o f this simulation is 
the plot o f the v2 versus v1 shown in Figure 6 . 11 -4. Because this plot shows a straight line, v2 is 
related to vj by the equation o f a straight line

v2 =  m v i -f b



the circuit shown in Figure 6 .11 -3.

where m is the slope of the line and b is the intercept of the line with the vertical axis. Two 
points on the line have been labeled to show that v2 =  10.002 V when v\ = 0.250 V and that 
v2 =  0.0047506 V when vi =  -0.250 V. The slope, w, and intercept, 6 , can be calculated from 
these points. The slope is given by

10.002 -  (0.0047506)
0.250 -  (-0.250)

19.994

The intercept is given by

b =  10.002 -  19.994 x 0.0250 -  5.003

Thus,

v2 =  19.994V! +  5.003 (6.11-2)

Comparing Eqs. 6.11-1 and 6.11-2 verifies that the proposed solution is indeed correct.

6.12 S U M M A R Y
O Several models are available for operational amplifiers. 

Simple models are easy to use. Accurate models are 
more complicated. The simplest model of the operational 
amplifier is the ideal operational amplifier.

O The currents into the input terminals of an ideal operational 
amplifier are zero, and the voltages at the input nodes of an 
ideal operational amplifier are equal.

O It is convenient to use node equations to analyze circuits that 
contain ideal operational amplifiers.

O Operational amplifiers are used to build circuits that perform 
mathematical operations. Many of these circuits have been 
used so often that they have been given names. The inverting 
amplifier gives a response of the form v0 =  -K vx where K is 
a positive constant. The noninverting amplifier gives a 
response of the form v0 =  Kvx where K is a positive constant.

Another useful operational amplifier circuit is the noninvert­
ing amplifier with a gain of K =  1, often called a voltage 
follower or buffer. The output of the voltage follower 
faithfully follows the input voltage. The voltage follower 
reduces loading by isolating its output terminal from its 
input terminal.

O Figure 6.5-1 is a catalog of some frequently used operational 
amplifier circuits.

O Practical operational amplifiers have properties that are not 
included in the ideal operational amplifier. These include the 
input offset voltage, bias current, dc gain, input resistance, 
and output resistance. More complicated models are needed 
to account for these properties.

O PSpice can be used to reduce the drudgery of analyzing 
operational amplifier circuits with complicated models.
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P R O B L E M S

Section 6.3 The Ideal Operational Amplifier

P 6.3-1 Determine the value of voltage measured by the 
voltmeter in Figure P 6.3-1.

Answer: —4 V

20 kft

10 kQ

Figure P 6.3-1

P 6.3-2 Find v0 and i0 for the circuit of Figure P 6.3-2. 

3 kQ 4 kQ

*0

Figure P 6.3-2

P 6.3-3 Find vG and iQ for the circuit of Figure P 6.3-3. 

Answer: v0 =  -3 0  V and iG =  3.5 mA

4 kQ 8 kQ

Figure P 6.3-3

P 6.3-4 Find v and i for the circuit o f Figure P 6.3-4.

r

Figure P 6.3-4

P 6.3-5 Find vQ and iQ for the circuit of Figure P 6.3-5. 

Answer: vc =  -1 5  V and i0 =  7.5 mA

3 kQ

4 kQ
— V W

12V( + ) 2mA

t

c m

Q)

Figure P 6.3-5

P 6.3-6 Determine the value of voltage measured by the 
voltmeter in Figure P 6.3-6.

Answer: 7.5 V

Figure P 6.3-6

P 6.3-7 Find vQ and i0 for the circuit of Figure P 6.3-7. 

Rx R2
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P 6.3-8 Determine the current ia for the circuit shown in 
Figure P 6.3-8.

Answer: i0 =  2.5 mA

Figure P 6.3-11

P 6.3-12 The input to the circuit shown in Figure P 6.3-12 is 
the voltage vs. The output is the voltage vQ. The output is 
related to the input by the equation vQ =  mvs +  b where m and 
b are constants. Determine the values of m and b.

5 kQ 20 kQ

Figure P 6.3-8

P 6.3-9 Determine the voltage v0 for the circuit shown in 
Figure P 6.3-9.

Answer: vQ =  - 8  V

Figure P 6.3-12

P 6.3-13 The output of the circuit shown in Figure P 6.3-13 is 
v0 =  3.5 V. Determine the value of (a) the resistance R, (b) the 
power supplied be each independent source, and (c) the power, 
Poa =  *oa x v0 supplied by the op amp.

Figure P 6.3-9

P 6.3-10 The circuit shown in Figure P 6.3-10 has one input, 
and one output, vD. Show that the output is proportional to 

the input. Design the circuit so that the gain is ^ =  20 Figure P 6.3-13

P 6.3-14 Determine the node voltages at nodes a, b, c. and d 
of the circuit shown in Figure P 6.3-14.

Figure P 6.3-10

P 6,3-11 The circuit shown in Figure P 6.3-11 has one input, 
vs, and one output, v0. Show that the output is proportional to 
the input. Design the circuit so that vQ =  5 vs.
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P 6.3-15 Determine the node voltages at nodes a, b, c, and d 
of the circuit shown in Figure P 6.3-15.

Section 6.4 Nodal Analysis of Circuits Containing  
Ideal Operational Amplifiers

P 6.4-1 Determine the node voltages for the circuit shown in 
Figure P 6.4-1.

Answer: va =  2 V, vb =  -0.25 V, vc =  - 5  V, vd =  -2 .5  V, 
and ve =  -0.25 V

Figure P 6.4-1

P 6.4-2 Find v0 and iQ for the circuit of Figure P 6.4-2. 

Answer: v0 =  - 4 V  and iQ = 1.33 mA

Figure P 6.4-2

P 6.4-3 If R | =4.8 kfl and R2~ R 4 =  30kll, find v0/vs for 
the circuit shown in Figure P 6.4-3 when /?3 =  1 kll.

Answer: vG/v s =  —200

R2 r4

P 6.4-4 The output of the circuit shown in Figure P 6.4-4 is vG. 
The inputs are Vj and v2. Express the output as a function of the 
inputs and the resistor resistances.

Figure P 6.4-4

P 6.4-5 The outputs of the circuit shown in Figure P 6.4-5 are 
vG and i0. The inputs are vj and v2. Express the outputs as 
functions of the inputs and the resistor resistances.
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P  6 . 4 - 6  Determine the node voltages for the circuit shown in Answer: va =  - 1 2  V, vb =  - 4 V ,  vc -  - 4  V, vd -  - 4  V

Figure P 6.4-6.
Answer: va =  -0.75 V, =  0 V, and vc =  -0.9375 V

Figure P 6.4-6 

P 6.4-7

15 kQ

=  -3 .2  V, vf =  -4 .8  V, and vg =  -3 .2  V

Figure P 6.4-7

Answer: vG =
Ro A R

R0 +  R\ Ro

R — Rn + A R

Figure P 6.4-10 A strain gauge circuit.

P 6.4-8 Find vQ and iQ for the circuit shown in Figure P 6.4-8. P 6.4-11 Find v0 for the circuit shown in Figure P 6.4-11. 

10 kQ 2C
|— VW —|  \

10 kQ 20 kQ
-AAA/— —°

10 kQ

Figure P 6.4-11

Figure P 6.4-8 P 6.4-12 The circuit shown in Figure P 6.4-12 has one output,
v0, and two inputs, v, and v2. Show that when ^  the

P 6.4-9 Determine the node voltages for the circuit shown in output is proportional to the difference of the inputs, v\ — V2.
Figure P 6.4-9. Specify resistance values to cause v0 =  5 (vi -  v2).

10 kQ
AAV

P 6.4-10 The circuit shown in Figure P 6.4-10 includes a 
simple strain gauge. The resistor R changes its value by \R  
when it is twisted or bent. Derive a relation for the voltage gain 
vQ/v s and show that it is proportional to the fractional change 
in /?, namely, AR/R0.

10 kQ

Find vG and iQ for the circuit

30 kQ

shown in Figure P 6.4-7.

‘ 10 kQ
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Figure P 6.4-12

Figure P 6.4-15

P 6.4-16 The circuit shown in Figure P 6.4-16 has one input, 
vs, and one output, v0. Express the gain, vQ/vs, in terms of the 
resistances R2, /?3, Ra* and R5. Design the circuit so that
Vo =  - 2 0  vs.

P 6.4-13 The circuit shown in Figure P 6.4-13 has one output, 
vc, and one input, Vj. Show that the output is proportional to the 
input. Specify resistance values to cause vD =  20vj.

Figure P 6.4-13

P 6.4-14 The circuit shown in Figure P 6.4-14 has one input, 
vs, and one output, vQ. Show that the output is proportional to 
the input. Design the circuit so that v0 =  20vs.

Figure P 6.4-16

P 6.4-17 The circuit shown in Figure P 6.4-17 has one input, 
vs, and one output, vc. Express the gain of the circuit, vG/vs, in 
terms of the resistances R \,R 2i R3, # 4, R5, and R*. Design the 
circuit so that v0 =  —2 0vs.

P 6.4-15 The circuit shown in Figure P 6.4-15 has one input, 
vs, and one output, v0. The circuit contains seven resistors 
having equal resistance, R. Express the gain of the circuit, 
Vo/vs, in terms of the resistance R.

Figure P 6.4-17

P 6.4-18 The circuit shown in Figure P 6.4-18 has one 
input, vs, and one output, z'0. Express the gain of the circuit, 
1'0/vs, in terms of the resistances R 1, R2, Ri, and R0. (This 
circuit contains a pair of resistors having resistance R\ and 
another pair having resistance R2.) Design the circuit so that 
ia =  0.02vs.
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Figure P 6.4-18

P 6.4-19 The circuit shown in Figure P 6.4-19 has one input, 
vs, and one output, vG. The circuit contains one unspecified 
resistance, R.
(a) Express the gain of the circuit, vG/vs, in terms of the 

resistance R.
(b) Determine the range of values of the gain that can be 

obtained by specifying a value for the resistance R.
(c) Design the circuit so that v0=  — 3vs.

P 6.4-20 The circuit shown in Figure P 6.4-20 has one input, 
vs, and one output, v0. The circuit contains one unspecified 
resistance, R.

(a) Express the gain of the circuit, vD/vs, in terms of the 
resistance R.

(b) Determine the range of values of the gain that can be 
obtained by specifying a value for the resistance R.

(c) Design the circuit so that vD =  ~5vs.

P 6.4-21 The circuit shown in Figure P 6.4-21 has three 
inputs: vlf v2, and v3. The output of the circuit is vG. The output 
is related to the inputs by

v0 =  tfvi +  bv2 +  cv 3

where a, b, and c are constants. Determine the values of a, b, 
and c.

20 kfl 20 kft 40 kQ

P 6.4-22 The circuit shown in Figure P 6.4-22 has two inputs: 
V| and v2. The output of the circuit is vG. The output is related to 
the inputs by

v0 =  av i +  bv2

where a and b are constants. Determine the values o f  a and b.
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20 kQ

50 kQ 25 kQ

5 0  kQ

Figure P 6.4-22

P 6.4-23 The input to the circuit shown in Figure P 6.4-23 
is the voltage source voltage vs. The output is the node 
voltage v0 The output is related to the input by the equation

v0 =  kvs where k = — is called the gain of the circuit.
Vs

Determine the value of the gain k.

Figure P 6.4-25

P 6.4-26 The values of the node voltages vb v2, and vG in 
Figure P 6.4-26 are =  6.25 V, v2 =  3.75 V, and v0 =  -1 5  V. 
Determine the value of the resistances R\, R2, and R$.

20 kQ R,

Figure P 6.4-23

P 6.4-24 The input to the circuit shown in Figure P 6.4-24 is 
the current source current zs. The output is the node voltage vG. 
The output is related to the input by the equation vQ =  mis +  b 
where m and b are constants. Determine the values of m and b.

v2

Figure P 6.4-26

P 6.4-27 The input to the circuit shown in Figure P 6.4-27 is 
the voltage source voltage, v*, The output is the node voltage, 
v0. The output is related to the input by the equation vQ =  kv j

where k =  — is called the gain of the circuit. Determine the
Vj

value of the gain k.

24 kQ

Figure P 6.4-24

P 6.4-25 The input to the circuit shown in Figure P 6.4-25 is the 
node voltage vs. The output is the node voltage vD. The output is
related to the input by the equation vQ =  kvs where k =  — is

Vs
called the gain of the circuit. Determine the value of the gain k. Figure P 6.4-27
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Section 6.5 Design Using O perational Am plifiers

P 6.5-1 Design the operational amplifier circuit in Figure
P 6.5-1 so that 

where
vout — r  ' l ir

r =  2 0 -mA

Operational
amplifier
circuit

20 kQ >  vout

*out — g  ' vin

where

g = 2 -

v0ut =  5 • vj -  2 • v2

P 6.5-6 The voltage divider shown in Figure P 6.5-6 has a 
gain of

P 6 .5 -5  Design the operational amplifier circuit in Figure
P 6.5-3 so that

- 1 0  kfivout ___________________
^ ~ - 5 kn + ( - io k n ) =  2

Design an operational amplifier circuit to implement the 
— 10-kfl resistor.

5 kQ

Figure P 6.5-1

P 6.5-2 Design the operational amplifier circuit in Figure 
P 6.5-2 so that Figure P 6.5-6 A circuit with a negative resistor.

P 6.5-7 Design the operational amplifier circuit in Figure 
P 6.5-7 so that

iin =  0 and vout =  3 • vin

|  zout

Figure P 6.5-2

P 6.5-3 Design the operational amplifier circuit in Figure 
P 6.5-3 so that

vw =  5 • vi +  2 • v2

P 6.5-8 Design an operational amplifier circuit with output 
v0 =  6  vi +  2 v2, where v, and v2 are input voltages.

P 6.5-9 Determine the voltage vG for the circuit shown in 
Figure P 6.5-9.

Hint: Use superposition.

Answer: vG =  (—3)(3) +  (4)(-4) +  ( 4)(8) =  7 V

8  kQ 24 kQ

Figure P 6.5-3

P 6.5-4 Design the operational amplifier circuit in Figure 
P 6.5-3 so that

vout 35 5 • (vi — v2) Figure P 6.5-9
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P 6.5-10 For the op amp circuit shown in Figure P 6.5-10, 
find and list all the possible voltage gains that can be achieved 
by connecting the resistor terminals to either the input or the 
output voltage terminals.

Figure P 6.5-10 Resistances in kfl.

P 6.5-11 The circuit shown in Figure P 6.5-11 is called a 
Howland current source. It has one input, vin, and one output, 
zout. Show that when the resistances are chosen so that 
R2R3 = R\Ra, the output is related to the input by the equation

. _  Vi„
'ou' ~  /?,

Figure P 6.5-11

P 6.5-12 The circuit shown in Figure P 6.5-12 is used to 
calculate the output resistance of the Howland current source. 
It has one input, it, and one output, vt. The output resistance, 
R0, is given by

Express the output resistance of the Howland current source in 
terms of the resistances R\, R2, R3, and R4.

P 6.5-13 The input to the circuit shown in Figure P 6.5-13a is 
the voltage vs. The output is the voltage vc. The voltage vb is 
used to adjust the relationship between the input and output.

(a) Show that the output of this circuit is related to the input by 
the equation

v0 =  av s +  b

where a and b are constants that depend on R 1, R2, R ^ R4, 
R5, and vb.

(b) Design the circuit so that its input and output have the 
relationship specified by the graph shown in Figure 
P 6.5-136.

v0, V

Figure P 6.5-13

P 6.5-14 The input to the circuit shown in Figure P 6.5-\4a is 
the voltage vs. The output is the voltage vD. The voltage vb is 
used to adjust the relationship between the input and output.

(a) Show that the output of this circuit is related to the input by 
the equation

v0 =  avs +  b

where a and b are constants that depend on R\< R2< R4,
and vb.

(b) Design the circuit so that its input and output have the 
relationship specified by the graph shown in Figure 
P 6.5-I4h.
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R
- w v

O '

W V ---------f—

—w v —*—

R3
-w v —

r2

(a)

Vn. V

J - uSf V

expression a/?p indicates the part of Rp that appears between 
potentiometer terminals y-w.

(a) Express the gain in terms of the resistor resistances, Rp 
and a.

(b) Set Rx =  R3 = R* = ^ p. Design the circuit so that the gain 
varies from -1 0  V to 10 V as the position of the 
potentiometer wiper is varied through its full range.

Figure P 6.5-14

#P 6.5-15 The circuit shown in Figure P 6.5-15 contains 
both an op amp and a potentiometer. This circuit is called an 
active potentiometer (Graeme, 1982) because the equiva­
lent resistance, Rcq, takes both positive and negative values 
as the position of the potentiometer wiper varies. Rp is the 
potentiometer resistance. The expressions aRp and (1 —a)Rp 
indicate the resistances that appear between potentiometer 
terminals y-w and x-w, respectively. Express the equiv­
alent resistance of the active potentiometer source in terms 
of R, Rp, and a.

°—W V
R

P 6.5-17 The input to the circuit shown in Figure P 6.5-17 
is the voltage source voltage vs. The output is the node 
voltage v0. The output is related to the input by the equation 
v0 =  kvs where k =  ^ is called the gain of the circuit. (In 
Figure P 6.5-17, a and b are positive real constants, so the 
resistance aR and bR are a and b times as large as the 
resistances R). Derive an equation that shows how to pick 
values of a and b that cause the circuit to have a given gain 
k. Use this equation to design the circuit to have a gain k = 
8 V/V using R = 20 kH.

Figure P 6.5-15

*P 6.5-16 The circuit shown in Figure P 6.5-16 contains 
both op amps and a potentiometer. This circuit has an 
adjustable gain, v0/vj, that takes both positive and negative 
values as the position of the potentiometer wiper varies 
(Albean, 1997). Rp is the potentiometer resistance. The

Figure P 6.5-17

P 6.5-18 The input to the circuit shown in Figure P 6.5-18 is the 
current source current is. The output is the node voltage vG. The 
output is related to the input by the equation vQ =  m/s +  b where 
m and b are constants. (In Figure P 6.5-18, c and d are positive 
real constants, so the resistance cR and dR are c and d times as 
large as the resistance R.) Derive an equation that shows how to 
pick values of c and d that cause the circuit to have given values 
of m and b. Use this equation to design the circuit to have m =  
-125 V/mA and b =  12 V when R =  25 kfl.
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cR dR

Figure P 6.5-18

P 6.5-19 The input to the circuit shown in Figure P 6.4-19 is 
the voltage source voltage vs The output is the node voltage vG. 
The output is related to the input by the equation vc =  mvs -I- b 
where m and b are constants, (a) Specify values of Rt, and va 
that cause the output to be related to the input by the equation 
v0 =  4vs +  7. (b) Determine the values of m and b when 
R$ =  20  kO, and va =  2.5V.

10 kQ 30 kQ 20 kQ

Figure P 6.5-19

P 6.5-20 The circuit shown in Figure P 6.5-20 uses a 
potentiometer to implement a variable resistor having a resist­
ance R that varies over the range

0 < R <  2 0 0 kO 
The gain of this circuit is G = *■. Varying the resistance R over 
it’s range causes the value of the gain G to vary over the range

Gmin < < Gmax
VS

Determine the minimum and maximum values of the gains,
^min and Gmax.

! F igure P 6 .5-20

P 6.5-21 The input to the circuit shown in Figure P 6.5-2la is 
the voltage, vs. The output is the voltage v0. The voltage vb is 
used to adjust the relationship between the input and output. 
Determine values of R4 and vb that cause the circuit input and 
output to have the relationship specified by the graph shown in 
Figure P 6.5-21 b.

Answer: v*, =  1.62 V and R4 =62.5  kO

Figure P 6.5-21

Section 6.6 Operational Am plifier Circuits and 
Linear Algebraic Equations

P 6.6-1 Design a circuit to implement the equation

JC
Z =  4w +  -  -  3v

4

The circuit should have one output, corresponding to z, and 
three inputs, corresponding to w, jc, and y.

P 6.6-2 Design a circuit to implement the equation

0 =  4w +  jc+10 — (6y -f 2z)

The output of the circuit should correspond to z.

Section 6.7 Characteristics of Practical Operational 
Amplifiers

P 6.7-1 Consider the inverting amplifier shown in Figure 
P 6 .7-1. The operational amplifier is a typical OP-07E 
(Table 6.7-1). Use the offsets model of the operational 
amplifier to calculate the output offset voltage. (Recall that 
the input, vin, is set to zero when calculating the output 
offset voltage.)

+ 
6
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10 kQ 100 kQ

Answer: 0.45 mV

P 6.7-2 Consider the noninverting amplifier shown in 
Figure P 6.7-2. The operational amplifier is a typical 
LF351 (Table 6.7-1). Use the offsets model of the opera­
tional amplifier to calculate the output offset voltage. 
(Recall that the input, vin, is set to zero when calculating 
the output offset voltage.)

P 6.7-3 Consider the inverting amplifier shown in Figure 
P 6.7-3. Use the finite gain model of the operational amplifier 
(Figure 6.7-lc) to calculate the gain of the inverting ampli­
fier. Show that

Vo _ _________ Rm(R0 - AR2)_________
vin (^1 +  ^in)(^o + ^ 2) +  ^1 ^in( 1 + A)

Rl R2

P 6.7-4 Consider the inverting amplifier shown in Figure 
P 6.7-3. Suppose the operational amplifier is ideal, 
/?, =  5 kfl, and /?2 =  50kfl. The gain of the inverting 
amplifier will be

Vin

Use the results of Problem P 6.7-3 to find the gain of the 
inverting amplifier in each of the following cases:

(a) The operational amplifier is ideal, but 2 percent resistors 
are used and R\ =  5.1 kfl and R2 — 49 kfl.

(b) The operational amplifier is represented using the finite 
gain model with A =  200,000, Rx =  2 Mfl, and R0 = 75 fl; 
/?, = 5  kfl and R2 = 5 0  kfl.

(c) The operational amplifier is represented using the finite 
gain model with A =  200,000, Ri = 2 Mfl, and R0 = 75 fl; 
Ry =  5.1 kfl and R2 = 4 9  kfl.

P 6.7-5 The circuit in Figure P 6.7-5 is called a difference 
amplifier and is used for instrumentation circuits. The output 
of a measuring element is represented by the common mode 
signal vcm and the differential signal (vn +  vp). Using an ideal 
operational amplifier, show that

^4 / \Vo = -^ (V n  + Vp)

when

R1 = R1 
Ri Ri

R i Ra

Section 6.10 How Can We Check . . . ?

P 6.10-1 Analysis of the circuit in Figure P 6.10-1 show s that 
/0 =  — 1 mA and vc =  7 V. Is this analysis correct?
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Hint: Is KCL satisfied at the output node of the op amp?

6  kQ 4 kft

Figure P 6.10-1

P 6.10-2 Your lab partner measured the output voltage of the 
circuit shown in Figure P 6.10-2 to be vQ =  9.6 V. Is this the 
correct output voltage for this circuit?

Hint: Ask your lab partner to check the polarity of the voltage 
that he or she measured.

4 kft 10 kft 12 kft

P 6.10-3 Nodal analysis of the circuit shown in Figure 
P 6.10-3 indicates that vc =  —12 V. Is this analysis correct?

Hint: Redraw the circuit to identify an inverting amplifier and 
a noninverting amplifier.

4 kft

P 6.10-4 Computer analysis of the circuit in Figure P 6.10-4 
indicates that the node voltages are va =  - 5  V, Vb =  0 V, 
vc =  2V, vd =  5 V, ve =  2V, vf =  2 V, and vg =  11 V. Is 
this analysis correct? Justify your answer. Assume that the 
operational amplifier is ideal.

Hint: Verify that the resistor currents indicated by these node 
voltages satisfy KCL at nodes b, c, d, and f.

Figure P 6.10-4

P 6.10-5 Computer analysis of the noninverting summing 
amplifier shown in Figure P 6.10-5 indicates that the node 
voltages are va =  2V, vb — —0.25 V, vc =  - 5  V, vd =  
-2 .5  V, and ve =  -0 .25 V.

(a) Is this analysis correct?
(b) Does this analysis verify that the circuit is a noninverting 

summing amplifier? Justify your answers. Assume that the 
operational amplifier is ideal.

1st Hint: Verify that the resistor currents indicated by these 
node voltages satisfy KCL at nodes b and e.

2nd Hint: Compare to Figure 6.5-le to see that Ra =  lOkfl 
and Rb =  1 kft. Determine K u K2, and K4 from the resistance 
values. Verify that vd =  AT4(AT1va + AT2vc).

Figure P 6.10-3 Figure P 6 .10-5
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PSpice Problems
SP 6-1 The circuit in Figure SP 6-1 has three inputs: vw, vx, 
and vy. The circuit has one output, vz. The equation

j —V ^ r - p
60 kQ

20 kQ
AAA

20 kn 
i—o—WV—11

(T) 20 kQ ^

Figure SP 6-1

expresses the output as a function of the inputs. The 
coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to deter­
mine the values of a, b, and c.

(b) Suppose vw =  2 V, vx =  *, vy= y and we want the output 
to be vz = z. Express z as a function of x and y.

Hint: The output is given by v2 =  a when vw =  1 V, vx =  0 V, 
and vy =  0 V.
Answer: (a) vz = vw + 4 vx- 5  vy (b) z = 4 x -  5 v + 2
SP 6-2 The input to the circuit in Figure SP 6-2 is vs, and the 
output is v0. (a) Use superposition to express vG as a function of 
v8. (b) Use the DC Sweep feature of PSpice to plot v0 as a 
function of vs. (c) Verify that the results of parts (a) and (b) 
agree with each other.

25 ki2 80  kQ

10 kQ

30 kQ

30 kQ >  v0

Figure SP 6-3 Bridge circuit.

SP 6-4 Use PSpice to analyze the VCCS shown in Figure 
SP 6-4. Consider two cases:

(a) The operational amplifier is ideal.
(b) The operational amplifier is a typical /a A741 represented 

by the offsets and finite gain model.

Figure SP 6-2

SP 6  3  A circuit with its nodes identified is shown in Figure 
SP 6-3. Determine v34, v23, v50, and i0.

Figure SP 6-4 A VCCS.
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Design Problems
DP 6-1 Design the operational amplifier circuit in Figure 
DP 6-1 so that j

*out ~  ^  ' *in

Hint: A constant input is required. Assume that a 5-V source is 
available.

DP 6-4 Design a circuit having three inputs, vj, v2, v3, and two 
outputs, va, vb, that are related by the equation

Vb _
12 - 2

0

Vl  " 2
V2 +

- 4

Figure DP 6-1

DP 6-2 Figure DP 6-2a shows a circuit that has one input, vl5 
and one output, vc. Figure DP 6-2b shows a graph that specifies a 
relationship between v0 and v,. Design a circuit having input, vj, 
and output, vG, that have the relationship specified by the graph 
in Figure DP 6-2b.

Hint: A constant input is required. Assume that a 5-V source is 
available.

*o.V

Hint: A constant input is required. Assume that a 5-V source is 
available.

DP 6-5 A microphone has an unloaded voltage vs =  20 mV, as 
shown in Figure DP 6-5a. An op amp is available as shown in 
Figure DP 6-5b. It is desired to provide an output voltage of 4 V. 
Design an inverting circuit and a noninverting circuit and 
contrast the input resistance at terminals x-y seen by the 
microphone. Which configuration would you recommend to 
achieve good performance in spite of changes in the microphone 
resistance Rs?

Hint: We plan to connect terminal a to terminal x and terminal b 
to terminal y or vice versa.

(a)

(a)

Figure DP 6-2

DP 6-3 Design a circuit having input, v*, and output, vD, that are 
related by the equations (a) vG=  \2vl + 6 , (b) vG=  12v j-6 ,
(c) v0 =  - 12vi + 6 , and (d) v0 = - 12vj -  6 .

Figure DP 6-5 Microphone and op amp circuit.

(b)
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7.1 I N T R O D U C T I O N

This chapter introduces two more circuit elements, the capacitor and the inductor. The constitutive
equations for the devices involve either integration or differentiation. Consequently:

• Electric circuits that contain capacitors and/or inductors are represented by differential equations. 
Circuits that do not contain capacitors or inductors are represented by algebraic equations. We say 
that circuits containing capacitors and/or inductors are dynamic circuits, whereas circuits that do 
not contain capacitors or inductors are static circuits.

• Circuits that contain capacitors and'or inductors are able to store energy.

• Circuits that contain capacitors and/or inductors have memory. The voltages and currents at a 
particular time depend not only on other voltages at currents at that same instant of time but also on 
previous values of those currents and voltages.

In addition, we will see that:

• In the absence of unbounded currents or voltages, capacitor voltages and inductor currents are 
continuous functions of time.

• In a dc circuit, capacitors act like open circuits, and inductors act like short circuits.

• A set of series or parallel capacitors can be reduced to an equivalent capacitor. A set of series or 
parallel inductors can be reduced to an equivalent inductor. Doing so does not change the element 
current or voltage of any other circuit element.

- c
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• An op amp and a capacitor can be used to make circuits that perform the mathematical operations o f 
integration or differentiation. Appropriately, these important circuits are called the integrator and 
the differentiator.

• The element voltages and currents in a circuit containing capacitors and inductors can be 
complicated functions o f time. MATLAB is useful for plotting these functions.

7.2  C A P A C I T O R S

FIGURE 7.2 
connected to a

1 A capacitor 
voltage source.

A capacitor is a circuit element that stores energy in an electric field. A capacitor 
can be constructed by using two parallel conducting plates separated by distance d  
as shown in Figure 7.2-1. Electric charge is stored on the plates, and a uniform 
electric field exists between the conducting plates whenever there is a voltage across 
the capacitor. The space between the plates is filled with a dielectric material. Some 
capacitors use impregnated paper for a dielectric, whereas others use mica sheets, 
ceramics, metal films, or just air. A property o f the dielectric material, called the 
dielectric constant, describes the relationship between the electric field strength and 
the capacitor voltage. Capacitors are represented by a param eter called the 
capacitance. The capacitance o f a capacitor is proportional to the dielectric constant 
and surface area o f the plates and is inversely proportional to the distance between 
the plates. In other words, the capacitance C o f a capacitor is given by

C =
€ A

where G is the dielectric constant, A the area o f  the plates, and d  the distance between 
plates. The unit o f capacitance is coulomb per volt and is called farad (F) in honor o f 
Michael Faraday.

A capacitor voltage v(t) deposits a charge +q{t) on one plate and a charge -q ( t )  on the other 
plate. We say that the charge q(t) is stored by the capacitor. The charge stored by a capacitor is 
proportional to the capacitor voltage, v(t). Thus, we write

q(t) = C v(t) ( 7 . 2 - 1 )

where the constant o f proportionality, C, is the capacitance o f the capacitor.

Capacitance is a measure o f the ability o f a device to store energy in the form o f a separated
charge or an electric field.

In general, the capacitor voltage v(/) varies as a function o f time. Consequently, q(t), the charge 
stored by the capacitor, also varies as a function o f time. The variation o f the capacitor charge with 
respect to time implies a capacitor current, i(t), given by

. '( 0  =  ^ ( 0

We differentiate Eq. 7.2-1 to obtain

i{t) =  C j v ( t ) (7.2-2)



C a p a c i to

<(0 I i(0 J

v(/) V( 0

FIGURE 7.2-2 Circuit symbols 
of a capacitor.

FIGURE 7.2-3 Voltage waveform in which 
the change in voltage occurs over an increment 
of time, At.

Equation 7.2-2 is the current-voltage relationship of a capacitor. The current and voltage in Eq. 7 .7-2 
adhere to the passive convention. Figure 7.2-2 shows two alternative symbols to represent capacitors 
in circuit diagrams. In both Figure 7.2-2(a) and (b), the capacitor current and voltage adhere to the 
passive sign convention and are related by Eq. 7.2-2.

Now consider the waveform shown in Figure 7.2-3, in which the voltage changes from 
a constant voltage of zero to another constant voltage of 1 over an increment of time, At. Using 
Eq. 7.2-2, we obtain

i(t) =

0
c_
At
0

/ < 0

0 < t < At 

t > At

Thus, we obtain a pulse of height equal to C/A/. As A/ decreases, the current will increase. 
Clearly, A/ cannot decline to zero or we would experience an infinite current. An infinite current is an 
impossibility because it would require infinite power. Thus, an instantaneous (A t = 0) change of 
voltage across the capacitor is not possible. In other words, we cannot have a discontinuity in v(f).

The voltage across a capacitor cannot change instantaneously.

Now, let us find the voltage v(t) in terms of the current i(f) by integrating both sides of Eq. 7.2-2. 
We obtain

i(r)dz (7.2-3)

This equation says that the capacitor voltage v(/) can be found by integrating the capacitor current from 
time -o o  until time t. To do so requires that we know the value of the capacitor current from time 
r =  —oo until time r  =  t. Often, we don’t know the value of the current all the way back to r =  —oo. 
Instead, we break the integral up into two parts:

v{t) =  ^  j i ( r ) d T  +  ^  J  i ( r )dx =  ^, j j ( x ) d x +  v(to) (7.2-4)

This equation says that the capacitor voltage v(f) can be found by integrating the capacitor current 
from some convenient time r = to until time r =  /, provided that we also know the capacitor voltage 
at time /0. Now we are required to know only the capacitor current from time r =  to until time r  =  t. 
The time t0 is called the in itia l tim e, and the capacitor voltage v(f0) is called the in it ia l condition . 
Frequently, it is convenient to select /0 =  0 as the initial time.

Capacitors are commercially available in a variety of types and capacitance values. Capacitor 
types are described in terms of the dielectric material and the construction technique. Miniature metal 
film capacitors are shown in Figure 7.2-4. Miniature hermetically sealed polycarbonate capacitors are
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polycarbonate capacitors ranging from 1 /zF to 
FIGURE 7.2-4 Miniature metal film capacitors ranging from 1 5 0  ^  Co(jrtesy o f Electronlc Concepts Inc
mF to 50 mF. Courtesy o f Electronic Concepts Inc.

shown in Figure 7.2-5. Capacitance values typically range from picofarads (pF) to microfarads 
T wo pieces o f insulated wire about an inch long when twisted together w ill have a capacitance o f about 
1 pF. On the other hand, a power supply capacitor about an inch in diameter and a few inches long may 
have a capacitance o f 0.01 F.

Actual capacitors have some resistance associated with them. Fortunately, it is easy to include 
approximate resistive effects in the circuit models. In capacitors, the dielectric material between the 
plates is not a perfect insulator and has some small conductivity. This can be represented by a very 
high resistance in parallel with the capacitor. Ordinary capacitors can hold a charge for hours, and the 
parallel resistance is then hundreds o f megaohms. For this reason, the resistance associated with a 
capacitor is usually ignored.

E x a m p l e  7 . 2 - 1  C a p a c i t o r  C u r r e n t  and  V o l t a g e

Find the current for a capacitor C =  1 mF w'hen the voltage across 
the capacitor is represented by the signal shown in Figure 7.2-6.

Solution
The voltage (with units o f volts) is given by

0 t <  0

lOf 0 <  t <  1
20 -  lOr 1 <  t < 2
0  t > 2

Then, because i = C d v /d t , where C =  10 3 F, we obtain

f 0 
10“ 2
- 1 0 " 2 

0

i ( t )  =

t < 0  

0  <  t < 1

1 <  t < 2 

t >  2

Therefore, the resulting current is a series o f two pulses of 
magnitudes 10~2 A and —10-2  A, respectively, as shown in Figure
7.2-7.

u(V)

10

FIGURE 7.2-6 Waveform o f the 
voltage across a capacitor for Example 
7.2-1. The units are volts and seconds.

F'lGl'RE 7.2-7 Current for Example
7.2-1.
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-|  ̂ E x a m p le  7 . 2 - 2  C a p a c i to r  C u rre n t  an d  V o lta g e  j -

Find the voltage v(t) for a capacitor C =  1/2 F when the current is as 
shown in Figure 7.2-8 and v(0) =  0.

Solution
First, w'e write the equation for i(t) as

0 t < 0

t 0 < t < \
1 1 < t <  2 

0 2 < t

Then, because

'( T̂ T

and C =  1/2, we have
r o

2 I  zdr 
'o/Jo

j I" (l)fi?r +  v(

r <  0

0  < t < 1

1) 1 < / < 2

FIGURE 7.2-8 Circuit waveform for Example 
7.2-2. The units are in amperes and seconds.

, v(2 ) 2 < t
with units of volts. Therefore, for 0 < t < 1, we have

v (f)  =  <2
For the period 1 < / < 2, we note that v( 1) =  1 and, therefore, we have 

v(f) — 2{t 1) +  1 =  ( 2 t -  1)V
The resulting voltage waveform is shown in Figure 7.2-9. The voltage 
changes with t 2 during the first 1 s, changes linearly with t during the FIGURE 7.2-9 Voltage waveform for Example

p e r io d  from 1 to 2 s, and stays constant equal to 3 V after t — 2 s. 7 2*2-

E x a m p l e  7 . 2 - 3  C a p a c i to r  C u rre n t  an d  V o lta g e

Figure 7.2-10 shows a circuit together with two plots. The plots represent the current and voltage of the capacitor 
in the circuit. Determine the value of the capacitance of the capacitor.

/(f), mA 

50

1 2 3 /<s)
FIGURE 7.2-10 The circuit and plots 
considered in Example 7.2-3.
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Solution
The current and voltage o f the capacitor are related by

or

v(r) =  i ^  j(r) dx  +  v(/0) 

v ( / ) - v ( / 0) = ^ f '  ' ( T) dx

(7.2-5)

(7.2-6)

Because i(r) and v(/) are represented graphically by plots rather than equations, it is useful to interpret Eq. 7.2-6 
using

v(f) — v(/o) =  the difference between the values o f voltage at times t and to

and fJ to
i(r) d r  — the area under the plot o f  /(/) versus t for times between t and r0

Pick convenient values t and /0, for example, to =  1 s and t — 3 s. Then,

v (0  — v(/0) =  - 1  -  ( -3 )  =  2 V

and [  i ( t )  d r  =  [  0.05 d r  =  (0.05)(3 -  1) =  0.1 A s
7% J\

Using Eq. 7.2-6 gives

c  =  0.05 ^  =  0.05 F =  50 mF

E x a m p l e  7 . 2 - 4  C a p a c i t o r  C u r r e n t  
a n d  V o l t a g e

I N T E R A C T I V E  E X A M P L E

Figure 7.2-11 shows a circuit together with two plots. The plots represent the current and voltage o f the capacitor 
in the circuit. Determine the values o f  the constants, a and b , used to label the plot o f the capacitor current.

i{t), mAv(t), V

2 4

i(t)

2  5  7  t  ( m s )

FIGURE 7.2-11 The circuit and plots considered in Example 7.2-4.

Solution
The current and voltage o f the capacitor are related by

* W  =  C — v ( / )

2  5 t ( m s )

(7 .2 -7 )
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Beacause /(/) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.2-7 as

the value of i(t) = C x the slope of v(<)

To determine the value of a. pick a time when /(/) =  a and the slope of v(t) is easily determined. For example, at 
time t = 3 ms,

— v(0 003) = ---- ^ ----------=  8 0 0 0 -
dt K } 0 .002-0 .005  s

(The notation — v(0.003) indicates that the derivative ^-v(t) is evaluated at time t =  0.003 s.) Using Eq. 7.2-7 
dt dt

gives

a =  (5 x 10~6)(8000) =  40 mA

To determine the value of 6 , pick t — 6 ms;

d
j - v  (0 006} 0  005  _ 0  0072 4 - °  =  12 X  10s —

s

Using Eq. 7.2-7 gives

b = ( 5 x 10"6)(12 x 103) =  60mA

E x a m p l e  7 . 2 - 5  C a p a c i to r  C u rre n t  an d  V o lta g e

The input to the circuit shown in Figure 7.2-12 is the current

i(t) = 3.75<T1 2'A for / > 0

The output is the capacitor voltage

v(t) =  4 -  \.25e~l'2t V for t > 0

Find the value of the capacitance, C.

Solution
The capacitor voltage is related to the capacitor current by

K0  i(r)dz +  v(0 )

That is,

4 -  \ .25e

Equating the coefficients of e~x 2t gives

C

+ v( t )

- e -
i(f)

FIGURE 7.2-12 
The circuit 
considered in 
Example 7.2-5.

3.75
C ( - 1.2)

—3 125
+ v(0 ) =  — p r— (e~l ~  0  +  v(0 )

. 3.125 3.1251.25 =  _  * . c .  — = 2.5F
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EXERCISE 7.2-1 Determine the current i(t) for t >  0 for the circuit o f Figure E 1 .2-\b  when 
vs(r) is the voltage shown in Figure E 7.2 -la .

iti)

v M i

(a)

FIGURE E 7.2-1 (a) The voltage source voltage, (b) The circuit. 

Hint: Determine ic (t) and iR(t) separately, then use KCL.

Answer: v(/)
2t - 2  2 < t < 4 
1 - t  4 < t < 8

0  otherwise

1 \ few 1

f  1F

^ i n e
J/R(f)

(b)

7.3 E N E R G Y  S T O R A G E  I N  A C A P A C I T O R

Consider a capacitor that has been connected to a battery o f voltage v. A current flows and a charge is 
stored on the plates o f the capacitor, as shown in Figure 7.3-1. Eventually, the voltage across the 
capacitor is a constant, and the current through the capacitor is zero. The capacitor has stored energy 
by virtue o f the separation o f charges between the capacitor plates. These charges have an electrical 
force acting on them.

The forces acting on the charges stored in a capacitor are said to result from an electric field. An 
electric fie ld  is defined as the force acting on a unit positive charge in a specified region. Because the 
charges have a force acting on them along a direction jc, we recognize that the energy required 
originally to separate the charges is now stored by the capacitor in the electric field.

The energy stored in a capacitor is

- fJ -oc
vi d r

Remember that v and / are both functions o f time and could be written as v(/) and /(/). Because
d v

i =  C
dt

we have

wc / ' d v  f vW 1
v C ^ d T  =  C  /  v d v  =  - C v 2

-OO d t  Jv( — oo) ^

v(r)

v(-oo)

Switch
closed

10 V

R
o----- V W

+
C ^ v  c

FIGURE 7.3-1 A circuit 
(a) where the capacitor is charged 
and vc =  10 V and (b) the switch 
is opened at t =  0 .
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Because the capacitor was uncharged at t = -oo , set v(-oo) =  0. Therefore,

W cW -^C v2^) J (7.3-1)

Therefore, as a capacitor is being charged and v(/) is changing, the energy stored, wc, is 
changing. Note that wc{t) > 0 for all v(/), so the element is said to be passive.

Because q =  Cv, we may rewrite Eq. 7.3-1 as

The capacitor is a storage element that stores but does not dissipate energy. For example, consider a 
100-mF capacitor that has a voltage of 100 V across it. The energy stored is

As long as the capacitor is not connected to any other element, the energy of 500 J remains stored. Now 
if we connect the capacitor to the terminals of a resistor, we expect a current to flow until all the energy 
is dissipated as heat by the resistor. After all the energy dissipates, the current is zero and the voltage 
across the capacitor is zero.

As noted in the previous section, the requirement of conservation of charge implies that the 
voltage on a capacitor is continuous. Thus, the voltage and charge on a capacitor cannot change 
instantaneously. This statement is summarized by the equation

where the time just prior to t — 0 is called t = 0~ and the time immediately after t — 0 is called t — 0 +. 
The time between t = 0_ and t =  0+ is infinitely small. Nevertheless, the voltage will not change 
abruptly.

To illustrate the continuity of voltage for a capacitor, consider the circuit shown in Figure 7.3-1. 
For the circuit shown in Figure 7.3-la, the switch has been closed for a long time and the capacitor 
voltage has become vc =  10 V. At time t = 0, we open the switch, as shown in Figure 7.3-1 b. Because 
the voltage on the capacitor is continuous,

(7.3-2)

wc =  -C v 2 =  -(0.1)(100 )2 =  500 J

v(0 +) =  v(0 ~)

vc(0+) =  vc(0~) =  10 V

E x a m p l e  7 . 3 - 1  E nergy Stored  by a C ap acitor
v

A 10-mF capacitor is charged to 100 V, as shown in the circuit of Figure
7.3-2. Find the energy stored by the capacitor and the voltage of the 
capacitor at / =  0 + after the switch is opened.

Solution
The voltage of the capacitor is v =  100 V at / =  0 ~. Because the voltage at 
t =  0+ cannot change from the voltage at t =  O', we have FIGURE 7.3-2 Circuit of 

Example 7.3-1 with C =  lOmF.v(0 +) =  v(0~) =  100 V 
The energy stored by the capacitor at / =  0+ is

V
wc = ^C v2 =  ^ ( 1 0 “2)(100 )2 =  50 J
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E x a m p l e  7 . 3 - 2  P o w e r  a nd  E n e r g y  for  a C a p a c i t o r

The voltage across a 5-mF capacitor varies as shown in 
Figure 7.3-3. Determine and plot the capacitor current, 
power, and energy.

100

Solution
The current is determined from ic =  C d v /d t  and is shown 
in Figure 7.3-4a. The power is v(t)i(t)— the product o f the 
current curve (Figure 7.3-4#) and the voltage curve (Figure 
7.3-3)— and is shown in Figure 13-4b. The capacitor

(V) 5 0

5 / ( s) —0  1 2  3  4

FIGURE 7 J -3  The voltage across a capacitor.

receives energy during the first two seconds and then delivers energy for the period 2 <  t <  3.
The energy is co = J p d t  and can be found as the area under the p (t) curve. The curve for the energy is 

shown in Figure 7.3-4c. Note that the capacitor increasingly stores energy from / =  0 s to t — 2 s, reaching a 
maximum energy o f 25 J. Then the capacitor delivers a total energy o f  18.75 J to the external circuit from / =  2 s 
to t =  3 s. Finally, the capacitor holds a constant energy o f 6.25 J after t =  3 s.

(a)

pit)
(W)

Delivering energy

(b)

wit)
(J)

2 5 . 0

6.25

0

Storing energy As. Delivering energy

Holding energy constant 

---1_______ I_________
t (s) •

FIGURE 7.3-4 The current, power, and
(c ) energy of the capacitor of Example 7.3-2.
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EXERCISE 7.3-1 A 200-mF capacitor has been charged to 100  V. Find the energy stored by the 
capacitor. Find the capacitor voltage at / =  0+ if v(0~) =  100 V.

Answer: w(l) =  1 J and v(0+) =  100 V

EXERCISE 7.3-2 A constant current / =  2 A flows into a capacitor of \00/i¥  after 
a switch is closed at t =  0. The voltage of the capacitor was equal to zero at / =  0~. Find the 
energy stored at (a) t = Is  and (b) t — 1 0 0 s.

Answer: w( 1) =  20 kJ and w( 100) =  200 MJ

7.4 S E R I E S  A N D  P A R A L L E L  C A P A C I T O R S

First, let us consider the parallel connection of Ncapacitors as showTi in 
Figure 7.4-1. We wish to determine the equivalent circuit for the N 
parallel capacitors as shown in Figure 7.4-2.

Using KCL, we have

I =  1*1 +  1*2 +  1*3 +  ' * * +  *N

_ r  dv 
' • -  " dt

Because

and v appears across each capacitor, we obtain

_ dv ^  dv ^  dv dv
1 =  Cl j 7 +  C2:;7 +  C3 :77+ • + c ^-dt dt

dv
dt

— (Ci 4- C2 +  C3 - f ------1- C^) —
dt (7.4-1)

-  £ c -
n - 1

dv
dt

For the equivalent circuit shown in Figure 7.4-2,

dv
i =  Cr dt (7.4-2)

Comparing Eqs. 7.4-1 and 7.4-2, it is clear that

Cp — Cj -f- C2 +  C3 -f • • • -I- C s — Cn
n~ 1

Thus, the equivalent capacitance of a set of N parallel capacitors is 
simply the sum of the individual capacitances. It must be noted that all 
the parallel capacitors will have the same initial condition, v(0 ).

Now let us determine the equivalent capacitance Cs of a set of N 
series-connected capacitances, as shown in Figure 7.4-3. The equiv­
alent circuit for the series of capacitors is shown in Figure 7.4-4.

Using KVL for the loop of Figure 7.4-3, we have

V =  V, +  v2 -4- v3 +  •. • +  VN (7.4-3)

FIGURE 7.4-1 Parallel connection of 
N capacitors.

FIGURE 7.4-2 Equivalent circuit for N parallel 
capacitors.

+  1 /  -
v3

-----------------------
l>2

C 2
CN vN

FIGURE 7.4-3 Series connection of 
N capacitors.

FIGURE 7.4-4 Equivalent circuit for TV 
series capacitors.
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Because, in general,
1 /*'

vn ( t ) = j r  i d r  + vn(to)
Cn Jt0

where z is common to all capacitors, we obtain

V =  7 7 -  /  i J t  +  v 1 ( ? o ) H -------------1 - 7 ! -  [  id T  + vN(t0)
C 1 Jt0 JtQ

=  lr,+h+- +£)
N 1 f t  N

= /  '  dr + £ v . ( , 0 )
n = l " ^ o  n= l

From Eq. 7.4-3, we note that at t = to,
N

v(fo) =  V1 (M +  v2(^o) + ----1" Vn (*o) =  vn(^o)
n=l

Substituting Eq. 7.4-5 into Eq. 7.4-4, we obtain

fi
i dx  +  v(f0)

Using KVL for the loop o f the equivalent circuit o f Figure 7.4-4 yields

v  =  J r  I  i d z  + v ( 'o )
Jt0

Comparing Eqs. 7.4-6 and 7.4-7, we find that

For the case o f two series capacitors, Eq. 7.4-8 becomes
1 _ _ 1_ J _

c l ~ c r{ + c~2

or C. =
C ,c 2 

Ci +  C2

(7.4-4)

(7.4-5)

(7.4-6)

(7.4-7)

(7.4-8)

(7.4-9)

E x a m p l e  7 . 4 - 1  P a r a l l e l  a nd  S e r i e s  C a p a c i t o r s

Find the equivalent capacitance for the circuit o f  Figure 7.4-5 when
C, =  C2 =  C 3 =  2m F, vi(0) =  10 V, and v2(0) =  v3(0) =  20 V. i C1

Solution
Because C2 and C3 are in parallel, we replace them with Cp, where

Cp =  C2 +  C 3 =  4 mF

The voltage at / =  0 across the equivalent capacitance Cp is equal to the i a -\.
voltage across C2 or C3, which is v2(0) =  v3(0) =  20 V. As a result o f 
replacing C2 and C3 with Cp, we obtain the circuit shown in Figure 7.4-6.

if
1  +ui 

» £ )  C2~
+
-  v2

” 
U

F IG U R E  7.4-5 Circuit for Exam ple
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We now want to replace the series of two capacitors C\ and Cp with one 
e q u i v a l e n t  c a p a c i t o r .  Using the relationship of Eq. 7.4-9, we obtain

C,CP (2 x 10~3) (4 x IQ '3) =  8 mp 
s C, +  Cp (2 x 1(T3) +  (4  x 10~3) 6

The voltage at / =  0 across Cs is

v(0 ) =  v ,(0 ) +  vp(0 )

where vp(0) =  20 V, the voltage across the capacitance Cp at t =  0. Therefore, we 
obtain

v(0) =  10 4- 20 =  30 V 

Thus, we obtain the equivalent circuit shown in Figure 7.4-7.

FIGURE 7.4-6 
Circuit resulting from 
Figure 7.4-5 by replacing 
C2 and C3 with Cp.

FIGURE 7.4-7 
Equivalent circuit for the 
circuit of Example 7.4-1.

EXERCISE 7.4-1 Find the equivalent capacitance for the circuit of Figure E 7.4-1 

Answer: Ceq =  4 mF

6 mF 12 mF 2 mF Va mF

FIGURE E 7.4-1
1/3 mF

FIGURE E 7.4-2

EXERCISE 7.4-2 Determine the equivalent capacitance Ceq for the circuit shown in Figure 
E 7.4-2.

Answer: 10/19 mF

7.5 I N D U C T O R S

An inductor is a circuit element that stores energy in a magnetic field. An inductor can be constructed 
by winding a coil of wire around a magnetic core as shown in Figure 7.5-1. Inductors are represented 
by a parameter called the inductance. The inductance of an inductor depends on its size, materials, and 
method of construction. For example, the inductance of the inductor shown in Figure 7.5-1 is given by

_  n N 2A 
I

where N is the number of turns—that is, the number of times that the wire is wound around the 
core A is the cross-sectional area of the core in square meters; / the length of the winding in 
meters; and /i is a property of the magnetic core known as the permeability. The unit of inductance
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FIGURE 7.5-1 An inductor connected to a current 
source.

is called henry (H) in honor o f the A m erican physicist Joseph 
Henry. Practical inductors have inductances ranging from 1 /zH 
to 10 H. An example o f  a coil with a large inductance is shown 
in Figure 7.5-2. Inductors are wound in various forms, as shown 
in Figure 7.5-3.

Inductance is a measure o f  the ability o f a device to 
store energy in the form o f a magnetic field.

In Figure 7.5-1, a current source is used to cause a coil 
current i(t). We find that the voltage v( 0  across the coil is 
proportional to the rate o f change o f the coil current. That is,

(7.5-1)

where the constant o f proportionality is L , the inductance o f the 
inductor.

Integrating both sides o f Eq. 7.5-1, we obtain

/(/) 4 /  v{r)dx (7.5-2)

FIGURE 7.5-2 Coil with a large inductance. Courtesy of 
MuRata Company.

FIGURE 7.5-3 Elements with inductances arranged in 
various forms of coils. Courtesy of Dale Electronic 
Inc.

FIGURE 7.5-4 Circuit symbol for an inductor.

This equation says that the inductor current i(t) can be found by 
integrating the inductor voltage from time —oo until time t. To do 
so requires that we know the value o f the inductor voltage from 
time z =  —oo until time r  =  t. Often, we don’t know the value o f 
the voltage all the way back to r  =  — oo. Instead, we break the 
integral up into two parts:

i(t) = ^ J  v{T)dr + ^ j '  v(T)dT = i(t0) + ^ £  v(r)Jr

(7.5-3)

This equation says that the inductor current i(t) can be found by 
integrating the inductor voltage from some convenient time r  =  

until time r  = t, provided that we also know the inductor 
current at time t0- Now we are required to know only the inductor 
voltage from time r = to until time r  — t. The time t0 is called the 
initial time, and the inductor current i(t0) is called the initial 
condition. Frequently, it is convenient to select to =  0 as the 
initial time.

Equations 7.5-1 and 7.5-3 describe the current-voltage 
relationship o f an inductor. The current and voltage in these 
equations adhere to the passive convention. The circuit symbol 
for an inductor is shown in Figure 7.5-4. The inductor current and 
voltage in Figure 7.5-4 adhere to the passive sign convention and 
are related by Eqs. 7.5-1 and 7.5-3.

Consider the voltage o f an inductor when the current 
changes at t =  0  from zero to a constantly increasing current 
and eventually levels o ff as shown in Figure 7.5-5. Let us 
determine the voltage o f the inductor. We may describe the



amperes.

FIGURE 7.5-6 Voltage response for the current 
waveform of Figure 7.5-7 when L = 0.1 H.

current (in amperes) by

t <  0

o < t < tx 

t > t x

Let us consider a 0.1 -H inductor and find the voltage waveform. Because v =  L(di/dt), we have (in volts)

i ( t )  =

0
10/

~t\
10

v(0 =
0

Tx
0

t <  0 

0 <  t <  tx 

t >  tx

The resulting voltage pulse waveform is shown in Figure 7.5-6. Note that as tx decreases, the 
magnitude of the voltage increases. Clearly, we cannot let t\ =  0 because the voltage required would 
then become infinite, and we would require infinite power at the terminals of the inductor. Thus, 
instantaneous changes in the current through an inductor are not possible.

The current in an inductance cannot change instantaneously.

An ideal inductor is a coil wound with resistanceless wire. Practical inductors include the actual 
resistance of the copper wire used in the coil. For this reason, practical inductors are far from ideal 
elements and are typically modeled by an ideal inductance in series with a small resistance.

E x a m p l e  7 . 5 - 1  In d u c to r  C u rre n t  an d  V o lta g e

Find the voltage across an inductor, L =  0.1 H, when the current in the inductor is

i ( t )  — 2 0 A
for t > 0 and i(0 ) =  0 .

Solution
The voltage for t < 0 is

= L J t = 0̂ 1 ^ ( 20,e" 2')  = 2 (~ 2 te~2' + e~21) =2<T2,(1 - 2 1) V

The voltage is equal to 2 V when / =  0, as shown in Figure 1. 5- lb .  The current waveform is shown in Figure 
1.5-la. Note that the current reaches a maximum value, and the voltage is zero at / =  0.5 s.
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E x a m p l e  7 . 5 - 2  I n d u c t o r  C u r r e n t  
and  V o l t a g e

£  I N T E R A C T I V E  E X A M P L E

Figure 7.5-8 shows a circuit together with two plots. The plots represent the current and voltage o f the inductor in 
the circuit. Determine the value o f the inductance o f the inductor.

v(t), V 

30
i(f)

2 6 t (ms)

Solution
The current and voltage o f the inductor are related by

i(t), A

1

1 /
2 f  6 t (ms)

-2 J FIGURE 7.5-8 The circuit and plots 
considered in Example 7.5-2.

d r  + i(t0)

or i(t) -  i(t0) =  l j ^  v(r ) d z

(7.5-4)

(7.5-5)

Because i(t) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.5-5
using

i(t) — i(to) — the difference between the values o f current at times t and to

and [  v (r)d x
J to

the area under the plot o f v(/) versus t for times between t and to

Pick convenient values t and t0, for example, to =  2 ms and t =  6  ms. Then,

i(t) -  i(to) =  1 -  ( - 2 )  =  3 A

r0.006
and

Using Eq. 7.5-5 gives

I  v ( r ) d r =  [  30 d r  =  (30)(0.006 — 0.002) =  0.12 V • s
Jto J  0.002

3 =  -J- (0.12) =► L =  0.040 =  0.040 H =  40 mH
L A
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E x a m p l e  7 . 5 - 3  In d u c to r  C u rre n t  and  V o lta g e  j -

The input to the circuit shown in Figure 7.5-9 is the voltage

v(f) =  4 e 20' V for t > 0

The output is the current
i(t) =  - 1 .2e~20' -  1.5 A for I >  0 

The initial inductor current is /L(0) =  -3 .5  A. Determine the values of the inductance, 
L, and resistance, R.

J 'lM

1 '(')

Solution
Apply KCL at either node to get

‘(0

v ( t )

FIGURE 7.5-9 The 
circuit considered in 
Example 7.5-3.

That is
4 ^ - 2 0 /  1 r t  4 ^ - 2 0 /  A

, .2c - » _ 1 5  =  V + l i  ^ - 3 -5 =  —  + i R 5 ) ^ “ - ' > - 3 -5

4 1
R ~  51

, - 20/
+  5Z - 3 '5

Equating coefficients gives

-1.5 =  — - 3 . 5  => L =  0.1 H

and
4 1 4  1 _  4

5 1 “ /? 5(0.1) ~  R
R =  5 0

EXERCISE 7.5-1 Determine the voltage v(f) for r > 0 for the circuit of Figure E 7.5-16 when 
i’s(f) is the current shown in Figure E 7.5-1a.

(a)

FIGURE E 7.5-1 (a) The current source current. (b) The circuit. 

Hint: Determine vL(/) and vR(t) separately, then use KVL.

( 2t -  2  2  <  t <  4  
Answer; v(/) =  /  7 _  / 4 < / < 8

I 0 otherwise
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7.6 E N E R G Y  S T O R A G E  I N  A N  I N D U C T O R

The power in an inductor is

Energ y  S to ra ge  E lem en ts

(7.6-1)

The energy stored in the inductor is stored in its magnetic field. The energy stored in the inductor 
during the interval t0 to t is given by

mc* MO
w  =  /  p  d r  =  L / i d i

Jto Ji(h)

Integrating the current between i(t0) and i(t)9 we obtain

»  =  f  ''(<•) (7 -M )

Usually, we select to =  — oo for the inductor and then the current / (—oo) =  0. Then we have

(7.6-3)
1

w = - L i

Note that w(f) >  0 for all /(*), so the inductor is a passive element. The inductor does not 
generate or dissipate energy but only stores energy. It is important to note that inductors and capacitors 
are fundamentally different from other devices considered in earlier chapters in that they have 
memory.

E x a m p l e  7 . 6 - 1  I n d u c t o r  V o l t a g e  a nd  C u r r e n t

Find the current in an inductor, L =  0.1 H, when the voltage 
across the inductor is

v =  10fe~5' V

t’ (V)

0.736

Assume that the current is zero for t < 0.
0 0.2 0.4 0 .6  / (s)

Solution
The voltage as a function o f time is shown in Figure 7 .6-la . 
Note that the voltage reaches a maximum at t — 0.2 s. The 
current is

4
i (A)

2

^ ----- 1 1 i
0.2 0.4 0 .6  t (s)

(a)

(b)

FIGURE 7.6-1 Voltage and current for Example 7.6-1.i =  £  J  v d x  + i(t0)

Because the voltage is zero for t < 0, the current in the inductor at t =  0 is i(0) =  0. Then we have

=  > o / '
Jo

10 re~5r d r  =  100
—e

25
(1 + 5 r ) =  4(1 _ « - * ( !  + 5/)) A

The current as a function o f time is shown in Figure 7.6-1 b.



E n e r g y  S t o r a g e  in an I n d u c t o r --------( 275

E x a m p l e  7 . 6 - 2  P o w er and  E n e rg y  fo r  an In d u c to r  J -

Find the power and energy for an inductor of 0.1 H 
when the current and voltage are as shown in Figures 
7.6-20,6.

Solution
First, we write the expression for the current and the 
voltage. The current is

i = 0  t < 0 

=  20 / 0 <  / < 1 

=  20  1 <  /

The voltage is expressed as
v =  0 t < 0

=  2 0 < t < 1

=  0 1 <  /
You can verify the voltage by using v =  L(di/dt). 
Then the power is

p  =  vi =  40/ W

for 0 <  / < 1 and zero for all other time.
The energy, in joules, is then

w =  ~ L i2

( a )

(b)

(c)

( d )

FIGURE 7.6-2 Current, voltage, power, and energy for Example
7.6-2.

=  0.05(20/) 0 < / < 1
=  0.05(20)2 1 < /

and zero for all / < 0 .
The power and energy are shown in Figures 1.6-2cM.

E x a m p l e  7 . 6 - 3  P o w e r an d  E n e rg y  fo r  an  In d u c to r

Find the power and the energy stored in a 0.1-H inductor when
i = 20/e_2/ A and v =  2^-2'( l  — 2/) V for t > 0 and i =  0 for 
t < 0. (See Example 7.5-1.)

Solution
The power is

p  =  fv =  (20te~2l)[2e~2,(l -  2/)] =  40te-4'( l  -  2t) W t > 0 
The energy is then

' =  \ u 2 =  0.05(20fe~2') 2 =  20 / V 4' J / > o

15 f(s)

FIGURE 7.6-3 Energy stored in the 
inductor of Example 7.6-3.

.Note that is positive for all values of / > 0. The energy stored in the inductor is shown in Figure 7.6-3.
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FIGURE 7.7-1 Series o f N  inductors.

7.7 S E R I E S  A N D  P A R A L L E L  I N D U C T O R S

A series and parallel connection o f inductors can be reduced to an equivalent simple inductor. 
Consider a series connection o f N  inductors as shown in Figure 7.7-1. The voltage across the series 
connection is

v =  vt +  v2 -I------- 1- vn

r di  , d i  r di  
~  L ' d t  + L2J t  +  "  + L N J t

<n= 1

di
Jt

a
o -

Because the equivalent series inductor Ls, as shown in Figure 7.7-2, is 
represented by

L dl  
s d t

we require that

FIGURE 7.7-2 Equivalent inductor Ls 
for N  series inductors. l s = J 2 l „ (7.7-1)

n= 1

+ 0-
lN |

FIGURE 7.7-3 Connection of N  parallel 
inductors.

Thus, an equivalent inductor for a series o f inductors is the sum o f the N  
inductors.

Now, consider the set o f  N  inductors in parallel, as shown in Figure
7.7-3. The current i is equal to the sum o f the currents in the N  inductors:

N

* =  £ « »
n= 1

However, because

i n = - j -  [  v d T  +  i „ ( t 0 )
L n J t0

we may obtain the expression

N \ rt n

n=\ n J ^  n= 1
The equivalent inductor Lp, as shown in Figure 7.7-4, is represented by the equation

i =  7 “ /  v d r  + i(t0)
Lv Jto

When Eqs. 7.7-2 and 7.7-3 are set equal to each other, we have

FIGURE 7.7-4 Equivalent inductor Lv 
for the connection of N parallel inductors. (7.7-2)

(7.7-3)
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and i{to) = ^ 2 ‘n(to) (7-7-5)

E x a m p l e  7 . 7 - 1  S e r ie s  and  P a ra l le l  In d u c to rs

Find the equivalent inductance for the circuit of Figure 7.7-5. All the 
inductor currents are zero at t0.

5mH < 20 mHv
S o lu t io n  3 mH
First, we find the equivalent inductance for the 5-mH and 20-mH inductors 
in parallel. FIGURE 7.7-5 The circuit of Example

From Eq. 7.7-4, we obtain 7.7-1.

_L_ JL 1
r p ~ T i + L2

^ = 5 x 2 0  
L, +L2 5 + 2 0

This equivalent inductor is in series with the 2-mH and 3-mH inductors. Therefore, using Eq. 7.7-1, we obtain
N

Leq =  ^   ̂Ln = 2 + 3 + 4 = 9  mH
n= 1

EXERCISE 7. 7-1 Find the equivalent inductance of the circuit of Figure E 7.7-1. 

Answer: — 14mH

3 mH 2 mH
J Y Y V > _

20 mH < 4 mH 1 12 mH

FIGURE E 7.7-2

EXERCISE 7.7-2 Find the equivalent inductance of the circuit of Figure E 7.7-2.

Answer: Lcq = 4 mH

7.8 I N I T I A L  C O N D I T I O N S  O F  S W I T C H E D  C I R C U I T S

In this section, we consider switched circuits. These circuits have the following characteristics:

L All of the circuit inputs, that is, the independent voltage source voltages and independent current 
source currents, are constant functions of time.
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2. The circuit includes one or more switches that open or close at time /0. We denote the time 
immediately before the switch opens or closes as tq and the time immediately after the switch 
opens or closes as . Often, we will assume that to =  0.

3. The circuit includes at least one capacitor or inductor.

4. We will assume that the switches in a circuit have been in position for a long time at t =  t0, the 
switching time. We will say that such a circuit is at steady state immediately before the time of 
switching. A circuit that contains only constant sources and is at steady state is called a dc circuit. 
All the element currents and voltages in a dc circuit are constant functions o f  time.

We are particularly interested in the current and voltage o f energy storage elements after the switch 
opens or closes. (Recall from Section 2.9 that open switches act like open circuits and closed switches act 
like short circuits.) In Table 7.8-1, we summarize the important characteristics o f  the behavior o f  an 
inductor and a capacitor. In particular, notice that neither a capacitor voltage nor an inductor current can 
change instantaneously. (Recall from Sections 7.2 and 7.5 that such changes would require infinite 
power, something that is not physically possible.) However, instantaneous changes to an inductor voltage 
or a capacitor current are quite possible.

Suppose that a dc circuit contains an inductor. The inductor current, like every other voltage and 
current in the dc circuit, will be a constant function o f time. The inductor voltage is proportional to the 
derivative o f the inductor current, v =  L (d i /d t), so the inductor voltage is zero. Consequently, the 
inductor acts like a short circuit.

An inductor in a dc circuit behaves as a short circuit.

Similarly, the voltage o f a capacitor in a dc circuit will be a constant function o f time. The capacitor 
current is proportional to the derivative o f the capacitor voltage, i =  C  (d v /d t), so the capacitor current 
is zero. Consequently, the capacitor acts like a open circuit.

Table 7.8 Characteristics of Energy Storage Elements

VARIABLE INDUCTORS CAPACITORS

Passive sign convention
- L  L i C

~ ^ - \ ( ------ 0+ V + V

Voltage i di 1 [ ' .v — L — 
dt V =  — J  idt +  v(0)

Current 1 f* dv
i =  -  / vdx -1- 1(0 ) 

L Jo ~dt
Power di dvi — Li — p — Cv —dt y  dt
Energy

w Li2 w =  ^ Cv2 
2

An instantaneous change is not permitted for the 
element’s

Current Voltage

Will permit an instantaneous change in the 
element’s

Voltage Current

This element acts as a (see note below) Short circuit to a constant current into its Open circuit to a constant voltage across its
terminals terminals

Note: Assumes that the element is in a circuit with steady-state condition.
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A  capacitor i n  a  dc circu it b e h a v e s  a s  a n  open circuit.

Our plan to analyze switched circuits has two steps:

1. Analyze the dc circuit that exists before time t0 to determine the capacitor voltages and inductor 
currents. In doing this analysis, we will take advantage ofthe fact that capacitors behave as open circuits 
and inductors behave as short circuits when they are in dc circuits.

2. Recognize that capacitor voltages and inductor currents cannot change instantaneously, so the 
capacitor voltages and inductor currents at time have the same values that they had at time /0 .

The following examples illustrate this plan.

Consider the circuit Figure 7.8-1. Prior to t =  0, the sw itch has been closed for a long time. Determine the values 
of the capacitor voltage and inductor current immediately after the switch opens at time t = 0 .

1. To find vc(0“ ) and /’l(0 - ), we consider the circuit before the switch opens, that is for t < 0. The circuit input, 
the voltage source voltage, is constant. Also, before the switch opens, the circuit is at steady state. Because the 
circuit is a dc circuit, the capacitor will act like an open circuit, and the inductor will act like a short circuit. In 
Figure 7.8-2, we replace the capacitor by an open circuit having voltage vc(0“ ) and the inductor by a short 
circuit having current /l(0“). First, we notice that

r

E x a m p l e  7 . 8 - 1  In i t ia l  C o n d it io n s  in a S w itc h e d  C irc u i t
' N

Solution

« L ( 0 - ) = y  =  2A

Next, using the voltage divider principle, we see that

2. The capacitor voltage and inductor current cannot change instantaneously, so

and
vc(0+) =  vc(0“ ) =  6 V 

«l(0+) =  «l(<T)=2A

\^SWl
F1GI RE 7.8-1 Circuit with an inductor and a capacitor. The ‘----------------*----------------
switch is closed for a long time prior to opening at t = 0 . F I G U R E  7.8-2 Circuit of Figure 7 .8-1 for I < 0. J
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E x a m p l e  7 . 8 - 2  In i t i a l  C o n d i t i o n s  in a S w i t c h e d  C i r c u i t

Find « l ( 0 + ) ,  v c ( 0 + ) ,  dvc(0+)/dt .  and di i (0+) / d t  for the circuit o f  Figure 7 . 8 - 3 .  We will use dve(0+) /dt  to 
denote dvc( t ) /d t |,=0+.

1 H
FIGURE 7.8-3 Circuit for Example 7.8-2. Switch 1 closes 
at t =  0  and switch 2 opens at t — 0 .

Assume that switch 1 has been open and switch 2 has been closed for a long time and steady-state conditions 
prevail at / =  0 “ .

2 A

- e -

1 Q

M

FIGURE 7.8-4 Circuit of Figure 7.8-3 
at t =  0 ~ .

2 Q 1 Q

i o v ( !

Solution
First, we redraw the circuit for t =  0~ by replacing the inductor with a 
short circuit and the capacitor with an open circuit, as shown in Figure 
7.8-4. Then we note that

i l ( 0 - )  =  0

and vc(0 “ ) =  - 2 V

Therefore, we have

*l ( 0 + )  =  <l ( 0 “ )  =  0

and vc(0+) =  vc(0“ ) =  —2 V

To find dvc(0+) /d t  and d ii (0 +) /d t ,  we throw the switch at t =  0 and 
] jl+  redraw the circuit o f Figure 7.8-3, as shown in Figure 7.8-5. (We did not

^ draw the current source because its switch is open.)
Because we wish to find dvc(0+) /d t , we recall that

FIGURE 7.8-5 Circuit of Figure 7.8-3 
at t — 0  ̂ with the switch closed and the 
current source disconnected.

Similarly, because for the inductor 

we may obtain d iL(0+ )/d t as

so

• _  r dv*
h ~ C  d t

d vc( 0 +) lc(0 + )
dt C

vL =  L
d ii

dt

d iL{0+) vL(0 + )
d t L

Using KVL for the right-hand mesh o f  Figure 7.8-5, we obtain

vL -  vc +  1 j'l  =  0

Therefore, at t =  0+,

v l(0 +) =  vc(0+) -  iL(0+) =  - 2  -  0 =  - 2  V



Hence, we obtain

dt

O p e r a t io n a l  A m p l i f i e r  C i rc u i ts  a n d  L in e a r  D i f f e r e n t i a l  E q u a t i o n s  - 0

Similarly, to find ic, we write KCL at node a to obtain 

Consequently, at t =  0+,

ic(0+) =  10 ^•(°* ) -  ,L(0+) =  6  -  0 =  6  A

Accordingly, ^  ±  =  ,2 V/s

Thus, we found that at the switching time t =  0, the current in the inductor and the voltage of the capacitor
remained constant. However, the inductor voltage did change instantaneously from vl(0 ) =  0 to
vl(0+) =  - 2  V, and we determined that diL(0+)/d t = - 2  A/s. Also, the capacitor current changed instantane­
ously from /c(0~) =  0 to ic(0+) =  6 A, and we found that dvc(0+)/d t = 12 V/s.

7.9 O P E R A T I O N A L  A M P L I F I E R  C I R C U I T S  A N D  L I N E A R  
D I F F E R E N T I A L  E Q U A T I O N S

This section describes a procedure for designing operational amplifier circuits that implement linear 
differential equations such as

2 ^ y ( t ) +  5 ^ y ( t ) +  4 j t y ( t ) +  M t ) =  M 0  ( 7 .9 - 1 )

The solution of this equation is a function, y(t), that depends both on the function x(t) and on a set of 
initial conditions. It is convenient to use the initial conditions:

d2 d
j t 2 y (*) =  °> j f y { 0  =  ° i  a n d  y ( * )  =  0  ( 7 .9 - 2 )

Having specified these initial conditions, we expect a unique function v{t) to correspond to any given 
function x(f). Consequently, we will treat x(t) as the input to the differential equation and y(t) as the 
output.

Section 6.6 introduced the notion of diagramming operations as blocks and equations as block 
diagrams. Section 6.6 also introduced blocks to represent addition and multiplication by a constant. 
Figure 7.9-1 illustrates two additional blocks, representing integration and differentiation.

Suppose that we were somehow to obtain -77 v(f)- cou^  ^ en integrate three times to obtain 
d 2 d dt

an<J v(0. as illustrated in Figure 7.9-2.

M  L  X(„ XU) - ^ - [ 7 j - W 0' dr

(a) (b)
V l(jlRF 7-<M Block diagram representations of (a) differentiation and (ft) integration.
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v(t)
dt3
FIGURE 7.9-2 The first partial block diagram. FIGURE 7.9-3 A block diagram that represents Eq. 7.9-3.

^3 ^3
Now we must obtain To do so, solve Eq. 7.9-1 for ^ -  v(/) to get

dt*
y ( t)  =  3*(/) 2 . 5 ~ y ( t )  +  2 j t y(t)  + l.5y(t) (7.9-3)

Next, represent Eq. 7.9-3 by a block diagram such as the diagram shown in Figure 7.9-3. Finally, the 
block diagrams in Figures 7.9-2 and 7.9-3 can be combined as shown in Figure 7.9-4 to obtain the 
block diagram o f Eq. 7.9-1.

Our next task is to implement the block diagram as an operational amplifier circuit. Figure 7.9-5 
provides operational amplifier circuits to implement both differentiation and integration. To see how 
the integrator works, consider Figure 7.9-6. The nodes o f the integrator in Figure 7.9-6 have been 
labeled in anticipation o f writing node equations. Let v u v2, and v3 denote the node voltages at nodes 1,
2, and 3, respectively.

FIGURE 7.9-4 A block diagram 
that represents Eq. 7.9-1.

X ( t ) ‘
dt x(t)

lM fi
x(t) o------ 11--------f - A A A r

T

JT

dt

(a) (b)

xU) x(x) dx

(c)

FIGURE 7.9-5 Block diagram representations of (a) differentiation and (c) integration. Corresponding operational
amplifier circuits that (b) differentiate and (d) integrate.
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Q  + urM  -  ©  C  <C« ©

xU) o------- W \r-zz  “ 0 v(,)
R io(t

FIGURE 7.9-6 The integrator.

The input to the integrator is *(/), the node voltage at node 1. Thus, v\ = x(t). The output of the 
integrator is y(t), the node voltage at node 3. Thus, V3 =y(t).  The noninverting input of the ideal 
operational amplifier is attached to the reference node, and the inverting input is connected to node 2 . 
The node voltages at these two nodes must be equal, so v2 =  0.

The voltage across the resistor is related to the node voltages at the resistor nodes by

vr(/) =  vi (0 -  v2(t) =  x(t) -  0 =  x(t)

The resistor current is calculated, using Ohm’s law, to be

. / \ Vr(/) X(t)

The value of the current flowing into an input of an ideal operational amplifier is zero, so applying 
KCL at node 2 gives

i'cM =  'rW =

The voltage across the capacitor is related to the node voltages at the capacitor nodes by

vc(0 =  v2(/) -  v3(f) =  0 -  y{t) =  -y{ l)  (7-9-4)

The capacitor voltage is related to the capacitor current by

1 f
vc (0  =  'c (t) dr  +  vc(0)

Recall that ^(0) =  0. Thus, vc (0) =  0, and

v c « )  -  i / ' i c W  *  - z l ' - T  * :

Finally, using Eq. 7.9-4 gives

y(t) =  ~ ^ c j 0 x(r)dT= -k x (r )d r  (7-9-5)

where k  =  — .

RC
Equation 7.9-5 indicates that the integrator does two things. First, the input is integrated. 

Second, the integral is multiplied by a negative constant, k .  In Figure 7.9-5J, values of R  and C have 
been selected to make k  = — 1 Multiplying a function by — 1 reflects the graph of the function across 
the time axis. This reflection is called an inversion, and the circuit is said to be an inverting circuit. 
Consequently, the integrator shown in Figure 7.9-5*/ is sometimes called an inverting integrator. We 
will call this circuit an integrator unless we want to call attention to the inversion, in which case, we 
will call the circuit an inverting integrator.

Analysis of the summing integrator shown in Figure 7.9-7 is similar to the analysis of the 
integrator. The inputs to the summing integrator are x,(f), the node voltage at node 1, and x2(t), the
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(T) + ”i(') - ( f )  C jcW 0  
Xj(/) o— AAA/------------- 1|------- T—° y{t)

iTw *1 + ®cw -

d )  + -  
X2U) o— AAA—

12(f) ^2  |—
FIGURE 7.9-7 The summing integrator.

node voltage at node 2. The output o f the integrator is y (t), the node voltage at node 4. The ideal
operational amplifier causes the voltage at node 3 to be zero. Hence,

Vi(0 = J d (0 , v j ( r ) = x 2(0 . v3(/) =  0, and v4(t) =  y{t)

Using Ohm’s law shows the currents in the resistors to be

. V| (t) Xl ( 0  (A V2(t) x2(t)
" w = ^ r = ^ r  and , 2 ( , ) = ^ r = ^ r

The value o f the current flowing into an input o f an ideal operational amplifier is zero, so applying 
KCL at node 3 gives

W 0 _ 4 W + W 0 _ a J a + * a

The voltage across the capacitor is related to the node voltages at the capacitor nodes by

Vc(0  =  v3(0  -  v4(0  =  0 - y (t)  =  —y{t)  (7.9-6)

The capacitor voltage is related to the capacitor current by

1 ( '
vc M  =  c J o 'c(r) d r  +  vc (0)

Recall that y(0) =  0. Thus, vc (0) =  0, and

V C «) = U ‘ H r )  dz  -  i  f ( * - P  + # V r  =  f  ( ¥ 2  + W ) *C Jo c J o  V * 1  Ri )  Jo V R i C R i C )

Finally, using Eq. 7.9-6 gives

y ( ‘) =  - 1  ( j ^  + l ^ P ) d T = - J 0 ^ M r )  +  k 2x 2 ( T) ) dr  (7.9-7)

where k\ — ——  and ki =  — .
R \C  R2C

Equation 7.9-7 indicates that the summing integrator does four things. First, each input is 
multiplied by a separate constant: x\ is multiplied by k j, and x 2 is multiplied by k2. Second, the 
products are summed. Third, the sum is integrated. Fourth, the integral is multiplied by —1. (Like the 
inverting integrator, this circuit inverts its output. It is sometimes called an inverting summing 
integrator. Fortunately, we don’t need to use that long name very often.)

The summing amplifier in Figure 7.9-7 accommodates two inputs. To accommodate additional 
inputs, we add more input resistors, each connected between an input node and the inverting input 
node o f the operational amplifier. (The operational amplifier circuit that implements Eq. 7.9-1 will 
require a four-input summing integrator.)

We will design an operational amplifier circuit to implement Eq. 7.9-1 by replacing the blocks in 
the block diagram o f Eq. 7.9-1 by operational amplifier circuits. This process will be easier if  we first 
modify the block diagram to accommodate inverting integrators. Figures 7.9-8 and 7.9-9 show
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FIGURE 7.9-8 The block diagram 
from Figure 7.9-2, adjusted to 
accommodate inverting integrators.

FIGURE 7.9-9 The block 
diagram from Figure 7.9-3, 
adjusted to accommodate 
the consequences of using 
inverting integrators.

modified versions of the block diagrams from Figures 7.9-2 and 7.9-3. Replace all the integrators in 
Figure 7.9-2 by inverting integrators to get Figure 7.9-8. It’s necessary to set the input equal to 

</3 d3
------Ty(t) instead of —-r-y(t)  to cause the output to be equal to y(t) instead of —y(t).

dt dt d3 d2 d
The block diagram in Figure 7.9-9 produces — rr-KO r̂om ~ 7 and y(t). The

d r  d r  dt
block diagrams in Figures 7.9-8 and 7.9-9 can be combined as shown in Figure 7.9-10 to obtain the
block diagram of Eq. 7.9-1.

A summing integrator can multiply each of its inputs by a separate constant, add the products,
and integrate the sum. The block diagram shown in Figure 7.9-11 emphasizes the blocks that can be
implemented by a single four-input summing integrator.

dt3
y( t )

FIGl RE 7.9-10 The block diagram representing Eq. 7.9-1, adjusted to accommodate inverting integrators.

FIGURE 7.9-11 The block diagram representing Eq. 7.9-1. emphasizing the part implemented by the 
integrator. r 7 summing
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R 2

dt2
y(t)

FIGURE 7.9-12 The summing integrator.

d2
Figure 7.9-12 shows the four-input summing integrator. The signal -  0  is the output o f  this

circuit and is also one o f the inputs to the circuit. The resistor R2 is connected between this input and 
the node connected to the inverting input o f the operational amplifier. The summing integrator is 
represented by the equation

d t2
y(t) (7.9-8)

Integrating both sides o f Eq. 7.9-3 gives

j2

d t y (‘) +  1-5y{t) \d x (7.9-9)

For convenience, pick C  =  1 /xF. Comparing Eqs. 7.9-8 and 7.9-9 gives 

R\ =  333 kO, R2 =  400 kO , R 3 =  500 k fi, and R4 667 kCi

The summing integrator implements most o f  the block diagram, leaving only four other blocks 
to be implemented. Those four blocks are implemented using two inverting integrators and two 
inverting amplifiers. The finished circuit is shown in Figure 7.9-13.
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7.10 U S I N G  M A T L A B  TO P L OT  C A P A C I T O R  OR I N D U C T O R  
V O L T A G E  A N D  C U R R E N T

Suppose that the current in a 2-F capacitor is

i(t) =

4 t <  2
/ +  2 2 < t < 6

2 0 - 2 1 6 < / < 14
- 8 t > 4

(7.10-1)

where the units of current are A and the units of time are s. When the initial capacitor voltage is 
v(0) =  —5 V, the capacitor voltage can be calculated using

x)dx — 5 (7.10-2)

Equation 7.10-1 indicates that i{t) =  4 A, whereas t < 2 s. Using this current in Eq. 7.10-2 gives

1 r 4dx -  5 =  2t -  5 (7.10-3)

when t < 2 s. Next, Eq. 7.10-1 indicates that i(t) =  t -f 2 A, whereas 2 < t < 6 s. Using this current in 
Eq. 7.10-2 gives

v« 4 ( /  (t + 2)dr + J~  4d?J - 5 = l- J \ t  +  2 ) d r ~ l = ^  + t - 4

when 2 < t < 6 s. Continuing in this way, we calculate

v(0 =  (20 — 2r) dr  +  J *  (t +  2) dr +  J ~  4 dr)  - 5

1 f  t2
= - J  (20 — 2t) dx + \ \ =  — — + lOf — 31

when 6 < t < 14 s, and

v(0 =  j  ( / 4 ~ 8 ^ t  + J (20 — 2t) dx +  J  (t +  2) dx +  J  4 dx)  - 5

(7.10-4)

(7.10-5)

(7.10-6)
-8 dx +  11 =  67 -  4t

when I > 14 s.
Equations 7.10-3 through 7.10-6 can be summarized as
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f  • ^  f u n c t i o n  i  =  C a p C u r (t )  
i f  t  <  2

i  = 4 ; 
e l s e i f  t  <  6 

i = t  +  2 ; 
e l s e i f  t  < 1 4  

i = 2 0  -  2 * t ;
e l s e

i  =  -  8  ;

(a)

"N
f u n c t i o n  v  =  C a p V o l( t )  

i f  t  <  2
v  =  2 * t  -  5 ;  

e l s e i f  t < 6
v  =  0 . 2 5 * t  * t  4- t  — 4 ; 

e l s e i f  t < 1 4
v =  -  . 5 * t * t  +  1 0 * t  -  3 1 ;

e l s e
v =  67  -  4 * t ;

(b)

t  =  0 : 1 : 2 0 ;
f o r  k = 1 : 1 : l e n g t h ( t )

i  (k ) =  C apC ur (k -  1) ; 
v  (k ) =  C ap V ol (k  — 1) ; 

e n d
p l o t  ( t , i ,  t , v )  
t e x t  ( 1 2 , 1 0 ,  ' v ( t )  , V #) 
t e x t  (1 0 ,  - 5 ,  ' i  ( t )  , A ')
t i t l e ( ' C a p a c i t o r  V o l t a g e  a n d  C u r r e n t ' )  
x l a b e l  ( ' t i m e , s  ')

v _______________________________________________ y
(c)

FIGURE 7.10-1 MATLAB input files representing (a) the capacitor current and (b) the capacitor voltage; (c) the
MATLAB input file used to plot the capacitor current and voltage.

Equations 7.10-1 and 7.10-7 provide an analytic representation o f the capacitor current and voltage. 
MATLAB provides a convenient way to obtain graphical representation o f these functions. Figures 
7A0-\a ,b  show MATLAB input files that represent the capacitor current and voltage. Notice that the 
MATLAB input file representing the current, Figure 7.10-1#, is very similar to Eq. 7.10-1, whereas the 
MATLAB input file representing the voltage, Figure 7.10-1 b, is very similar to Eq. 7.10-7. Figure 
7.10-lc shows the MATLAB input file used to plot the capacitor current and voltage. Figure 7.10-2 
shows the resulting plots o f the capacitor current and voltage.

20 

15 

10

5

0 

-5  

-10 

-15
0  2 4 6  8  10 12 14 16 18 2 0  FIGURE 7.10-2 A plot of the voltage

Time, s and current of a capacitor.

Capacitor voltage and current
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Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of 
problems discussed in this chapter.

7.11 H O W C A N W E C H E C K . . . ?

E x a m p l e  7 . 1 1 - 1  H ow  C an  W e C h e c k  th e  V o lta g e  an d  
C u rre n t o f  a C a p a c i to r?

A homework solution indicates that the current and voltage of a 2-F capacitor are 

and

v( 0  =

r 4
r +  2 

' 2 0 - 2 /  
- 8

/ < 2 
2 < / < 6 
6 < I < 14 

/ > 14

2 / - 5
t2
4 + ' “ 4

t < 2 

2 < t < 6

■ j+  lO f - 21 6 <  t < 14

6 7 - 4 / / > 14

(7.11-1)

(7.11-2)

where the units of current are A, the units of voltage are V, and the units of time are s. How can we check this 
homework solution to see whether it is correct?

Solution
The capacitor voltage cannot change instantaneously. The capacitor voltage is given by

v(/) =  2 f - 5  (7.11-3)
when / < 2 s and by

/x  ' 2v(/) =  -  +  f - 4  (7.11-4)

when 2 < / < 6 s. Because the capacitor voltage cannot change instantaneously, Eqs. 7.11 -3 and 7.11 -4 must both
give the same value for v(2), the capacitor voltage at time t =  2 s. Solving Eq. 7.11-3 gives

v(2) =  2(2) — 5 =  — 1 V
Also, solving Eq. 7.11-4 gives

v(2) =  — +  2 - 4  =  - 1  V
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These values agree, so we haven’t found an error. Next, let’s check v(6), the capacitor voltage at time / =  6 s. The 
capacitor voltage is given by

f
v (t) =  - - +  10r — 21 (7-11-5)

when 6 < t < 14 s. Equations 7.11-4 and 7.11-5 must both give the same value for v(6). Solving Eq. 7.11-4 gives

c2
v(6) =  — +  6 -  4 =  11 V

4

whereas solving Eq. 7.11-5 gives

£.2
v(6) =  — —  +  10(6) — 21 =  21 V

These values don’t agree. That means that v(/) changes instantaneously at t =  6 s, so v(t) cannot be the voltage 
across the capacitor. The homework solution is not correct.

7 . 1 2  D E S I G N  E X A M P L E  ---------------------------------------------------------

IN T E G R A T O R  AND S W IT C H

This design challenge involves an integrator and a voltage-controlled switch.
An integrator is a circuit that performs the mathematical operation o f integration. The 

output o f an integrator, say vG(/), is related to the input o f  the integrator, say vs(f), by the 
equation

v0(f2) =  K  • r  vi ( 0 *  +  vo(/1) (7.12-1)
Jt\

The constant K  is called the gain o f the integrator.
Integrators have many applications. One application o f an integrator is to measure an 

interval o f time. Suppose vs(t) is a constant voltage, Vs. Then,

Vo(t2 ) =  K-( t 2 - t \ ) - V t  + v0(tx) (7.12-2)

This equation indicates that the output o f the integrator at time t2 is a measure o f the time 
interval t2 — t\-

Switches can be controlled electronically. Figure 7.12-1 illustrates an electronically 
controlled SPST switch. The symbol shown in Figure l . \ 2 - \ a  is som etim es used to 
emphasize that a switch is controlled electronically. The node voltage vc(t) is called the 
control voltage. Figure 7.12-1/? shows a typical control voltage. This voltage-controlled 
switch is closed when vc(t) =  vh and open when vc(f) =  v l. The switch shown in Figure 
7.12-1 is open before time t\. It closes at time t x and stays closed until time t2. The switch 
opens at time t2 and remains open.

Consider Figure 7.12-2. The voltage vc(/) controls the switch. The integrator converts 
the time interval t2 — t\ to a voltage that is displayed using the voltmeter. The time
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vm to < I
Control
voltage °cW«>----------

> VQ{t)

vc(t) (V)

yH

®L

fj f2 

(b)
FIGURE 7.12-1 The voltage-controlled switch, (a) Switch symbol, (b) Typical control voltage.

t (ms)

FIGURE 7.12-2 Using an integrator to measure an interv al of time.

interval to be measured could be as small as 5 ms or as large as 200 ms. The challenge is to 
design the integrator. The available components include:

• Standard 2 percent resistors (see Appendix D)

• l-/zF, 0.2-/iF, and 0.1 -/iF capacitors

• Operational amplifiers

• +  15-V and — 15-V power supplies

• 1-kil. 10-kH, and 100-kil potentiometers

• Voltage-control led SPST switches

Describe the Situation and the Assumptions
It is convenient to set the integrator output to zero at time t \ . The relationship between the 
integrator output voltage and the time interval should be simple. Accordingly, let

, x 10V /
v’o(<2) = ^ T —  ('2  ~ t \ )200 ms

Figure 7.12-2 indicates that V% =  5 V. Comparing Eqs. 7.12-2 and 7.12-3 yields

^  „  10 V 1
^  V% = —  and. therefore. K =  10 -200 ms s

(7.12-3)

(7.12-4)
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State the Goal
Design an integrator satisfying both

K  =  10 -  and vQ(t\)  =  0 (7.12-5)
s

Generate  a Plan
Let us use the integrator described in Section 7.9. Adding a switch as shown in Figure 7.12-3 
satisfies the condition v0(/i) =  0. The analysis performed in Section 7.9 showed that

< h )  =  - ~  (7.12-6)

so R and C  must be selected to satisfy

P .1 2 -7 )

t = t 1

F I G U R E  7 . 1 2 - 3  A n  i n t e g r a t o r  u s i n g  

a n  o p e r a t i o n a l  a m p l i f i e r .

Act on the Plan
Any o f the available capacitors would work. Select C =  1 /a F. Then,

R = — ^ ------- = 1 0 0 k n  (7.12-8)
1 0 - -  1 ix F 

s

The final design is shown in Figure 7.12-4.

Verify the Proposed Solution
The output voltage o f the integrator is given by

V M  ~ - k I „  V‘( t )  d r  +  V”(0) =  (100 10jl) ( l 0 - ‘ ) 5 d r  =  - 50 ( '  ■- '■ >

where the units o f voltage are V and the units o f time are s. The interval o f time can be 
calculated from the output voltage, using

4
For example, an output voltage o f - 4  V indicates a time interval o f —  s =  80 ms.
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FIGURE 7.12-4 Using an operational amplifier integrator to measure an interval of time.
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7.13 S U M M A R Y
O Table 7.13-1 summarizes the element equations for capaci­

tors and inductors. (Notice that the voltage and current 
referred to in these equations adhere to the passive conven­
tion.) Unlike the circuit elements we encountered in previ­
ous chapters, the element equations for capacitors and 
inductors involve derivatives and integrals.

O Circuits that contain capacitors and/or inductors are able to 
store energy. The energy stored in the electric field of a 
capacitor is equal to \  Cv2(/), where v(t) is the voltage across 
the capacitor. The energy' stored in the magnetic field of a 
inductor is equal to \Li2(t), where i(t) is the current in the 
inductor.

O Circuits that contain capacitors and/or inductors have mem­
ory. The voltages and currents in that circuit at a particular 
time depend not only on other voltages and currents at that 
same instant of time but also on previous values of those 
currents and voltages. For example, the voltage across a 
capacitor at time depends on the voltage across that 
capacitor at an earlier time t0 and on the value of the 
capacitor current between t0 and tx.

O A set of series or parallel capacitors can be reduced to an 
equivalent capacitor. A set of series or parallel inductors can 
readily be reduced to an equivalent inductor. Table 7.13-2 
summarizes the equations required to do so.

Element Equations for Capacitors and Inductors

CAPACITOR INDUCTOR

+ v{t) -

° r z — l(------- -
Hi) C

i(t)=CjV(t) i(t)=±j'V(T)dT + i(t0)

v(0 i ( r y r  +  v(/o) v(,) =  L~i(t)
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Table M 3  7 Parallel and Series Capacitors and Inductors

SERIES OR 
PARALLEL CIRCUIT

EQUIVALENT
CIRCUIT EQUATION

1
_L 1
L, + L2

LCq — L\ + L>2

Hi)

+ v(t)

Ci

v(t)

i(t) c l

+ v(t) -
o— -----1(--------o
Ht) c <eq

•f v(t) -  
O------------ I f----------- o

i(l) Cteq

Ceq = C i + Ci

Ceq z
c ,  +  c 2

In the absence of unbounded currents, the voltage across a 
capacitor cannot change instantaneously. Similarly, in the 
absence of unbounded voltages, the current in an inductor 
cannot change instantaneously. In contrast, the current in a 
capacitor and voltage across an inductor are both able to 
change instantaneously.
We sometimes consider circuits that contain capacitors and 
inductors and have only constant inputs. (The voltages of the 
independent voltage sources and currents of the independent 
current sources are all constant.) When such a circuit is at 
steady state, all the currents and voltages in that circuit will 
be constant. In particular, the voltage across any capacitor 
will be constant. The current in that capacitor will be zero 
due to the derivative in the equation for the capacitor

current. Similarly, the current through any inductor will be 
constant and the voltage across any inductor will be zero. 
Consequently, the capacitors will act like open circuits and 
the inductors will act like short circuits. Notice that this 
situation occurs only when all of the inputs to the circuit are 
constant.
An op amp and a capacitor can be used to make circuits that 
perform the mathematical operations of integration and 
differentiation. Appropriately, these important circuits are 
called the integrator and the differentiator.
The element voltages and currents in a circuit containing 
capacitors and inductors can be complicated functions of 
time. MATLAB is useful for plotting these functions.

PROBLEMS

Section 7.2 Capacitors

P 7.2-1 A 15-/xF capacitor has a voltage of 5 V across it at 
t =  0. If a constant current of 25 mA flows through the capacitor, 
how long will it take for the capacitor to charge up to 150 fiC?
Answer: t = 3 ms

P 7.2-2 The voltage, v(r), across a capacitor and current, /(/), 
in that capacitor adhere to the passive convention. Determine 
the current, i(f), when the capacitance is C =  0.125 F, and the
voltage is v(/) =  12 cos(21 +  30°) V.

H i n t :  ̂  A cos ( c o t  + 6) = — A sin { c o t  + 0) ~  { c o t  + 0)
=  —Aco sin {cot -f 0)
= Aco cos [cot +  (ft +  ~ )  ̂

Answer: i{t) = 3 cos(2f -1- 120°) A

P 7.2-3 The voltage, v(/), across a capacitor and current, /(/), in 
that capacitor adhere to the passive convention. Determine the 
capacitance when the voltage is v(/) =  12 cos(500/— 45°) V 
and the current is /'(/) =  3 cos(500f + 45°) mA.
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P 7.2-4 Determine v(/) for the circuit shown in Figure 
P 7.2-4a(t) when the is(t) is as shown in Figure P 7.2-46 
and vo(0") =  -1  mV.

Answer: C  =  0.5 /xF

: o

Figure P 7.2-6

P 7.2-7 The voltage across a 40-/xF capacitor is 25 V at 
t0 =  0. If the current through the capacitor as a function of 
time is given by /(/) = 6e~6t mA for t < 0, find v(/) for t > 0.

Answer: v(t) = 50 — 25e~61 V
P 7.2-8 Find i for the circuit of Figure P 7.2-8 if v =  
5(1 — 2e~2t) V.

(a) (b)

Figure P 7.2-4 {a) Circuit and (b) waveform of current source.

P 7.2-5 The voltage, v(/), and current, /(/), of a 1-F capacitor 
adhere to the passive convention. Also, v(0) =  0 V and 
i(0) =  0 A. (a) Determine v(t) when i(t) =  x(t), where x(t) 
is shown in Figure P 7.2-5 and i(t) has units of A. (b) 
Determine /(/) when v(/) =  x(t), where x(/) is shown in Figure 
P 7.2-5 and v(t) has units of V.

Hint:x(t) =  41 — 4 when 1 < t < 2,and*(/) =  —41 +  12 when
2 < t < 3.

L +

P V ^ ^10/iF <

Figure P 7.2-8

P 7.2-9 Determine v(/) for / > 0 for the circuit of Figure 
P 12-9a when is(t) is the current shown in Figure P 7.2-96 and 
v(0) = 1 V.

Figure P 7.2-5

P 7.2-6 The voltage, v(0 , and current, i(f), of a 0.5-F capaci­
tor adhere to the passive convention. Also, v(0) =  0 V and 
i(0) =  0 A. (a) Determine v(/) when i(t) =  jr(r), where jc(f) is 
shown in Figure P 7.2-6 and i(t) has units of A. (b) Determine i 
(t) when v(t) =  x(t), where x{t) is shown in Figure P 7.2-6 and 
v(t) has units of V.

Hint: x(t) =  0.2/ — 0.4 when 2 < / < 6 .

Figure P 7.2-9

P 7.2-10 Determine v-(/) for / > 0 for the circuit of Figure 
P 7.2-10a when v(0) =  - 4  V and is(t) is the current shown in 
Figure P 7.2-10b.
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' s M ©

Figure P 7.2-12

P 7.2-13 The capacitor voltage in the circuit shown in Figure 
P 7.2-13 is given by

v(/) =  2.4 +  5.6e~5' V for / >  0

Determine i(t) for / > 0.

Figure P 7.2-10

20 Q
-AAAr

400 Q
-A W -

»(i) j 2 m F  1 0 0 £ 2 ^ | iW 112 V

Figure P 7.2-13

P 7.2-11 Determine /(() for / > 0 for the circuit of Figure P 7.2-14 The capacitor voltage in the circuit shown in Figure
P 7.2-1 la when vs(/) is the voltage shown in Figure P 7.2-116. P 7.2-14 is given by

v(r) =  10 -  8e-5' V for r >  0
Ut)

vAt) |

Determine i(t) for t > 0.

i(t)

20 mF 4 =  v(t)

(a)
■AAAr

12 Q

Figure P 7.2-14

P 7.2-15 Determine the voltage v(r) for t > 0 for the circuit of 
Figure P 7.2-156 when is(t) is the current shown in Figure 
P 7.2- 15a. The capacitor voltage at timer =  0isv(0) =  —12 V.

(b)

Figure P 7.2-11

P 7.2-12 The capacitor voltage in the circuit shown in Figure
P 7.2-12 is given by

v(/) = 1 2 -  10e“2/V for / > 0 

Determine i(t) for / > 0. Figure P 7.2-15 (a) The voltage source voltage. (b ) The circuit.
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P 7.2-16 The input to the circuit shown in Figure P 7.2-16 is 
the current

/(/) =  3.75e~l2tA  for f > 0 

The output is the capacitor voltage
v(f) =  4 -  l.25e~l 2t V for / > 0 

Find the value of the capacitance, C.

C

P 7.2-19 The input to the circuit shown in Figure P 7.2-19 is 
the voltage

v(/) =  8 +  5<r,0/V f o r / > 0  

Determine the current, /(/) for t > 0.

Figure P 7.2-16

P 7.2-17 The input to the circuit shown in Figure P 7.2-17 is 
the current

i(t) =  3e~25t A for t >  0

The initial capacitor voltage is vc(0) =  - 2  V. Determine the 
current source voltage, v(t), for t > 0 .

+ vc(0 -

J HD

Figure P 7.2-19

P 7.2-20 The input to the circuit shown in Figure P 7.2-20 is 
the voltage:

v(f) =  3 \e~2t A for / >  0

The output is the current, i(f) =  0.3 -  1.6e-2/ V for / > 0 
Determine the values of the resistance and capacitance.

Answers: R = 10 fl and C = 0.25 F

Figure P 7.2-17

P 7.2-18 The input to the circuit shown in Figure P 7.2-18 is 
the current

/(/) =  3e~25' A for t > 0

The output is the voltage

v(/) =  9.6e~25t +  0.4 V for t > 0

The initial capacitor voltage is vc (0) =  —2 V. Determine the 
values of the capacitance, C, and resistance, R.

+ vc(/)

, i(t)

Figure P 7.2-18

v(t)

Figure P 7.2-20

P 7.2-21 Consider the capacitor shown in Figure P 7.2-21. 
The current and voltage are given by

(0.5 0 < / < 0.5
2 0.5 < r <  1.5

0 r > 1.5

I 2t -j- 8 .6  0  < r <  0.5

at + b 0.5 <  t < i.5  
c t>  1.5

where a, b, and c are real constants. (The current is given in 
Amps, the voltage in Volts, and the time in seconds.) 
Determine the values of a, b, and c.
Answers: a — 8 V/s, b = 5.6 V, and c =  17.6 V
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v(t)

i m

C = 0.25 F

Figure P  7.2-21
Figure P  7.3-3

P 7.2-22 At time / =  0, the voltage across the capacitor 
shown in Figure P 7.2-22 is v(0) =  —20 V. Determine the 
values of the capacitor voltage at times 1 ms, 3 ms, and 7 ms.

P 7.3-4 The current through a 2-/iF capacitor is 
50 cos( 10/ +  71 /6) ii A for all time. The average voltage across 
the capacitor is zero. What is the maximum value of the energy 
stored in the capacitor? What is the first nonnegative value of / 
at which the maximum energy is stored?

P 7.3-5 A capacitor is used in the electronic flash unit of a 
camera. A small battery with a constant voltage of 6 V is used 
to charge a capacitor with a constant current of 10 /i A. How 
long does it take to charge the capacitor when C =  10/xF?

2.5 mF i  v(/> What is the stored energy?

P 7.3-6 The initial capacitor voltage of the circuit shown in 
Figure P 7.3-6 is vc(0~) =  3 V. Determine (a) the voltage v(/) 
and (b) the energy stored in the capacitor at / =  0.2 s and / =  
0.8 s when

Section 7.3 Energy Storage in a Capacitor

P 7.3-1 The current, /, through a capacitor is shown in Figure 
P 7.3-1. When v(0) =  0 and C =  0.5 F, determine and plot
v(/), /?(/), and w(t) for 0 s < / < 6 s.

«•«
3e5' A 
0

0 < / <  1 
/ >  1 s

Answers:

(a) lS ^ 'V , 0 < / <  1
(b) w(0.2) =  6.65 J and w(0.8) =  2.68 kJ

i  = 0

Figure P 7.3-1

P 7.3-2 In a pulse power circuit, the voltage of a 10-juF
capacitor is zero for / < 0 and

v =  5(1 - e ~ 4000') V / > 0

Figure P  7.3-6

Section 7.4 Series and Parallel Capacitors

P 7.4-1 Find the current /(/) for the circuit of Figure P 7.4-1. 

Answer: i(t) =  —1.2 sin 100/mA

iit)
Determine the capacitor current and the energy stored in the

r H ( — 1capacitor at / =  0 ms and / =  10 ms. 1 3 / i F

P 7.3-3 If vc(/) is given by the waveform shown in Figure 6 cos 100f V Q f) ; ~  2 / i F  = - 4 / / F

P 7.3-3, sketch the capacitor current for — 1 s < / < 2 s. Sketch L  -
the power and the energy for the capacitor over the same time 
interval when C =  1 mF. Figure P  7.4-1



P  7 . 4 - 2  Find the current i(t) for the circuit o f  Figure P 7.4-2.

Answer: i(t) =  — 1.5e~250' mA

5 + 3e~250t V Cl j

r = H ( — i ------- H—
I 4„F 4/xF

f

^ F  5 - 4 ^

Figure P 7.4-4

P 7.4-5 Determine the value of the capacitance C in the 
circuit shown in Figure P 7.4-5, given that Ceq =  8 F.
Answer: C =  20 F

16 F

P r o b l e m s ---- ^ 2 9 9 ^

15 F

P  7 . 4 - 6  Determine the value o f  the equivalent capacitance,
Ceq, in the circuit shown in Figure P 7.4-6.

Answer: Ceq =  10 F

Figure P 7.4-2

P 7.4-3 The circuit of Figure P 7.4-3 contains five identical 
capacitors. Find the value of the capacitance C.

Answer: C =  10 nY

i(t) = 25 cos 2501 mA

14 sin 250r V

Figure P 7.4-3

P 7.4-4 The circuit shown in Figure P 7.4-4 contains seven 
capacitors, each having capacitance C. The source voltage is 
given by

v(/) =  4cos(3f)V  

Find the current i(t) when C =  1 F.

iit)

Figure P 7.4-6

P 7.4-7 The circuit shown in Figure P 7.4-7 consists of nine 
capacitors having equal capacitance, C. Determine the value 
of the capacitance C, given that Ceq =  50 mF.

Answer: C = 90 mF

P 7.4-8 The circuit shown in Figure P 7.4-8 is at steady state 
before the switch opens at time t =  0. The voltage v(t) is given 
by

v(0
3.6 V for r < 0 

3.6e-25 /V for / > 0

(a) Determine the energy stored by each capacitor before the 
switch opens.

(b) Determine the energy stored by each capacitor 1 s after the 
switch opens.

Figure P 7.4-5
The parallel capacitors can be replaced by an equivalent 

capacitor.
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(c) Determine the energy stored by the equivalent capacitor 
before the switch opens.

(d) Determine the energy stored by the equivalent capacitor
1 s after the switch opens.

P 7.4-9 The circuit shown in Figure P 7.4-9 is at steady state 
before the switch closes. The capacitor voltages are both zero 
before the switch closes (vi(0) =  V2(0) =  0). The current i(t) 
is given by

., f 0 A for t < 0
1̂  ~  1 2Ae~30t A for t > 0

(a) Determine the capacitor voltages, Vi(/) and v2(t), for t >  0.
(b) Determine the energy stored by each capacitor 20 ms after 

the switch closes.

The series capacitors can be replaced by an equivalent 
capacitor.

(c) Determine the voltage across the equivalent capacitor, +  
on top, for t >  0.

(d) Determine the energy stored by the equivalent capacitor 
20 ms after the switch closes.

P 7.4-10 Find the relationship for the division of current 
between two parallel capacitors as shown in Figure P 7.4-10.

Answer: in = iC„/(C\ +  C2), n = 1, 2

i

! 'i \ ‘2
- C j  =Z C2

Figure P 7.4-10

P 7.5-1 Nikola Tesla (1857-1943) was an American elec­
trical engineer who experimented with electric induction. 
Tesla built a large coil with a very large inductance, shown 
in Figure P 7.5-1. The coil was connected to a source current 

/s =  100 sin 400f A 
so that the inductor current iL =  is. Find the voltage across the 
inductor and explain the discharge in the air shown in the figure. 
Assume that L — 200 H and the average discharge distance is
2 m. Note that the dielectric strength of air is 3 x 106 V/m.

Section 7.5 Inductors

Figure P 7.5-1 Nikola Tesla sits impassively as alternating current 
induction coils discharge millions of volts with a roar audible 10 
miles away (about 1 9 1 0 ) .  Courtesy of Bumdy Library.

P 7.5-2 The model of an electric motor consists of a series 
combination of a resistor and inductor. A current i(t) =  4te~r A 
flows through the series combination of a 10-0 resistor and 0.1-H 
inductor. Find the voltage across the combination.

Answer: v(t) = 0Ae~f 4 -  3 9 . 6 te~f V

P 7.5-3 The voltage, v(r), and current, i(t), of a 1-H inductor 
adhere to the passive convention. Also, v(0) =  0 V and 
i( 0) =  0 A.

(a) Determine v(/) when i(t) = x(t), where x{t) is shown in 
Figure P 7 . 5 - 3  and i(t) has units of A.

(b) Determine i(t) when v(t) = x(t), where x(t) is shown in 
Figure P 7.5-3, and v(t) has units of V.

Figure P 7.5-3
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Hint:x(t) =  41 -  4 when 1 < / < 2,and*(/) =  -4 /  +  12 when
2 < / <  3.
P 7.5-4 The voltage, v(/), across an inductor and current, /(/), 
in that inductor adhere to the passive convention. Determine 
the voltage, v(/), when the inductance is L = 250 mH, and the 
current is /(/) =  120 sin (500/ — 30°) mA.

Hin,: sin (wt + e)
dt

=  A cos (cot + 0) — (cot + 0) 
=  Aco cos (cot -f 0)
= Aco sin (cot +

P 7.5-7 The voltage, v(/), and current, /(/), of a 0.5-H inductor 
adhere to the passive convention. Also, v(0) =  0 V, and 
i(0) =  0 A.
(a) Determine v(/) when i(t) =  *(/), where x(t) is shown in 

Figure P 7.5-7 and i(t) has units of A.
(b) Determine i(t) when v(t) = x(t), where x(t) is shown in 

Figure P 7.5-7 and v(t) has units of V.

Hint: x(t) =  0.2/ -  0.4 when 2 < / < 6 .

Answer: v(t) =  15 sin(500/ +  60°) V

P 7.5-5 Determine zL(/) for/ > 0 when /L(0) =  —2fiA  for 
the circuit of Figure P 7.5-5a when vs(/) is as shown in Figure 
P 7.5-56.

Figure P 7.5-7

P 7.5-8 Determine /(/) for / >  0 for the current of Figure 
P 1.5-Sa when i(0) =  25 mA and vs(/) is the voltage shown in 
Figure P 7.5-86.

Figure P 7.5-5

P 7.5-6 Determine v(/) for / > 0 for the circuit of Figure 
P 7.5-6a when iL(0) — 0 and is is as shown in Figure P 7.5-66. Vc

Figure P 7.5-8

P 7.5-9 Determine i(t) for / > 0 for the current of Figure 
P 7.5-9a when /'(0) =  — 2 A and vs(/) is the voltage shown in 
Figure P 7.5-9b.

i>s (rt

Figure P 7.5-6

Figure P 7.5-9

P 7.5-10 Determine /(/) for / > 0 for the current of Figure 
P 7.5-10a when i(0) =  1 A and vs(/) is the voltage shown in 
Figure P 7.5-106.
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Figure P 7.5-10

P 7.5-11 Determine i(t) for t > 0 for the circuit of Figure 
P 7.5-1 la when i(0) =  25 mA and vs(r) is the voltage shown in 
Figure P 7.5-11 b.

j(f) as 3 +  2e~lt A for t > 0

Determine v(t) for t > 0.

P 7.5-14 The inductor current in the circuit shown in Figure
P 7 .5-14 is given by

6Q
-AAAr

v(t) >  9 Q 5 H
J Hf)

Figure P 7.5-14

*P 7.5-15 The inductor current in the circuit shown in Figure 
P 7.5-15 is given by

i(t) = 240 +  193e~6 25' cos(9.27/ -  102°) mA for t > 0

Determine the capacitor voltage, v(0, for t > 0.

Figure P 7.5-11

P 7.5-12 The inductor current in the circuit shown in Figure 
P 7.5-12 is given by

i(t) =  6-1- 4e~gi A  for / > 0
Determine v(t) for t > 0.

20 Q

Figure P 7.5-15

P 7.5-16 Determine the current i(t) for t > 0 for the circuit of 
Figure P 7.5-166 when vs(/) is the voltage shown in Figure 
P 7.5-16a. The inductor current at time t =  0 is i(0) =  —12 A.

Figure P 7.5-12

P 7.5-13 The inductor current in the circuit shown in Figure
P 7.5-13 is given by

i(t) =  5 -  3e~4r A for t > 0 
Determine v(r) for / > 0.

+ vit) -
------VSAr

2 4  Q

Q  1 0  A  >  2 4  n  2 4  n

Figure P 7.5-13 Figure P 7.5-16 (a) The voltage source voltage, (b) The circuit.
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P 7.5-17 T h e  input to the circuit shown in Figure P 7.5-17 is + J J i (r)
the voltage

a  ̂(/)  ̂ jr r% /r ||
v ( / )  =  \5e~ V for /  >  0 ^  L  = 2 .5 H

The initial current in the inductor is /(0) =  2 A. Determine the 
inductor current, /(/), for t > 0 .

Figure P 7.5-19

2.5 H

o
V(l)

I 1(0

Figure P 7.5-17

♦--------V W -
R

o
v(0

iL(0

1 1(0

Figure P 7.5-18

m  = |
and v(/) =

5t — 4.6 0 < f < 0.2 
a /+  6  0 .2  < t  < 0.5  

c t > 0.5

12.5 0 < / < 0.2
25 0.2 < t < 0.5
0 t > 0.5

P 7.5-20 At time t = 0, the current in the inductor shown in 
Figure P 7.5-20 is i(0) =  45 mA. Determine the values of the 
inductor current at times 1 ms, 4 ms, and 6 ms.

P 7.5-18 The input to the circuit shown in Figure P 7.5-18 is 
the voltage

v(/) =  4 e ~ 2 0 t  V for / > 0

The output is the current

/(/) =  —  1 . 2 e ~ 1 0 t  — 1.5 A for / > 0

The initial inductor current is z'l(0) =  —3.5 A. Determine the 
values of the inductance, L, and resistance, R.

v(t) 250 mH

i(0

Figure P 7.5-20

P 7.5-21 One of the three elements shown in Figure P 7.5-21 
is a resistor, one is a capacitor, and one is an inductor. Given

i(t) = 0.25cos(21) A,

and va(/) =  — 10 sin(2/) V, vb(r) =  10 sin(2r) V, and vc(r) =  
10 cos(2r) V, determine the resistance of the resistor, the 
capacitance of the capacitor, and the inductance of the 
inductor. (We require positive values o f resistance, 
capacitance, and inductance.)

Answers: resistance =  40 fl, capacitance =  0.0125 F, and 
inductance =  20 H

*(/) HO

v'a (0 n>(0

P 7.5-19 Consider the inductor shown in Figure P 7.5-19. 
The current and voltage are given by

/(O

vc(0

Figure P 7.5-21

where a, b, and c are real constants. (The current is given 
in Amps, the voltage in Volts, and the time in seconds.) 
Determine the values of a, b, and c.
Answers: a = 10 A/s, b =  -5 .6  A, and c =  -0 .6  A

P 7.5-22 One of the three elements shown in Figure P 7.5-22 
is a resistor, one is a capacitor, and one is an inductor. Given

v(/) =  24cos(5/) V,

and /»(/) =  3 cos(5f) A, /b(f) =  12 sin(5/) A and ic(t) =  
— 1.8 sin(5f) A, determine the resistance of the resistor, 
the capacitance of the capacitor, and the inductance of the 
inductor. (We require positive values of resistance, 
capacitance, and inductance.)
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'b('>

L
_ r

♦ v(/> v(r)
i$ (f)
1 *

O-
— 1 1—

-0
+ v(r)

v(r)

P 7.6-5 The current through the inductor of a television tube 
deflection circuit is shown in Figure P 7.6-5 when L — 1/2 H. 
Find the voltage, power, and energy in the inductor.

P a r t i a l  A n s w e r :

p  =  2 t  for 0 < / < 1
3*  2 ( t  -  2) for 1  <  /  <  2 
=  0 for other t

Figure P 7.5-22

Section 7.6 Energy Storage in an Inductor

P 7.6-1 The current, /(/), in a 100-mH inductor connected in a 
telephone circuit changes according to

( 0 t < 0
41 0 < t <  I

4 t >  1

where the units of time are seconds and the units of current are 
amperes. Determine the power, p { t ) ,  absorbed by the inductor 
and the energy, w(t), stored in the inductor.

( 0 / <  0
1.6 1 0 < t <  1 and

0 t > 1

! 0 t <  0
0 .812 0 < t < 1

0.8 t > 1

The units of p(t) are W and the units of >v(/) are J.

P 7.6-2 The current, /(f), in a 5-H inductor is

0 t < 0
sin 21 t > 0

where the units of time are s and the units of current are A. 
Determine the power, /?(/), absorbed by the inductor and the 
energy, w(t), stored in the inductor.

H i n t :  2 (cos A) (sin B) =  sin (A 4- B) + sin ( A - B )

P 7.6-3 The voltage, v(f), across a 25-mH inductor used in a 
fusion power experiment is

0 t < 0
 ̂6 cos 100/ / > 0

where the units of time are s and the units of voltage are V. The 
current in this inductor is zero before the voltage changes at 
t =  0. Determine the power, p(t), absorbed by the inductor and 
the energy, w(t), stored in the inductor.

Hint: 2(cos A)(sin B) =  sin(A + B) +  sin(A -  B)

Answer:p(t) — 7.2sin200/W and w(t) =  3.6[1 -  cos 200/] mJ

P 7.6-4 The current in an inductor, L — 1/4 H, is i — 4te~r A 
for / > 0 and i — 0 for / < 0. Find the voltage, power, and 
energy in this inductor.

Partial Answer: w =  2t2e~2t J

Figure P 7.6-5

Section 7.7 Series and Parallel Inductors

P 7.7-1 Find the current /(/) for the circuit of Figure P 7.7-1. 

A n s w e r :  i(t) = 15 sin 100/ mA

6 cos 100/ V ( l

Figure P 7.7-1

P 7.7-2 Find the voltage v(/) for the circuit of Figure P 7.7-2. 

A n s w e r :  v(f) =  -6e~2501 mV

P 7.7-3 The circuit of Figure P 7.7-3 contains four identical 
inductors. Find the value of the inductance L.

A n s w e r :  L  — 2.86 H

/'(/) = 14 sin 250/ mA



P 7.7-4 The circuit shown in Figure P 7.7-4 contains seven 
inductors, each having inductance L. The source voltage is 
given by

v(/) =  4 cos(3r) V 

Find the current i(t) when L =  4 H.

25 H
a ~  -  / V Y V \  -

20 H*N ,  :<20 H

N
5 60 H-

10 H 30 H
B o r w v ^ - H

P r o b l e m s

Figure P 7.7-4

P 7.7-5 Determine the value of the inductance L in the circuit 
shown in Figure P 7.7-5, given that Leq =  18 H.

Answer: L = 20 H

P 7.7-8 The circuit shown in Figure P 7.7-8 is at steady state 
before the switch closes. The inductor currents are both zero 
before the switch closes (i'i(0 ) =  #2(0 ) =  0 ).

The voltage v(t) is given by

v «
V for / <  0

V for / >  0

(a) Determine the inductor currents, i\(t) and i2(f)» f°r t > 0.
(b) Determine the energy stored by each inductor 200 ms after 

the switch closes.

The parallel inductors can be replaced by an equivalent 
inductor.

(c) Determine the current in the equivalent inductor, directed 
downward, for t > 0 .

(d) Determine the energy stored by the equivalent inductor 
20 0  ms after the switch closes.

Figure P 7.7-5

P 7.7-6 Determine the value of the equivalent inductance, 
Leq, for the circuit shown in Figure P 7.7-6.

Answer: Leq =  120 FI

V * '" 0
— o— v w -

24 Q
'iMj

0 12 V

J'2«
12 Q <

8 H
+ , 

ifit) 2 H

Figure P 7.7-8

P 7.7-9 The circuit shown in Figure P 7.7-9 is at steady state 
before the switch opens at time t =  0. The current i(t) is given 
by

Figure P 7.7-6

P 7.7-7 The circuit shown in Figure P 7.7-7 consists of 10 
inductors having equal inductance, L. Determine the value of 
the inductance L, given that =  12 mH.
Answer: L =  35 mH

./ \ _  /  0.8 
'W -  { O.Se

A  for / <  0 
A for t > 0

(a) Determine the energy stored by each inductor before the 
switch opens.

(b) Determine the energy stored by each inductor 200 ms after 
the switch opens.
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The series inductors can be replaced by an equivalent 
inductor.

(c) Determine the energy stored by the equivalent inductor 
before the switch opens.

(d) Determine the energy stored by the equivalent inductor 
200 ms after the switch opens.

P 7.7-10 Determine the current ratio i\/i for the circuit 
shown in Figure P 7.7-10. Assume that the initial currents 
are zero at tQ.

A *1 L IAnswer: — = ---------
i L\ -j- Z-2

Figure P 7.7-11

P 7.7-12 Consider the combination of circuit elements shown 
in Figure P 7.7-12.

(a) Suppose element A is a 8-/iF capacitor, element B is a 
16-/xF capacitor, and element C is a 12-/uF capacitor. 
Determine the equivalent capacitance.

(b) Suppose element A is a 20-mH inductor, element B is a 
5-mH inductor, and element C is an 8-mH inductor. 
Determine the equivalent inductance.

(c) Suppose element A is a 20-kfl resistor, element B is a 
30-kfl resistor, and element C is a 16-kO resistor. Deter­
mine the equivalent resistance.

Answers: (a) Ceq = 8 ^F, (b) Leq = 12 mH, and (c) Req -  28 kfl

Li '1

Figure P 7.7-10

P 7.7-11 Consider the combination of circuit elements shown
in Figure P 7.7-11.

(a) Suppose element A is a 20-/iF capacitor, element B is a 5- 
/iF capacitor, and element C is a 20-/iF capacitor. Deter­
mine the equivalent capacitance.

(b) Suppose element A is a 50-mH inductor, element B is a 
30-mH inductor, and element C is a 20-mH inductor. 
Determine the equivalent inductance.

(c) Suppose element A is a 9-kfl resistor, element B is a 6-kll 
resistor and element C is a 10-kll resistor. Determine the 
equivalent resistance.

Answers: (a) Ccq -  20 //F, (b) Leq = 16 mH, and (c) RCil = 6 kfl

Figure P 7.7-12

Section 7.8 Initial Conditions of Switched Circuits

P 7.8-1 The switch in Figure P 7.8-1 has been open for a long 
time before closing at time t =  0. Find vc(0*) and /L(0+). the 
values of the capacitor voltage and inductor current immedi­
ately after the switch closes. Let vc(oc) and /L(oo) denote 
the values of the capacitor voltage and inductor current after 
the switch has been closed for a long time. Find vc(oo) and 
/ l ( o o ) .
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Answers: vc(0+) =  12V, /L(0+) =  0, vc(o o )= 4 V , and 
ii(oc) =  1 mA

32 V

P 7.8-2 The switch in Figure P 7.8-2 has been open for a long 
time before closing at time t =  0. Find vc(0+) and j'l(0+), 
values of the capacitor voltage and inductor current immedi­
ately after the switch closes. Let vc(oo) and /L(°o) denote the 
values of the capacitor voltage and inductor current after the 
switch has been closed for a long time. Find vc(oo) and Zl(°°).

Answer: vc(0+) =  6 V, * l(0+ ) =  1 mA, vc(oo) =  3 V, and 
/'l(oo) =  1.5 mA

f = 0

P 7.8-5 For the circuit shown in Figure P 7.8-5, find 
dvc(0+)/dt, diL{0+)/dt , and /'(0+) if v(0“ ) =  16 V. Assume 
that the switch was closed for a long time prior to / =  0 .

8 Q

P 7.8-6 For the circuit of Figure P 7.8-6, determine the current 
and voltage of each passive element at t = 0" and t =  0+. The 
current source is L =  0 for t < 0 and L =  4 A for t > 0.

P 7.8-3 The switch in Figure P 7.8-3 has been open for a 
long time before closing at time t =  0. Find vc(0+) and 
* l ( 0 + ) ,  the values of the capacitor voltage and inductor 
current immediately after the switch closes. Let vc(oo) 
and i]_(oc) denote the values of the capacitor voltage and 
inductor current after the switch has been closed for a long 
time. Find vc(oc) and /l(o o ).

Answers: vc(0+) =  0 V, /L(0+) =  0, vc(oc) =  8 V, and 
i'l(oo) =  0.5 mA P 7.8-7 The circuit shown in Figure P 7.8-7 is at steady state 

when the switch closes at time t = 0. Determine vj(0—), 
vi(0 +), *2(0 - ) ,  and /2(0 +).

r = 0

P 7.8-4 Find vc(0+) and dvc(0+)/dt if v(0“) =  15 V for the 
circuit of Figure P 7.8-4.

Figure P 7.8-7
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P 7.8-8 The circuit shown in Figure P 7.8-8 is at steady state 
when the switch opens at time t =  0. Determine vi(O-), 
vi(0+), i2(0—), /2(0 +), /3(0 -), /3(0+), v4(0—)> and v4(0+).

Figure P 7.8-8

*P 7.8-9 The circuit shown in Figure P 7.8-9 is at steady state 
when the switch opens at time t = 0. Determine v'i(0—), 
vi(0+), /2(0—), and /2(0+).
Hint: Modeling the open switch as an open circuit leads us to 
conclude that the inductor current changes instantaneously, 
which would require an infinite voltage. We can use a more 
accurate model of the open switch, a large resistance, to avoid the 
infinite voltage.

Figure P 7.8-9

P 7.8-10 The circuit shown in Figure P 7.8-10 is at steady 
state when the switch closes at time / =  0. Determine vj(0—), 
Vi(04-), 2̂(0 —), and 12(0 +).

P 7.8-11 The circuit shown in Figure P 7.8-11 has reached 
steady state before the switch opens at time t — 0. Determine the 
values of iL(t\  vc(/), and vR(r) immediately before the switch 
opens and the value of v^/) immediately after the switch opens.

Answers: iL(0—) =  1.25 A, vc(0-) =20V, vr(O-) =  —5 V, 
and vR(0+) =  - 4 V

Figure P 7.8-11

P 7.8-12 The circuit shown in Figure P 7.8-12 has reached 
steady state before the switch closes at time t -  0.

(a) Determine the values of iL(f), vc(/), and vR(t) immediately 
before the switch closes.

(b) Determine the value of vR(/) immediately after the switch
closes.

P 7.8-13 The circuit shown in Figure P 7.8-13 has reached 
steady state before the switch opens at time t =  0. Determine 
the values of iL(f), vc(r), and vR(r) immediately before the 
switch opens and the value of vR(f) immediately after the 
switch opens.

Answers: / l ( 0 - )  =  0.4 A. vc (0 -)  =  16 V, vr(O -) =  0V, 
and vR(0-b) =  -1 2  V

Figure P 7.8-10 Figure P 7.8-13



Section 7.9 Operational Amplifier Circuits and 
Linear Differential Equations
P 7.9-1 Design a circuit with one input, x(f), and one output, 
v(/), that are related by this differential equation:

P 7.9-2 Design a circuit with one input, x(t), and one output, 
y(t), that are related by this differential equation:

U t )

n o =
- -  +  0.065

50
— 0.115 >
0.065

t<  1

1 < r <  3

3 < / <  9 

t<  9

D e s ig n  P r o b l e m s ---- ^ 3 0 9 ^

and

v(0 =

0
- 4

2
0

t <  1

1 < t < 3
3 < / < 9 

f > 9

P 7.9-3 Design a circuit with one input, x(0, and one output, 
y(t), that are related by this differential equation:

+ 16 + sJty^ + 10>,(̂  = ~4x̂
P 7.9-4 Design a circuit with one input, x(/), and one output, 
y(t), that are related by this differential equation:

jp y ( ‘) + 16 ̂ 2  y(0 + + 10>’(') = 4x(0

Section 7.11 How Can We Check . . . ?

P 7.11-1 A homework solution indicates that the current and 
voltage of a 100-H inductor are

0.025

where the units of current are A, the units of voltage are V, and 
the units of time are s. Verify that the inductor current does not 
change instantaneously.

P 7.11-2 A homework solution indicates that the current and 
voltage of a 100-H inductor are

1(0 =

-200 + 0-025 

“  Too + 003
—  -  0.03 
100

0.015

t < 1

1 < t < 4

4 < t < 9 

t < 9

and

v(0 =

- 1  t < 1 

- 2  1 < t < 4
1 4 < t < 9
0 t > 9

where the units of current are A, the units of voltage are V, and 
the units of time are s. Is this homework solution correct? 
Justify your answer.

Design Problems
DP 7-1 Consider a single-circuit element, that is, a single 
resistor, capacitor, or inductor. The voltage, v(j), and current, 
*(/), of the circuit element adhere to the passive convention. 
Consider the following cases:

(a) v(/) =  4 + 2e~3/ V and i(t) =  -3e~3' A for / > 0
(b) v(/) =  - 3e~3r V and i(t) =  4 +  2e~lt A for t > 0
(c) v(/) =  4 4- 2e~3t V and i(t) = 2 4  e~* A for / > 0

For each case, specify the circuit element to be a capacitor, 
resistor, or inductor and give the value of its capacitance, 
resistance, or inductance.

DP 7-2 Figure DP 7-2 shows a voltage source and unspecified 
circuit elements. Each circuit element is a single resistor, 
capacitor, or inductor. Consider the following cases:

(a) i(t) =1. 131 cos (2 /4  45°) A
(b) i(t) =  1.131 cos (21 -  45°) A
For each case, specify each circuit element to be a capacitor, 
resistor, or inductor and give the value of its capacitance, 
resistance, or inductance.

Hint: cos (0 -4  0 ) =  cos 0 cos <p -  sin 0 sin 0

4 cos 2 / V

Figure DP 7-2
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DP 7-3 Figure DP 7-3 shows a voltage source and unspecified 
circuit elements. Each circuit element is a single resistor, 
capacitor, or inductor. Consider the following cases:

(a) v(t) =  11.31 cos (2/ +  45°) V
(b) v(/) =  11.31 cos (2t -  45°) V

For each case, specify each circuit element to be a capacitor, 
resistor, or inductor and give the value of its capacitance, 
resistance, or inductance.

Hint: cos (6 +  <p) =  cos 0 cos </> -  sin 0 sin 0

+ i>(t) -

Figure DP 7-3

DP 7-4 A high-speed flash unit for sports photography requires 
a flash voltage v(0+) =  3 V and

dv(t)
dt

=  24 V/s
t=0

The flash unit uses the circuit shown in Figure DP 7-4. Switch 1 
has been closed a long time, and switch 2 has been open a long 
time at t =  0. Actually, the long time in this case is 3 s.

Determine the required battery voltage, KB, when C — 1 /8  F.

DP 7-5 For the circuit shown in Figure DP 7-5, select a value of 
R so that the energy stored in the inductor is equal to the energy 
stored in the capacitor at steady state.

20 Q

Figure DP 7-5
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8.1 I N T R O D U C T I O N

In this chapter, we consider the response of RL and RC circuits to abrupt changes. The abrupt change 
might be a change to the circuit, as when a switch opens or closes. Alternately, the abrupt change might 
be a change to the input to the circuit, as when the voltage of a voltage source is a discontinuous 
function of time.

RL and RC circuits are called first-order circuits. In this chapter, we will do the following:

• Develop vocabulary that will help us talk about the response of a first-order circuit.

• Analyze first-order circuits with inputs that are constant after some particular time, t0.

• Introduce the notion of a stable circuit and use it to identify stable first-order circuits.

• Analyze first-order circuits that experience more than one abrupt change.

• Introduce the step function and use it to determine the step response of a first-order circuit.

• Analyze first-order circuits with inputs that are not constant.

8.2 F I R S T - O R D E R  C I R C U I T S  ---------— ---------------------------------------------

Circuits that contain capacitors and inductors can be represented by differential equations. The order of the ( 3 1 1 )
differential equation is usually equal to the number of capacitors plus the number of inductors in the circuit. V  y
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Circuits that contain only one inductor and no capacitors or only one capacitor and no 
inductors can be represented by a first-order differential equation. These circuits are called 
first-order circuits

Thevenin and Norton equivalent circuits simplify the analysis o f  first-order circuits by showing 
that all first-order circuits are equivalent to one o f two simple first-order circuits. Figure 8.2-1 shows 
how this is accomplished. In Figure 8 .2-la , a first-order circuit is partitioned into two parts. One part is 
the single capacitor or inductor that we expect to find in a first-order circuit. The other part is the rest o f 
the circuit— everything except that capacitor or inductor. The next step, shown in Figure 8.2-1 b, 
depends on whether the energy storage element is a capacitor or an inductor. If  it is a capacitor, then 
the rest o f the circuit is replaced by its Thevenin equivalent circuit. The result is a simple first-order 
circuit— a series circuit consisting o f a voltage source, a resistor, and a capacitor. On the other hand, if  
the energy storage element is an inductor, then the rest o f  the circuit is replaced by its Norton 
equivalent circuit. The result is another simple first-order circuit— a parallel circuit consisting o f a 
current source, a resistor, and an inductor. Indeed, all first-order circuits are equivalent to one o f these 
two simple first-order circuits.

Consider the first-order circuit shown in Figure 8.2-2a. The input to this circuit is the voltage 
vs(t). The output, or response, o f this circuit is the voltage across the capacitor. This circuit is at steady 
state before the switch is closed at time t =  0. Closing the switch disturbs this circuit. Eventually, the

(a)

(b)

FIGURE 8.2-1 A plan for analyzing first-order circuits. 
(a) First, separate the energy storage element from the 
rest of the circuit, (b) Next, replace the circuit connected 
to a capacitor by its Thevenin equivalent circuit or 
replace the circuit connected to an inductor by its 
Norton equivalent circuit.

t, ms

(b)
FIGURE 8.2-2 (a) A circuit and (b) its complete response.
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disturbance dies out and the circuit is again at steady state. The steady-state condition with the switch 
closed will probably be different from the steady-state condition with the switch open. Figure 8.2-2b 
shows a plot of the capacitor voltage versus time.

When the input to a circuit is sinusoidal, the steady-state response is also sinusoidal. Further­
more, the frequency of the response sinusoid must be the same as the frequency of the input sinusoid. 
The circuit shown in Figure 8.2-2a is at steady state before the switch is closed. The steady-state 
capacitor voltage will be

v(r) =  B cos(1000r +  0), t < 0 (8.2-1)

The switch closes at time t — 0. The value of the capacitor voltage at the time the switch closes is

v(0) =  B cos(0), t = 0 (8.2-2)

After the switch closes, the response will consist of two parts: a transient part that eventually dies out 
and a steady-state part. The steady-state part of the response will be sinusoidal and will have the 
frequency of the input. For a first-order circuit, the transient part of the response is exponential. Indeed, 
we consider first-order circuits separately to take advantage of the simple form of the transient 
response of these circuits. After the switch is closed, the capacitor voltage is

v(r) =  Ke~t/x +  M  cos(1000/ +  S) (8.2-3)

Notice that Ke~*T goes to zero as t becomes large. This is the transient part of the response, which dies 
out, leaving the steady-state response, M  cos(1000r +  <5).

As a matter of vocabulary, the “ transient part of the response” is frequently shortened to the 
transient response, and the “ steady-state part of the response” is shortened to the “ steady-state 
response.” The response, v(/), given by Eq. 8.2-3, is called the complete response to contrast it with 
the transient and steady-state responses.

complete response =  transient response +  steady-state response

(The term transient response is used in two different ways by electrical engineers. Sometimes it refers 
to the “ transient part of the complete response,” and at other times, it refers to a complete response, 
which includes a transient part. In particular, PSpice uses the term transient response to refer to the 
complete response. This can be confusing, so the term transient response must be used carefully.)

In general, the complete response of a first-order circuit can be represented as the sum of two 
parts, the natural response and the forced response:

complete response =  natural response +  forced response

The natural response is the general solution of the differential equation representing the first-order 
circuit, when the input is set to zero. The forced response is a particular solution of the differential 
equation representing the circuit.

The complete response of a first-order circuit will depend on an initial condition, usually a 
capacitor voltage or an inductor current at a particular time. Let t0 denote the time at which the initial 
condition is given. The natural response of a first-order circuit will be of the form

natural response =  Ke~^~tâ r

When t0 = 0, then

natural response =  Ke~^x
The constant A in the natural response depends on the initial condition, for example, the capacitor 
voltage at time t0.

In this chapter, we will consider three cases. In these cases, the input to the circuit after the 
disturbance will be (1) a constant, for example,

v .(/)  ~  Vo
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or (2 ) an exponential, for example,

Vs ( / )  =  y 0e - ' /T

or (3 ) a sinusoid, for example,

vs ( 0  =  Vq cos {cot -f 0)

These three cases are special because the forced response will have the same form as the input. For 
example, in Figure 8.2-2, both the forced response and the input are sinusoidal, and the frequency o f 
the forced response is the same as the frequency o f  the input. For other inputs, the forced response may 
not have the same form as the input. For example, when the input is a square wave, the forced response 
is not a square wave.

When the input is a constant or a sinusoid, the forced response is also called the steady-state 
response, and the natural response is called the transient response.

Here is our plan for finding the complete response o f first-order circuits:

Step 1: Find the forced response before the disturbance. Evaluate this response at time t — 10 to obtain 
the initial condition o f the energy storage element.

Step 2: Find the forced response after the disturbance.

Step 3: Add the natural response =  Ke~t T to the forced response to get the complete response. Use the 
initial condition to evaluate the constant K.

8.3 T H E  R E S P O N S E  OF A F I R S T - O R D E R  C I R C U I T  
T O A C O N S T A N T  I N P U T  ---------------------------------------

In this section, we find the complete response o f a first-order circuit when the input to the circuit is 
constant after time /0- Figure 8.3-1 illustrates this situation. In Figure 8 .3-la , we find a first-order circuit 
that contains a single capacitor and no inductors. This circuit is at steady state before the switch closes, 
disturbing the steady state. The time at which steady state is disturbed is denoted as t0. In Figure 8 .3-la , 
t0 =  0. Closing the switch removes the resistor R\ from the circuit. (A closed switch is modeled by a 
short circuit. A short circuit in parallel with a resistor is equivalent to a short circuit.) After the switch 
closes, the circuit can be represented as shown in Figure 8.3-16. In Figure 8.3-16, the part o f the circuit 
that is connected to the capacitor has been replaced by its Thevenin equivalent circuit. Therefore,

^3 rr j  n R2R 3V —r OC —
R2 +  R 3

Vs and R t =
R 2 R 3

Let’s represent the circuit in Figure 8.3-16 by a differential equation. The capacitor current is
given by

i(t) =  C j v { t )

t =  0

i ( t )

FIGURE 8.3-1
(a) A first-order circuit 
containing a capacitor.
(b) After the switch 
closes, the circuit 
connected to the capacitor 
is replaced by its 
Thevenin equivalent 
circuit.
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{=0 FIGURE 8.3-2 (a) A
o___  first-order circuit

containing an inductor.
(b) After the switch 
closes, the circuit 
connected to the 
inductor is replaced by 
its Norton equivalent 
circuit.

The same current, /(/), passes through the resistor. Apply KVL to Figure 8.3-1 b to get 

Voc = Rii(t) +  v(r) =  R< ( c j t v(t)J +  v(r)

Therefore- ^ v(,) + ^ c  = f e  (8M )
The highest-order derivative in this equation is first order, so this is a first-order differential equation.

Next, let’s turn our attention to the circuit shown in Figure 8.3-2a. This circuit contains a single 
inductor and no capacitors. This circuit is at steady state before the switch closes at time t0 — 0, 
disturbing the steady state. After the switch closes, the circuit can be represented as shown in Figure 
8.3-2b. In Figure 8.3-2b, the part of the circuit that is connected to the inductor has been replaced by its 
Norton equivalent circuit. We calculate

* V * A D R 2R 3and Rt =  ■

given by

Rl * 2 + ^ 3
Let’s represent the circuit in Figure 8.3-2b by a differential equation. The inductor voltage is

At )  =

The voltage, v(t), appears across the resistor. Apply KCL to the top node in Figure 8.3-26 to get
d

v(t)
'sc =  +  'M  =  — ^ — k (0

Therefore, ~i(t) + j i ( l )  = j / x (8.3-2)

As before, this is a first-order differential equation.
Equations 8.3-1 and 8.3-2 have the same form. That is,

d x(t)
- X( t ) + A ±  = K  (8.3-3)

The parameter r is called the time constant. We will solve this differential equation by separating the 
variables and integrating. Then we will use the solution of Eq. 8.3-3 to obtain solutions of Eqs 8 3-1 
and 8.3-2.

We may rewrite Eq. 8.3-3 as

dx Kr — x 
dt x

or, separating the variables,

dx dt
x - K t ~ ~ ^
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Forming the indefinite integral, we have

x -  K t

where D  is a constant o f  integration. Performing the integration, we have

ln(x — K t) =  - -  +  £>

Solving for x  gives

x(t) = K t  + Ae~' r

where A = e ° ,  which is determined from the initial condition, x(0). To find A, let t =  0. Then

x(0) =  K t  + Ae~° r =  K t  +  A 

or A — or(0) — K t

Therefore, we obtain

jc(f) =  K t +  [x(0) -  ATt]e-'/r (8.3-4)

Because x (°c)  =  lim x(t)  =  A'r

Equation 8.3-4 can be written as

x(t) =  x(oo) +  [x(0) -  j (o o )le “'/r

Taking the derivative of.x(/) with respect to t leads to a procedure for m easuring or calculating the 
time constant:

j x { t )  =  “ [*(0) -  jr(oc)]e ,/r

Now let / =  0 to get

dt
W 0 ) - * ( o c ) ]

r =
or

x(oc) - r!0)

/—0

(8.3-5)

Figure 8.3-3 shows a plot o f  x(t) versus t. We can determine the 
values o f ( I ) the slope o f the plot at time t =  0, (2) the initial value o f  x 
(f), and (3) the final value of,r(f) from this plot. Equation 8.3-5 can be 
used to calculate the time constant from these values. Equivalently, 
Figure 8.3-3 shows how to measure the time constant from a plot o f jc 

(f) versus t.
Next, we apply these results to the RC  circuit in Figure 8.3-1. 

Comparing Eqs. 8.3-1 and 8.3-3, we see that

x(t)  =  v(f), r  =  RXC , and K  — oc

Making these substitutions in Eq. 8.3-4 gives

FIGURE 8.3-3 A graphical technique for 
measuring the time constant of a first-order circuit.

v(f) =  Voc + (v(0) -  Vocle (8 .3 -6 )



The second term on the right-hand side of Eq. 8.3-6 dies out as t increases. This is the transient or 
natural response. At / =  0, e~° =  1. Letting t =  0 in Eq. 8.3-6 gives v(0) =  v(0), as required. When t =
5r, e~5 =  0.0067 «  0, so at time t =  5r, the capacitor voltage will be

v(5r) =  0.9933 + 0.0067 v(0) »  VK

This is the steady-state or forced response. The forced response is of the same form, a constant, as the 
input to the circuit. The sum of the natural and forced responses is the complete response:

complete response =  v(f), forced response = Voc

and natural response =  (v(0) — Voc)e~t {R'C

Next, compare Eqs. 8.3-2 and 8.3-3 to find the solution of the RL circuit in Figure 8.3-2. We see
that

x(t) = i{t), x -  ^ , and K = j I K 

Making these substitutions in Eq. 8.3-4 gives

i{t) =  /* /+  («(0) -  U ) e ~ ^ '  (8.3-7)

Again, the complete response is the sum of the forced (steady-state) response and the transient
(natural) response:

complete response =  /(/), forced response =  / sc 

and natural response =  (/(0) — I x ) e ~ ^ L̂

The Response of a First-Order Circuit to a Constant Input

r
Find the capacitor voltage after the switch opens in the circuit shown in Figure 8.3-4a. What is the value of the 
capacitor voltage 50 ms after the switch opens?

Solution
The 2-volt voltage source forces the capacitor voltage to be 2 volts until the switch opens. Because the capacitor 
voltage cannot change instantaneously, the capacitor voltage will be 2 volts immediately after the switch opens. 
Therefore, the initial condition is

v(0) =  2 V

Figure 8.3-46 shows the circuit after the switch opens. Comparing this circuit to the RC circuit in Figure 8.3-16, 
we see that

Rx = 10 kO and =  8 V 

The time constant for this first-order circuit containing a capacitor is

r  =  RtC =  (10 x 103) (2 x 10~6) =  20 x 10"3 = 2 0  ms 

Substituting these values into Eq. 8.3-6 gives

v(/) =  8 -6 * ~ '/20V (8.3-8)
where t has units of ms. To find the voltage 50 ms after the switch opens, let t =  50. Then,

v(50) =  8 -  6e>~50/20 =  7.51 V

E x a m p l e  8 . 3 - 1  F ir s t -O rd e r  C i r c u i t  wi t h  a C a p a c i t o r
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Figure 8.3-4c shows a plot o f the capacitor voltage as a function o f time.

Complete response

/ = 0

10 kQ

+
v(t)

(C)

FIGURE 8.3-4 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch opens, (c) A plot o f the complete 
response, v(/), given in Eq. 8.3-8.

E x a m p l e  8 . 3 - 2  F i r s t - O r d e r  C i r c u i t  w i t h  an  I n d u c t o r

Find the inductor current after the switch closes in the circuit shown in Figure 8.3-5a. How long will it take for the 
inductor current to reach 2 mA?

Complete response

t = 0

(b)

iit)

t, n s 

(C)

F IGL’RE 8.3-5 (a) A  first-order circuit and (b) an equivalent circuit that is valid after the switch closes, (c) A plot o f the complete
response, /(/)* given by Eq. 8.3-9.
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Solution
T h e  i n d u c t o r  c u r r e n t  w i l l  b e  OA until the switch closes. Because the inductor current cannot change 
i n s t a n t a n e o u s l y ,  i t  w i l l  b e  OA immediately after the switch closes. Therefore, the initial condition is

j(0 ) = 0

F i g u r e  8.3-5* shows the circuit after the switch closes. Comparing this circuit to the R L  circuit in Figure 8 . 3 - 2 6 ,  

we see that
Rt = 1000 f l  and 7SC =  4 mA

The time constant for this first-order circuit containing an inductor is
L 5 x 10“ 3 . , . _ 6 ,r =  — = ----------- =  5 x 10 =  5 /zs

R t 1000
Substituting these values into Eq. 8.3-7 gives

i(t) = 4 -  4e~t/5 mA (8.3-9)
where t has units of microseconds. To find the time when the current reaches 2 mA, substitute i(t) = 2 mA. Then

2 =  4 -  4e~^5 mA

Solving for t gives

t =  — 5 x In =  3.47 /zs

Figure 8.3-5c shows a plot of the inductor current as a function of time.

E x a m p l e  8 . 3 - 3  F i r s t - O r d e r  C i r c u i t £  INTERACTIVE EXAMPLE

The switch in Figure 8.3-6a has been open for a long time, and the circuit has reached steady state before the 
switch closes at time t =  0. Find the capacitor voltage for t > 0.

Solution
The switch has been open for a long time before it closes at time t =  0. The circuit will have reached steady state 
before the switch closes. Because the input to this circuit is a constant, all the element currents and voltages will be 
constant when the circuit is at steady state. In particular, the capacitor voltage will be constant. The capacitor 
current will be

f = 0

10 KQ 
t----- V V \ r

12 V

30 kQ
-A/W

60 kQ

i(t) =  C — v(f) =  C ̂  (a constant) =  0

40 kQ

(a)

I4 IGl RE 8.3-6 (a) A first-order circuit. The equivalent circuit for (b) t < 0 and (c) t > 0.

20 kQ
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The capacitor voltage is unknown, but the capacitor current is zero. In other words, the capacitor acts like an open 
circuit when the input is constant and the circuit is at steady state. (By a similar argument, inductors act like short 
circuits when the input is constant and the circuit is at steady state.)

Figure 8.3-6b shows the appropriate equivalent circuit while the switch is open. An open switch acts like an 
open circuit; thus, the 10-kfl and 30-kH resistors are in series. They have been replaced by an equivalent 
40-kH resistor. The input to the circuit is a constant (12 volts), and the circuit is at steady state; therefore, the 
capacitor acts like an open circuit. The voltage across this open circuit is the capacitor voltage. Because we are 
interested in the initial condition, the capacitor voltage has been labeled as v(0). Analyzing the circuit in Figure
8 .3 -6 6  using voltage division gives

v(0) = --------- 6°3- - - - -------T 12 =  7.2 V
w  40 x 103 +  60 x 103

Figure 8.3-6c shows the appropriate equivalent circuit after the switch closes. Closing the switch shorts out the 10- 
kO resistor, removing it from the circuit. (A short circuit in parallel with any resistor is equivalent to a short 
circuit.) The part o f the circuit that is connected to the capacitor has been replaced by its Thevenin equivalent 
circuit. After the switch is closed,

60 x 10 3
Voc = ----------- ,----------------t  12 =  8 V

30 x 103 +  60 x 103

„ 30 x 103 x  60 x 103 _  .
and R[ = -------------5----------------5- =  2 0  x 10 = 2 0  k fl

30 x 103 +  60 x 103

and the time constant is

z — R t x  C — (2 0  x 103) x (2  x 10-6 ) =  40 x 10“ 3 =  40m s 

Substituting these values into Eq. 8.3-6 gives

v(f) =  8 -  0.8e - ' /40 V

where t has units o f ms.

E x a m p l e  8 . 3 - 4  F ir s t -O r d e r  C ir c u it I N T E R A C T I V E  E X A M P L E

The switch in Figure 8.3-7a has been open for a long time, and the circuit has reached steady state before the 
switch closes at time t =  0. Find the inductor current for t >  0.

io o  n  
----- V W -

200  n
- W v — o-

300 Q

12 V © 5 mH < | M  12 V C l

(a) (b)

FIGURE X.3-7 (a) A first-order circuit. The equivalent circuit for (h) I < 0 and (c) t > 0.

(c)
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Solution
Figure 8.3-7b shows the appropriate equivalent circuit while the switch is open. The 100-il and 200-0 resistors 
are in series and have been replaced by an equivalent 300-fl resistor. The input to the circuit is a constant ( 12 
volts), and the circuit is at steady state; therefore, the inductor acts like a short circuit. The current in this short 
circuit is the inductor current. Because we are interested in the initial condition, the initial inductor current has 
been labeled as z'(0). This current can be calculated using Ohm’s law:

= 300==4° mA
Figure 8.3-7c shows the appropriate equivalent circuit after the switch closes. Closing the switch shorts out the 
100-0 resistor, removing it from the circuit. The part of the circuit that is connected to the inductor has been 
replaced by its Norton equivalent circuit. After the switch is closed,

/ sc =  =  60 mA and Rx =  200 fl
s 200

and the time constant is
L 5 x 10~3 =  25 x 10~6 =  25 fis
Rt 200 

Substituting these values into Eq. 8.3-7 gives
i(t) — 60 -  20e- '/25 mA

vwhere t has units of microseconds.

E x a m p l e  8 . 3 - 5  F i r s t - O r d e r  C i r c u i t

The circuit in Figure 8.3-8a is at steady state before the switch opens. Find the current i(t) for t > 0.

r = 0 60 kn vM) 30 kQ 60 kQ

(C)

FIGURE 8.3-8 (a) A first-order circuit, (b) the circuit after the switch opens, and (c) the equivalent circuit after the switch opens.

Solution
The response or output of a circuit can be any element current or voltage. Frequently, the response is not the 
capacitor voltage or inductor current. In Figure 8.3-8a, the response is the current i(t) in a resistor rather than the 
capacitor voltage. In this case, two steps are required to solve the problem. First, find the capacitor voltage using 
the methods already described in this chapter. Once the capacitor voltage is known, write node or mesh equations 
to express the response in terms of the input and the capacitor voltage.

First we find the capacitor voltage. Before the switch opens, the capacitor voltage is equal to the voltage of 
the 2-volt source. The initial condition is

v(0) =  2 V
Figure 8.3-86 shows the circuit as it will be after the switch is opened. The part of the circuit connected to the 
capacitor has been replaced by its Thevenin equivalent circuit in Figure 8.3-8c. The parameters of the Thevenin



equivalent circuit are

K . . _____ W, X l01  3 8 =  4 V
60 x 103 +  60 x 103

a n d  « , - 3 0 x l O >  +  6 0 x ' 0 ; > < 6 Q > < " ) ;  =  6 0 x l 0 ^ 6 0 k n
60 X I05 +  60 x 10’

The time constant is

x = R{ x C =  (60 x 103) x  (2 x 10~6) =  120 x 10“3 =  120 ms 

Substituting these values into Eq. 8.3-6 gives

v(/) =  4 -  2e - , /m  V

where t has units o f ms.
Now that the capacitor voltage is known, we return to the circuit in Figure 8.3-86. Notice that the node 

voltage at the middle node at the top o f the circuit has been labeled as va(f). The node equation corresponding to 
this node is

v . ( 0  -  8  v « (Q  v « ( 0  ~  v ( 0  _  Q
60 x 103 60 x 103 30 x 103

Substituting the expression for the capacitor voltage gives

va( 0 - 8  va(f) v , ( 0 - (  4 - 2e - " m ) _

^ 3 2 2 ^ -------The Complete Response of RL and flCCircuits

60 x 103 60 x 103 30 x 103

0or va(f) -  8 +  va(f) -I- 2 va(r) -  ^4 -  2e ,/12° )

Solving for va(r), we get

8 +  2 ( 4 - ^  _ 4 _e.,/120v
Finally, we calculate i(t) using Ohm’s law:

i(t) =  Vâ  =  4 ^  =  66.7 -  16.7fT,/120 mA
w  60 x 103 60 x 103

where t has units o f ms.

E x a m p l e  8 . 3 - 6  F ir s t -O r d e r  C ir c u it  w ith  t 0 ^  0

Find the capacitor voltage after the switch opens in the circuit shown in Figure 8.3-9#. What is the value o f the 
capacitor voltage 50 ms after the switch opens?

Solution
This example is similar to Example 8.3-1. The difference between the two examples is the time at which the 
switch opens. The switch opens at time / =  0 in Example 8.3-1 and at time / =  50 ms =  0.05 s in this example. 

The 2-volt voltage source forces the capacitor voltage to be 2 volts until the switch opens. Consequently,
v(t) =  2 V for t < 0.05 s

In particular, the initial condition is
v(0.05) =  2 V

Figure 8.3-9b shows the circuit after the switch opens. Comparing this circuit to the RC  circuit in Figure 8.3 -16,
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Complete response

t = 50 ms

2 V

10 kQ

t, ms
(c)

FIGURE 8.3-9 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch opens, (c) A plot of the complete 
response, v(t), given by Eq. 8.3-10. 

we see that
Rt — 10 kfl  and Voc =  8 V 

The time constant for this first-order circuit containing a capacitor is
r  =  RtC = 0.020 s

A plot of the capacitor voltage in this example will have the same shape as did the plot of the capacitor voltage in 
Example 8.3-1, but the capacitor voltage in this example will be delayed by 50 ms because the switch opened 50 
ms later. To account for this delay, we replace / by t — 50 ms in the equation that represents the capacitor voltage. 
Consequently, the voltage of the capacitor in this example is given by

v(/) =  8 -  6e“ ('_50)/20 V (8.3-10)

where t has units of ms. (Compare Eq. 8.3-8 and 8.3-10.) To find the voltage 50 ms after the switch opens, let t — 
100 ms. Then,

v(100) =  8 -  6e-(|0° -50>/20 =  7.51 V

The value of the capacitor voltage 50 ms after the switch opens is the same here as it was in Example 8.3-1. Figure
8.3-9c shows a plot of the capacitor voltage as a function of time. As expected, this plot is a delayed copy of the 
plot shown in Figure 8.3-4c.

E x a m p l e  8 . 3 - 7  F i r s t - O r d e r  C i r c u i t  w i t h  t 0 £  0

Find the inductor current after the switch closes in the circuit shown in Figure 8.3-10tf. How’ long will it take for 
the inductor current to reach 2 mA?

Solution
This example is similar to Example 8.3-2. The difference between the two examples is the time at which the 
switch closes. The switch closes at time f =  0 in Example 8.3-2 and at time t = 10 /zs in this example.
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C o m p l e t e  r e s p o n s e

t = 10 fis

m

t, jis
(c)

F I G U R E  8 . 3 - 1 0  (a) A first-order circuit and (6 ) an equivalent circuit that is valid after the switch closes, (c) A plot o f the complete 
response, i(t), given by Eq. 8.3-11.

The inductor current will be 0 A until the switch closes. Because the inductor current cannot change 
instantaneously, it will be 0 A immediately after the switch closes. Therefore, the initial condition is

/(10 /zs) =  0 A

Figure 8.3-106 shows the circuit after the switch closes. Comparing this circuit to the RL circuit in Figure
8.3-26, we see that

R t =  1000 (1 and I sc =  4 mA

The time constant for this first-order circuit containing an inductor is

L 5 x 10~3 ,  , - ,
r  =  — =  — = 5 x 1 0  =  5 [MS

Rt 1000

A plot o f the inductor current in this example will have the same shape as did the plot o f the inductor current in 
Example 8.3-2, but the inductor current in this example will be delayed by 10 /zs because the switch closed 10 /zs 
later. To account for this delay, we replace t by t— 10 /zs in the equation that represents the inductor current. 
Consequently, the current o f  the inductor in this example is given by

i(t) =  4 -  4e ^  10)/5 mA (8.3-11)

where t has units o f microseconds. (Compare Eq. 8.3-9 and 8.3-11.) To find the time when the current reaches
2 mA, substitute i(t) — 2 mA. Then

2 =  4 -  4e —(/—10)/5 mA

Solving for t gives

f =  —5 x In[ - — ^  1 +  1 0 =  13.47 m s

Because the switch closes at time 10 )us, an additional time o f 3.47 /zs after the switch closes is required for the 
value o f the current to reach 2 mA. Figure 8 .3-10c shows a plot o f the inductor current as a function o f time. As 

y expected, this plot is a delayed copy o f the plot shown in Figure 8.3-5c.
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E x a m p l e  8 . 3 - 8  E x p o n e n t ia l  R e s p o n s e  o f  a F i r s t - O r d e r  C i r c u i t  J---------

Figure 8.3-1 la shows a plot of the voltage across the inductor in Figure 8.3-1 lb.

4

. (0.14, 2)
^  2 '

(a)

0.2 0.4 0.6
t, s
(b)

FIGURE 8.3-11 (a) A first-order circuit 
and (b) a plot of the inductor voltage.

(a) Determine the equation that represents the inductor voltage as a function of time.
(b) Determine the value of the resistance R.
(c) Determine the equation that represents the inductor current as a function of time.

Solution
(a) The inductor voltage is represented by an equation of the form

D for t < 0
k E  4- F e~at for t > 0 

where D, £, F, and a are unknown constants. The constants D, E , and F  are described by 
D =  vit) when t < 0, E — lim v(f), and E 4- F  =  lim vit)

t—> oo /—►0-h

From the plot, we see that 

Consequently,
D = 0, E  =  0, and E 4  F = 4 V

v ( 0 I  0\  4e~'
for t < 0 

a/ for f > 0

To determine the value of ay we pick a time when the circuit is not at steady state. One such point is labeled 
on the plot in Figure 8.3-11. We see v (0.14) =  2 V; that is, the value of the voltage is 2 volts at time 0.14 
seconds. Substituting these into the equation for v(/) gives

2 =  4e~a(0AA) -  - ^  =  5-0 .14
Consequently,

f 0 for / <
~  I  4e~5' for t >

(b) Figure 8.3-12 a shows the circuit immediately after the switch opens. In Figure 8.3-126, the part of the circuit 
connected to the inductor has been replaced by its Thevenin equivalent circuit.
The time constant of the circuit is given by

r - - -
R\ R 4-5
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R,= R + 5
- ^ / W —

4 H v(t) C - J voc= 12v  4 H V W
Hi)

(b)
FIGURE 8.3-13 The first-order circuit before 

FIGURE 8.3-12 (a) The first-order circuit after the switch opens. (b) An the switch opens, 
equivalent circuit.

Also, the time constant is related to the exponent in v(t) by —51 =  — Consequently,

5 =  -  =  “ “T ~  => R = \ 5 i l  
T 4

(c) The inductor current is related to the inductor voltage by

i(t) = j ' f  v(r)dr  + 1(0)

Figure 8.3-13 shows the circuit before the switch opens. The closed switch is represented by a short circuit. 
The circuit is at steady state, and the voltage sources have constant voltages, so the inductor acts like a short 
circuit. The inductor current is given by

i ( t ) = £  =  0.4 A

In particular, z(O-) =  0.4 A. The current in an inductor is continuous, so i(0 + ) =  i(O-).  Consequently,

i(0) =  0.4 A

Returning to the equation for the inductor current, after the switch opens, we have

In summary.

1 f r 1
/(/) =  -  /  4e~5Td r  +  0.4 =  —  (e~5‘ -  l)  +  0.4 =  0.6 -  0.2e~ 

4 Jo - 5 v ’

_  ( 0.4 fort  < 0
_  \  0.6 -  0 .2 e -5' for f >  0

51

EXERCISE 8.3-1 The circuit shown in Figure E 8.3-1 is at steady state before the switch closes 
at time t =  0. Determine the capacitor voltage, v(7), for t > 0.

3 Q  6 f i

F IG U R E  E 8.3-1



S e q u e n t i a l  S w i t c h in g

EXERCISE 8.3-2 The circuit shown in Figure E 8.3-2 is at steady state before the switch closes 
at time t =  0. Determine the inductor current, i(t), for t > 0.

3D 6 a

1 1
4 +  l 2 ‘

FIGURE E 8.3-2

8.4 S E Q U E N T I A L  S W I T C H I N G

Often, circuits contain several switches that are not switched at the same time. For example, a circuit 
may have two switches where the first switch changes state at time t =  0 and the second switch closes 
at / =  1 ms.

Sequential switching occurs when a circuit contains two or more switches that change state 
at different instants.

Circuits with sequential switching can be solved using the methods described in the previous sections, 
based on the fact that inductor currents and capacitor voltages do not change instantaneously.

As an example of sequential switching, consider the circuit shown in Figure 8.4-la. This circuit 
contains two switches—one that changes state at time t — 0 and a second that closes at t =  1 ms. 
Suppose this circuit has reached steady state before the switch changes state at time t = 0. Figure
8.4-1 b shows the equivalent circuit that is appropriate for t < 0. Because the circuit is at steady state 
and the input is constant, the inductor acts like a short circuit and the current in this short circuit is the

2 ft io a C y J i(l) > 2 ft

(b)

2 ft 2 mH < J i(t) >  1 ft

id)
FIGURE 8.4-1 (a) A circuit with sequential switching. (b) The equivalent circuit before t =  0. (c) The equivalent 
circuit for 0 < t < 1 ms. (d) The equivalent circuit after r = 1 ms.
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inductor current. The short circuit forces the voltage across the resistor to be zero, so the current in the 
resistor is also zero. As a result, all o f  the source current flows in the short circuit and

/(/) =  10 A t <  0

The inductor current will be 10 A immediately before the switch changes state at time t 0. We
express this as

/(0 " )  =  10 A

Because the inductor current does not change instantaneously, the inductor current will also be 10 A 
immediately after the switch changes state. That is,

i( 0+) =  10 A

This is the initial condition that is used to calculate the inductor current after t =  0. Figure
8 .4-lc  shows the equivalent circuit that is appropriate after one switch changes state at time t —
0 and before the other sw itch closes at time t =  1 ms. We see that the Norton equivalent o f the part o f 
the circuit connected to the inductor has the parameters

/ sc =  0 A and Rt =  2 f l

The time constant o f this first-order circuit is

2  x 1 0
- 3

T
. =  1 X  10"3 =  1 ms

The inductor current is

i(t) =  i(0)e  =  10c 'A

for 0 <  t < 1 ms. Notice that t has units o f ms. Immediately before the other switch closes at time t — 1 
ms, the inductor current will be

/ ( r )  =  10e-1 =  3.68 A

Because the inductor current does not change instantaneously, the inductor current will also be 3.68 A 
immediately after the switch changes state. That is,

i ( l + ) =  3.68 A

This is the initial condition that is used to calculate the inductor current after the switch closes at time t
— 1 ms. Figure 8.4- Id  shows the appropriate equivalent circuit. We see that the Norton equivalent of
the part o f the circuit connected to the inductor has the parameters

I sc — 0 A and R{ =  1 H

The time constant o f this first-order circuit is

>̂-32  x 1 0 "
r  = =  2 x 1(T3 =  2 ms

FIGURE 8.4-2 Current waveform for t >  0. The 
exponential has a different time constant for 0  <  t < t] 
and for t > t\ where t\ — 1 ms.

Ri 1
The inductor current is

i(t) =  i(t0)e~{t~to)/r = 3.6%e~(*~1̂ 2 A

for 1 ms <  t. Once again, t has units o f ms. Also, t0 denotes the time 
when the switch changes state— 1 ms in this example.

Figure 8.4-2 shows a plot of the inductor current. The time 
constant changes when the second switch closes. As a result, the slope 
of the plot changes at t — 1 ms. Immediately before the switch closes, 
the slope is —3.68 A/ms. Immediately after the switch closes, the slope 
becomes —3.68/2 A/ms.
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8.5 S T A B I L I T Y  OF F I R S T - O R D E R  C I R C U I T S

We have shown that the natural response of a first-order circuit is

xn(t) = Ke-'t '

and that the complete response is the sum of the natural and forced responses:

x(t)  = x a(t) + x f (t)

When r > 0, the natural response vanishes as t —* 0, leaving the forced response. In this case, the circuit is 
said to be stable. When r < 0, the natural response grows without bound as t —► 0. The forced response 
becomes negligible, compared to the natural response. The circuit is said to be unstable. When a circuit is 
stable, the forced response depends on the input to the circuit. That means that the forced response 
contains information about the input. When the circuit is unstable, the forced response is negligible, and 
this information is lost. In practice, the natural response of an unstable circuit is not unbounded. This 
response will grow until something happens to change the circuit. Perhaps that change will be saturation 
of an op amp or of a dependent source. Perhaps that change will be the destruction of a circuit element. In 
most applications, the behavior of unstable circuits is undesirable and is to be avoided.

How can we design first-order circuits to be stable? Recalling that r =  RtC or r =  L/Rx, we see that

Rt > 0 is required to make a first-order circuit stable.

This condition will always be satisfied whenever the part of the circuit connected to the capacitor or 
inductor consists of only resistors and independent sources. Such circuits are guaranteed to be stable. 
In contrast, a first-order circuit that contains op amps or dependent sources may be unstable.

E x a m p l e  8 . 5 - 1  R e s p o n s e  o f a n  U n s t a b l e  F i r s t - O r d e r  C i r c u i t

The first-order circuit shown in Figure 8.5-la is at steady state before the switch closes at t = 0. This circuit 
contains a dependent source and so may be unstable. Find the capacitor voltage, v(f), for t > 0.

iit)
-------V W

12 V

12 V

iit)

iit)

12 V 2 iit) viO)

iit)

(d )

FIGURE 8.5-1 (a) A first- 
order circuit containing a 
dependent source, ib) The 
circuit used to calculate the 
initial condition, (c )  The 
circuit used to calculate 
Voc. id) The circuit used to 
calculate Rx
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Solution
The input to the circuit is a constant, so the capacitor acts like an open circuit at steady state. We calculate the initial
condition from the circuit in Figure 8.5-26. Applying KCL to the top node o f the dependent current source, we get

- i  +  2/ =  0

Therefore, i — 0. Consequently, there is no voltage drop across the resistor, and
v(0) =  12 V

Next, we determine the Thevenin equivalent circuit for the part o f  the circuit connected to the capacitor. This 
requires two calculations. First, calculate the open-circuit voltage, using the circuit in Figure 8 .5-Ic. W riting a 
KVL equation for the loop consisting o f the two resistors and the voltage source, we get

12 =  (5 x 103) x i 4* (10 x 103) x (i -  2i)

Solving for the current, we find
i =  —2.4 mA 

Applying O hm 's law to the 10-kfi resistor, we get

Foe =  (10 x 103) x (j -  2i) =  24 V

Now calculate the Thevenin resistance using the circuit shown in Figure 8.5-lrf. Apply KVL to the loop consisting 
o f the two resistors to get

0 =  (5 x 103) X  i +  (10 x 103) x (/-r +  i -  2i)

Solving for the current,

i =  2I T

Applying O hm ’s law to the 10-kft resistor, we get

VT =  10 x 103 x ( /T +  i -  21) =  - 1 0  x 103 x I j  

The Thevenin resistance is given by

V t
Rx = —Y- =  - 1 0  k ft 

I  j
The time constant is

r  =  R[C =  —20 ms 

This circuit is unstable. The complete response is

v(/) =  2 4 - 1 2  e ,/2°

The capacitor voltage decreases from v(0) =  12 V rather than increasing toward vf — 24 V. Notice that

v(oc) =  lim v(t) =  — oc
t —KX)

It’s not appropriate to refer to the forced response as a steady-state response when the circuit is unstable.

The circuit considered in Example 8.5-1 has been redrawn in Figure 8.5-2a, with the gain o f  the dependent 
source represented by the variable B. W hat restrictions must be placed on the gain o f  the dependent source to 
ensure that it is stable? Design this circuit to have a time constant o f  +20 ms.
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Solution
Figure 8.5-2b shows the circuit used to calculate R,. Applying 
KVL to the loop consisting of the two resistors,

5 x 103 x i +  VT = 0

Solving for the current gives

' 5 x 103
Applying KCL to the top node of the dependent source, we get

VT
+ Bi +  k T x T o 3

Combining these equations, we get

—  / T =  0

G-t

B
r +  ‘

1 VT -  I j  = 1
1 0 3  ̂1 0  x 1 0 3 

The Thevenin resistance is given by
_  VT _  10 x 103

12 V

(a)

2 5 - 3
The condition B < 3/2 is required to ensure that Rt is positive and 
the circuit is stable.

To obtain a time constant of +20 ms requires
r 20 x 10~3 

X~C~  2 x 10~6 
which in turn requires

1 0  x 1 0 3

(b)
FIGURE 8.5-2 (a) A first-order circuit containing a 
dependent source. (b) The circuit used to calculate 
the Thevenin resistance of the part of the circuit 
connected to the capacitor.

=  i o  x  i o 3 =  i o k n

1 0  x 1 0 3 = -
2 5  — 3

Therefore B — 1. This suggests that we can fix the unstable circuit by decreasing the gain of the dependent source 
^from  2 A/A to 1 A/A._______________________________________________________________________

8.6 THE U N I T  S T E P  S O U R C E

The unit step function provides a convenient way to represent an * 0
abrupt change in a voltage or current. 1

We define the unit step function as a function of time that is zero 
for t < to and unity for t > tg. At t =  the value changes from zero to 
one. We represent the unit step function by u(t -  to), where

« « -* > ) =  ( ?  ' < , ° (8.6-1) ° '°\  1 t >  to FIGURE 8 .6-1 Unit step forcing function, u(t — f0)-

The value of u(t — t0) is not defined at t = /0, where it switches instantaneously from a value of zero to 
one. The unit step function is shown in Figure 8.6-1. We will often consider t0 =  0.

The unit step function is dimensionless. To represent a voltage that changes abruptly from one
constant value to another constant value at time t =  f0, we can write

v(0 — A + B u(t — to)
which indicates that

v(0
■ {

A t < t0 
A + B 1 > t0
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A+Bu(t - iAt)

where A and B have units o f Volt. Figure 8.6-2 shows a voltage source having this voltage. 
It is worth noting that u(—t) indicates that we have a value o f 1 for t <  0, so that

< 0
> 0

FIG l’RE 8.6-2 Symbol 
for a voltage source 
having a voltage that 
changes abruptly at time
t - 10

Let us consider the pulse  source

v(0  =

(b)

FIGURE 8.6-3 (a) 
Rectangular voltage pulse. 
(b) Two-step voltage 
waveforms that yield the 
voltage pulse.

V0u{t-ti) f .

FIGURE 8.6-4
Two-step voltage sources 
that yield a rectangular 
voltage pulse, v(r), with a 
magnitude of V0 and a 
duration of (fj — t0) 
where t0 < t \ .

which is shown in Figure 8.6-3a. As shown in Figure 8.6-36, the pulse can be obtained from 
two-step voltage sources, the first o f value V0 occurring at t = t0 and the second equal to — V0 
occurring at t =  t\. Thus, the two-step sources o f magnitude V0 shown in Figure 8.6-4 will 
yield the desired pulse. We have v(/) =  V0u(t — t0)— V0u(t — t x) to provide the pulse. Notice 
how easy it is to use two-step function symbols to represent this pulse source. The pulse is 
said to have a duration o f  ( t \—10) s.

A puise signal has a constant nonzero value for a time duration o f  A, =  t \ —t0.

We recognize that the unit step function is an ideal model. No real element can switch 
instantaneously. However, if  the switching time is very short compared to the time constant 
o f the circuit, we can approximate the switching as instantaneous.

E x a m p l e  8 . 6 - 1  F ir s t -O r d e r  C i r c u i t I N T E R A C T I V E  E X A M P L E

Figure 8.6-5 shows a first-order circuit. The input to the circuit is the voltage o f 
the voltage source, vs(r). The output is the current o f the inductor, i0(t). 
Determine the output o f this circuit when the input is vs(t) = 4 — 8u(t) V.

FIGURE 8.6-5 The circuit
considered in Example 8.6-1.
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20 ft 20 ft

o
20 ft

(a)
FIG I RE 8 .6-6 Circuits used to calculate the steady-state 
response (a) before t = 0 and (b) after t = 0 . FIGURE 8.6-7 The circuit used to calculate /?,.

Solution
The value of the input is one constant, 4 V, before time t — 0 and a different constant, —4 V, after time t — 0. The
response of the first-order circuit to the change in the value of the input will be

iQ(t) = A -f Be~at for t > 0 (8.6-2)

where the values of the three constants A , B, and a are to be determined.
The values of A and B are determined from the steady-state responses of this circuit before and after the 

input changes value. Figures 8.6-6a,b show the circuits used to calculate those steady-state responses. Figures 
8.6-6a,b require some explanation.

Inductors act like short circuits when the input is constant and the circuit is at steady state. Consequently, the 
inductor is replaced by a short circuit in Figure 8.6-6a and in Figure 8.6-6b.

The value of the inductor current at time t =  0 will be equal to the steady-state inductor current before the
input changes. At time t =  0, the output current is

i'o(0) =  A +  Be~a(Q) = A + B
Consequently, the inductor current is labeled as A +  B in Figure 8.6-6a.

The value of the inductor current at time t = oc will be equal to the steady-state inductor current after the 
input changes. At time t = oc, the output current is

f'o(oo) = A  + Be-a(oc) =  A 
Consequently, the inductor current is labeled as A in Figure 8.6-6b.

Analysis of the circuit in Figure 8.6-6a gives
A + B  =  0.2 A

Analysis of the circuit in Figure 8.6-6b gives
A =  -0 .2  A

Therefore,

B =  0.4 A
The value of the constant a in Eq. 8.6-2 is determined from the time constant, r, which in turn is calculated from 
the values of the inductance L and of the Thevenin resistance, /?t, of the circuit connected to the inductor.

1 -  - A
a T Rx

Figure 8.6-7 shows the circuit used to calculate Rt. It is seen from Figure 8.6-7 that
Rt =  20 a

Therefore,

20 ^  1
“" ■ j o ' 2 ;

(The time constant is r  =  10/20 =  0.5 s.) Substituting the values of A, B, and a into Eq. 8.6-2 gives

=  {  —0.2
0.2 A

1.2 + 0.4 e~2t A
for t < 0 
for t > 0 J
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3 ft

FIGURE 8.6-8 The circuit considered in 
Example 8.6-2.

(8.6-3)

Figure 8.6-8 shows a first-order circuit. The input to the circuit is the 
voltage o f the voltage source, vs(/). The output is the voltage across the 
capacitor, v0(/). Determine the output o f  this circuit when the input is vs(/) 
=  7—\4u(t) V.

Solution
The value o f the input is one constant, 7 V, before time t — 0 and a 
different constant, —7 V, after time t =  0. The response o f the first- 
order circuit to the change in the value o f the input will be

v0(/) =  A  +  Be~at for t >  0

where the values o f the three constants A, B, and a are to be determined.
The values o f A and B  are determined from the steady-state responses o f  this circuit before and after the 

input changes value. Figures 8.6-9a, b show the circuits used to calculate those steady-state responses. Figures
8.6-9a, b require some explanation.

Capacitors act like open circuits when the input is constant and the circuit is at steady state. Consequently, 
the capacitor is replaced by an open circuit in Figure 8.6-9a and in Figure 8.6-9b.

The value o f the capacitor voltage at time t =  0 will be equal to the steady-state capacitor voltage before the 
input changes. At time t =  0, the output voltage is

vo(0) =  A + Be~a{0) =  A + B

Consequently, the capacitor voltage is labeled as A +  B in Figure 8.6-9a.
The value o f the capacitor voltage at time t — oo will be equal to the steady-state capacitor voltage after the 

input changes. At time t — oo, the output voltage is

v0(oo) =  A +  Be~a^  = A

Consequently, the capacitor voltage is labeled as A in Figure 8.6-9b.
Apply the voltage division rule to the circuit in Figure 8.6-9# to get

5
A + B  =

3 +  5
x 1 =  4.38 V

Apply the voltage division rule to the circuit in Figure 8.6-9b to get

^  =  3 T 5 X ( - ? ) =  - 4 -3 8 V  

Therefore, B =  8.76 V

The value o f the constant a in Eq. 8.6-3 is determ ined from the time constant, r, which in turn is 
calculated from the values o f the capacitance C and o f the Thevenin resistance, R u o f  the circuit connected to

3 a 3 Q

A + B

FIGURE 8.6-9 Circuits used to calculate the steady-state 
response (a) before t =  0  and (b) after t =  0 .

3 ft
---- V W

5 ft

F IG U R E  8.6-10 The circuit used to calculate Rx.



I  =  T =  R,C 
a

Figure 8.6-10 shows the circuit used to calculate It is seen from Figure 8.6-10 that
R = (5K3) _  j g 7 5 a

5 + 3

The Response of a First-Order Circuit to a Nonconstant So

the capacitor:

u r c e --------^ 3 3 5 ^

J ________  , . ,1
(1.875) (460 x 10“3)

(The time constant is r =  (1.875)(460 x 10^3) =  0.86 s.) Substituting the values of A,B, and a into Eq. 8.6-3 gives

-4.38 V for t < 0

-4.38 +  8.76 < r '16 ' V for t > 0

Therefore, a = -  oncsUl.n z  in-TT -  ' - , 6 7

M O  =

8.7 THE R E S P O N S E  OF A F I R S T - O R D E R  C I R C U I T  TO  
A N O N C O N S T A N T  S O U R C E  -------------------------------------

In the previous sections, we wisely used the fact that the forced response to a constant source will be a 
constant itself. It now remains to determine what the response will be when the forcing function is not 
a constant.

The differential equation described by an RL or RC circuit is represented by the general form

^ l  + ax( t)= y(t)  (8.7-1)

where v(/) is a constant only when we have a constant-current or constant-voltage source and where 
a — 1 / r  is the reciprocal of the time constant.

In this section, we introduce the integrating factor method, which consists of multiplying Eq.
8.7-1 by a factor that makes the left-hand side a perfect derivative, and then integrating both sides. 

Consider the derivative of a product of two terms such that

j t ( x S )  = J t e°‘ +  axeM =  { ^  + ax^e*' (8.7-2)

The term within the parentheses on the right-hand side of Eq. 8.7-2 is exactly the form on the left- 
hand side of Eq. 8.7-1.

Therefore, if we multiply both sides of Eq. 8.7-1 by eat, the left-hand side of the equation can be 
represented by the perfect derivative, d(xeat)/dt. Carrying out these steps, we show that

( s +“ )+  ax ) ear = yeat

or ^-(Xea' ) = y ea'
dt 7 J

Integrating both sides of the second equation, we have

xeat =  J y e a'dt + K

where A: is a constant of integration. Therefore, solving for jc(/), we multiply by e~at to obtain

yeatdt +  Ke~at (8.7-3)i y
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When the source is a constant so that v(/) =  A/, we have

/
M

eatdt  +  K e at = -----h K e at — Xf + x n

where the natural response is x n =  Ke at and the forced response is jcf =  M / a , a constant.
Now consider the case in w hichy(t), the forcing function, is not a constant. Considering Eq. 8.7-3, 

we see that the natural response remains x n =  Ke~at. However, the forced response is

T he  C o m p le te  R espo nse  of RL and /?CCircuits

Xf =  e at j  y ( t)eat dt

Thus, the forced response will be dictated by the form o f y(t). Let us consider the case in which y(t)  is
b ) is not equal to ze

1

an exponential function so that y(t) = ebt. We assume that (a +  b) is not equal to zero. Then we have

X f  =  e~a' [  eb,ea,d t -  e~a' [  e (a+b)'d t  -  — !—  e ~a,e (a+b) = ------ - (8.7-4)J J a+b a+b
Therefore, the forced response o f  an RL or RC  circuit to an exponential forcing function is o f  the 
same form as the forcing function itself. W hen a -f b is not equal to zero, we assum e that the forced 
response will be o f  the same form as the forcing function itself, and we try to obtain the relationship 
that will be satisfied under those conditions.

E x a m p l e  8 . 7 - 1  F i r s t - O r d e r  C i r c u i t  w i t h  N o n c o n s t a n t  S o u r c e

Find the current / for the circuit o f Figure 8 .7-la  for t >  0 when

Vs =  \0 e ~ 2,u { t )  V 

Assume the circuit is in steady state at t = 0".
i= 0

5 Q
O-----W V

4 Q
-AAAr

50. 4 Q

Ht) |  < 1 H vs(t) iit) { < 1 H > 4 Q  Q

1 |— VA— 1•— WV— I

p (T)iov '(') \

(a) (b) (c)

FIGURE 8.7-1 (a) A circuit with a nonconstant source, (b) the appropriate equivalent circuit after the switch opens, and (c) the 
appropriate equivalent circuit before the switch opens.

Solution
Because the forcing function is an exponential, we expect an exponential for the forced response, />. Therefore, we
expect if to be

if =  Be~2t

for t >  0. Writing KVL around the right-hand mesh, we have

. di
L — + Ri =  vs dt

or ~  + 4i =  \0e~2‘ 
dt



for t > 0. Substituting =  Be 2', we have

—2Be~2' +  4Be~2' =  10<?~2' 

or ( -2 B  + 4B)e~2' = \0e~2'

Hence, B — 5 and

if = 5e~21

The natural response can be obtained by considering the circuit shown in Figure 8.7-1/?. This is the equivalent 
circuit that is appropriate after the switch has opened. The part of the circuit that is connected to the inductor has 
been replaced by its Norton equivalent circuit. The natural response is

iD= Ae - ^ = A e - 4f

The complete response is

i =  in 4- if =  Ae 4- 5c

The constant A can be determined from the value of the inductor current at time t — 0. The initial inductor current,
/(0), can be obtained by considering the circuit shown in Figure 8.7-lc. This is the equivalent circuit that is appropriate 
before the switch opens. Because vs(t) = 0 for t < 0 and a zero voltage source is a short circuit, the voltage source at 
the right side of the circuit has been replaced by a short circuit. Also, because the circuit is at steady state before the 
switch opens and the only input is the constant 10-volt source, the inductor acts like a short circuit. The current in the 
short circuit that replaces the inductor is the initial condition, i(0). From Figure 8.7-lc,

The Response of a First-Order Circuit to a Nonconstant Source - ©

i ( 0 ) = y  =  2 A

Therefore, at t =  0,

i(0) =  Ae~4x0 4- 5e~2x0 = A + 5 

or 2 = A- j -5

or A =  -3 . Therefore,

i =  (—3c~4' 4- 5e~21) A t > 0

The voltage source of Example 8.7-1 is a decaying exponential of the form

vs =  10 e~2tu(t)V

This source is said to be aperiodic (nonperiodic). A periodic source is one that repeats itself exactly after a 
fixed length of time. Thus, the signal /(/) is periodic if there is a number T such that for all t

f ( t + T ) = f ( t )  (8.7-5)

The smallest positive number T that satisfies Eq. 8.7-5 is called the period. The period defines the 
duration of one complete cycle of fit). Thus, any source for which there is no value of T satisfying Eq.
8.7-5 is said to be aperiodic. An example of a periodic source is 10 sin 2/, which we consider in 
Example 8.7-2. The period of this sinusoidal source is n  s.
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E x a m p l e  8 . 7 - 2  F i r s t - O r d e r  C i r c u i t  w i th  N o n c o n s t a n t  S o u r c e

Find the response v(t) for t >  0 for the circuit o f Figure SJ-2a .  The initial voltage v(0) =  0, and the current source 
is is =  (10 sin 2t)u(t) A.

a 4Q

1 ’ + +

" ^ v(r) *> 4 Q ^ v(t) 4 Ut)

(a) FIGURE 8.7-2 {a) A circuit with a nonconstant source.
(6) The equivalent circuit for / > 0.

Solution
Because the forcing function is a sinusoidal function, we expect that vf is o f  the same form. W riting KCL at node 
a, we obtain

or

dv  v
C ^ + R = h

dv  v 
0.5 —  +  -  =  10 sin 2 t 

dt  4
(8.7-6)

for t >  0. We assume that vf will consist o f  the sinusoidal function sin 21 and its derivatives.
Examining Eq. 8.7-6, vf/4  plus 0.5 dv^/dt must equal 10 sin It. However, d(sin 2 t ) /dt  — 2 cos 21. Therefore, 

the trial vf needs to contain both sin 21 and cos 21 terms. Thus, we try the proposed solution

Vf =  A sin 21 + B  cos 21

The derivative o f vf is then

dv  f
dt

=  2A cos 21 — 2B  sin 21

Substituting vf and dv^/dt into Eq. 8.7-6, we obtain

1
(A cos 21 -  B  sin 2t) +  -  (A sin 2t -f B  cos 2r) =  10 sin 21

Therefore, equating sin 21 terms and cos 21 terms, we obtain

(A
- - B  I =  10 and

Solving for A and B , we obtain

Consequently,

, 40 ,  n ~ 160
17 and =  ~ v T
40 . ,  160

Vf =  —  sin 21 — —  cos 21
17 17

It is necessary that vf be made up o f sin 21 and cos 21 because the solution has to satisfy the differential equation. O f 
course, the derivative o f sin cot is a> cos cot.

The natural response can be obtained by considering the circuit shown in Figure 8.7-26. This is the 
equivalent circuit that is appropriate for t > 0. The part o f the circuit connected to the capacitor has been replaced 
by its Thevenin equivalent circuit. The natural response is

vn =  De~t/{RtC) =  De~t/2
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Forced Response to a Forcing Function

FORCING FUNCTION, y{t) FORCED RESPONSE, xf(fl

1. Constant

IIX xf — N,2i constant

2. Exponential

y(t) = Me~bt

i£IIH

3. Sinusoid

y(t) = M sin (<w/+0) Xf =  A sin (of +  B cos cot

A special case for the forced response of a circuit may occur when the forcing function is a 
damped exponential when we have y(t) — e~bt. Referring back to Eq. 8.7-4, we can show that

whenjy(f) =  e~bt. Note that here we have e~bt whereas we used ebt for Eq. 8.7-4. For the special case 
when a — b, we have a -  b — 0, and this form of the response is indeterminate. For the special case, 
we must use xf = te~bt as the forced response. The solution, xf, for the forced response when a =  b 
will satisfy the original differential Eq. (8.7-1). Thus, when the natural response already contains a 
term of the same form as the forcing function, we need to multiply the assumed form of the forced 
response by t.

The forced response to selected forcing functions is summarized in Table 8.7-1. We note that 
if a circuit is linear, at steady state, and excited by a single sinusoidal source having frequency 
then all the element currents and voltages are sinusoids having frequency cd .

EXERCISE 8.7-1 The electrical power plant for the orbiting space station shown in Figure 
E 8.7-la uses photovoltaic cells to store energy in batteries. The charging circuit is modeled by the 
circuit shown in Figure E 8.7-1/?, where vs =  10 sin 20/ V. If v(0~) =  0, find v(t) for t > 0.
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FIGURE E 8.7-1 (a) The NASA 
space station design shows the 
longer habitable modules that 
would house an orbiting scientific 

v laboratory, (b) The circuit for
energy storage for the laboratories. 
Photograph courtesy o f the National 
Aeronautics and Space Administration.

Answer:  v =  4 e ~ 10t — 4 cos 201 +  2 sin 20 t V

8.8 D I F F E R E N T I A L  O P E R A T O R S

In this section, we introduce the differential operator, s .

An operator is a symbol that represents a mathem atical operation. We can define a differential 
o p e r a t o r  s  such that

d x  2 d 2x
s x  =  —  and s* x  =  —r  

d t  d t 2

Thus, the operator 5 denotes differentiation o f  the variable with respect to time. The utility o f the 
operator 5 is that it can be treated as an algebraic quantity. This permits the replacement o f  differential 
equations with algebraic equations, which are easily handled.

Use o f the s operator is particularly attractive when higher-order differential equations are 
involved. Then we use the 5 operator, so that

„  d n x
s  x  — —— for n >  0 

d t n

We assume that n =  0 represents no differentiation, so that

5 ° = 1

which implies s ° x  = x .

Because integration is the inverse o f  differentiation, we define

i r
- x =  x  d r  (8 .8 -1 )
s J —oc

The operator 1 / s  must be shown to satisfy the usual rules o f algebraic manipulations. O f these rules, 
the commutative multiplication property presents the only difficulty. Thus, we require

s  • -  =  -  • s  =  1 (8 .8 -2 )
s  s

Is this true for the operator s? First, we examine Eq. 8.8-1. M ultiplying Eq. 8.8-1 by s  yields

r
d t  J~ o c

S • -JC =  -T- I x  d z

or

as required. Now we try the reverse order by multiplying s x  by the integration operator to obtain
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Therefore, " sx — x

only when *(-oo) =  0. From a physical point of view, we require that all capacitor voltages and 
inductor currents be zero at t =  -oo . Then the operator l / s  can be said to satisfy Eq. 8.8-2 and can be 
manipulated as an ordinary algebraic quantity.

Differential operators can be used to find the natural solution of a differential equation. For 
example, consider the first-order differential equation

^-x(t) +  ax(t) =  by(t) (8.8-3)
dt

The natural solution of this differential equation is
xn(t) = Kest (8.8-4)

The homogeneous form of a differential equation is obtained by setting the forcing function equal to 
zero. The forcing function in Eq. 8.8-3 is y(t). The homogeneous form of this equation is

-*-x(t) +  ax(t) =  0 (8.8-5)
dt

To see that xn(t) is a solution of the homogeneous form of the differential equation, we substitute 
Eq. 8.8-4 into Eq. 8.8-5.

4  (Ke") +  a(AV') =  sKe5' + aKe5' =  0 
dt

To obtain the parameter s in Eq. 8.8-4, replace d/dt in Eq. 8.8-5 by the differential operator s. This 
results in

sx -|- ax = (5 +  a)x = 0 (8.8-6)
This equation has two solutions: x = 0 and s = —a. The solution x = 0 isn’t useful, so we use the 
solution 5 =  —a. Substituting this solution into Eq. 8.8-4 gives

xn( t )= K e ~ at

This is the same expression for the natural response that we obtained earlier in this chapter by other 
methods. That’s reassuring but not new. Differential operators will be quite useful when we analyze 
circuits that are represented by second- and higher-order differential equations.

As a second application of differential operators, consider using the computer program 
MATLAB to find the complete response of a first-order circuit. Differential operators are used to 
describe differential equations to MATLAB. As an example, consider the circuit shown in Figure
8.8-la. To represent this circuit by a differential equation, apply KVL to get

10 x 10J ^1 x 10 +  v(0 ~ 4 cos (lOOf) =  0

d
or 0.01 — v(t) +  v(f) =  4 cos (100/) (8.8-7)

In the syntax used by MATLAB, the differential operator is represented by D instead of s. Replace 
d/dt in Eq. 8.8-7 by the differential operator D to get

0.01 Dv +  v =  4 cos (1000
Entering the MATLAB commands

v =  dsolve( ‘O.OrDv +  v =  4*cos (100*/) V(0) =  - 8  ’) 
ezplot(v, [0, 2])

tells MATLAB to solve the differential equation using the initial condition v(0) =  - 8  volts and then plot 
the result. (The function named dsolve determines the symbolic solution of ordinary differential 
equations. This function is provided with the student edition of version 4 of MATLAB.) MATLAB

1
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10 kO

4  c o s  ( 1 0 0 1 )  ( T

+
v ( t )

(a)
2 . * c o s ( 1 0 0  * t )  + 2 . * s i n ( 1 0 0 . * r )  - 1 0 . * e x p ( - 1 0 0 . * f )

•2 FIGURE 8.8-1 (a) A first-order circuit with a 
sinusoidal input and (b) a plot of its complete 
response produced using MATLAB.

15 0

responds by providing the complete solution o f the differential equation

v =  2.* cos ( 1 0 0 * 0  +  2 -* sin ( 1 0 0 * 0  “  1 0 . * e x p ( - 1 0 0 . * 0  

and the plot o f v(t) versus t shown in Figure 8.8-1 b.

8.9 U S I N G  P S P I C E  T O  A N A L Y Z E
F I R S T - O R D E R  C I R C U I T S  -------------------------------------------------------------------

To use PSpice to analyze a first-order circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace

2. Specify a Time Domain (Transient) simulation

3. Run the simulation

4. Plot the simulation results

Time domain analysis is most interesting for circuits that contain capacitors or inductors or both. 
PSpice provides parts representing capacitors and inductors in the ANALOG parts library. The part 
name for the capacitor is C. The part properties that are o f  the most interest are the capacitance and the 
initial condition, both o f which are specified using the OrCAD Capture property editor. (The initial 
condition o f a capacitor is the value o f the capacitor voltage at time t =  0.) The part name for the 
inductor is L. The inductance and the initial condition o f the inductor are specified using the property 
editor. (The initial condition o f an inductor is the value o f the inductor current at time t =  0.)

The voltage and current sources that represent time-varying inputs are provided in the SOURCE 
parts library. Table 8.9-1 summarizes these voltage sources. The voltage waveform describes the
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Tabte 8 9 1 PSpice Voltage Sources for Transient Response Simulations

NAME

VEXP

SYMBOL VOLTAGE WAVEFORM

VI = 
V2 = 
TD1 = 
TCI = 
TD2 = 
TC2 =

VPULSE

VPWL

VSIN
VOFF = i v? 
VAMPL =
FREQ *
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shape o f the voltage source voltage as a function o f time. Each voltage waveform is described using a 
series o f  parameters. For example, the voltage o f an exponential source, VEXP, is described using vl, 
v2, tdl, td2, tcL  and tc2. The parameters o f  the voltage sources in Tabie 8.9-1 are specified using the 
property editor.

r
i

E x a m p l e  8 . 9 - 1  U s i n g  P S p i c e  to A n a l y z e  F i r s t - O r d e r  C i r c u i t s

The input to the circuit shown in Figure 8 .9 -la  is the voltage source voltage, v*(/), shown in Figure 8.9-la. The 
output, or response, o f the circuit is the voltage across the capacitor, v0(7). Use PSpice to plot the response o f this 
circuit.

-1

v,(r), V

J___ L J___ L
10 12 

(a)

2 0  2 2  t, ms

1 kQ

FIGURE 8.9-1 An RC circuit 
(b) with a pulse input (a).

Solution
We begin by drawing the circuit in the OrCAD 
workspace as shown in Figure 8.9-2 (see 
Appendix A). The voltage source is a VPULSE 
part (see the second row o f Table 8.9-1). 
Figure 8.9-la shows V j( f )  making the transition 
from - 1  V to 4 V instantaneously. Zero is not 
an acceptable value for the parameters tr or tf. 
Choosing a very small value for tr and t f  will 
make the transitions appear to be instantaneous 
when using a time scale that shows a period o f 
the input waveform. In this example, the pe­
riod o f the input waveform is 10 ms, so 1 ns is a 
reasonable choice for the values o f tr and tf.

R1 1k
— W v

-»lnput

-»Oulput

=? C1 
1uF

V1 = -1 
V2 = 4 
TD = 0 
TR = 1ns 
TF = 1ns 
PW = 2ms — n
PER = 10ms u

FIGURE 8.9-2 The circuit of Figure 8.9-1 as drawn in the OrCAD
workspace.

It’s convenient to set td , the delay before the periodic part o f the waveform, to zero. Then the values o f vl 
and v2 are — 1 and 4, respectively. The value o f pw  is the length o f  time that vx(t) = v2 = 4 V, so p w  = 2 ms in this 
example. The pulse input is a periodic function o f time. The value o f  per  is the period o f the pulse function, 10 ms.

The circuit shown in Figure 8.9-16 does not have a ground node. PSpice requires that all circuits have a 
ground node, so it is necessary to select a ground node. Figure 8.9-2 shows that the bottom node has been selected 
to be the ground node.

We will perform a Time Domain (Transient) simulation. (Select PSpiceYNew Simulation Profile from the 
OrCAD Capture menu bar; then choose Time Domain (Transient) from the Analysis Type drop-down list. The 
simulation starts at time zero and ends at the Run to Time. Specify the Run to Time as 20 ms to run the simulation 
for two full periods o f the input waveform. Select the Skip The Initial Transient Bias Point Calculation (SKJPBP) 
check box.) Select PSpiceYRun from the OrCAD Capture menu bar to run the simulation.

After a successful Time Domain (Transient) simulation, OrCAD Capture will automatically open a Schematics 
window. Select Trace/Add Trace to pop up the Add Traces dialog box. Add the traces V(OUTPUT) and V(INPUT). 
Figure 8.9-3 shows the resulting plot after removing the grid and labeling some points.
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FIGURE 8.9-3 The response of the RC circuit to the pulse input.

8.10 H O W C A N W E C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of 
problems discussed in this chapter.

E x a m p l e  8 . 1 0 - 1  H ow  C an  W e C h e c k  the  R e s p o n s e  o f  
a F i r s t - O r d e r  C i r c u i t ?

Consider the circuit and corresponding transient response shown in Figure 8.10-1. How can we check whether the 
transient response is correct? Three things need to be verified: the initial voltage, vo(f0); the final voltage. vG(oc); 
and the time constant, r.

Solution
Consider first the initial voltage, v’o(/0). (In this example, t0 = 10 /j.s.) Before time to = 10 /xs, the switch is closed 
and has been closed long enough tor the circuit to reach steady state, that is, for any transients to have died out. To 
calculate vo(f0), we simplify the circuit in two ways. First, replace the switch with a short circuit because the 
switch is closed. Second, replace the inductor with a short circuit because inductors act like short circuits when all 
the inputs are constants and the circuit is at steady state. The resulting circuit is shown in Figure 8.10-2a. After 
replacing the parallel 300-11 and 600-0 resistors by the equivalent 200-0 resistor, the initial voltage is calculated 
using voltage division as

200 
~ 200 + 200 -  4V
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FIGURE 8.10-1 (a) A transient response and
(b) the corresponding circuit.

Next consider the final voltage, vG(oc). In this case, the switch is open and the circuit has reached steady 
state. Again, the circuit is simplified in two ways. The switch is replaced with an open circuit because the switch is 
open. The inductor is replaced by a short circuit because inductors act like short circuits when all the inputs are 
constants and the circuit is at steady state. The simplified circuit is shown in Figure 8.10-26. The final voltage is 
calculated using voltage division as

v0(oo) = — — — 8 =  6 V 
’ 200 +  600

The time constant is calculated from the circuit shown in Figure 8 .10-2c. This circuit has been simplified by 
setting the input to zero (a zero voltage source acts like a short circuit) and replacing the switch by an open circuit. 
The time constant is

L 4 x 10~3 ,
r =  — = -------------- =  5 x 1 0  = 5

Rt 200 + 600
/zs

F IG U R E  8.10-2 Circuits used to calculate the (a) initial voltage, (b) final voltage, and (c) tim e constant.
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FIGURE 8.10-3 Interpretation of the transient response.

Figure 8.10-3 shows how the initial voltage, final voltage, and time constant can be determined from the plot of 
the transient response. (Recall that a procedure for determining the time constant graphically was illustrated in Figure 
8.3-3.) Because the values of vo(f0), vQ(oo), and r obtained from the transient response are the same as the values 
obtained by analyzing the circuit, we conclude that the transient response is indeed correct.

E x a m p l e  8 . 1 0 - 2 H ow  C an  W e C h e c k  t he  R e s p o n s e  o f  
a F i r s t - O r d e r  C i r c u i t ?

Consider the circuit and corresponding tran­
sient response shown in Figure 8.10-4. How 
can we check whether the transient response 
is correct? Four things need to be verified: the 
steady-state capacitor voltage when the switch 
is open, the steady-state capacitor voltage 
when the switch is closed, the time constant 
when the switch is open, and the time constant 
when the switch is closed.

Solution
Figure 8.10-5a shows the circuit used to calcu­
late the steady-state capacitor voltage when the 
switch is open. The circuit has been simplified 
in two ways. First, the switch has been replaced 
with an open circuit. Second, the capacitor has 
been replaced with an open circuit because 
capacitors act like open circuits when all the 
inputs are constants and the circuit is at steady 
state. The steady-state capacitor voltage is cal­
culated using voltage division as

Vc( X  ̂ ~  60 + 3 0+  150 12 =  3 V
Figure 8.10-56 shows the circuit used 

to calculate the steady-state capacitor voltage *IGlRE 8 I,M (a) A transiem response and (6 ) the corresponding circuit.

(a)

12 V|

/ = 90 ms 

t = 20 ms

30 kQ 150 kQ +
+ \ 60 kQ <> 0.5/iFz z Vc(t)

(b)
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•o

(a) (b)

(c) (d)

FIGURE 8.10-5 Circuits used to calculate (a) the steady-state voltage when the switch is open, (b) the steady-state voltage when 
the switch is closed, (c) the time constant when the switch is open, and (d) the time constant when the switch is closed.

when the switch is closed. Again, this circuit has been simplified in two ways. First, the switch has been replaced with 
a short circuit. Second, the capacitor has been replaced with an open circuit. The steady-state capacitor voltage is 
calculated using voltage division as

vc(oo) =  ^  -  12 =  8 V
cv '  60 -f 30

Figure 8.10-5c shows the circuit used to calculate the time constant when the switch is open. This circuit has 
been simplified in two ways. First, the switch has been replaced with an open circuit. Second, the input has been 
set to zero (a zero voltage source acts like a short circuit). Notice that 180 k fl in parallel with 60 k f l is equivalent 
to 45 k fl. The time constant is

r  =  (45 x 103) • (0.5 x 10“ 6) =  22.5 x 10"3 =  22.5 ms

Figure 8.10-5^ shows the circuit used to calculate the time constant when the switch is closed. The switch 
has been replaced with a short circuit, and the input has been set to zero. Notice that 30 k fl in parallel with 60 k fl 
is equivalent to 20 k fl. The time constant is

r  =  (20 x 103) • (0.5 x 10"6) =  10"2 =  10 ms

Having done these calculations, we 
expect the capacitor voltage to be 3 V until 
the switch closes at t =  20 ms. The capaci­
tor voltage will then increase exponentially 
to 8 V, with a time constant equal to 10 ms.
The capacitor voltage will remain 8 V until 
the switch opens at t =  90 ms. The capacitor 
voltage will then decrease exponentially to
3 V, with a time constant equal to 22.5 ms.
Figure 8.10-6 shows that the transient re­
sponse satisfies this description. We con- 

\c lu d e  that the transient response is correct.

r = 10 ms I
►j J-*— t — 22.5 ms
■ J 1 II 1 I.................

20 40 60 80 100 120 140 160 180 /(ms)

FIGURE 8.10-6 Interpretation of the transient response.

vc(t) (V) 

8

6
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— I 8 . 11  D E S I G N  E X A M P L E

A COMPUTER AND PRINTER

It is frequently necessary to connect two pieces of electronic equipment together so that 
the output from one device can be used as the input to another device. For example, this 
situation occurs when a printer is connected to a computer, as shown in Figure 8 .1 \ -\a. 
This situation is represented more generally by the circuit shown in Figure 8.11 -16. The 
driver sends a signal through the cable to the receiver. Let us replace the driver, cable, 
and receiver with simple models. Model the driver as a voltage source, the cable as an RC 
circuit, and the receiver as an open circuit. The values of resistance and capacitance used 
to model the cable will depend on the length of the cable. For example, when RG58 
coaxial cable is used,

n
R — r t  where r = 0.54 — 

m
pF

and C = c • £ where c — 88 —
m

and i  is the length of the cable in meters, Figure 8.11-lc shows the equivalent circuit.
Suppose that the circuits connected by the cable are digital circuits. The driver will 

send l ’s and 0’s to the receiver. These l ’s and 0’s will be represented by voltages. The 
output of the driver will be one voltage, VOH, to represent logic 1 and another voltage, VOL, 
to represent a logic 0. For example, one popular type of logic, called TTL logic, uses VOH = 
2.4 V and VOL = 0.4 V. (TTL stands for transistor-transistor logic.) The receiver uses two 
different voltages, Vm and VJL, to represent l ’s and 0’s. (This is done to provide noise 
immunity, but that is another story.) The receiver will interpret its input, vb, to be a logic 1 
whenever vb > VlH and to be a logic 0 whenever vb < V]L. (Voltages between Vm and V1L 
will occur only during transitions between logic 1 and logic 0. These voltages will 
sometimes be interpreted as logic 1 and other times as logic 0.) TTL logic uses VlH = 
2.0 V and VIL = 0.8 V.
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FIGURE 8.11-2 Voltages that occur during a transition from a logic 0 to a logic 1.

Figure 8.11-2 shows what happens when the driver output changes from logic 0 to logic
1. Before time t0,

va =  Vol and Vb <  VlL for t < t0

In words, a logic 0 is sent and received. The driver output switches to VOH at time t0. The
receiver input, vb, makes this transition more slowly. Not until time t\ does the receiver input
become large enough to be interpreted as a logic 1. That is,

Vb >  Fm for t > t\

The time that it takes for the receiver to recognize the transition from logic 0 to logic 1

A/ =  t\ — to

is called the delay. This delay is important because it puts a limit on how fast 1 ’s and 0 ’s can be 
sent from the driver to the receiver. To ensure that the 1 ’s and 0 ’s are received reliably, each 1 
and each 0 must last at least A/. The rate at which l ’s and 0 ’s are sent from the driver to the 
receiver is inversely proportional to the delay.

Suppose two TTL circuits are connected using RG58 coaxial cable. W hat restriction 
must be placed on the length o f the cable to ensure that the delay, At, is less than 2 ns?

Describe the Situation and the A ssum ptions
The voltage vb(r) is the capacitor voltage o f an RC  circuit. The R C  circuit is at steady state just 
before time t0.

The input to the RC  circuit is va(/). Before time t0, va(/) =  VOL =  0.4 V. At time t0, va(f) 
changes abruptly. After time t0, va(/) =  Vou =  2.4 V.

Before time t0, vb(0 — ^ o l  — 0.4 V. After time t0, vb(r) increases exponentially. 
Eventually, vb(f) =  VOH =  2.4 V.

The time constant o f the RC  circuit is

r =  R C = r c i 2 =  47.52 x K T 2 ■ £ 2

where i  is the cable length in meters.

State the Goal
Calculate the maximum value o f the cable length, £, for which >  Kih =  2 .0 V  by time t = t0
+  At, where Hat =  2 ns.
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Generate a Plan . . . , .
Calculate the voltage vb(/) in Figure 8 .11-16. The voltage vb(t) will depend on the length of the
cable, i, because the time constant of the RC circuit is a function of i. Set vb -  I 'm at time t -  
t0 + At. Solve the resulting equation for the length of the cable.

Act on the Plan
Using the notation introduced in this chapter,

vb(0) =  Ko l = 0.4V 
Vb(oo) =  KOH= 2 .4 V

and r  =  47.52 x 10"12 • i 1

Using Eq. 8.3-6, we express the voltage vb(r) as

Vb(0 =  Voh +  (Vol -  Vow)e~(t~t())lx

The capacitor voltage, vb, will be equal to Vm at time t\ = t0 -I- Af, so

V ih =  V oh  +  ( V o l  -  V o w ) e ~ l t l r  

Solving for the delay, Ar, gives

At = —r In V  IH ^ O H

V OL -  KohJ
=  -47.52 x IO '12 - i 2 In Vw — Von

V OL -  ^OhJ

In this case,

- A t

47.52 x IO-12 • In

1 
1 

3 
8 

i 
j

^  OH

P ohJ

and, therefore,

- 2 -  1(T9

47.52 x 10 -12 In
'2.0 -  2.4
0.4 -  2.4

5.11 m =  16.8ft

Verify the Proposed Solution
When i  — 5.11 m, then

and

so

R =  0.54 x 5.11 =  2.76 0  

C =  (88 x 10"12) x 5.11 =  450 pF

r =  2.76 x (450 x 10~12) =  1.241

2.0 -  2.4 
0.4 -  2.4

Because A/ < 2 ns, the specifications have been satisfied but with no margin for error.

Finally, A /=  -1.24 x 10~9 x In =  1.995 ns
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8.12 S U M M A R Y
O Voltages and currents can be used to encode, store, and 

process information. When a voltage or current is used to 
represent information, that voltage or current is called a 
signal. Electric circuits that process that information are 
called signal-processing circuits.

O Circuits that contain energy-storing elements, that is, 
capacitors and inductors, are represented by differential 
equations rather than by algebraic equations. Analysis of 
these circuits requires the solution of differential equations.

O In this chapter, we restricted our attention to first-order 
circuits. First-order circuits contain one energy storage 
element and are represented by first-order differential equa­
tions, which are reasonably easy to solve. We solved first- 
order differential equations, using the method called sepa­
ration of variables.

O The complete response of a circuit is the sum of the natural 
response and the forced response. The natural response is 
the general solution of the differential equation that repre­
sents the circuit when the input is set to zero. The forced 
response is the particular solution of the differential equa­
tion representing the circuit.

O The complete response can be separated into the transient 
response and the steady-state response. The transient re­
sponse vanishes with time, leaving the steady-state re­
sponse. When the input to the circuit is either a constant 
or a sinusoid, the steady-state response can be used as the 
forced response.

O The term transient response sometimes refers to the “ tran­
sient part of the complete response” and other times to a 
complete response that includes a transient part. In particu­
lar, PSpice uses the term transient response to refer to the 
complete response. Because this can be confusing, the term 
must be used carefully.

O The step response of a circuit is the response when the input 
is equal to a unit step function and all the initial conditions of 
the circuit are equal to zero.

O We used Thevenin and Norton equivalent circuits to reduce 
the problem of analyzing any first-order circuit to the prob­
lem of analyzing one of two simple first-order circuits. One 
of the simple first-order circuits is a series circuit consisting 
of a voltage source, a resistor, and a capacitor. The other is a 
parallel circuit consisting of a current source, a resistor, and 
an inductor. Table 8.12-1 summarizes the equations used to 
determine the complete response of a first-order circuit.

O The parameter r in the first-order differential equation

^rxit) +  =  K  is called the time constant. The time
dt r
constant r is the time for the response of a first-order circuit 
to complete 63 percent of the transition from initial value to 
final value.

O Stability is a property of well-behaved circuits. It is easy to 
tell whether a first-order circuit is stable. A first-order circuit 
is stable if, and only if, its time constant is not negative, that 
is, r  > 0.

Sum m ary of First-Order Circuits

FIRST-ORDER CIRCUIT CONTAINING A CAPACITOR

Op amps, 
resistors, 

and 
sources

C =F vit)

Replace the circuit consisting of op amps, resistors, and 
sources by its Thevenin equivalent circuit:

C =f= vit)

-------------o
The capacitor voltage is:

V(<) =  Voc +  (v(0) -  Vx )e-"r 
where the time constant, r, is

r =  RrC
and the initial condition, v(0 ), is the capacitor voltage at time
/  =  0.

FIRST-ORDER CIRCUIT CONTAINING AN INDUCTOR

Op amps, 
resistors, 

and 
sources

J Hi)

Replace the circuit consisting of op amps, resistors, and 
sources by its Norton equivalent circuit:

The inductor current is

<(')=/sc +(»'(0)

where the time constant, r, is
L

X~Ri
and the initial condition, /(0 ), is the inductor current at time 
t = 0.
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P R O B L E M S

Section 8.3 The Response of a First-Order Circuit to 
a Constant Input

P 8.3-1 The circuit shown in Figure P 8.3-1 is at steady state 
before the switch closes at time t =  0. The input to the circuit is 
the voltage of the voltage source, 12 V. The output of this 
circuit is the voltage across the capacitor, v(/). Determine \{t) 
for t > 0 .

Answer: v(t) =  6  — 2e~x 33/ V for / > 0

Figure P 8.3-1

P 8.3-2 The circuit shown in Figure P 8.3-2 is at steady state 
before the switch opens at time / =  0. The input to the circuit is 
the voltage of the voltage source, 12 V. The output of this circuit 
is the current in the inductor, /(/). Determine i{t) for t > 0.

Answer: i(t) =  1 + e ~0 5'A for / > 0

Figure P 8.3-2

P 8.3-3 The circuit shown in Figure P 8.3-3 is at steady state 
before the switch closes at time t -  0 . Determine the capacitor 
voltage, v(f), for t > 0 .

Answer: v(t) =  - 6  +  18<r667' V for / > 0 

6 Q 3 Q

Figure P 83-3

P 8.3-4 The circuit shown in Figure P 8.3-4 is at steady state 
before the switch closes at time t = 0. Determine the inductor 
current, /(/), for / > 0 .

Answer: i(t) =  —2 4 - — e~°5r A for t > 0

6 Q  3 Q

P 8.3-5 The circuit shown in Figure P 8.3-5 is at steady state 
before the switch opens at time / =  0. Determine the voltage, 
v0(/), for t > 0 .

Answer: vQ(t) =  10 — 5e~l2 5t V for / > 0

Figure P 8.3-5

P 8.3-6 The circuit shown in Figure P 8.3-6 is at steady state 
before the switch opens at time t =  0. Determine the voltage, 
vc(r), for t > 0 .

Answer: v0(/) =  Se~4000t V for / > 0

Figure P 8.3-6
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P 8.3-7 Figure P 8.3-7tf shows astronaut Dale Gardner using 
the manned maneuvering unit to dock with the spinning 
H'estar VI satellite on November 14, 1984. Gardner used a 
large tool called the apogee capture device (ACD) to stabilize 
the satellite and capture it for recovery, as shown in Figure 
P 8.3-7a. The ACD can be modeled by the circuit of Figure 
P 8.3-7/). Find the inductor current iL for t > 0.

Answer: i\_(t) =  6e~20' A

(b)

Figure P 8.3-7 (a) Astronaut Dale Gardner using the manned 
maneuvering unit to dock with the Westar VI satellite. Courtesy 
of NASA. (b) Model of the apogee capture device. Assume that 
the switch has been in position for a long time at t = 0_.

P 8.3-8 The circuit shown in Figure P 8.3-8 is at steady state 
before the switch opens at time t = 0. The input to the circuit is the 
voltage of the voltage source, Vs. This voltage source is a dc voltage 
source; that is, Vs is a constant. The output of this circuit is the 
voltage across the capacitor, vG(/). The output voltage is given by

vo(0 =  2 + 8e~05' V forr > 0

Determine the values of the input voltage, Vs, the capacitance,
C, and the resistance, R.

Figure P 8 .3-8

P 8.3-9 The circuit shown in Figure P 8.3-9 is at steady state 
before the switch closes at time t =  0. The input to the circuit is 
the voltage of the voltage source, 24 V. The output of this 
circuit, the voltage across the 3-11 resistor, is given by

v0(f) =  6 -  3e_0 35/ V when t > 0

Determine the value of the inductance, I ,  and of the 
resistances, R\ and R2.

Figure P 8.3-9

P 8.3-10 A security alarm for an office building door is 
modeled by the circuit of Figure P 8.3-10. The switch repre­
sents the door interlock, and v is the alarm indicator voltage. 
Find v(/) for t > 0 for the circuit of Figure P 8.3-10. The switch 
has been closed for a long time at t = 0“ .

4 f i  9 Q

P 8.3-11 The voltage v(t) in the circuit shown in Figure 
P 8.3-11 is given by

v(f) =  8 4- 4e~2t V for / > 0 

Determine the values of R u R2, and C.
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P 8.3-12 The circuit shown in Figure P 8.3-12 is at steady 
state when the switch opens at time / =  0. Determine i(t) for 
t > 0 .

t = 0 
D—

P 8.3-16 The circuit in Figure P 8.3-16 is at steady state 
before the switch closes. Find the capacitor voltage for t > 0.

Hint: v(0) =  12 V, Voc — 12 V

Answer: v(/) =  12.0 V

/= 0
2 kO ,----o ^ o -

Figure P 8.3-12

P 8.3-13 The circuit shown in Figure P 8.3-13 is at steady 
state when the switch opens at time / =  0. Determine v(r) for 
/ > 0.

30 kft ^  t = 0 60 kft

Figure P 8.3-13

P 8.3-14 The circuit shown in Figure P 8.3-14 is at steady 
state when the switch closes at time t =  0. Determine i(t) for 
t > 0 .

2 A

Figure P 8.3-14

P 8.3-15 The circuit in Figure P 8.3-15 is at steady state 
before the switch closes. Find the inductor current after the 
switch closes.

Hint: i(0) m 0.1 A, 7  ̂ =  0.3 A, Rx =  40 Cl 
Answer: i(t) =  0.3 -  0.2e_2/ A / > 0

0

I id)

100 ft 
<►— V\Ar~

12 V<1
200 ft 

-J \M —

20 mF : w(f)

Figure P 8.3-16

P 8.3-17 The circuit shown in Figure P 8.3-17 is at steady 
state before the switch closes. The response of the circuit is the 
voltage v(f)- Find v(t) for t > 0.

Hint: After the switch closes, the inductor current is i{t) =  
0.2 (1 -  e~X St) A

t =  0
40 ft 'V '
AAA/-----

Answer: v(t) = 8 +  e L8/

10 ft

18 V 

Figure P 8.3-17

P 8.3-18 The circuit showTi in Figure P 8.3-18 is at steady 
state before the switch closes. The response of the circuit is the 
voltage v(/). Find v(t) for t > 0.

Answer: v(t) =  37.5 -  97.5<?“6400' V

r= 0

P 8.3-19 The circuit shown in Figure P 8.3-19 is at steady 
state before the switch closes. Find v(f) for t > 0.

12 ft

Figure P 8.3-15
Figure P 8.3-19
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P 8 3-20 The circuit shown in Figure P 8.3-20 is at steady 
state before the switch closes. Determine i(f) for t > 0.

r = 0

, i(i)

v(t)

Figure P 8.3-20

*P 8.3-21 The circuit shown in Figure P 8.3-21 is at steady 
state before the switch closes at time t = 0. The current /(/) is 
given by

/(/) =  15 +  53.6e-548' mA f o r / > 0  

Determine the values of Ru R2, and L.

1=0

Figure P 8.3-23

P 8.3-24 Consider the circuit shown in Figure P 8.3-24# and 
corresponding plot of the inductor current shown in Figure 
P 8.3-24b. Determine the values of Z., and R2.

H i n t :  Use the plot to determine values of A  £, F, and a  such 
that the inductor current can be represented as

«(')
- { i

for t < 0
4- F e for t > 0

Figure P 8.3-21

P 8.3-22 The circuit shown in Figure P 8.3-22 is at steady state 
when the switch closes at time t =  0. Determine i(t) for t > 0.

t =  0
t, ms 

(b)

Figure P 8.3-24

Figure P 8.3-22

P 8.3-23 The circuit shown in Figure P 8.3-23 is at steady 
state before the switch closes at time t =  0. The voltage v{t) is 
given by

v(t) =  12 — 6e~3t V for t > 0 

Determine the values of Ru R2, and L.

Answers: L = 4.8 H, /?, =  200 O, and R2 =  300 Cl

P 8.3-25 Consider the circuit shown in Figure P 8.3-25a 
and corresponding plot of the voltage across the 40-0 
resistor shown in Figure P 8.3-256. Determine the values 
of L and R2.

Hint: Use the plot to determine values of D, £, F,  and a such 
that the voltage can be represented as

v(0
for t < 0

-I- Fe~at for t > 0



(a)

t, ms 

(b)

Figure P 8.3-25

Answers: L =  8 H and R2 =  10 O.

P 8.3-26 The voltage shown in Figure P 8.3-26 can be 
represented by an equation of the form

[ D for t < 0
VM = iI E +  Fe~* for f > 0 

Determine the values of the constants D, E, F, and a.

t, s

Figure P 8.3-26

P 8.3-27 The circuit shown in Figure P 8.3-27 is at steady
state before the switch closes at time t =  0. After the switch
closes, the inductor current is given by

/(/) =  0.6 -  0.2e~5r A for / > 0 

Determine the values of Rx, R2, and L.
Answers: rt, =  20 H, R2 =  10 fl, and L =  4 H

Figure P 8.3-27

P 8.3-28 After time t =  0, a given circuit is represented by the 
circuit diagram shown in Figure P 8.3-28.

(a) Suppose that the inductor current is

i(t) = 2 1 .6  +  28.4e-4'mA fo r r > 0

Determine the values of R\ and R3.
(b) Suppose instead that Rx = 16 O, R2 =  20 fl, and the initial 

condition is i(0) =  10 mA.
Determine the inductor current for t > 0.

4 Q i(t)

Figure P 8.3-28

P 8.3-29 Consider the circuit shown in Figure P 8.3-29.

(a) Determine the time constant, r, and the steady state 
capacitor voltage, v(oo), when the switch is open.

(b) Determine the time constant, r, and the steady state 
capacitor voltage, v(oo), when the switch is closed.

Answers: (a) r =  3 s, and v(oo) =  24 V; (b) r =  2.25 s, and 
v(oo) =  12 V

Figure P 8.3-29

Section 8.4 Sequential Switching

P 8.4-1 The circuit shown in Figure P 8.4-1 is at steady state 
before the switch closes at time / =  0. The switch remains 
closed for 1.5 s and then opens. Determine the capacitor 
voltage, v(0 , for t > 0 .
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Hint: Determine v(/) when the switch is closed. Evaluate v(/) 
at time t =  1.5 s to get v( 1.5). Use v{ 1.5) as the initial condition 
to determine v(/) after the switch opens again.

, . f 5 4- 5e~°5r V for 0 < t < 1.5 s
Answer: v(/) =  {  10 -  2.64e-2 5<"' 51 V for 1.5 s < f

8 Q

Figure P 8.4-1

P 8.4-2 The circuit shown in Figure P 8.4-2 is at steady state
before the switch closes at time / =  0. The switch remains
closed for 1.5 s and then opens. Determine the inductor
current, /(/), for / > 0.

f 2 + e-° SlA  for 0 < / < 1.5 s
Answer: v(t) =  <

I 3 -  o.53^-0 667(r- 1 5) A for 1.5 s < t

4 Q  4Q

Figure P 8.4-2

P 8.4-3 Find i(t) for / > 0 for the circuit shown in Figure 
P 8.4-3. The circuit is in steady state at t =  0~.

Answer:
i(t) =  2/3e-6/ A for 0 < / <  51 ms 
i(0 =  i.47e-'^ '-oo5i) A for / >  51 ms

P 8.4-4 Cardiac pacemakers are used by people to maintain 
regular heart rhythm when they have a damaged heart. The 
circuit of a pacemaker can be represented as shown in Figure 
P 8.4-4. The resistance of the wires, /?, can be neglected because

R < 1 mO. The heart’s load resistance, RL, is 1 Id!. The first 
switch is activated at t =  t0, and the second switch is activated at 
/i =  + 10 ms. This cycle is repeated every second. Find v(t) for
*o ^  t < 1. Note that it is easiest to consider t0 = 0 for this 
calculation. The cycle repeats by switch 1 returning to position a 
and switch 2 returning to its open position.

Hint: Use q ~ C v  to determine v(0 ) for the 100-/xF capacitor.

Switch 2

P 8.4-5 Determine and sketch i(t) for the circuit shown in 
Figure P 8.4-5. Calculate the time required for i(t) to reach 99 
percent of its final value.

P 8.4-6 An electronic flash on a camera uses the circuit 
shown in Figure P 8.4-6. Harold E. Edgerton invented the 
electronic flash in 1930. A capacitor builds a steady-state 
voltage and then discharges it as the shutter switch is pressed. 
The discharge produces a very brief light discharge. Deter­
mine the elapsed time tx to reduce the capacitor voltage to one- 
half of its initial voltage. Find the current, i(t), at t — f t.

5 V

Figure P 8.4-6 Electronic flash circuit.

P 8.4-7 The circuit shown in Figure P 8.4-7 is at steady state 
before the switch opens at t — 0. The switch remains open for 
0.5 second and then closes. Determine v(/) for t > 0.



+ v(t)

Figure P 8.5-2

4 + 8u(t) V

Figure P 8.5-3

Biit) 5 mH jJ'tW

P 8.5-4 The circuit in Figure P 8.5-4 contains a voltage- 
controlled voltage source. What restriction must be placed 
on the gain, A, of this dependent source to guarantee 
stability?

P r o b l e m s

P 8.5-1 The circuit in Figure P 8.5-1 contains a current 
controlled voltage source. What restriction must be placed 
on the gain, R, of this dependent source to guarantee stability?

Answer: R < 400 1)

Section 8.5 Stability of First-Order Circuits

RtV)

P 8.6-1 The input to the circuit shown in Figure P 8 .6 -1 is the 
voltage of the voltage source, vs(t). The output is the voltage 
across the capacitor, vo(0- Determine the output of this circuit 
when the input is vs(/) =  8 - 1 5  u(t) V.

Section 8.6 The Unit Step Source

6ft

P 8.5-2 The circuit in Figure P 8.5-2 contains a voltage- 
controlled voltage source. What restriction must be placed on 
the gain, A, of this dependent source to guarantee stability?

Answer: A < 5

Av(t)

P 8.6-2 The input to the circuit shown in Figure P 8.6-2 is the 
voltage of the voltage source, vs(/). The output is the voltage 
across the capacitor, vD(r). Determine the output of this circuit 
when the input is vs(f) =  3-1-3 u(t) V.

3 Q

P 8.5-3 The circuit in Figure P 8.5-3 contains a current- 
controlled current source. What restriction must be placed 
on the gain, B, of this dependent source to guarantee 
stability?

Figure P 8.6-2

P 8.6-3 The input to the circuit shown in Figure P 8.6-3 is the 
voltage of the voltage source, vs(f). The output is the current 
across the inductor, i0(/). Determine the output of this circuit 
when the input is vs(/) =  — 7 -I- 13 u(t) V.

5 Q

4 Q >  i0( l ) | ] l .2 H

Figure P 8.6-3

P 8.6-4 Use step functions to represent the signal of Figure 
P 8.6-4.

(V)

_L
8 9 t (s)

4 + Quit) V 5 mH 3 J«l(0

Figure P 8.5-4 Figure P 8.6-4
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P 8.6-5 The initial voltage of the capacitor of the circuit 
shown in Figure P 8.6-5 is zero. Determine the voltage v(/) 
when the source is a pulse, described by

3  kQ

vs =

0 t < I s
4 V 1 < / < 2s
0 t>  2 s

500 kQ

2|iF̂ : v

Figure P 8.6-5

P 8.6-6 Studies of an artificial insect are being used to 
understand the nervous system of animals. A model neuron 
in the nervous system of the artificial insect is show n in Figure 
P 8.6-6. A series of pulses, called synapses, is required. The 
switch generates a pulse by opening at t =  0 and closing at / =  
0.5 s. Assume that the circuit is in steady state and that v(0“ ) =  
10 V. Determine the voltage v(t) for 0 < t < 2 s.

Switch 

o-

\2u(t) V I

Figure P 8.6-8

P 8.6-9 The voltage source voltage in the circuit shown in 
Figure P 8.6-9 is

vs(0 =  7 — 14w (t) V 

Determine v(f) for t > 0.

0.46 F

6 Q /
— & c

vs r ) 3 o v 3 q «

Figure P 8.6-9

P 8.6-10 Determine the voltage v(0 for t > 0 for the circuit 
shown in Figure P 8.6-10.

Figure P 8.6-6 Neuron circuit model.

P 8.6-7 An electronic circuit can be used to replace the springs 
and levers normally used to detonate a shell in a handgun 
(Jurgen, 1989). The electric trigger would eliminate the clicking 
sensation, which may cause a person to misaim. The proposed 
trigger uses a magnet and a solenoid with a trigger switch. The 
circuit of Figure P 8.6-7 represents the trigger circuit with is(t) =
40 [u(t) — u(t — /0)] A, where /0 =  1 ms. Determine and plot v(t) Figure P 8.6-10
for 0 < t < 0.3 s.

Answer:

480(1 -  1000r 0 < t < 1 ms
480(1 -  e- ' ) e-iooo«-<o) / > l ms,r0 =  1 ms

P 8.6-11 The voltage source voltage in the circuit shown in 
Figure P 8.6-11 is

vs(0 =  5 +  2 0 m (t)

Determine i{t) for t > 0.

5 kQ 10 kQ

20 Q i7(r)

Figure P 8.6-7 Electric trigger circuit for handgun.

P 8.6-8 Determine vc(r) for / > 0 for the circuit of Figure
P 8.6-8.

i(t)

Figure P 8.6-11
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v8(f) = 12 — 6u(t) V 

Determine v(t) for t > 0.

P  8 . 6 - 1 2  The voltage source voltage in the circuit shown in
Figure P 8.6-12 is

0.75i>a

< 0 - ^ ,
1 Q

6 Q  ( t ) 2 . 5 w ( f )  A

Figure P 8.6-14

2 u(t) A

P  8 . 6 - 1 6  Determine v(t) for t >  0 for the circuit shown in
Figure P 8.6-16.

Figure P 8.6-12

P 8.6-13 Determine /'(/) for t > 0 for the circuit shown in 
Figure P 8.6-13.

Figure P 8.6-16

P 8.6-17 Determine i(t) for t > 0 for the circuit shown in 
Figure P 8.6-17.

iit)

Figure P 8.6-13

P 8.6-14 Determine i(t) for t > 0 for the circuit shown in 
Figure P 8.6-14.

150 Q 100 Q

Figure P 8.6-17

P 8.6-18 The voltage source voltage in the circuit showii in 
Figure P 8.6-18 is

vs(r) =  8+12w (r)V  

Determine v(t) for t > 0.

-AA/V

vM)

Figure P 8.6-18

AAA^
18 Q

3 mF ={= v(t) 5 mF

P 8.6-15 Determine v(r) for t > 0 for the circuit shown in P 8.6-19 The circuit shown in Figure P 8.6-l9a has a current
Figure P 8.6-15. source as shown in Figure P 8.6-19b. Determine the current i(t) 

in the inductor.

Answer. 5(1 — e-10') A t<  0.2 s 
32^-io (<-o.2 )A  f >  0.2 s

5A

(a)
0  0 .2  rt s)

(b)
Figure P 8.6-15 Figure P 8.6-19
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P 8.6-20 The voltage source voltage in the circuit shown in 
Figure P 8.6-20 is

vs(f) =  25u(t) — 10 V 

Determine i(t) for r > 0.

The output is the voltage v(t). Determine v(f) for t > 0.
3 f t

-AAAr

8  H

Figure P 8.6-20

P 8.6-21 The voltage source voltage in the circuit shown in 
Figure P 8.6-21 is

vs(/) =  30 -  24u(t)V  

Determine /(/) for t >  0.

100 £i *'W
^W V -

Figure P 8.6-24

P 8.6-25 The input to the circuit shown in Figure P 8.6-25 is 
the voltage source voltage

vs =  6 +  6 u(t)
The output is the voltage vG(r). Determine vQ(t) for t > 0.

0.125 F 10 ft

* )  6 f t <

f------- W V --------1

> 2 n  <

r  i

50 Q

Figure P 8.6-21

Figure P 8.6-25

P 8.6-26 Determine v(t) for t > 0 for the circuit shown in 
Figure P 8.6-26.

0.5 H

P 8.6-22 The voltage source voltage in the circuit shown in 
Figure P 8.6-22 is

vs(/) =  10 +  4 0 m (f) V 

Determine v{t) for t > 0.

100 mF

150 mF

Figure P 8.6-22

P 8.6-23 Determine v(r) for t > 0 for the circuit shown in 
Figure P 8.6-23.

3 ft

*P  8.6-27 When the input to the circuit shown in Figure 
P 8 .6-27 is the voltage source voltage

vs(f) =  3 -  u(t) V
the output is the voltage

vo(0 =  10 +  5<T50'V  for r > 0
Determine the values of R\ and R2.

Figure P 8.6-23

P 8.6-24 The input to the circuit shown in Figure P 8.6-24 is 
the current source current

!,(/) =  2 + 4u(t) A F igure P 8 .6 -27
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P 8.6-28 The time constant of a particular circuit is r =  
0.25 s. In response to a step input, a capacitor voltage 
changes from -2 .5  V to 4.2 V. How long did it take for the 
capacitor voltage to increase from -2 .0  V to +2.0 V?

Section 8.7 The Response of a First-Order Circuit to 
a Nonconstant Source

P 8.7-1 Find vc(f) for / > 0 for the circuit shown in Figure 
P 8.7-1 when vi =  8e~5,u{t) V. Assume the circuit is in steady 
state at / =  0 ~.
Answer: vc(t) =  4e~9* +  \8e

t= 0

P 8.7-5 Many have witnessed the use of an electrical mega­
phone for amplification of speech to a crowd. A model of a 
microphone and speaker is shown in Figure P 8.1-5a, and the 
circuit model is shown in Figure P 8.1-5b. Find v(t) for vs =  10 
(sin 100/)w(0 , which could represent a person whistling or 
singing a pure tone.

Answer: v(/) =  20e 

4 Q

\2e~

6 e~2tu(t) A

24 Q 8 mH

M 5 mA

10 kQ
AA/V-----

^  Van mF

Figure P 8.7-4

1 Q 0.5 H

P 8.7-2 Find v(/) for t > 0 for the circuit shown in Figure 
P 8.7-2. Assume steady state at / =  0“.

P 8.7-3 Find v(f) for t > 0 for the circuit shown in Figure 
P 8.7-3 when vx =  (25 sin 4000f)w(/) V. Assume steady state 
at t =  0 ~.

8Q

Figure P 8.7-5 Megaphone circuit.

P 8.7-6 A lossy integrator is shown in Figure P 8.7-6. The 
lossless capacitor of the ideal integrator circuit has been 
replaced with a model for the lossy capacitor, namely, a 
lossless capacitor in parallel with a 1-kfl resistor. If vs =  
15e~2tu{t) V and vo(0) =  10 V, find vQ(f) for / > 0. Assume an 
ideal op amp.

C = V 4/iF

P 8 7-4 Find vc(t) for / > 0  for the circuit shown in Figure 
P 8.7-4 when zs =  [2 cos It] u{t) mA.

Figure P 8.7-6 Integrator circuit.

P 8.7-7 Most television sets use magnetic deflection in the 
cathode-ray tube. To move the electron beam across the 
screen, it is necessary to have a ramp of current, as shown 
in Figure P 8.1-la, to flow through the deflection coil. The 
deflection coil circuit is shown in Figure P 8.1-lb. Find the 
waveform v, that will generate the current ramp, iL.
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Figure P 8.7-7 Television deflection circuit.

P 8.7-8 Determine v(t) for the circuit shown in Figure 
P 8.7-8.

Trigger Horizontal
section section

— Beam 
finder

_ Trace 
rotation

— Focus

— Intensity

(a)

1/2 F: vit)

>4 n

30V

>2 Q

f )  e~3‘u(t) V

Figure P 8.7-8

P 8.7-9 Determine v(/) for the circuit shown in Figure 
P 8.7-9a when vs varies as shown in Figure P 8.7-96. The 
initial capacitor voltage is vc(0) =  0.

2 Q

(V)

(b)

Figure P 8.7-9

P 8.7-10 The electron beam, which is used to draw signals on 
an oscilloscope, is moved across the face of a cathode-ray tube 
(CRT) by a force exerted on electrons in the beam. The basic 
system is shown in Figure P 8.7-10a. The force is created from 
a time-varying, ramp-type voltage applied across the vertical 
or the horizontal plates. As an example, consider the simple 
circuit of Figure P 8.7-106 for horizontal deflection in which 
the capacitance between the plates is C.

Figure P 8.7-10 Cathode-ray tube beam circuit.

Derive an expression for the voltage across the capaci­
tance. If v(0 =  kt and Rs = 625 kfi, k =  1000, and C =  2000 
pF, compute vc as a function of time. Sketch v(f) and vc(t) on 
the same graph for time less than 10 ms. Does the voltage 
across the plates track the input voltage?

P 8.7-11 Determine the voltage v(r) for t > 0 for the circuit 
shown in Figure P 8.7-11.

Figure P 8.7-11

P 8.7-12 The voltage source voltage in the circuit shown in 
Figure P 8.7-12 is

vs(r) =  5 +  20 M(0 

Determine i(t) for t > 0.
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Figure P 8.7-12

P 8.7-13 Find the current / in the circuit of Figure P 8.7-13 for 
t > 0 when is = \0e~5tu(t) A and /(O') =  0.

Answer: i = 10.53(e> 5t — e 100/) A

Figure P 8.7-13

P 8.7-14 An experimenter is working in her laboratory with 
an electromagnet as shown in Figure P 8.7-14. She notices that 
whenever she turns off the electromagnet, a big spark appears 
at the switch contacts. Explain the occurrence of the spark. 
Suggest a way to suppress the spark by adding one element.

t = 0 Switch 
1 Q V "

Figure P 8.7-14

Section 8.10 How Can We Check . . . ?

P 8.10-1 Figure P 8 .10-1 shows the transient response of a first- 
order circuit. This transient response was obtained using the 
computer program, PSpice. A point on this transient response 
has been labeled. The label indicates a time and the capacitor 
voltage at that time. Placing the circuit diagram on the plot suggests 
that the plot corresponds to the circuit. Verily that the plot does 
indeed represent the voltage of the capacitor in this circuit.

Figure P 8.10-1

P 8.10-2 Figure P 8.10-2 shows the transient response of a 
first-order circuit. This transient response was obtained using 
the computer program, PSpice. A point on this transient 
response has been labeled. The label indicates a time and the 
inductor current at that time. Placing the circuit diagram on 
the plot suggests that the plot corresponds to the circuit. 
Verify that the plot does indeed represent the current of the 
inductor in this circuit.

Time

Figure P 8.10-2

P 8.10-3 Figure P 8.10-3 shows the transient response of a 
first-order circuit. This transient response was obtained using 
the computer program, PSpice. A point on this transient 
response has been labeled. The label indicates a time and 
the inductor current at that time. Placing the circuit diagram on 
the plot suggests that the plot corresponds to the circuit. 
Specify that value of the inductance, L, required to cause 
the current of the inductor in this circuit to be accurately 
represented by this plot.

Time

Figure P 8.10-3



366 )—  The Complete Response of RL and /?CCircuits

P 8.10-4 Figure P 8.10-4 shows the transient response of a 
first-order circuit. This transient response was obtained using 
the computer program, PSpice. A point on this transient 
response has been labeled. The label indicates a time and 
the capacitor voltage at that time. Assume that this circuit has 
reached steady state before time t = 0. Placing the circuit 
diagram on the plot suggests that the plot corresponds to the 
circuit. Specify values of A, B, Rx% R2, and C that cause the 
voltage across the capacitor in this circuit to be accurately 
represented by this plot.

Figure P 8.10-4

PSpice Problems
SP 8-1 The input to the circuit shown in Figure SP 8-1 is the 
voltage of the voltage source, Vi(/). The output is the voltage 
across the capacitor, vG(r). The input is the pulse signal 
specified graphically by the plot. Use PSpice to plot the 
output, vG(/), as a function of t.

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

Figure SP 8-1

SP 8-2 The input to the circuit shown in Figure SP 8-2 is the 
voltage of the voltage source, Vj(r). The output is the current in 
the inductor, iQ(t). The input is the pulse signal specified 
graphically by the plot. Use PSpice to plot the output, /0(f), 
as a function of t.

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

SP 8-3 The circuit shown in Figure SP 8-3 is at steady state 
before the switch closes at time / =  0. The input to the circuit is 
the voltage of the voltage source, 12 V. The output of this 
circuit is the voltage across the capacitor, v(t). Use PSpice to 
plot the output, v(r), as a function of t. Use the plot to obtain an 
analytic representation of v(f) for t > 0.

Hint: We expect v(t) =  A +  Be~t/r for t > 0, where A , #, and 
r  are constants to be determined.

Figure SP 8-3

SP 8-4 The circuit shown in Figure SP 8-4 is at steady state 
before the switch closes at time t = 0. The input to the circuit is 
the current of the current source, 4 mA. The output of this 
circuit is the current in the inductor, i(t). Use PSpice to plot the 
output, /(/), as a function of t. Use the plot to obtain an analytic 
representation of i(t) for t > 0.

Hint: We expect i(t) = A + Be~r,r for t > 0, where A % B , and 
r are constants to be determined. t = 0

Figure SP 8-2 F igu re SP 8-4



DP 8-1 Design the circuit in Figure DP 8- 1 so that v(t) makes 
the transition from v(/) =  6 V to v(t) = 10 V in 10 ms after the 
switch is closed. Assume that the circuit is at steady state before 
the switch is closed. Also assume that the transition will be 
complete after 5 time constants.

Design Problems

/  =  0

DP 8-2 Design the circuit in Figure DP 8-2 so that i(t) makes 
the transition from /(/) =  1 mA to /(/) =  4 mA in 10 ms after the 
switch is closed. Assume that the circuit is at steady state before 
the switch is closed. Also assume that the transition will be 
complete after 5 time constants.

f = 0

r

Figure DP 8-2

DP 8-3 The switch in Figure DP 8-3 closes at time 0, 2A/, 4Af,
. . . 2 kAt and opens at times At, 3 A t, 5 A t, . . .  .(2k + I )A/. When 
the switch closes, v(/) makes the transition from v(t) = 0 V to v(f) =
5 V. Conversely, when the switch opens, v(t) makes the transition 
from v(t) =  5 V to v(t) =  0 V. Suppose we require that At =  5r so 
that one transition is complete before the next one begins, (a) 
Determine the value of Crequired so that Ar =  1 /xs. (b) How large 
must A/ be when C =  2 /xF?

Answer: (a) C =  4 pF; (b) At = 0.5s

/ = (2k + 1)A/
V  49 kn

1—  I °“—1P— W v —
L t  -  2k Ai +
+ N <J 1 kQ C ^  ̂ v(t)

D e s ig n  P r o b l e m s

DP 8-4 The switch in Figure DP 8-3 closes at time 0, 2At, 4A/,
. . . 2kAt and opens at times A/, 3A/, 5Af, . . . .  (2k +  l)Af. 
When the switch closes, v(t) makes the transition from v(t) =  0
V to v(t) =  5 V. Conversely, when the switch opens, v(t) makes 
the transition from v(t) =  5 V to v(t) =  0 V. Suppose we require 
that one transition be 95 percent complete before the next one 
begins, (a) Determine the value of C required so that At =  1 /is.
(b) How large must At be when C =  2 /j.F?

Hint: Show that At =  - r  ln( 1 -  k) is required for the transition 
to be 100 k percent complete.

Answer: (a) C =  6.67 pF; (b) At = 0.3 s

DP 8-5 A laser trigger circuit is shown in Figure DP 8-5. To 
trigger the laser, we require 60 mA < |i| < 180 mA for 0  < t < 
200 ixs. Determine a suitable value for /?, and R2.

40 Q  40 Q

— W V

20 v (T ) /?!

Figure DP 8-5 Laser trigger circuit

DP 8-6 Fuses are used to open a circuit when excessive current 
flows (Wright, 1990). One fuse is designed to open when the 
power absorbed by R exceeds 10 W for 0.5 s. Consider the circuit 
shown in Figure DP 8-6 . The input is given by vs = A[u(t) -  u(t -  
0.75)] V. Assume that /l(0~) =  0. Determine the largest value of A 
that will not cause the fuse to open.

Fuse

Figure DP 8-6 Fuse circuit.

Figure DP 8-3
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9.1 I N T R O D U C T I O N  --------------------------------------------------------------------------------------

In this chapter, we consider second-order circuits. A second-order circuit is a circuit that is represented 
by a second-order differential equation. As a rule o f thumb, the order o f the differential equation that 
represents a circuit is equal to the number o f  capacitors in the circuit plus the number o f  inductors. For 
example, a second-order circuit might contain one capacitor and one inductor, or it m ight contain two 
capacitors and no inductors.

For example, a second-order circuit could be represented by the equation

^ x { t )  +  2 a j t x ( t )  +  " o  x ( 0  = f ( 0

where x(t) is the output o f the circuit, a n d /( r )  is the input to the circuit. The output o f  the circuit, also 
called the response o f the circuit, can be the current or voltage o f any device in the circuit. The output is 
frequently chosen to be the current o f an inductor or the voltage o f a capacitor. The voltages o f 
independent voltage sources and/or currents o f independent current sources provide the input to the 
circuit. The coefficients o f this differential equation have names: a  is called the damping coefficient, 
and (Oq is called the resonant frequency.
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To find the response o f the second-order circuit, we:

• Represent the circuit by a second-order differential equation.

• Find the general solution o f the homogeneous differential equation. This solution is the natural 
response, xn(t). The natural response will contain two unknown constants that will be evaluated 
later.

• Find a particular solution o f the differential equation. This solution is the forced response, x t(/)•

• Represent the response o f the second-order circuit as x(t) = xn(t) +  Xf(/).

• Use the initial conditions, for example, the initial values o f the currents in inductors and the 
voltages across capacitors, to evaluate the unknown constants.

9.2 D I F F E R E N T I A L  E Q U A T I O N  FOR C I R C U I T S  W I T H  T W O  
E N E R G Y  S T O R A G E  E L E M E N T S

— Ground

In Chapter 8, we considered circuits that contained only one energy storage element, and these could be 
described by a first-order differential equation. In this section, we consider the description of circuits with 
two irreducible energy storage elements that are described by a second-order differential equation. Later, 
we will consider circuits with three or more irreducible energy storage elements that are described by a 
third-order (or higher) differential equation. We use the term irreducible to indicate that all parallel or series 
connections or other reducible combinations of like storage elements have been 
reduced to their irreducible form. Thus, for example, any parallel capacitors have 
been reduced to an equivalent capacitor, Cp.

In the following paragraphs, we use two methods to obtain the second-order 
differential equation for circuits with two energy storage elements. Then, in the 
next section, we obtain the solution to these second-order differential equations.

First, let us consider the circuit shown in Figure 9.2-1, which consists of a 
parallel combination of a resistor, an inductor, and a capacitor. Writing the nodal r I(jl RE ^‘2I A parallel circuit, 
equation at the top node, we have

v
R  +  '  +  c 7 , - k  <9 '2 - »

Then we write the equation for the inductor as
di

' “ -J ,  (9-2-2)

Substitute Eq. 9.2-2 into Eq. 9.2-1, obtaining

Ldi „ r d2i
w , + ‘ + C L i ? = t ' <9-2' 3>

which is the second-order differential equation we seek. Solve this equation for /(/). If v(t) is required, 
use Eq. 9.2-2 to obtain it.

This method of obtaining the second-order differential equation may be called the direct method 
and is summarized in Table 9.2-1.

In Table 9.2-1, the circuit variables are called x i andjf2. In any example, X\ and .1*2 will be specific 
element currents or voltages. When we analyzed the circuit of Figure 9.2-1, we used *1 =  v and x2 =  i.
In contrast, to analyze the circuit of Figure 9.2-2, we will use x { =  / and x2 =  v, where / is the inductor 
current and v is the capacitor voltage.

Now let us consider the RLC series circuit shown in Figure 9.2-2 and use the direct method to 
obtain the second-order differential equation. We chose jc, =  1 and x2 =  v. First, we seek an equation
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The Direct Method for Obtaining the Second-Order Differential Equation 
of a Circuit

Step 1 Identify the first and second variables, x\ and x2. These variables are capacitor voltages and/or inductor
currents.

dx
Step 2 Write one first-order differential equation, obtaining —  =  f ( x \ , x i ).

Step 3 Obtain an additional first-order differential equation in terms of the second variable so that =  Kx \  or
1 dx2 dt

*' K d t '
Step 4 Substitute the equation of step 3 into the equation of step 2, thus obtaining a second-order differential

equation in terms of x2.

FIGURE 9.2-2 A series RLC circuit. FIGURE 9.2-3 Circuit with two
inductors.

for d x \ /d t  =  d i/d t.  W riting KVL around the loop, we have

L ^ -  +  v  +  R i =  vs (9.2-4)
a t

where v is the capacitor voltage. This equation may be written as

d i v R vs ^
j , + i + r = z  <92' 5)

Recall v =  x 2 and obtain an equation in terms o f  ^ 1. Because

C —  =  i (9.2-6)
dt

or C ^ -  = x\ (9.2-7)
d t

substitute Eq. 9.2-6 into Eq. 9.2-5 to obtain the desired second-order differential equation:

d 2v v R C d v  vs
c i f l + i + T j r - L  (9 '2-8>

Equation 9.2-8 may be rewritten as

d 2v R d v  1 vs . .
d fi + I~dt +  L C V ~  I C   ̂ ‘

Another method o f obtaining the second-order differential equation describing a circuit is called 
the operator method. First, we obtain differential equations describing node voltages or mesh currents 
and use operators to obtain the differential equation for the circuit.

As a more complicated example o f a circuit with two energy storage elements, consider the 
circuit shown in Figure 9.2-3. This circuit has two inductors and can be described by the mesh currents 
as shown in Figure 9.2-3. The mesh equations are

di\
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Now, let us use R =  1 ft. I ,  =  I H, and L2 =  2 H. Then we have

di\
—  +  11 “ 12 =  vs at

and h - l . + 2 f » «  t9-2' 12)

In terms of /'i and i2, we may rearrange these equations as

^  +  ,1 - / 2  =  vs (9-2-13)
at

and - l , + f c  +  2 §  =  0 (9.2-14)

It remains to obtain one second-order differential equation. This is done in the second step of the operator 
method. The differential operator 5, where 5 =  d/dt, is used to transform differential equations into 
algebraic equations. Upon replacing d/dt by 5, Eqs. 9.2-13 and 9.2-14 become

si'l +  z‘l -  *2 =  Vs

and — i’i +  *2 +  2 j i2 =  0

These two equations may be rewritten as

(5 +  l)i'i -  h  =  vs 

and — /’1 +  (25 -f l)i2 =  0

We may solve for i2, obtaining

lvs vs
'2 ~ ( s + l ) ( 2 s + l ) - l  ~~ 2s2 +  3s

Therefore, (2s2 +  3s) *"2 =  vs
7 d2 d

Now, replacing s by —=■ and s by —, we obtain the differential equation
dt1 dt

2 §  +  3 §  =  vs (9.2-15)

The operator method for obtaining the second-order differential equation is summarized in 
Table 9.2-2.

T able  9 > Operator Method for Obtaining the Second-Order Differential Equation 
of a Circuit

Step 1 Identify the variable X\ for which the solution is desired.
Step 2 Write one differential equation in terms of the desired variable x\ and a second variable, x2.
Step 3 Obtain an additional equation in terms of the second variable and the first variable.
Step 4 Use the operator s = d/dt and \/s = f  dt to obtain two algebraic equations in terms of s and the two

variables jc, andx2.
Step 5 Using Cramer’s rule, solve for the desired variable so that x\ = / (s, sources) = P(s)/Q{s), where P(s)

and Q(s) are polynomials in 5.
Step 6 Rearrange the equation of step 5 so that £)(s}ri = P(5).
Step 7 Convert the operators back to derivatives for the equation of step 6 to obtain the second-order differential

equation.
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E x a m p l e  9 . 2 - 1  R e p r e s e n t i n g  a C i r c u i t  by  a D i f f e r e n t i a l  E q u a t i o n

Find the differential equation for the current i2 for the circuit of 
Figure 9.2-4.

Solution
Write the two mesh equations, using KVL to obtain

d i i d i2

2 Q 1 H

FIGURE 9.2-4 Circuit for Example 9.2-1.

di\ „ ^ a i i
— - 7 - -f 3 i2 -h 2 —-  =  0 

d t d t

Using the operator s =  d /d t , we have

and

(2 +  s)i\ — si2 =  vs

-  si\ +  (3 +  2s)i2 =  0

Using Cramer’s rule to solve for i2, we obtain
•yvs SVc

(2 - f  j) (3  +  2 s ) - s 2 s2 -f 75 +  6

Rearranging Eq. 9.2-16, we obtain

(s2 - f  I s  -I- 6 ) /2 =  -yvs

Therefore, the differential equation for i2 is

d~i2 n d i2 dv  c
j  ^ ' +  7 —— h 6/2 —
J / 2 d t d t

(9.2-16)

(9.2-17)

(9.2-18)

E x a m p l e  9 . 2 - 2  R e p r e s e n t i n g  a C i r c u i t  by  a D i f f e r e n t i a l  E q u a t i o n

Find the differential equation for the voltage v for the circuit o f  Figure 9.2-5.

Solution
The KCL node equation at the upper node is

v — dv
_ .  +  i +  C -  =  0 (9 .2 -,9 )

Because we wish to determine the equation in terms o f v, we need a second 
equation in terms o f the current i. W rite the equation for the current through 
the branch containing the inductor as

: 1 mF

Ri +  L d4  = v 
dt

Using the operator s = d /d t , we have the two equations
v _  vs-  + o +, = -

— Ground

FIGURE 9.2-5 The RLC circuit for
(9.2-20) Example 9.2-2.
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and - v  + Ri + Lsi =  0

Substituting the parameter values and rearranging, we have

(10~3 +  10~3s)v + / =  10~3vs

and - v + ( l O - 3s + l ) /  =  0

Using Cramer’s rule, solve for v to obtain
(s 4- 1000)vs _  (5 +  1000)vs

v =  (5 +  i)(j  +  10OO) +  10h ~  s2 +  10015+ 1001 x 103

Therefore, we have

(s2 +  1001s +  1001 X 103)v =  (s +  1000)vs 

or the differential equation we seek is

1001 — +  1001 x 103v =  (̂ j L 4- 1000vs 
dt2 dt dt

2 H

EXERCISE 9.2-1 Find the second-order differential equation for the *s(T) "- 1/2F
circuit shown in Figure E 9.2-1 in terms of /, using the direct method.

d  1 1 di 1 dh FIGURE E 9.2-1Answer: —r +
dt 2 dt 2 dt

EXERCISE 9.2-2 Find the second-order differential equation for the 
circuit shown in Figure E 9.2-2 in terms of v using the operator method.

d2v ^ dv dis
Answer: —T -f2  — -f2v =  2 —dt2 dt dt ~  Ground

FIGURE E 9.2-2

9.3 S O L U T I O N  OF T HE S E C O N D - O R D E R  D I F F E R E N T I A L  
E Q U A T I O N  — T HE N A T U R A L  R E S P O N S E

In the preceding section, we found that a circuit with two irreducible energy storage elements can be 
represented by a second-order differential equation of the form

d2jc dx

where the constants aj. fli> are known and the forcing function f{ t )  is specified.
The complete response *(/) is given by

x =  *n + x f (9.3-1)

where xn is the natural response and xf is a forced response. The natural response satisfies the unforced 
differential equation w hen/(/) =  0. The forced response jrf satisfies the differential equation with the 
forcing function present.
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The natural response o f  a circuit, jtn, will satisfy the equation

a2 -
d 2Xn . dxn

• a y -f aoxn — 0 (9 .3 -2 )
d t2 ' ~ l d t

Because x n and its derivatives must satisfy the equation, we postulate the exponential solution

*n =  A est (9.3-3)

where A and 5 are to be determined. The exponential is the only function that is proportional to all o f  its 
derivatives and integrals and, therefore, is the natural choice for the solution o f  a differential equation 
with constant coefficients. Substituting Eq. 9.3-3 in Eq. 9.3-2 and differentiating where required, we 
have

a iA s2^* 4- a\Ase?1 +  a$Aest =  0 (9.3-4)

Because x n = Aes\  we may rewrite Eq. 9.3-4 as

a2s2x n +  a \sxn +  a^xn — 0

or (<J2S2 +  0 is  +  0o)*n =  0

Because we do not accept the trivial solution, x n =  0, it is required that

(a2s? +  a \s  +  a0) =  0 (9.3-5)

This equation, in terms o f s , is called a characteristic equation . It is readily obtained by replacing the
derivative by s and the second derivative by s~. Clearly, we have returned to the fam iliar operator

M d"s =  —  
d tn

The characteristic equation is derived from the governing differential equation for a circuit 
by setting all independent sources to zero value and assuming an exponential solution.

Oliver Heaviside (1850-1925), shown in Figure 9.3-1, advanced the theory o f operators for the 
solution o f differential equations.

The solution o f the quadratic equation (9.3-5) has two roots, s x and s2, where

FIGURE 9.3-1 Oliver 
Heaviside (1850-1925). 
Photograph courtesy of 
the Institution of 
Electrical Engineers.

S\ =
-a\ +  y ja \  -  4 a2ao

l a 2

and
- a x -  \ J a \ -  4a2a0

2 a^

(9.3-6)

(9.3-7)

When there are two distinct roots, the natural response is o f  the form

jcn = A leS]t+ A 2eS2t (9.3-8)

where A \ and A 2 are unknown constants that will be evaluated later. We will delay considering
the special case when s x — s2.

The roots o f the characteristic equation contain all the information necessary for determining
the character o f  the natural response.
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E x a m p l e  9 . 3 - 1  N a tu r a l  R e s p o n s e  o f  a S e c o n d - O r d e r  C i r c u i t

8 q  2 H
Find the natural response of the circuit current i2 shown in Figure 
9.3-2. Use operators to formulate the differential equation and 
obtain the response in terms of two arbitrary constants.

Solution
Writing the two mesh equations, we have FIGL RE 9.3-2 Circuit of Example 9.3-1.

12/ 1 4- 2 ——  4/2 =  vs 
dt

di2
and — 4 /j + 4 1*2 4- 1 —  =  0

Using the operator s—d/dt, we obtain

(12 4- 2s)i\ -  4i2 =  vs (9.3-9)

—4i‘i 4- (4 4-1)1*2 =  0 (9.3-10)

Solving for i2, we have

4 vs 4 vs 2 vs
'2 ~  (12 +  2j)(4 +  s) -  16 ~  2s2 + 20s +  32 — s2 +  10s +  16

Therefore, (s2 4- 10s 4- 16) #2 =  2vs

Note that (s2 4- 105 4- 16) =  0 is the characteristic equation. Thus, the roots of the characteristic equation are s, =
—2 and s2 =  —8. Therefore, the natural response is

jcn =  A\e~2t + A 2e~s'

where x = i2. The roots s j and s2 are the characteristic roots and are often called the natural frequencies. The
reciprocals of the magnitude of the real characteristic roots are the time constants. The time constants of this

.circuit are 1/2 s and 1/8 s.

EXERCISE 9.3-1 Find the characteristic equation and the natural frequencies for the circuit 
shown in Figure E 9.3-1.

>6n

)  <>4Q I ^

c 1 H

^ V 4 F

~  Ground FIGLRE E 9.3-1

Answer: s1 4- 75 +  10 =  0
5 , = -2  
Si =  —5
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9.4 N A T U R A L  R E S P O N S E  O F  T H E  U N F O R C E D  
P A R A L L E L  R L C CI  R C  U I T  -----------------------------------

FIGURE 9.4-1 Parallel 
RLC circuit.

In this section, we consider the (unforced) natural response o f  the parallel RLC  circuit 
shown in Figure 9.4-1. We choose to examine the parallel RLC  circuit to illustrate the three 
forms o f  the natural response. An analogous discussion o f the series RLC  circuit could be 
presented, but it is omitted because the purpose is not to obtain the solution to specific 
circuits but rather to illustrate the general method.

A circuit that contains one capacitor and one inductor is represented by a second- 
order differential equation,

+  2 a j x [ t )  +  a>lx(t) = / ( * )

where x ( t )  is the output o f  the circuit, and f ( t )  is the input to the circuit. The output o f  the circuit, also 
called the response o f  the circuit, can be the current or voltage o f  any device in the circuit. The output is 
frequently chosen to be the current o f  an inductor or the voltage o f  a capacitor. The voltages of 
independent voltage sources and/or currents o f independent current sources provide the input to the 
circuit. The coefficients o f this differential equation have names: a  is called the damping coefficient, 
and cd0 is called the resonant frequency.

The circuit shown in Figure 9.4-1 does not contain any independent sources, so the in p u t,/(f) , is 
zero. The differential equation with f ( t )  =  0 is called a homogeneous differential equation. We will 
take the output to be the voltage, v(f), at the top node o f the circuit. Consequently, we will represent the 
circuit in Figure 9.4-1 by a homogeneous differential equation o f  the form

d t2 v M  +  2 < * jt  v ( 0  +  " o  v ( 0  =  0

W rite the KCL at the top node to obtain

v 1 ( '

Taking the derivative o f Eq. 9.4-1, we have

_ d 2v  1 d v  1
~7T 7  v ~  ^
d t 2 R d t  L

Dividing both sides o f Eq. 9.4-2 by C, we have

d 2v  \ d v  \

~dtI  + R C d t + Z c '  

Using the operator s, we obtain the characteristic equation

2 1 1
s +  ~— s +  —— =  0

RC  LC
Comparing Eq. 9.4-4 to Eq. 9.4-1, we see

a = 2
The two roots o f the characteristic equation are

“ =  S c  and “t  =  Zc

(9.4-1)

(9.4-2)

(9.4-3)

(9.4-4)

(9.4-5)
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When 5 , is not equal to s2, the solution to the second-order differential Eq. 9.4-3 for / > 0 is
vn =  A \ ^ 1 + A ^ 11 (9.4-7)

The roots of the characteristic equation may be rewritten as
5j =  - a  +  y/a2 -  (Dq and s2 =  ~ a ~  \A*2 ~ (9.4-8)

The damped resonant frequency, cdd, is defined to be

(Dd = \J(Dq ~<*2

When (o0 > a, the roots of the characteristic equation are complex and can be expressed as
S\ =  —a +  y'o>d and s2 = —or — j(D&

The roots of the characteristic equation assume three possible conditions:

1. Two real and distinct roots when or

2. Two real equal roots when a 2 =  (oq

3. Two complex roots when ar < (Oq

When the two roots are real and distinct, the circuit is said to be overdamped. WTien the roots 
are both real and equal, the circuit is critically damped. When the two roots are complex 
conjugates, the circuit is said to be underdamped.

Let us determine the natural response for the overdamped RLC circuit of Figure 9.4-1 when the 
initial conditions are v(0) and i(0) for the capacitor and the inductor, respectively. Notice that because 
the circuit in Figure 9.4-1 has no input, vn(0) and v(0) are both names for the same voltage. Then, at t —
0 for Eq. 9.4-7, we have

vn(0 ) = A X + A 2 (9.4-9)
Because A j and A2 are both unknown, we need one more equation at t =  0. Rewriting Eq. 9.4-1 at t =  0, 
we have1

v(0) ^dvifi)
_ _ + J (o) +  c _ r  =  °

Because /(0) and v(0) are known, we have
dv( 0) v(0) i( 0)
——  = — (9 4-10) 

dt RC C { j
Thus, we now know the initial value of the derivative of v in terms of the initial conditions. Taking the 
derivative of Eq. 9.4-7 and setting t = 0, we obtain

d vJ  0)
~  =  S\A\ “h s2A2 (9.4-11)

Using Eqs. 9.4-10 and 9.4-11, we obtain a second equation in terms of the tw o constants as

. v(C
*4" s2A2 =  -  —

Using Eqs. 9.4-9 and 9.4-12, we may obtain A { and A 2

v(0) i(0)M i  +  s2A2 =  -  ( 9 . 4 - 1 2 )
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E x a m p l e  9 . 4 - 1  Na t u r a l  R e s p o n s e  o f  an O v e r d a m p e d  
S e c o n d - O r d e r  C i r c u i t

Find the natural response o f  v(t) for / >  0 for the parallel RLC  circuit shown in Figure 9.4-1 when /? =  2 /3  f l, L =  1
H. C =  1/2 F, v(0) =  10 V, and /(0) =  2 A.

Solution
Using Eq. 9.4-4, the characteristic equation is

2 1 1
s c J  +  Z c

or s2 -f- 35 4" 2 =  0

Therefore, the roots o f  the characteristic equation are
s\ =  — 1 and 52 =  —2

Then the natural response is
vn — A \e ~ l +  A 2e~4 

The initial capacitor voltage is v(0) =  10, so we have

vn(0) = A X + A 2

or 10 =  A\ +  A 2

We use Eq. 9.4-12 to obtain the second equation 
for the unknown constants. Then

v(°) *(0)
s xA x + s2A 2 =  -  —  -  —

or — A i — 2A2 — —
10

1/3 1/2

Therefore, we have

- A x - 2 A 2 =  - 3 4 (9.4-15)

Solving Eqs. 9.4-14 and 9.4-15 simultaneously, 
we obtain A 2 =  24 and A\ — —14. Therefore, the 
natural response is

Vn =  (— 14e_f +  24e~2')  V

The natural response o f  the circuit is shown in 
Figure 9.4-2.

unU)
(V)

(9.4-13)

(9.4-14)

FIGURE 9.4-2 Response of the RLC circuit of Example 9.4-1.

EXERCISE 9.4-1 Find the natural response o f the RLC  circuit o f  Figure 9.4-1 when R  =  6 fl, 
L =  7 H, and C =  1/42 F. The initial conditions are v(0) =  0 and i(0) =  10 A.

Answer: vn(t) =  —84(e~* — e~6t) V



9.5 N A T U R A L  R E S P O N S E  OF THE C R I T I C A L L Y  D A M P E D  
U N F O R C E D  P A R A L L E L  / 7Z . CCI RCUI T  ----------------------------

Natural Response of the Critically Damped Unforced Parallel RLC C ircuit ~ o

Again we consider the parallel RLC circuit, and here we will determine the special case when the 
characteristic equation has two equal real roots. Two real, equal roots occur when a2 = a>q, where

oc =  —7— and col =
1

2RC 0 LC
Let us assume that sx = s2 and proceed to find vn(t). We write the natural response as the sum of two 
exponentials as

Vn = Ai<?lt +A2e*'‘ = A3e5lt (9.5-1)

where A3 — A j +  A2. Because the two roots are equal, we have only one undetermined constant, but we 
still have two initial conditions to satisfy. Clearly, Eq. 9.5-1 is not the total solution for the natural 
response of a critically damped circuit. We need the solution that will contain two arbitrary constants, 
so with some foreknowledge, we try the solution

vn =  e?'*(A\t + A2) (9.5-2)

Let us consider a parallel RLC circuit in which L = 1 H, R = 1 fl, C =  1/4 F, v(0) — 5 V, and z(0) - 
—6 A. The characteristic equation for the circuit is

1 1

or

S + RC S + LC 

s2 +  4s +  4 =  0

0

The two roots are then s\ = s2 = —2. Using Eq. 9.5-2 for the natural response, we have

Because vn(0) =  5, we have at / =  0

yn — e ~*(A\t -f A2)

5 = A 2

(9.5-3)

Now, to obtain A j, we proceed to find the derivative of vn and evaluate it at / =  0. The derivative of vn is 
found by differentiating Eq. 9.5-3 to obtain

=  —2A\te 2t+ A \e  2t- 2 A2e 2t (9.5-4)

Evaluating Eq. 9.5-4 at / =  0, we have

dv( 0) 
~dt

= A 1 - 2 A 2

Again, we may use Eq. 9.4-10 so that

<M0) _  _  v(0) 1(0)
dt ~  ~RC~~C~

or A 1 -  2A2 =  —  — —  =  4
1/4 1/4

Therefore, A\ — 14 and the natural response is

vn = e ~ 2'(14/ +  5) V

The critically damped natural response of this RLC circuit is shown 
in Figure 9.5-1.

t (s) —►

FIGURE 9.5-1 Critically damped response of the 
parallel RLC circuit.



The Complete Response of Circuits with Two Energy Storage Elements

EXERCISE 9.5-1 A parallel RLC  circuit has R = 10 (1, C =  1 mF, L — 0.4 H, v(0) =  8 V, and 
i(0) == 0. Find the natural response vn(7) for / <  0.

Answ er: v„(/) =  e~50'(8  -  400?) V

9.6 N A T U R A L  R E S P O N S E  OF A N  U N D E R D A M P E D  
U N F O R C E D  P A R A L L E L  RL C C I R C  U IT ---------------

The characteristic equation o f the parallel RLC  circuit will have two complex conjugate roots when 
a 2 < cOq. This condition is met when

or when 

Recall that

LC  < {IR C )2

L < 4R2C

v „ = A ie s,t +  A 2eS21 (9.6-1)

where s i ,2 =  —a  ±  y  a 2 -  w,

When a>l > a 2

we have

Si,2 =  - a  ± jy ja %  -  a I

where j = V—I

See Appendix B for a review o f complex numbers.
The complex roots lead to an oscillatory-type response. We define the square root \Jco\ -  a 1 as 

o>d, which we will call the damped resonant frequency. The factor a , called the damping coefficient, 
determines how quickly the oscillations subside. Then the roots are

5i,2 =  - a  ±j(od
Therefore, the natural response is

vn = A le - ate/'C0dt-h A 2e - ate -Jc0dt 

or vn =  e - at[A x̂  +  A 2e~jm t) (9.6-2)

Let us use the Euler identity2
e±j(ot _  CQS ^  j  sjn ^  (9.6-3)

Let co — cod in Eq. 9.6-3 and substitute into Eq. 9.6-2 to obtain

vn =  e~at(A i cos codt -f jA \  sin co&t +  A 2 cos co^t — jA 2 sin co&t)

= e~at[(A\ + A 2) cosco^t + j(A \  — ^ 2)s in a ;df]

Because the unknown constants A x and A 2 remain arbitrary, we replace (A j +  A 2) and j(A  x — A 2) with 
new arbitrary (yet unknown) constants B 1 and B2. A 1 a n d ^ 2 rnust be complex conjugates so that B x and 
B2 are real numbers. Therefore, Eq. 9.6-4 becomes

v„ =  e~at(B 1 cos codt +  B2 sin co&t) (9.6-5)

(9.6-4)

2 See Appendix B for a discussion of Euler’s identity.



where £, and B2 will be determined by the initial conditions. v(0) and /(0).
The natural underdamped response is oscillatory with a decaying magnitude. The rapidity of 

decay depends on a , and the frequency of oscillation depends on a>d.
Let us find the general form of the solution for Bx and B2 in terms of the initial conditions when 

the circuit is unforced. Then, at t =  0, we have
vn(0) =  B\

To find B2, we evaluate the first derivative of vn and then let t =  0. The derivative is

=  e~at[(a>dB-> — aB \) cos codt — (codB\ +  aB2) sin a>dt]
dt

and, at / =  0, we obtain
dv n(0)

Natural Response of an Underdamped Unforced Parallel RLC  Circuit - ©

=  codB2 — cxB\ (9.6-6)
dt

Recall that we found earlier that Eq. 9.4-10 provides dv(0)/dt for the parallel RLC circuit as

dvn(0) v(0) i( 0)
dt RC C

Therefore, we use Eqs. 9.6-6 and 9.6-7 to obtain

(9.6-7)

(9.6-8)

r
Consider the parallel RLC circuit when R =  25/3 fi, L =  0.1 H, C =  1 mF, v(0) =  10 V, and /(0) =  -0 .6  A. Find 
the natural response vn(/) for t > 0.

Solution
First, we determine a" and Wq to determine the form of the response. Consequently, we obtain

“ =  2^C =  60 3nd C°2° = I c = 104

Therefore, > a  , and the natural response is underdamped. We proceed to determine the damped resonant
frequency cod as

— \J(Oq — or =  \ / l 0 4 — 3.6 x 103 =  80 rad/s

Hence, the characteristic roots are

si =  -or +j<od =  -6 0  + 78O and s2 =  - a  -  jcod = -6 0  - y ‘80

Consequently, the natural response is obtained from Eq. 9.6-5 as

vn(t) = Bie~60( cos 801 +  B2e~b0t sin 80f

Because v(0) — 10, we have

Bx =  v(0) =  10

E x a m p l e  9.6-1 N a t u r a l  R e s p o n s e  o f  an U n d e r d a m p e d  
S e c o n d - O r d e r  C i r c u i t
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We can use Eq. 9.6-8 to obtain Bj as

B = — B v(°) 'M
&><j 1 (OdRC a>dC
60 x 10

~  80

Therefore, the natural response is

10 - 0.6
80 x 25/3000 80 x 10,-3

= 7 . 5 -  15.0 +  7.5 =  0

v„(/) =  10e-60' cos 80 / V

A sketch o f  this response is shown in Figure 9.6-1. Although the response is oscillatory in form because o f  the 
cosine function, it is damped by the exponential function, e~ 60'.

unM
(V)

< T > 1/ d
1 1 ^ 1

20V 4 0 / ^ 6 0  80 ^  
^ —  r(ms) —►

V ^O O ^/1 2 0
FIGURE 9.6-1 Natural response of the underdamped 
parallel RLC circuit.

The period o f  the damped oscillation is the time interval, denoted as Td, expressed as

2tt

COd
(9.6-9)

The natural response o f  an underdam ped circuit is not a pure oscillatory response, but it does 
exhibit the form o f an oscillatory response. Thus, we may approxim ate Td by the period betw een the 
first and third zero-crossings, as shown in Figure 9.6-1. Therefore, the frequency in hertz is

The period o f the oscillation o f the circuit o f Example 9.6-1 is

79 ms
_ 2;r

d _  80
EXERCISE 9.6-1 A parallel RLC  circuit has R =  62.5 f t, L =  10 mH, C 
v(0) =  10 V, and z(0) =  80 mA. Find the natural response vn(t) for t > 0.

Answer: vn(t) =  e - 8000'[10 cos 6000/ -  26.7 sin 6000/] V

1 /uF,

9.7 F O R C E D  R E S P O N S E  O F  A N  / 7 Z . C C I R C U I T

The forced response o f an RLC  circuit described by a second-order differential equation must satisfy 
the differential equation and contain no arbitrary constants. As we noted earlier, the response to a 
forcing function will often be of the same form as the forcing function. Again, we consider the
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Table 9 7-1 Forced Responses

FORCING FUNCTION ASSUMED RESPONSE

K A
Kt At + B
Kt2 At2 + Bt + C
K sin oA A sin cut 4- B cos u)t
Ke-°‘

differential equation for the second-order circuit as

d2x dx x /o -7 i \—  + a i -  + aox = f ( t )  (9.7-1)

The forced response Xf must satisfy Eq. 9.7-1. Therefore, substituting *f, we have

^  + a i^  + aoxf = f( t )  (9.7-2)

We need to determine xf so that xf and its first and second derivatives all satisfy Eq. 9.7-2.
If the forcing function is a constant, we expect the forced response also to be a constant because 

the derivatives of a constant are zero. If the forcing function is of the form f ( t )  = Be~at, then the 
derivatives of/ ( / )  are all exponentials of the form Qe~at, and we expect

Xf = De~at

If the forcing function is a sinusoidal function, we can expect the forced response to be a 
sinusoidal function. Iff ( t )  = A sin co0t, we will try

Xf = M  sin coot 4- N  cos coot = Q sin (coo14- 6)

Table 9.7-1 summarizes selected forcing functions and their associated assumed solutions.

E x a m p l e  9.7-1 F o r c e d  R e s p o n s e  to an E x p o n e n t i a l  I n p u t

. “W (E *R L>

Find the forced response for the inductor current if for the parallel RLC 
circuit shown in Figure 9.7-1 when is =  %e~2t A. Let R = 6 H, L =  7 H, and 
C =  1/42 F.

S o l u t i o n  ^ G r o u n d

The source current is appliedat/ =  Oas indicated by the unit step function FIGURE 9 .7-1 Circuit for Examples 
u(t). After / =  0, the KCL equation at the upper node is 9.7-1 and 9.7-2.

v ^ d v
>+R + C d i = i*

We note that

(9.7-3)

SO

v =  Z,

dv _  d2i 
~dt~ dt2

di
~dt (9.7-4)

(9.7-5)
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Substituting Eqs. 9.7-4 and 9.7-5 into Eq. 9.7-3, we have

L d i „ .d i 2
, + R 7 t  + C L dT2 = h
Then we divide by LC  and rearrange to obtain the familiar second-order differential equation

d2i 1 di 1 . is /rk _
di2 + RCdt + L c '  ~ L C  ( • )

Substituting the component values and the source zs, we obtain

^ + 7 ^  +  6 /  =  4 8 e > - 2 '  ( 9 . 7 - 7 )
d t2 d t

We wish to obtain the forced response, so we assume that the response will be

it = Be~2' (9.7-8)

where B  is to be determined. Substituting the assumed solution, Eq. 9.7-8, into the differential equation, we have

4 Be~2' +  l { - 2 B e ~ 2') +  6 5<T2' =  48e~2'

or ( 4  -  1 4  +  6 )Be~2' =  48e~2‘

Therefore, #  =  —12 and

if =  - I 2 e ~ 2’ A

E x a m p l e  9 . 7 - 2  F o r c e d  R e s p o n s e  to a C o n s t a n t  I np u t

Find the forced response if o f  the circuit o f  Example 9.7-1 when is =  I0, where 70 is a constant.

Solution
Because the source is a constant applied at t =  0, we expect the forced response to be a constant also. As a first 
method, we will use the differential equation to find the forced response. Second, we will demonstrate the 
alternative method that uses the steady-state behavior o f the circuit to find if.

The differential equation with the constant source is obtained from Eq. 9.7-6 as

d 2i di
i r 2 + 1 7 t + 6 l - 6 I°
Again, we assume that the forced response is if =  D, a constant. Because the first and second derivatives o f  the 
assumed forced response are zero, we have

6 D = 61 o

or D =  I q

Therefore, if =  70

Another approach is to determine the steady-state response if o f the circuit o f 
Figure 9.7-1 by drawing the steady-state circuit model. The inductor acts like 
a short circuit, and the capacitor acts like an open circuit, as shown in Figure 
9.7-2. Clearly, because the steady-state model o f the inductor is a short 
circuit, all the source current flows through the inductor at steady state, and

if =  Io

W o A ©

FIGURE 9.7-2 Parallel RLC  circuit at
steady state for a constant input.



Forced Response of an RLC  Circuit

The two previous examples showed that it is relatively easy to obtain the response of the circuit
to a forcing function. However, we are sometimes confronted with a special case where the form of the
forcing function is the same as the form of one of the components of the natural response.

Again, consider the circuit of Examples 9.7-1 and 9.7-2 (Figure 9.7-1) when the differential 
equation is

^  +  7 ^  +  6 / =  6 /s (9.7-9)
dt2 dt

Suppose is = 3 e

Substituting this input into Eq. 9.7-9, we have

^  +  7 ^  +  6 /=  18 e *  (9.7-10)
dt2 di

The characteristic equation of the circuit is

s2 +  75 +  6 =  0 

or (s +  l)(s +  6) =  0

Thus, the natural response is

in =  A\e 1 +  A^e 

Then at first, we, expect the forced response to be

if = Be~6t (9.7-11)

However, the forced response and one component of the natural response would then both have the
fom\De~6t. Will this work? Let’s try substituting Eq. 9.7-11 into the differential equation (9.7-10). We 
then obtain

36Be~6t -  42Be~6t +  6B e '6* =  \%e~6t 

or 0 =  \%e~6t

which is an impossible solution. Therefore, we need another form of the forced response when one of 
the natural response terms has the same form as the forcing function.

Let us try the forced response

if =  Bte~6' (9.7-12)

Then, substituting Eq. 9.7-12 into Eq. 9.7-10, we have

B (-6e~6t -  6e~6t +  36te~6t) +  lB(e~6t -  6te~bt) +  6Bt e~6t =  18 e~6t (9.7-13)

Simplifying Eq. 9.7-13, we have

* — i !
5

Therefore, if =  — — te~6t

In general, if the forcing function is of the same form as one of the components of the natural 
response, jcn!, we will use

Xf = t PX ni

where the integer/? is selected so that the xf is not duplicated in the natural response. Use the lowest 
power, p , of t that is not duplicated in the natural response.



EXERCISE 9.7-1 A circuit is described for t >  0 by the equation

dri di
-j-z 4* 9 -f 20* =  6zs 
d t2 d t

where /s =  6 +  2/ A. Find the forced response if for t > 0.

Answer: if =  l .53 +  0 . 6 / A

T he  C o m p le te  R esponse  of C ircu its  w i th  T w o  E n erg y  S to ra g e  E le m en ts

9.8 C O M P L E T E  R E S P O N S E  O F  A N  C I R C U I T  ---------------------------

W e have succeeded in finding the natural response and the forced response o f  a circuit described by 
a second-order differential equation. We wish to proceed to determ ine the com plete response for the 
circuit.

The complete response is the sum of the natural response and the forced response; thus,

X =  X„ +  Xf

Let us consider the series RLC  circuit o f Figure 9.2-2 with a differential equation (9.2-8) as

d 2 v dv
LC  —y  +  RC  —  +  v =  vs 

dt2 dt
When L  =  1 H, C =  1/6 F, and R  =  5 H, we obtain

+  5 + 6 v  =  6 v s (9.8-1)
d r  dt

2e~l
We let vs =  —  V, v(0) =  10 V, and dv(0) /dt  =  - 2  V/s.

We will first determine the form o f the natural response and then determine the forced response. 
Adding these responses, we have the complete response with two unspecified constants. We will then 
use the initial conditions to specify these constants to obtain the complete response.

To obtain the natural response, we write the characteristic equation, using operators as
s2 -|- 5 s “h 6 — 0

or (s +  2)(s +  3) =  0

Therefore, the natural response is
vn =  A xe~2t + A 2e~3t

The forced response is obtained by examining the forcing function and noting that its exponential 
response has a different time constant than the natural response, so we may write

vf =  Be~‘ (9.8-2)

We can determine B by substituting Eq. 9.8-2 into Eq. 9.8-1. Then we have

Be~x +  5 { - B e " 1) +  6 (B e '1) = 4e~f 

or B =  2

The complete response is then

v =  vn +  Vf =  A i e~2t +  A2e~3t +  2e~l



To find A i and A2, we use the initial conditions. At / =  0, we have v(0) =  10, so we obtain
10 =  ^i + A 2 + 2 (9.8-3)

From the fact that dv/dt = - 2  at t =  0, we have
-2A , - 3 A 2 - 2  =  - 2  (9.8-4)

Solving Eqs. 9.8-3 and 9.8-4, we have A\ =  24 and A2 =  —16. Therefore,
v =  24 e~2' — 16 e~3' +  2 e~' V

Complete Response of an RLC  Circuit - ©

E x a m p l e  9 . 8 - 1  C o m p l e t e  R e s p o n s e  o f  a S e c o n d - O r d e r  C i r c u i t

Find the complete response v(t) for / > 0 for the circuit of 
Figure 9.8-1. Assume the circuit is at steady state at t =  O'.

t = 0  4 f t

• 1 H

10 VCij
6 ft

4 ft

Solution vs = 6 v O
First, we determine the initial conditions of the circuit. At 
t =  0“, we have the circuit model shown in Figure 9.8-2, 
where we replace the capacitor with an open circuit and the
inductor with a short circuit. Then the voltage is FIGURE 9.8-1 Circuit of Example 9.8-1.

v(0") = 6 V  
and the inductor current is

f(0~) =  1 A
After the switch is thrown, we can write the KVL for the 
right-hand mesh of Figure 9.8-1 to obtain

FIGURE 9.8-2 Circuit of Example 9.8-1 at t =  0
- v  +  — +  6/ =  0 (9.8-5)

The KCL equation at node a will provide a second equation in terms of v and i as
v - vs 1 dv
— a-------1 7 T  =  ^4 4 dt

Equations 9.8-5 and 9.8-6 may be rearranged as

( ; £ + « ) - V :

(  v 1 d v \  vs
V 4 + 4 1t)~~4

We will use operators so that s =  d/dt, s1 -  cfldi1, and 1 /s  = J  dt. Then we obtain
(s + 6)i -  v =  0

/ +  ^(s  +  l)v =  vs/4

Solving Eq. 9.8-10 for i and substituting the result into Eq. 9.8-9, we get
((s +  6)(5  +  1) +  4)v =  (s 4- 6)vs 

Or, equivalently, (s2 +  7s 4- 10) v =  (5 +  6)vs
Hence, the second-order differential equation is

0

(9.8-6)

(9.8-7)

(9.8-8)

(9.8-9)

(9.8-10)

d"v dv dvs^ 2 + 7 _ + |()v =  _ £  +  6Vs (9.8-11)
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The characteristic equation is

^ + 7 5 + 1 0  =  0 

Therefore, the roots o f  the characteristic equation are

s i =  —2 and s2 — —5

The natural response vn is

vn — A \e~ 2t -f A 2e~5t 

The forced response is assumed to be o f  the form

Vf  =  Be~3' (9.8-12)

Substituting vf into the differential equation, we have

9Be~3‘ -  2 \B e~ 31 +  10Be~3' =  - 1 8 e -3 ' +  36e~3'

Therefore, B =  —9

and Vf =  —9e~3t

The complete response is then

v =  vn +  vf =  A le - 2 t+ A 2e~5t -  9e~3t (9.8-13)

Because v(0) =  6, we have

v(0) = 6 =  A \ -f- A 2 — 9

or A j + A 2 =  15 (9.8-14)

We also know that z(0) =  1 A. We can use Eq. 9.8-8 to determ ine d v (0 )/d t and then evaluate the derivative o f
Eq. 9.8-13 at t =  0. Equation 9.8-8 states that

dv  .
- = - 4 , - v  +  v.

At / =  0, we have

dv(0)
Jt

Let us take the derivative o f Eq. 9.8-13 to obtain

d v

- 4 1(0) -  v(0) +  vs(0) =  - 4  -  6 +  6 =  - 4

—  — —2A \e  21 — 5A2e 51 +  27e 31 
d t

=  — 2 A \  - 5 / 1 2  +  27

At t =  0, we obtain

dv( 0)
Jt

Because dv(0 )/d t =  —4, we have

2A\ +  SA2 =  31 (9.8-15)

Solving Eqs. 9.8-15 and 9.8-14 simultaneously, we obtain

j  44 . ,  1A] =  y  and A 2 =  -

Therefore, v =  —  e~2‘ +  - e ~ Sl — 9e~3' V
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Note that we used the capacitor voltage and the inductor current as the unknowns. This is very 
convenient because you will normally have the initial conditions of these variables. These variables, vc 
and /L, are known as the state variables. We will consider this approach more fully in the next section.

9.9 S T A T E  V A R I A B L E  A P P R O A C H  TO C I R C U I T  
A N A L Y S I S  ----------------------------------------------------------

The state variables of a circuit are a set of variables associated with the energy of the energy storage 
elements of the circuit. Thus, they describe the complete response of a circuit to a forcing function and 
the circuit’s initial conditions. Here the word state means “ condition,” as in state o f the union. We 
will choose as the state variables those variables that describe the energy storage of the circuit. Thus, 
we will use the independent capacitor voltages and the independent inductor currents.

Consider the circuit shown in Figure 9.9-1. The two 
energy storage elements are Cj and C2, and the two capacitors 
cannot be reduced to one. We expect the circuit to be described 
by a second-order differential equation. However, let us first 
obtain the two first-order differential equations that describe the 
response for v^/) and v2(/), which are the state variables of the 
circuit. If we know the value of the state variables at one time 
and the value of the input variables thereafter, we can find the 
value of any state variable for any subsequent time.

Writing the KCL at nodes 1 and 2, we have

FIGURE 9.9-1 Circuit with two energy storage 
elements.

node 1:

node 2:

r  dvx 
~dt =

Va -  V1 Vi -  Vi
R 2

r  dv2 _ v b — v2 V! — v2 
2 dt ~  R} + R2

Equations 9.9-1 and 9.9-2 can be rewritten as
dv i vj V|

■ +  ^ 4 -  + V2
dt C\R\ C|/?2 CfR2 C,fl,

dv2 V2 V2 _  V] _  Vb

dt C2R3 C2R2 C2R2 ~  C2R3
Assume that C|/?i =  1, C\R2 = 1, C2Rj = 1, and C2R2 =  1/2. Then we have

dv i
—  +  2vi -  v2 =  va

dvi
-  2v! +  + 3y2 =  Vband

Using operators, we have

(9.9-1)

(9.9-2)

(9.9-3)

(9.9-4)

(9.9-5)

(9.9-6)

(s +  2)vi — V2 =  va 
—2vi +  (s +  3)v2 =  Vb 

If we wish to solve for v,, we use Cramer’s rule to obtain

v -  (5 +  3)v“ +  ^
1 (s +  2)(s +  3) -  2 

The characteristic equation is obtained from the denominator and has the form

s2 + 5s + 4 =  0

(9.9-7)
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The characteristic roots are s =  - 4  and s =  — 1. The second-order differential equation can be obtained 
by rewriting Eq. 9.9-7 as

We now proceed to obtain the natural response

vi„ =  A \e~ ‘ +  A 2e~4'

and the forced response, which depends on the form o f the forcing function. For example, if  
va =  10 V and vb =  6 V, v lf will be a constant (see Table 9.7-1). We obtain v lf by substituting 
into Eq. 9.9-8, obtaining

that v^O) =  5 V and v2(0) =  10 V, we first use v^O) =  5 along with Eq. 9.9-9 to obtain

As you encounter circuits with two or more energy storage elem ents, you should consider 
using the state variable m ethod o f describing a set o f  first-order differential equations.

The state variable method uses a first-order differential equation for each state variable to
determine the complete response o f a circuit.

(s2 -f 5s 4- 4)vj =  (s -I- 3)va +  Vb

Then the differential equation for vx is

(9.9-8)

or

Therefore,

Then

4 vjf =  3va +  Vb 

4vif =  30 -I- 6 =  36 

vif =  9

vi =  vin +  vif =  A xe ' + A 2e 4r +  9 (9.9-9)

We will usually know the initial conditions o f the energy storage elements. For example, if  we know

(9.9-10)

Therefore, at t =  0, we have

=  va(0) +  v 2 ( 0 ) - 2 v , ( 0 )  =  1 0 + 1 0 - 2 ( 5 )  =  10
a t

The derivative o f the complete solution, Eq. 9.9-9, at f =  0 is

Therefore, A x + 4 ^ 2  =  - 1 0 (9.9-11)

Solving Eqs. 9.9-10 and 9.9-11, we have

Therefore,

A i =  —2 and A 2 — —2 

V, (?) =  —2e~' -  2 e ~ 4 '  +  9 V

A summary o f the state variable method is given in Table 9.9-1. We will use this method in
Example 9.9-1.
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T a b le  9  9 1 State Variable Method of Circuit Analysis

1. Identity the state variables as the independent capacitor voltages and inductor currents.

2. Determine the initial conditions at / =  0 for the capacitor voltages and the inductor currents.

3. Obtain a first-order differential equation for each state variable, using KCL or KVL.

4. Use the operator s to substitute for d/ dt.
5. Obtain the characteristic equation of the circuit by noting that it can be obtained by setting the determinant o f Cramer’s 

rule equal to zero.

6. Determine the roots o f the characteristic equation, which then determine the form o f the natural response.

7. Obtain the second-order (or higher-order) differential equation for the selected variable x by Cramer’s rule.

8. Determine the forced response x f  by assuming an appropriate form o f xf and determining the constant by substituting
the assumed solution in the second-order differential equation.

9. Obtain the complete solution x  =  xD + x f.

10. Use the initial conditions on the state variables along with the set o f first-order differential equations (step 3) to obtain 
dx(0)jdt.

11. Using x(0) and dx(0)/dt for each state variable, find the arbitrary constants A h A 2, . . .  A n to obtain the complete 
solution v(f).

E x a m p l e  9 . 9 - 1  C o m p l e t e  R e s p o n s e  o f  a S e c o n d - O r d e r  C i r c u i t

Find i(t) for t > 0 for the circuit shown in Figure 9.9-2 when R —
3 H, L = 1 H, C =  1/2 F, and /s =  2e~3r A. Assume steady state 
at t = 0“ .

Solution
First, we identify the state variables as i and v. The initial FIGURE 9.9-2 Circuit of Example 9.9-1.
conditions at t — 0 are obtained by considering the circuit with
the 10-V source connected for a long time at t =  0“ . At t =  0,
the voltage source is disconnected and the current source is
connected. Then v(0) =  10 V and /(0) =  0 A.

Consider the circuit after time t = 0. The first differential equation is obtained by using KVL around the 
RLC mesh to obtain

r di _L — +  Ri — v 
dt

The second differential equation is obtained by using KCL at the node at the top of the capacitor to get
^ d v
C —  +  / =  /s

We may rewTite these two first-order differential equations as
di R v
-  +  T i - -  =  0  dt L L

and dv i ^  /s
dt C C

Substituting the component values, we have
di
-  +  3 z - v  =  0 (9.9-12)
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and —  + 2i =  2is (9.9-13)
at

Using the operator 5 =  d /d t, we have
(5 -f 3)i — v =  0 (9.9-14)

2/ +  sv =  2is (9.9-15)

Therefore, the characteristic equation obtained from the determinant is

( s - h 3 ) s +  2 =  0

or s2 +  35 4~ 2 =  0

Thus, the roots o f  the characteristic equation are
51 =  —2 and 52 =  —1

Because we wish to solve for i(t) for t > 0, we use C ram er’s rule to solve Eqs. 9.9-14 and 9.9-15 for /, obtaining
2fs

52 +  35 -f 2
Therefore, the differential equation is

5 ?  +  3 -  +  2 , =  2 ,! (9.9-16)

The natural response is 

We assume the forced response is o f the form

in = A \e  ' +  A 2e 2t

if =  Be 3t

Substituting /> into Eq. 9.9-16, we have

(9Be~3t) +  3 ( - 3 Be~3t) +  2 Be~3t = 2(2e~3t)

or 9B -  9B + 2B =  4

Therefore, B — 2 and

if =  2 e"3r

The complete response is

/ =  1 -h A 2e~2t +  2^“ 3/

Because i(0) =  0,

0 = A \  - h ^ 2 -h 2 (9.9-17)

We need to obtain d i(0 )/d t from Eq 9.9-12, which we repeat here as

J  +  3i -  v =  0
dt

Therefore, at t =  0, we have

d m
dt
The derivative o f the complete response at / =  0 is

di( 0)

=  - 3 / ( 0 ) +  v(0) =  10

, = -A i -2A2-6
d t
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and, repeating Eq. 9.9-17, we have
A i -f- A2 — —2

Adding these two equations, we determine that Ax = 12 and A2 -  -14. Then we have the complete solution for i as

i=  12*T '- \4e~2t +  2e~lt A

Because di(0)/dt =  10, we have
-A  j - 2 A 2 =  16

We recognize that the state variable method is particularly powerful 
for finding the response of energy storage elements in a circuit. This is also 
true if we encounter higher-order circuits with three or more energy storage 
elements. For example, consider the circuit shown in Figure 9.9-3. The state 
variables are v1# v2, and i. Two first-order differential equations are obtained 
by writing the KCL equations at node a and node b. Then a third first-order 
differential equation is obtained by writing the KVL around the middle 
mesh containing i. The solution for one or more of these variables can then 
be obtained by proceeding with the state variable method summarized in 
Table 9.9-1.

EXERCISE 9.9-1 Find v2(0 for / > 0 for the circuit of Figure E 9.9-1. Assume there is no 
initial stored energy.

10u(r) A

FIG U R E E 9.9-1 

Answer: v2(/) =  - \5 e ~ 2t +  6e~4t -  e~6t +  10 V

' 3/io H

> + + J
> V1 -  ̂ V12 F v2 ^ 5 V .F  ( f

i « W 0

FIG U R E 9.9-3 Circuit with three energy  
storage elem ents.

9.10 ROOTS IN THE COMPLEX PLANE

We have observed that the character of the natural response of a second-order system is determined by 
the roots of the characteristic equation. Let us consider the roots of a parallel RLC circuit. The 
characteristic equation (9.4-3) is

2 s 1
* + £ c  +  Z c

and the roots are given by Eq. 9.4-8 to be
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where a  =  1/(2 RC) and col — \/(L C ) .  When a>0 > a , the roots are 
complex and

s — —a  ±  j y  col — a 2 =  —a  ±  j(D& (9.10-1)

FIGURE 9.10-1 The complete 5-plane showing 
the location of the two roots, s y and s2, o f the 
characteristic equation in the left-hand portion of 
the 5-plane. The roots are designated by the x 
symbol.

In general, roots are located in the complex plane, the location 
being defined by coordinates measured along the real or cr-axis and the 
imaginary o ry ^ a x is . This is referred to as the 5-plane or, because s has 
the units o f  frequency, as the complex frequency plane. W hen the roots 
are real, negative, and distinct, the response is the sum o f two decaying 
exponentials and is said to be overdamped. When the roots are complex 
conjugates, the natural response is an exponentially decaying sinusoid 
and is said to be underdamped or oscillatory.

Now, let us show the location o f the roots o f the characteristic 
equation for the four conditions: (a) undamped, a  =  0; (b) underdamped, 
a < co0. (c) critically damped, a  — cd0; and (d) overdamped, a  > cdq. These 
four conditions lead to root locations on the 5-plane as shown in Figure 9 .1 0 -

1. When a  =  0 , the two complex roots are ±jco0. When a  <co0, the roots are 
s =  — a  ±  jcofr When a  =  cl>0, there are two roots at s — —a. Finally, when 
a > a>0, there are two real roots, s =  —a  ±  y /a 2 — co\.

A summary o f the root locations, the type o f  response, and the form 
o f the response is presented in Table 9 .1 0 -1 .

EXERCISE 910-1 A parallel R LC  c ircu it has L =  0.1 H and C =  100 mF. D eterm ine 
the roots o f  the characteristic  equation  and plot them  on the 5-plane w hen (a) R =  0.4 O and
(b) R =  1.0 n .

Answ er: (a) s =  —5, —20 (Figure E 9.10-1)

jco

-20 -5

FIGURE E 9.10-1

9.11 H O W  C A N  W E  C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem  is indeed correct. For 
example, proposed solutions to design problem s must be checked to confirm that all o f  the 
specifications have been satisfied. In addition, com puter output must be review ed to guard against 
data-entry errors, and claim s made by vendors m ust be exam ined critically.

Engineering students are also asked to check the correctness o f their work. For example, 
occasionally just a little time remains at the end o f an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions o f the sort o f 
problem discussed in this chapter.



Tab* ' 9 10 1 The Natural Response of a Parallel A?Z.CCircuit

TYPE OF RESPONSE R00T LOCATION

Overdamped

Critically damped

Underdamped

Undamped

yo)

70)

7(0

How Can We Check . . . ? --------^ 3 9 5 ^

FORM OF RESPONSE

i(t), A

*The i(t) is the inductor current in the circuit shown in Figure 9 .4 -1 for the initial conditions i(0) =  1 and v(0) =  0.

E x a m p l e  9 . 1 1 - 1  H ow  C a n W e C h e c k a n  U n d e r d a m p e d  Response*:

Figure 9.11-1Z? shows an RLC circuit. The voltage, vs(f), of the voltage source is the square wave shown in Figure
9.11-la. Figure 9.11-2 shows a plot of the inductor current, i(t), which was obtained by simulating this circuit 
using PSpice. How can we check that the plot of i(t) is correct?

Solution
Several teatures of the plot can be checked. The plot indicates that steady-state values of the inductor current are i 
(oo) =  0 and /(oo) =  200 mA and that the circuit is underdamped. In addition, some points on the response have
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100 n  '<')

2 4 6 8
'•MS
(a) (b)

FIGURE 9.11-1 An RLC circuit (b ) excited by a square wave (a).

Time

FIGURE 9.11-2 PSpice plot o f the inductor current, /(/), for the circuit shown in Figure 9.11-1.

been labeled to give the corresponding values o f time and current. These values can be used to check the value o f 
the damped resonant frequency, cod.

If the voltage o f the voltage source were a constant, vs(/) — Vs, then the steady-state inductor current 
would be

Thus, we expect the steady-state inductor current to be /(oo) =  0 when Vs =  0 V and to be /(oo) =  200 mA when 
Vs =  20 V. The plot in Figure 9.11-2 shows that the steady-state values o f the inductor current are indeed z(oo) =  0 and 
/(oo) =  200 mA.

The plot in Figure 9.11-2 shows an underdamped response. The RLC  circuit will be underdamped if

IO '5 = L <  4 R2C =  4 x 1002 x 10~9 

Because this inequality is satisfied, the circuit is indeed underdamped, as indicated by the plot.
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The dam ped resonant frequency, o;d, is g iv en  by

1
LC G ^ c )  \J  10~5 x \0~9 G x l O O x l O -9)

66 x 106 rad/s

The plot indicates that the plot has a maxima at 378 ns and a minima at 731 ns. Therefore, the period of the 
damped oscillation can be approximated as

Td = 2(731 x 10"9 -  378 x 10"9) =  706 x 10~9 s 

The damped resonant frequency, &>d, is related to Td by Eq. 9.6-9. Therefore,

2 71
=  ~zr —

2tt

Td 706 x 10-9 =  8.90 x 106 rad/s

The value of cod obtained from the plot agrees with the value obtained from the circuit. 
We conclude that the plot is correct.

9.12 DESIGN EXAMPLE

AUTO AIRBAG IGNITER

Airbags are widely used for driver and passenger protection in automobiles. A pendulum is 
used to switch a charged capacitor to the inflation ignition device, as shown in Figure
9.12-1. The automobile airbag is inflated by an explosive device that is ignited by the 
energy absorbed by the resistive device represented by R. To inflate, it is required that the 
energy dissipated in R be at least 1 J. It is required that the ignition device trigger within 0.1 
s. Select the L and C that meet the specifications.

Describe the Situation and the Assumptions
1. The switch is changed from position 1 to position 2 at t =  0.

2. The switch was connected to position 1 for a long time.

3. A parallel RLC circuit occurs for t > 0.

FIG U R E 9.12-1 An automobile 
airbag ignition device.
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State the Goal
Select L and C so that the energy stored in the capacitor is quickly delivered to the resistive 
device R.

G enerate  a Plan
1. Select L and C so that an underdamped response is obtained with a period o f less than or 

equal to 0.4 s ( T < 0.4 s).

2. Solve for v(t) and i(t) for the resistor R.

Act on the P lan
We assume that the initial capacitor voltage is v(0) =  12 V and zL(0) =  0 because the switch is 
in position 1 for a long time prior to t =  0. The response o f  the parallel RLC  circuit for an 
underdamped response is o f  the form

v(/) =  e~at(B i cos aj&t +  B2 sin codt) (9.12-1)

This natural response is obtained when c r  < col 01 ^  <  4R2C. We choose an underdamped 
response for our design but recognize that an overdamped or critically damped response may 
satisfy the circuit’s design objectives. Furthermore, we recognize that the param eter values 
selected below' represent only one acceptable solution.

Because we want a rapid response, we will select a  =  2 (a tim e constant o f  1 /2  s) 
where ot =  1/ (2RC ). Therefore, we have

C  =  — =  —  F
2 Rot 16

Recall that Wq =  1 / ( L C ) and it is required that a 2<u>l. Because we want a rapid response, we 
select the natural frequency co0 so that (recall T ~  0.4 s)

Therefore, we obtain

27 1  2 n  d  A tm  =  —  =  —  =  5n  rad/s

1  co20C  25jt2(1 /16 ) 0 065 H

Thus, we will use C — 1/16 F and L = 65 mH. We then find that cod =  15.58 rad/s and, using
Eq. 9.6-5, we have

v(f) =  e~2t(B\ cos coat +  Bj sincL>dO (9.12-2)

Then B x =  v(0) =  12 and

<0^2 =  a B , =  (2 -  4)12 =  - 2 4

Therefore, B 2 =  —24/15.58 =  -1 .5 4 . Because B 2 B u we can approximate Eq. 9.12-2 as

v(t) =  \2e~ 2t cos coat V

The power is then

v2
p  =  — =  36e 1 cos <jo&t W

A

V erify the Proposed Solution
The actual voltage and current for the resistor R are shown in Figure 9.12-2 for the first 100 
ms. If we sketch the product o f v and / for the first 100 ms, we obtain a linear approximation



Summary

declining from 36 W at / =  0 to 0 W at t = 95 ms. The energy absorbed by the resistor over the 
first 100 ms is then

w =  ^(36)(0.1 s) =  1.8 J 

Therefore, the airbag will trigger in less than 0.1 s, and our objective is achieved.

9.13 S U M M A R Y
O Second-order circuits are circuits that are represented by a 

second-order differential equation, for example,

+ 2 a j t x^ )  +  " ^ ( 0  = / ( ' )

where x(f) is the output current or voltage of the circuit and 
f( t)  is the input to the circuit. The output of the circuit, also 
called the response of the circuit, can be the current or 
voltage of any device in the circuit. The output is frequently 
chosen to be the current of an inductor or the voltage of a 
capacitor. The input to the circuit is provided by the voltages 
of independent voltage sources and/or currents of indepen­
dent current sources. The coefficients of this differential 
equation have names: a is called the damping coefficient, 
and o)q is called the resonant frequency.

O Obtaining the differential equation to represent an arbi­
trary circuit can be challenging. This chapter presents 
three methods for obtaining that differential equation: 
the direct method (Section 9.2), the operator method 
(Section 9.2), and the state variable method (Section 9.10).

O The characteristic equation of a second-order circuit is

This second-order equation has two solutions, S] and s2. 
These solutions are called the natural frequencies of the 
second-order circuit.

O Second-order circuits are characterized as overdamped, 
critically damped, or underdamped. A second-order circuit 
is overdamped when 5 ] and s2 are real and unequal, or, 
equivalently, a > co0. A second-order circuit is critically 
damped when S\ and s2 are real and equal, or, equivalently, 
or =  coq. A second-order circuit is underdamped when s { and 
s2 are real and equal, or, equivalently, a < (Oq.

O Table 9.13-1 describes the natural frequencies of over- 
damped, underdamped, and critically damped parallel and 
series RLC circuits.

O The complete response of a second-order circuit is the sum 
of the natural response and the forced response

x =  xn +  *f

The form of the natural response depends on the natural 
frequencies of the circuit as summarized in Table 9.13-2. 
The form of the forced response depends on the input to the 
circuit as summarized in Table 9.13-3.

s2 +  2 as +  col =  0
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Natural Frequencies of Parallel RLC and Series /?Z.CCircuits

Circuit

Differential equation 

Characteristic equation 

Damping coefficient, rad/s 

Resonant frequency, rad/s 

Damped resonant frequency, rad/s

Natural frequencies: overdamped case

Natural frequencies: critically damped case 

Natural frequencies: underdamped case

PARALLEL RLC

/? <  C L

\ id)

1
* c i + Z c  =  0

(DO —

2 RC
1

Vlc

(L>d = ( — ) - -  \2R C j LC

__ L ±  ( J - X __ L
2RC V \ 2RCJ LC

when R <

1
S \ = S 2 =  when/?

- £ l / I

1 I 1
5l ? 52 =  ~ TW7; ± j2 RC 

when R >

(— )  LC \2RCJ

SERIES RLC

d2 , s R d / X 1 /X « _ v ( ( )  +  _ _ v ( 0  +  _ v W  =  0 

i R 1 
L S + LC =

R
a — —

2 L
1

COo = Vlc

W ( D - LC

when R > 2

A
5 1 =  52 =  — — when 21

51

( 5 )  - r c

V I

•— W e - ®  

s<2\ lwhen^

Natural Response of Second-Order Circuits

CASE NATURAL FREQUENCIES NATURAL RESPONSE, xn

Overdamped 5 i ,52 -  - a  ±  y/a2 -  wg ^ l^ 1' +  ^ 2^ 2'
Critically damped 5 ] ,52 =  —or (A\+A2t)e~at

Underdamped s i, 52 =  - a  ±  j y / c ^ o ?  =  -cr ±ya>d M i cos ajd/-M 2 sin a>d/)e~a'

Forced Response of Second-Order Circuits

INPUT, f(t) FORCED RESPONSE, xf

Constant K A
Ramp K t A+Bt
Sinusoid K cos (vt, A" sin a>t, or K cos (rot+0) A cos (Ot + B sin a)t
Exponential K e bt Ae~*
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P R O B L E M S

Section 9.2 Differential Equation for Circuits with  
Two Energy Storage Elements

P 9.2-1 Find the differential equation for the circuit shown in 
Figure P 9.2-1 using the direct method.

2 Q 1 mH

P 9.2-2 Find the differential equation for the circuit shown in 
Figure P 9.2-2 using the operator method.

Answer:

£ i L(t) + 11.000 ~ iL(/) + 1.1 x 108;L(f) =  108i,(/) 
at1 at

Figure P 9.2-2

P 9.2-3 Find the differential equation for iL(t) for t > 0 for the 
circuit of Figure P 9.2-3.

Figure P 9.2-3

P 9.2-4 The input to the circuit shown in Figure P 9.2-4 is the 
voltage of the voltage source, Vs. The output is the inductor 
current /(/). Represent the circuit by a second-order differential 
equation that shows how the output of this circuit is related to 
the input for t> 0 .

Hint: Use the direct method.

Figure P 9.2-4

P 9.2-5 The input to the circuit shown in Figure P 9.2-5 is the 
voltage of the voltage source, vs. The output is the capacitor 
voltage v(/) Represent the circuit by a second-order differen­
tial equation that shows how the output of this circuit is related 
to the input for t > 0 .

Hint: Use the direct method.

P 9.2-6 The input to the circuit shown in Figure P 9.2-6 is the 
voltage of the voltage source, vs. The output is the inductor 
current /(/). Represent the circuit by a second-order differential 
equation that shows how the output of this circuit is related to 
the input for t >  0 .

Hint: Use the direct method.

Figure P 9.2-6

P 9.2-7 The input to the circuit showTi in Figure P 9.2-7 is the 
voltage of the voltage source, vs. The output is the inductor 
current i2(t). Represent the circuit by a second-order differen­
tial equation that shows how the output of this circuit is related 
to the input for t > 0 .

Hint: Use the operator method.
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P 9.2-8 The input to the circuit shown in Figure P 9.2-8 is the 
voltage of the voltage source, vs. The output is the capacitor 
voltage v2(0- Represent the circuit by a second-order differ­
ential equation that shows how the output of this circuit is 
related to the input for t > 0.

Hint: Use the operator method.

r = 0

Figure P 9.2-8

P 9.2-9 The input to the circuit shown in Figure P 9.2-9 is the 
voltage of the voltage source, vs. The output is the capacitor 
voltage v(t). Represent the circuit by a second-order differen­
tial equation that shows how the output of this circuit is related 
to the input for t > 0.

Hint: Use the direct method.

t = 0

P 9.2-10 The input to the circuit shown in Figure P 9.2-10 is 
the voltage of the voltage source, vs. The output is the 
capacitor voltage v(t). Represent the circuit by a second-order 
differential equation that shows how the output of this circuit 
is related to the input for t > 0.

Hint: Find a Thevenin equivalent circuit.

P 9.2-11 The input to the circuit shown in Figure P 9.2-11 is 
the voltage of the voltage source, vs(f). The output is the 
voltage v2(/). Derive the second-order differential equation 
that shows how the output of this circuit is related to the input.

Hint: Use the direct method.

P 9.2-12 The input to the circuit shown in Figure P 9.2-12 is 
the voltage of the voltage source, vs(f). The output is the 
voltage v0(f). Derive the second-order differential equation 
that shows how the output of this circuit is related to the input.

Hint: Use the operator method.

C2

Figure P 9.2-12

P 9.2-13 The input to the circuit shown in Figure P 9.2-13 is 
the voltage of the voltage source, vs(/). The output is the 
voltage v0(/). Derive the second-order differential equation 
that shows how the output of this circuit is related to the input.

Hint: Use the direct method.



/ = 0

V M )

Answer: 3 d2i2 di2 d2v s
dt2 +  4 - ±  + 2 12 = - r r  J/2

1 Q 2 Q
-AAA/-------

1/2 F

Figure P 9.2-15

P r o b le m s _ ©

100 mH

"c ^  1/3 mF

Figure P 9.3-2

P 9.3-3 Find the characteristic equation and its roots for the 
circuit shown in Figure P 9.3-3.

Figure P 9.2-13

P 9.2-14 The input to the circuit shown in Figure P 9.2-14 is 
the voltage of the voltage source, vs(f). The output is the 
voltage v2(/). Derive the second-order differential equation 
that shows how the output of this circuit is related to the input.

Hint: Use the direct method.

Figure P 9.2-14

P 9.2-15 Find the second-order differential equation for i2 for 
the circuit of Figure P 9.2-15 using the operator method. 
Recall that the operator for the integral is 1 /s.

Figure P 9.3-3

P 9.3-4 German automaker Volkswagen, in its bid to make 
more efficient cars, has come up with an auto whose engine 
saves energy by shutting itself off at stoplights. The stop-start 
system springs from a campaign to develop cars in all its world 
markets that use less fuel and pollute less than vehicles now on 
the road. The stop-start transmission control has a mechanism 
that senses when the car does not need fuel: coasting downhill 
and idling at an intersection. The engine shuts off, but a small 
starter flywrheel keeps turning so that power can be quickly 
restored when the driver touches the accelerator.

A model of the stop-start circuit is shown in Figure 
P 9.3-4. Determine the characteristic equation and the natural 
frequencies for the circuit.

Answer: s2 +  20s +  400 =  0
s — — 10 i y l 7.3

Section 9.3 Solution of the Second-Order 
Differential Equation—The Natural Response

P 9.3-1 Find the characteristic equation and its roots for the 
circuit of Figure P 9.2-2.

P 9.3-2 Find the characteristic equation and its roots for the 
circuit of Figure P 9.3-2.

Answer: s2 +  400s + 3 x 104 = 0 
roots: 5 =  —300, -100

Figure P 9.3-4 Stop-start circuit.

Section 9.4 Natural Response of the Unforced 
Parallel /7Z.CCircuit

P 9.4-1 Determine v{t) for the circuit of Figure P 9.4-1 when 
L — 1 H and vs =  0 for t > 0. The initial conditions are v(0) =
6 V and dv/dt(0) =  -3000 V/s.

Answer: v{t) =  — 2e~,00/ +  8e~400' V
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»s<'> U
> +

p  80 £2 <> v(t)  -

Figure P 9.4-1

P 9.4-2 An RLC  circuit is shown in Figure P 9.4-2 , in which * »Sure * g **-5 Smoke detector.
v(0) =  2 V. The switch has been open for a long time before 
closing at / =  0. Determine and plot v(/).

r = 0
1/3 F ^  V(t) 3/4 f t ; 1 H

Figure P 9.4-2

P 9.4-3 Determine /j(/) and i2(t) for the circuit of Figure 
P 9.4-3 when ij(0) =  i2(0) =  11 A.

2 H

2 n

Section 9.5 Natural Response of the Critically 
Dam ped Unforced Parallel /?Z.CCircuit

P 9.5-1 Find vc(r) for t > 0 for the circuit shown in Figure
P 9.5-1.

Answ er: vc(t) =  (3 +  6000t)e~2(mt V

25 mH

100 Jq  >  (T )3 0 u ( -r )  mA vĉ  -  iq ^ f

Figure P 9.5-1

P 9.5-2 Find vc(t) for / > 0 for the circuit of Figure P 9.5-2. 
Assume steady-state conditions exist at t =  0~.

Answer: vc(t) =  —8te~2t\

P 9.4-4 The circuit shown in Figure P 9.4-4 contains a switch 
that is sometimes open and sometimes closed. Determine the 
damping factor, cr, the resonant frequency, cl>q, and the damped 
resonant frequency, of the circuit when (a) the switch is 
open and (b) the switch is closed.

P 9.5-3 Police often use stun guns to incapacitate potentially 
dangerous felons. The handheld device provides a series of 
high-voltage, low-current pulses. The power of the pulses is 
far below lethal levels, but it is enough to cause muscles to 
contract and put the person out of action. The device provides 
a pulse of up to 50,000 V, and a current of 1 mA flows through 
an arc. A model of the circuit for one period is shown in Figure 
P 9.5-3. Find v(/) for 0 < t < 1 ms. The resistor R represents the 
spark gap. Select C so that the response is critically damped.

10 mH

P 9.4-5 The circuit shown in Figure P 9.4-5 is used in 
airplanes to detect smokers, who surreptitiously light up before 
they can take a single puff. The sensor activates the switch, and 
the change in the voltage v{t) activates a light at the flight 
attendant’s station. Determine the natural response v(/).

Answer: v(t) =  —1.16e~2 7t +  1.16e~37 3/ V

104 V

Figure P 9.5-3

R= 106Q

P 9.5-4 Reconsider Problem P 9.4-1 when L — 640 mH and 
the other parameters and conditions remain the same.

Answer: v(/) =  (6 -  1500f)e-250' V
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P 9.5-5 An automobile ignition uses an electromagnetic trig­
ger. The RLC trigger circuit shown in Figure P 9.5-5 has a step 
input of 6 V, and v{0) =  2 V and i(0) =  0. The resistance R must 
be selected from 2 n < / ? < 7 H s o  that the current /(/) exceeds 
0.6 A for greater than 0.5 s to activate the trigger. A critically 
damped response /(/) is required to avoid oscillations in the 
trigger current. Select R and determine and plot /(/).

6 u{t) V

Figure P 9.5-5

Section 9.6 Natural Response of an Underdamped 
Unforced Parallel RLCC'wcuW
P 9.6-1 A communication system from a space station uses 
short pulses to control a robot operating in space. The transmitter 
circuit is modeled in Figure P 9.6-1. Find the output voltage vc(t) 
for / > 0. Assume steady-state conditions at t =  0_.

Answer: vc(f) =  e-400,[3 cos 300f +  4 sin 300f] V

• ‘- w

O  ’

* W A T ftZM
(a)

Figure P 9.6-3 (a) A 240-W power supply. Courtesy of Kepco, 
Inc. (b) Model of the power supply circuit.

P 9.6-4 The natural response of a parallel RLC circuit is 
measured and plotted as shown in Figure P 9.6-4. Using this 
chart, determine an expression for v(r)-

Hint: Notice that v(t) =  260 mV at t =  5 ms and that v(f) =  
-200  mV at t =  7.5 ms. Also, notice that the time between 
the first and third zero-crossings is 5 ms.

Answer: v{t) = 544e~276' sin 1257f V

P 9.6-2 The switch of the circuit shown in Figure P 9.6-2 is 
opened at t =  0. Determine and plot v(/) when C =  1/4 F. 
Assume steady state at t =  0~.

Answer: v(t) =  -4 e -2/ sin 2/ V

f = 0

P 9.6-3 A 240-W power supply circuit is shown in Figure 
P 9.6-3a. This circuit employs a large inductor and a large 
capacitor. The model of the circuit is shown in Figure P 9.6-3 b. 
Find iL(t) for / > 0 for the circuit of Figure P 9.6-3b. Assume 
steady-state conditions exist at / =  0 ~.

Answer: iL(t) =  e~2' ( - 4 c o s  t +  2 sin t) A Figure P 9.6-4 The natural response o f a parallel RLC circuit.
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P 9.6-5 The photovoltaic cells of the proposed space station P 9.7-2 Determine the forced response for the capacitor
shown in Figure P9.6-5a provide the voltage v(t) of the circuit voltage, vf, for the circuit of Figure P 9.7-2 when (a) v8 =
shown in Figure P 9.6-5b. The space station passes behind the 2 V, (b) vs =  0.21 V, and (c) vs =  1<?~30' V.
shadow of earth (at t =  0) with v(0) =  2 V and /(0) =  1/10 A. 7 Q 0 1 H
Determine and sketch v(/) for t > 0.

usk(/)v( !

Figure P 9.7-2

P 9.7-3 A circuit is described for t > 0 by the equation
d2v c dv 
7 7  +  5 — +  6v =  vs 
dt2 dt

Find the forced response vf for t > 0 when (a)vs =  8V, (b) vs =
3e~4' V, and (c) vs — 2e~2t V.
Answer: (a) Vf =  8/6 V (b) Vf =  7  e~At V (c) Vf =  2te~2t V

Section 9.8 Com plete Response of an R L C C irc u it

P 9.8-1 Determine i(t) for t > 0 for the circuit shown in 
Figure P 9.8-1.

(a)

Space 
station 

electric motors

J
The photovoltaic 
cells connected 

in parallel

P 9.8-2 Determine i(t) for t > 0 for the circuit shown in 
Figure P 9.8-2.

d2 d
Hint: Show that 1 =  -771(f) 4- 5 — /(f) +  5/(f) for t > 0 

dt2 v } dt 7

Answer: i(t) =  0.2 +  0.246 e~3 62t — 0.646 e~l38r A for t > 0.

1 Q 4 Q

(b)

Figure P 9.6-5 (a) Photocells on space station. (b) Circuit with 
photocells.

Section 9.7 Forced Response of an /?Z.CCircuit

P 9.7-1 Determine the forced response for the inductor 
current /f when (a) is = 1 A, (b) /s =  0.5/ A, and (c) zs =  
2e~250' A for the circuit of Figure P 9.7-1.

)  <£ 10<V65ft !s 10 mH _ "  1 mF

1 ' l ,

P 9.8-3 Determine vj(/) for / > 0 for the circuit shown in 
Figure P 9.8-3.
Answer: v\ (t) = 10 + e-24xl°4' _  6 ^~4xI°3' V f o r f > 0

1 kQ 1 kn

i/ito  =f= 1 /6 /iF u2W =T=l/16/iF

_________?
10 V

r =  0

F igure P 9.7-1

Figure P 9.8-3

P 9.8-4 Find v(/) for / > 0 for the circuit shown in Figure
P 9.8-4 when v(0) =  1 V and /L(0) =  0.
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Answer: v =  25e~3' -  ~  [429e 4/ -  21 cos f +  33 sin t] V

1 Q 1 ft

5 V

T) 2«(r) A ; 4 Q c 4= tKr)
2 H

lit)
Figure P 9.8-7

P 9.8-8 Find vc{t) for t > 0 for the circuit shown in Figure 
P 9.8-8.

Hint: 2 =  ^ jv c( / ) + 6 ^ v e(<) +  2vc(0  for t >  0

P 9.8-5 Find v(/) for / > 0 for the circuit of Figure P 9.8-5.

Answer: v(t) =  [— \6e~‘ +  \6e~3t +  8]«(/)
+  [\6e-C-V -  16*-3('-2) -  8]«(/ -  2) V

1/3 F

P 9.8-9 In Figure P 9.8-9, determine the inductor current i(t) 
when is =  5u(t) A. Assume that /(0) =  0, vc(0) =  0.

Answer: i(t) =  5 + e~2x [ -5  cos 5t -  2 sin 5/] A

Vs F

Figure P 9.8-5

P 9.8-6 An experimental space station power supply system 
is modeled by the circuit shown in Figure P 9.8-6. Find v</) for 
t > 0. Assume steady-state conditions at t =  0~.

Figure P 9.8-9

P 9.8-10 Railroads widely use automatic identification of 
railcars. When a train passes a tracking station, a wheel 
detector activates a radio-frequency module. The module’s 
antenna, as shown in Figure P 9.8-10a, transmits and receives 
a signal that bounces off a transponder on the locomotive. A

Vehicle-mounted 
transponder tag

(a)

Figure P 9.8-6

P 9.8-7 Find vc(t) for t > 0 in the circuit of Figure P 9.8-7 
when (a) C =  1/18 F, (b) C =  1/10 F, and (c) C =  1/20 F.

Answers:
(a) vc(f) = 8<r3' + 24/e-3' -  8 V
(b) vc(f) =  10<r' -  2e~5' -  8 V
(c) vc(r) =  e - J , (8 cos t +  24 sin t) -  8 V

811
— i

Wheel detector 
input

Antenna

(b)

Answer: vc(t) =  0.123<r5 65' +  0.877<r0 35' +  1 V for t >  0.
Figure P 9.8-10 (a) Railroad identification system.
(6 ) Transponder circuit.
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trackside processor turns the received signal into useful infor­
mation consisting of the train's location, speed, and direction 
of travel. The railroad uses this information to schedule 
locomotives, trains, crews, and equipment more efficiently.

One proposed transponder circuit is shown in Figure 
P 9.8-106 with a large transponder coil of L =  5 H. Determine 
i(t) and v(t). The received signal is is =  9 +  3e~2t u(t) A.

P 9.8-11 Determine v(0 for / >  0 for the circuit shown in 
Figure P 9.8-11.

Answer: vc(f) =  0.75 e’ 4' -  6.75 £>“36' +  16 V for t > 0

iHL -  v m  +

*P  9.8-14 The circuit shown in Figure P 9.8-14 is at 
steady state before the switch closes. Determine the capacitor 
voltage, v(/), for t > 0.

i,

0.4 H

25 mF ^  vU)

t= 0

) 6u(t) + 10 V < i >  0.625 F:

Figure P 9.8-11

P 9.8-12 The circuit shown in Figure P 9.8-12 is at steady state 
before the switch opens. The inductor current is given to be

i(t) = 240 +  \93e~625t cos(9.27f — 102°) mA for / > 0 

Determine the values of Rx, R3, C9 and L.

Figure P 9.8-14

P 9.8-15 The circuit shown in Figure P 9.8-15 is at steady 
state before the switch closes. Determine the capacitor voltage, 
v(t), for t > 0.

Figure P 9.8-12

P 9.8-13 The circuit shown in Figure P 9.8-13 is at steady 
state before the switch opens. Determine the inductor current,
*(/), for t > 0.

P 9.8-16 The circuit shown in Figure P 9.8-16 is at steady 
state before the switch closes. Determine the inductor current, 
/(/), for t > 0.

t= 0

+
vit)

Figure P 9.8-16

P 9.8-17 The circuit shown in Figure P 9.8-17 is at steady 
state before the switch opens. Determine the inductor current,
i2(t), for t > 0.

0(t)

Figure P 9.8-13 F igure P 9 .8-17



P 9.8-18 The circuit shown in Figure P 9.8-18 is at steady 
state before the switch closes. Determine the capacitor voltage, 
v(f), for / > 0.

t =  0

iLU) L R\
—tyW-

v%U) = uU)(iJ

P r o b le m s - ©

Figure P 9.8-18

P 9.8-19 Find the differential equation for vc(f) in the circuit 
of Figure P 9.8-19, using the direct method. Find vc(/) for time 
t > 0 for each of the following sets of component values:

(a) C =  1 F, L = 0.25 H, Rt = R2 =  1.309 H
(b) C =  1 F, L =  1 H, Rx =  3 fl, i?2 = l f l
(c) C =  0.125 F, L =  0.5 H, /?, =  1 H, R2 = 4 fl

(a) vc(f) =  ^ —e-2' +  ^ e “4' V

(b) *(#)« J -  + V

(c) vc(z) =  0.8 -  e-2/(0.8 cos 41 +  0.4 sin At) V

Section 9.9 State Variable Approach to Circuit 
Analysis

P 9.9-1 Find v(f) for t > 0, using the state variable 
method of Section 9.9 when C =  1/5 F in the circuit 
of Figure P 9.9-1. Sketch the response for v(t) for 0 < 
r < 10 s.

Answer: v(f) =  -25e~' + e~s' + 24 V

P 9.9-2 Repeat Problem P 9.9-1 when C =  1/10 F. Sketch the 
response for v ( t )  for 0 < t  < 3 s.

Answer: v ( t )  = e~3,(—24 cos t  — 32 sin /) -I- 24 V

P 9.9-3 Determine the current i { t ) and the voltage v(f) for the 
circuit of Figure P 9.9-3.

Answer: i ( t )  = (3.08«r2-57' -  0.08*-97 4t -  6) A

Figure P 9.8-19

P 9.8-20 Find the differential equation for v0(f) in the circuit 
of Figure P 9.8-20, using the direct method. Find vc(/) for time 
t > 0 for each of the following sets of component values:

(a) C =  1 F, I  =  0.25 H, /?, =  R2 =  1.309 H
(b) C =  1 F, I  =  1 H, *i =  1 n , R2 «  3 a
(c) C =  0.125 F, L = 0.5 H, /?, =  4 fl, /?2 =  1 H

<»> v0(r) = i - e-2' + I e -4'v

( h ,  v 0 ^ )  =  | _  ( |  +  | r )  e ~ 2 '  V

(c) v0(/) a= 0.2 -  e_2,(0.2 cos 4/ + 0.1 sin At) V

-3a(/) A i’^ :20  mF < 0 .5  Q 13 A

Figure P 9.9-3

P 9.9-4 Clean-air laws are pushing the auto industry 
toward the development of electric cars. One proposed 
vehicle using an ac motor is shown in Figure P 9.9-4a. 
The motor-controller circuit is shown in Figure P 9.9-46 with 
L =  100 mH and C — 10 mF. Using the state equation 
approach, determine i(t) and v(t) where i(t) is the motor- 
control current. The initial conditions are v(0) =  10 V and
m  = o.
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Electric power

System SteeMng 
controller

Transistorized 
dc to ac inverter

Integrated interior 0 
permanent magnet Sodium-sulfur

ac motor and battery 
automatic transaxle

(a) (b)

Figure P 9.9-4 (a) Electric vehicle. (b) Motor-controller circuit.

P 9.9-5 Studies of an artificial insect are being used to under­
stand the nervous system of animals. A model neuron in the 
nervous system of the artificial insect is shown in Figure P 9.9-5. 
The input signal, vs, is used to generate a series of pulses, called 
synapses. The switch generates a pulse by opening at f =  0 and 
closing at / =  0.5 s. Assume that the circuit is at steady state and 
that v(0~) — 10 V. Determine the voltage v(f) for 0 < t < 2 s.

Switch

Figure P 9.9-5 Neuron circuit model.

Section 9.10 Roots in the Com plex Plane

P 9.10-1 For the circuit of Figure P 9.10-1, determine 
the roots of the characteristic equation and plot the roots on 
the 5-plane.

2 kQ 3 kQ

P 9.10-3 For the circuit of Figure P 9.10-3, determine the roots 
of the characteristic equation and plot the roots on the 5-plane.

4 H

4 kQ

Figure P 9.10-3

P 9.10-4 An RLC circuit is shown in Figure P 9.10-4.

(a) Obtain the two-node voltage equations, using operators.
(b) Obtain the characteristic equation for the circuit.
(c) Show the location of the roots of the characteristic equa­

tion in the 5-plane.
(d) Determine v(t) for t > 0.

1 H

P 9.10-2 For the circuit of Figure P 9.6-1, determine the roots 
of the characteristic equation and plot the roots on the 5-plane.

36u(t) V ( I ) V i s  F v(t)

Figure P 9.10-4

Section 9.11 H ow  Can W e Check . . . ?

P 9.11-1 Figure P 9.11 -\a  shows an RLC circuit. The voltage, 
vs(f), of the voltage source is the square wave shown in Figure 
P 9.11-la. Figure P 9.11-lc shows a plot of the inductor 
current, /(f), which was obtained by simulating this circuit, 
using PSpice. Verify that the plot of /(f) is correct.

Answer: The plot is correct.
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t, ms

(a)

100 Q M

(b)

400  mA

200 mA

0 A

-2 0 0  mA

(550.562u  

A  (1 .6405r

/ V -

i, 321.886m )
1
n, 256 .950m ) (

— 4

3.6854m , 250 .0 35m )

/  (1 .0787m , 228.510m )

\ %
v / ^

0 s 2 .0  ms
□ / ( L I )

4 .0  ms 

Time 

(c)

6 .0  ms 8 .0  ms

Figure P 9.11-1

P9.11-2 Figure P 9.11-26 shows an RLC circuit. The voltage, current, i(f)» which was obtained by simulating this circuit,
vs(r), of the voltage source is the square wave shown in Figure using PSpice. Verify that the plot of i(f) is correct.
P 9.11 -2a. Figure P 9.11-2c shows a plot of the inductor i -cl4Mllt tu i ♦ «•r Answer: The plot is not correct.
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PSpice Problems
SP 9-1 The input to the circuit shown in Figure SP 9-1 is the 
voltage of the voltage source, Vj(r). The output is the voltage
across the capacitor, v0(f). The input is the pulse signal
specified graphically by the plot. Use PSpice to plot the output, 
vG(r), as a function of t for each of the following cases:

(a) C =  1 F, L =  0.25 H, R x =  R2 =  1.309 (1
(b) C *  1 F, L =  1 H, R x =  3 O, R2 =  1 H
(c) C =  0.125 F, L = 0.5 =  =
Plot the output for these three cases on the same axis.

v m

_L
10 15 t (s)

C  =4= v0(t)

vQ(f), across resistor, R2. The input is the pulse signal specified 
graphically by the plot. Use PSpice to plot the output, vQ(f), as 
a function of t for each of the following cases:

(a) C =  1 F, L =  0.25 H, R x = R2 = 1.309 O
(b )  C =  1 F, L =  1 H, R x =  3 n ,  R2 =  1 O
(c) C =  0.125 F, L =  0.5 H j ,  =  i a j 2 =  4 f i  

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

u,(V)

5

Figure SP 9-1

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

SP 9-2 The input to the circuit shown in Figure SP 9-2 is the 
voltage of the voltage source, Vj(/). The output is the voltage,

Figure SP 9-2

SP 9-3 Determine and plot the capacitor voltage v(f) for 0 < / 
< 300 /is for the circuit shown in Figure SP 9-3a. The sources 
are pulses as shown in Figures SP 9-3/),c.
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0.2 A 5 V

vg

100 200 
tins)

(b)

100 200 
tins)

(c)

SP 9-4 Determine and plot v(/) for the circuit of Figure 
SP 9-4 when vs(0 =  5u(t) V. Plot v(/) for 0 < / < 0.25 s.

3 kQ
----- W V

»sw Q )

Figure SP 9-4

Figure SP 9-3 (a) Circuit, (b) current pulse, and (c) voltage 
pulse.

6 kQ
i— t— V A — i

> 2 k O  > 3 k Q

v(t) 2 nF :3 / iF

Design Problems
DP 9-1 Design the circuit shown in Figure DP 9-1 so that

vc(t) = ^ + A\e~2t + A2e~4t V for t >  0

Determine the values of the unspecified constants, A \  and A 2.

Hint: The circuit is overdamped, and the natural frequencies 
are 2 and 4 rad/sec.

iL(t) L
—Y vV

vs(t) = u{t) (
+

v M )

DP 9-4 Show that the circuit shown in Figure DP 9-1 cannot be 
designed so that

vc(f) =  0.5 +  e~2t(A\ cos4r + A2 sin4r) V for t > 0

Hint: Show that such a design would require 1 /RC  +  10/?C =  
4 where R = R\ = R2. Next, show that 1 /RC + 10RC = 4 
would require the value of RC to be complex.

DP 9-5 Design the circuit shown in Figure DP 9-5 so that

1
V  for / > 0

Determine the values of the unspecified constants, A \  and A 2.

v o ( 0  = 2 + A l  e  + A ^ e

Figure DP 9-1

DP 9-2 Design the circuit shown in Figure DP 9-1 so that

vc(<) = ^  +  (/li + A 2t)e~2' V for / >  0

Determine the values of the unspecified constants, A} and A2.
Hint: The circuit is critically damped, and the natural fre­
quencies are both 2 rad/sec.

DP 9-3 Design the circuit shown in Figure DP 9-1 so that 

vc(0  =  0.8 +  e~2t(A i cos 41 +  A2 sin 4/) V for t >  0 

Determine the values of the unspecified constants, At and A2.
Hint: The circuit is underdamped, the damped resonant 
frequency is 4 rad/sec, and the damping coefficient is 2.

Hint: The circuit is overdamped, and the natural frequencies 
are 2 and 4 rad/sec.

DP 9-6 Design the circuit shown in Figure DP 9-5 so that
3

v°(/) =  -  +  (/*! + A 2t)e~2t V for t > 0

Determine the values of the unspecified constants, A \  and A 2.

Hint: The circuit is critically damped, and the natural fre­
quencies are both 2 rad/sec.
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DP 9-7 Design the circuit shown in Figure DP 9-5 so that 

vc(/) =  0.2 4 * e~2t(A i cos 4t 4 - A 2 sin 4t) V for t >  0 

Determine the values of the unspecified constants, A x and A2.

Hint: The circuit is underdamped, the damped resonant 
frequency is 4 rad/sec, and the damping coefficient is 2.

DP 9-8 Show that the circuit shown in Figure DP 9-5 cannot be 
designed so that

vc(/) =  0.5 4 - e~2t(A \ cos 41 4- A 2 sin 4 t) V for t >  0

Hint: Show that such a design would require 1 /RC  4 - 10 RC =
4 where R — R x = R2. Next, show that 1 jRC  4 - 10 RC =  4
would require the value of RC to be complex.

DP 9-9 A fluorescent light uses cathodes (coiled tungsten 
filaments coated with an electron-emitting substance) at each 
end that send current through mercury vapors sealed in the tube. 
Ultraviolet radiation is produced as electrons from the cathodes 
knock mercury electrons out of their natural orbits. Some of the 
displaced electrons settle back into orbit, throwing off the
excess energy absorbed in the collision. Almost all of this

energy is in the form of ultraviolet radiation. The ultraviolet 
rays, which are invisible, strike a phosphor coating on the inside 
of the tube. The rays energize the electrons in the phosphor 
atoms, and the atoms emit white light. The conversion of one 
kind of light into another is known as fluorescence.

One form of a fluorescent lamp is represented by the RLC 
circuit shown in Figure DP 9-9. Select L so that the current i(t) 
reaches a maximum at approximately / =  0.5 s. Determine the 
maximum value of i(t). Assume that the switch was in position 1 
for a long time before switching to position 2 at t =  0 .

Hint: Use PSpice to plot the response for several values of L.

1 2 L

1 0 V ( T )  < 4 £ 2
T  =T= »/3F <

Figure DP 9-9 Flourescent lamp circuit.
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10.1 I N T R O D U C T I O N  ---------------------------------------------------------------------------

Consider the experiment illustrated in Figure 10.1-1. Here, a function generator provides the input to a 
linear circuit and the oscilloscope displays the output, or response, of the linear circuit. The linear 
circuit itself consists of resistors, capacitors, inductors, and perhaps dependent sources and/or op 
amps. The function generator allows us to choose from several types of input function. These input 
functions are called waveforms or waves. A typical function generator will provide square waves, 
pulse waves, triangular waves, and sinusoidal waves.

The output of the circuit will consist of tw o parts: a transient part that dies out as time increases 
and a steady-state part that persists. Typically, the transient part dies out quickly, perhaps in a couple 
of milliseconds. We expect that the oscilloscope in Figure 10.1-1 will display the steady-state response 
of the linear circuit to the input provided by the function generator.

Suppose we select a sinusoidal input. The function generator permits us to adjust the 
amplitude, phase angle, and frequency of the input. We notice that no matter what adjustments we 
make, the (steady-state) response is always a sine wave at the same frequency as the input. The 
amplitude and phase angle of the output differ from the input, but the frequency is always the 
same.

Suppose we select a square wave input. The steady-state response is not a square wave. 
Similarly, the steady-state responses to pulse waves and triangular waves do not have the same shape 
as the input.
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FIGURE 10.1-1
Measuring the input and 
output of a linear circuit.

Linear circuits with sinusoidal inputs that are at steady state are called ac circuits. The electric 
power system that provides us with convenient electricity is a very large ac circuit. AC circuits are the 
subject o f this chapter. In particular, we will see that:

• I t 's  useful to associate a com plex num ber with a sinusoid. D oing so allows us to define phasors 
and im pedances.

• Using phasors and im pedances, we obtain a new representation o f  the linear circuit, called the 
‘ ‘frequency-dom ain representation.’ ’

• We can analyze ac circuits in the frequency dom ain to determ ine their steady-state response.

10.2 S I N U S O I D A L  S O U R C E S  --------------------------------------------------------------

In electrical engineering, sinusoidal inputs are particularly im portant because pow er sources and 
com m unication signals are usually transm itted as sinusoids or m odified sinusoids. The input causes 
the forced response, and the natural response is caused by the internal dynam ics o f  the circuit. The 
natural response will norm ally decay after some period o f tim e, but the forced, or steady state,
response continues indefinitely. Therefore, in this chapter, we are interested prim arily in the steady-
state response o f a circuit to the sinusoidal input.

We consider the input
vs =  F m sin cot ( 1 0 .2 - 1)

or, in the case o f a current source,
i*5 =  I m sin cot ( 1 0 .2 -2 )

The amplitude o f the sinusoid is Fm, and the radian frequency is &>(rad/s). The sinusoid is a 
periodic function  defined by the property

*(/ +  r ) = * ( 0

for all t and where T is the period o f oscillation.
The reciprocal o f T  defines the frequency  or number o f cycles per second, denoted by f  where

The frequency / i s  in cycles per second, more commonly referred to as hertz (Hz) in honor o f the 
scientist Heinrich Hertz, shown in Figure 10.2-1 .Therefore, the angular (radian) frequency o f the 
sinusoidal function is

i  r  llTa) =  In f =  —
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FIGURE 10.2-1 Heinrich R. Hertz (1857-1894). 
Courtesy of the Institution of Electrical Engineers.

FIGURE 10.2-2 Sinusoidal voltage source 
vs = Vmsm(a>t + <l>).

The angular frequency co is in radians per second.
For the voltage source of Eq. 10.2-1, the maximum value is Vm. If the sinusoidal voltage has an 

associated phase angle (p, the voltage source is
vs =  Vm sin (cot -I- 4>) (10.2-3)

The sinusoidal voltage of Eq. 10.2-3 is represented by Figure 10.2-2.
Because, conventionally, the angle 0 may be expressed in degrees, you will encounter the 

notation
vs =  y m sin (4/ +  30°)

or, alternatively,

=  Vm sinin(4' + ! )
where the angle (f> is expressed in radians. This angular inconsistency will not deter us as long as we 
recognize that in the actual calculation of sin 0, 0 must be in degrees or radians as our calculator 
requires.

In addition, it is worth noting that
Vm sin (cot +  30°) =  Vm cos (cot -  60°)

This relationship can be deduced using the trigonometric formulas summarized in Appendix C.
If a circuit has a voltage across an element as

v =  Vm sin cot
and a current flows through the element

i =  I m sin (cot +  <p)

we have the v and the i shown in Figure 10.2-3. We say that the current 
leads the voltage by </> radians. Examining Figure 10.2-3, we note that 
the current reaches its peak value before the voltage and thus is said to 
lead the voltage. Alternately, we could say that voltage lags the current 
by (p radians.

Consider a sine waveform with

v =  2sin(3f +  20°) V

and the associated current waveform

i = 4  sin (3/ ~  10°) A

Clearly, the voltage v leads the current i by 30°, or 7r/ 6  radians.
FIGURE 10.2-3 Voltage and current of a circuit 
element.
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E x a m p l e  1 0 . 2 - 1  P h a se  A n g le s
\ ____________________________________________

The voltage across an element is v =  3cos3fV , and the associated current through the element is 
/ =  —2 sin(3f +  10°) A. Determine the phase relationship between the voltage and current.

Solution
First, we need to convert the current to a cosine form with a positive magnitude so that it can be contrasted with the 
voltage. To determine a phase relationship, it is necessary to express both waveforms in a consistent form. 

Because — sinatf =  sin {cot 4- n), we have

i =  2 sin (3/ -j- 180° -I- 10°) A

Also, we note that

sin# =  cos (# — 90°)

Therefore, / =  2 cos (3/ +  180° +  10° -  90°) =  2 cos (31 +  100°) A

Recall that v =  3 cos 31. Therefore, the current leads the voltage by 100°.

The sinusoidal function C cos {cot — 0) can also be represented as A cos cot + B sin cot. Occa­
sionally, we will need to convert from one representation to the other. To see how this is accomplished, 
consider a voltage

v{t) == A cos cot B sin cot (10.2-4)
Equation 10.2-4 may also be written as

v(o =  v ^ + i 2 ! — = £ =  =  cos cot H-----........ . sin cot )
\ V A 2 + B 2 yjA2 + B 2 J

Consider the triangle shown in Figure 10.2-4a, which illustrates the situation when A > 0, and note 
that

. . B „ A sin 0 B
sin 0 = — , cos 0 = —/  ....... , and tan 0 = ------- =  —

v /a t 7 ¥  cos# a

Then we have for v(t)

v{t) = C( cos 0 cos c o t sin# sin cot) (10.2-5)

where C =  \JA2 +  B2. Also, comparing Eqs. 10.2-4 and 10.2-5, we see that A = Ceos# and
B = C sin#. Finally, using a formula from Appendix C, we write Eq. 10.2-5 as

v{t) =  C cos {cot — 0) (10.2-6)

FIGURE 10.2-4 Triangles used to derive Equation 10.2-7 when (a) A > 0 and (b)A < 0.
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Figure 10.2-46 illustrates the situation when A < 0. This case is similar to the previous case except 
now the phase angle is calculated as

e =  180° -4>=  180° -  tan

In summary.
A cos cot + B sin cot — C cos (cot -  0)

where

and

C =  V a 2 +  B \  a  =  C cos9, B =  Cs'mO

when A > 0
\A J

0 = ( B \
180° +  tan I -  ) when A < 0

/

(10.2-7)

E x a m p l e  1 0 . 2 - 2  M a g n itu d e  and  P h ase  A n g le

A current has the form i = - 6  cos I t  +  8 sin 21. Find the current restated 
in the form of Eq. 10.2-6.

Solution
The triangle for A and B is shown in Figure 10.2-5. Because the coefficient 
A is equal to —6 and B is + 8 , we have the angle 9 shown. Therefore,

9 =  180° +  tan' 1 180° -5 3 .1 °  =  126.9°

.Hence, i =  10 cos (21 -  126.9°)
FIGURE 10.2-5 The A-B triangle for 
Example 10.2-2.

Next, consider the problem of obtaining an analytic 
representation, A cos (cot + 9), of a sinusoid that is given 
graphically. This problem is frequently encountered by 
engineers and engineering students in the laboratory. Fre­
quently, an engineer will see a sinusoidal voltage displayed 
on an oscilloscope and need to represent that voltage using an 
equation. The analytic representation of the sinusoid is 
obtained in three steps. The first two are straightforward. 
The third requires some attention. The procedure is illus­
trated in Figure 10.2-6, which shows two sinusoidal voltages.

1. Measure the amplitude, A. The location of the time axis may 
not be obvious when the sinusoidal voltage is displayed on 
an oscilloscope, so it may be more convenient to measure 
the peak-to-peak amplitude, 2A, as shown in Figure 10.2-6.

2 . Measure the period, T, in s and calculate the frequency, 
co =  2jz/  7, in rad/s. FIGURE 10.2-6 Two sinusoids having the same amplitude 

and penod but different phase angles.
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3. Pick a tim e and m easure the voltage at that tim e. For exam ple, / =  t \  =  0.15 s at the point 
m arked in Figure 10.2-6. N otice that v i(^ )  =  v2 (fi) =  10.6066 V, but v x( t \ )  and v 2( t \ )  are 
c learly  not the sam e sinusoid. The additional inform ation needed to d istinguish  these 
two sinusoids is that is increasing (positive slope) at tim e t x, w hereas v 2( t )  is
decreasing (negative slope) at tim e t x. Finally , calcu late  the phase angle, 9 , o f  a sinusoidal 
voltage v(/) as

cos - l coti when v(f) is increasing at time t\

cos -i I 'S t{A \ _  Q)t l when v(/) is decreasing at time t\

E x a m p l e  1 0 . 2 - 3  G ra p h ic a l  an d  A n a ly tic  R e p r e s e n ta t io n
o f  S in u s o id s

___________________________________________________________________________ 4

Determine the analytic representations o f the sinusoidal voltages v x(t) and v2(i) shown in Figure 10.2-6.

Solution
Both vi(t) and v2(t) have the same amplitude and period:

2A =  30 =» 4̂ =  15 V

and T  =  0.2 s => co — —  =  \0 n  rad/s
0.2

As noted earlier, v i(/i)  — V2 (*i) =  10.6066 V a t t\ =  0.15 s. Because v^f) is increasing (positive slope) at time t x, 
the phase angle, 0\, o f the sinusoidal voltage v x(t) is calculated as

-i { v ( ti A  , _ _i ( 10.60660X = - c o s ~ ] =  — cos — ) — (107r)(0.15) =  —5.4 9 8 rad =  —315° =  45°

(Notice that the units o f cotx are radians, so cos _1 ( —■--- ■ ) must also be calculated in radians so that we can do the
subtraction.) Finally, v x(t) is represented as v

v x(t) =  15 cos (10777 +  45°) V

Next, because v2(t) is decreasing (negative slope) at time t x, the phase angle, 02, o f the sinusoidal voltage v2(0  is 
calculated as

0 2 =  c o s  — * ( r- ~ - \  — coti =  c o s " 1 ^ 1 0 ^ ) 6 6 j  _  (10tt)(0.15) =  - 3 . 9 2 7 rad =  - 2 2 5 °  =  135°---------

Finally, v2(t) is represented as

v2(0  -  15 cos ( 1 0 ^ -h 135°) V

EXERCISE 10.2- 1 A voltage is v =  6  cos(4/ -j- 30°). (a) Find the period o f oscillation, (b) State 
the phase relation to the associated current i =  8cos(4 / — 70°).

Answers: (a) T =  27r/4

(b) The voltage leads the current by 100°.
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EXERCISE 10.2-2 A voltage is V = 3 cos 4r + 4 sin 41. Find the voltage in the form of Eq. 10.2-6 . 

Answer: v =  5 cos(4/ -  53°) V

EXERCISE 10.2-3 A current is i =  12 sin 5/ -  5 cos 5/. Find the current in the form of Eq. 
10.2-6 .

Answer: i =  13 cos(15/ -  112.6°) A

10.3 S T E A D Y - S T A T E  R E S P O N S E  OF AN RL C I R C U I T  FOR A 
S I N U S O I D A L  F O R C I N G  F U N C T I O N

As an example of the task of determining the steady-state response of a linear circuit to a 
sinusoidal input, consider the RL circuit shown in Figure 10.3-1. The input to this circuit is the 
voltage of the voltage source

vt (0 =  Vm cos cot
The response of this circuit is the current i. This response will be of the form

i = in +  if =  Ke~tlx +  7m cos (cot +  cp)
The values of the real constants K, r, 7m, and 0 are yet to be determined. Also, the value of K  
depends on the initial condition i(0 ).

A st  —> oo, Ke~^x —> 0 and i —► if = 7m cos cot
In other words, as time proceeds, the term Ke~^T dies out, leaving the term 7m cos cot. For this reason, 
if =  7m cos cot is called the steady-state response. We expect that the steady-state response of a linear 
circuit to a sinusoidal input will itself be sinusoidal and will have the same frequency, co, as the input. 

The governing differential equation of the RL circuit is given by
di

10.3-1 An RL

L — -h Ri — Vm cos cot 
dt (10.3-1)

Following the method of the previous chapter, we assume that
if =  A cos cot +  B sin cot (10.3-2)

At this point, because we are solving only for the forced response, we drop the subscript f  notation. 
Substituting the assumed solution of Eq. 10.3-2 into the differential equation and completing the 
derivative, we have

L(—coA sin cot +  co B cos cot) +  R(A cos cot + B sin cot) = Vm cos cot 
Equating the coefficients of cos cot, we obtain

coLB + RA = Vm 
Next, equating the coefficients of sin cot, we obtain

—co LA -j- RB — 0
Solving for A and B, we have

RVm

and

A =

5  =

R2 4- a?L2 
uLVm 

R2 +  c£L2
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The response to the sinusoidal input is then
i =  A cos cot -f- B sin cot 

y
i =  cos (cot -  ft)or

where

and

z  =  \ /T2 T u tL 2

- l coL
~R

/ m =

Thus, the forced (steady-state) response is o f  the form

i — I m cos (cot + <t>)
Vm

Z

<t> = ~ P

In this case, we have found only the steady-state response o f  a circuit with one energy storage 
elem ent. C learly, this approach can be quite com plicated if  the circuit has several storage 
elem ents.

where

and

FIGURE E 10.3-1

EXERCISE 10.3-1 Find the forced response v for the R C  circuit shown in Figure E 10.3-1 
when is =  I m cos cot.

Answ er: v =  (R Im/ P ) cos (cot — 0) and P  — \J  1 +  co2R2C2, 0 =  tan l (coRC)

EXERCISE 10.3-2 Find the forced response i(t) for the RL circuit o f Figure 10.3-1 when 
R = 2CL, L =  1H , and vs =  1 0 co s3 fV .

A nsw er: i =  2.77 cos(31 — 56.3°) A

10.4 C O M P L E X  E X P O N E N T I A L  F O R C I N G  F U N C T I O N

Upon reviewing the preceding section, we see that the input to the circuit in Figure 10.3-1 was o f  the 
form

vs =  Vm cos cot

and the steady-state response was

i =  cos (cot — P)

Thus, the steady-state response to a sinusoidal input is also sinusoidal and has the same frequency as the 
input but has a different amplitude and phase angle than the original voltage source.

It is useful to consider the exponential signal

v me**  (10.4-1)

Using Euler’s equation, we can relate the exponential signal to a sinusoidal signal

vs =  Vm cos cot = R e {V me JCO'}  =  Re{v^}

The notation Re{a +  jb }  is read as the real part o f the complex number (a +  j b ). For example,

Re{a +  jb }  =  a
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Let us try the exponential source v, of Eq. 10.4-1 with the differential equation of the RL circuit 
show'll in Figure 10.4-1

L ^  + Rie = Ve (10.4-2)
dt
where i ,  is the response to the exponential input. Because the source is an exponential, we try fig u r e  10.4-1 

the solution
ie = A e ^  (10.4-3)

and substitute into Eq. 10.4-2 to obtain
{fo>L + R)Ae** = Vmej(°t

Complex Exponential Forcing Function

Hence,

where

and

Therefore, substituting for A , we have

A = —  =
R +  jcoL Z

-l coL

Z =  \ /W + u ? L 2

ie = (10.4-4)

Again, noting that the original forcing function was

vs = Re{VmeJ(°‘} = Vm cos cot

we expect that

i =  Re{«,} =  Re |  ~  e~JPeJai' j

Accordingly,

i =  V- f  Re { e - » e * * }  =  - y  R e { e ^ > }  =  ^  cos (cot -  0) 

In general, we are finding the sinusoidal response

i =  / m cos (cot -  0) =  Re |
cos 31

to the sinusoidal excitation

vs =  Vm cos cot = Kc{Vmejtot}

We have learned that this response is readily obtained by using the complex exponential excitation, 
R e{Vme**}.

As an example, let us find the steady-state response for the RLC circuit shown in Figure 10.4-2. 
This circuit is represented by the differential equation

f f i

d2i di
-rr  +  — + 12/ =  12 cos 3/ dt2 dt

ViaH

1 F

H (-
(10.4-5) FIGURE 10.4-2

Note'. See Appendix B for a review of complex numbers.
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First, replace the real excitation by the complex exponential excitation

ve =  \2ej3t

Then we have Eq. 10.4-5 restated as

~  + ^ + n  i e = 12e^' (10.4-6)
d t 2 d t

We expect the response to the exponential input to be of the form

ie = A e fll (10.4-7)

The first and second derivatives of the ie of Eq. 10.4-7 are

^  =  f lA e j3' 
d t

and

^ = - 9
dt2

Substituting into Eq. 10.4-6, we have

( - 9  +  f l  +  12 )Aefl ' =  I2ej3' (10.4-8)

Solving for A, we obtain

12 _  12(3 —f l )  _ 1 2 ( 3 - /3 ) _
3 + f l  (3 + /3 )(3  —f l )  18 V Z-------

Therefore, ie = Aefll = =  2V2ej{i,~’t/4)

Recall that Euler’s identity is = cos </> +  j  sin <j>. Thus, the desired answer for the steady-state 
current is2

*(/) =  Re{4} =  Re{2v/2ey(3'_,r/4)} =  2v/2cos (3/ -  45°)

Note that we have changed from n /4  radians to 45°, which are interchangeable and equivalent. 
Both degree and radian notation are acceptable and interchangeable.

Compare Eqs. 10.4-6 and 10.4-7. Eq. 10.4-6 is a differential equation, which is what we expect 
for the equation representing a circuit that contains capacitors or inductors. In contrast, Eq. 10.4-8 is an 
algebraic equation, involving addition and multiplication but not integration or differentiation. The 
coefficients o f Eq. 10.4-8 are complex numbers whereas the coefficients o f  Eq. 10.4-6 are real 
numbers. Algebraic equations are easier to solve than differential equations, so we prefer to solve Eq. 
10.4-8, even though it contains complex coefficients.

We have developed a straightforward method for determining the steady-state response o f a 
circuit to a sinusoidal excitation. The process is as follows: (1) Instead o f applying the actual forcing 
function, we apply a complex exponential forcing function, and (2 ) we then obtain the complex 
response whose real part is the desired response. The process is summarized in Table 10.4-1. Let us use 
this process in another example.

2 See Appendix B for a discussion of Euler’s equation.
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Table 10 4-1 Use of the Complex Exponential Excitation to Determine a Circuit's 
Steady-State Response to a Sinusoidal Source

1. Write the excitation (forcing function) as a cosine waveform with a phase angle so that>>g =  Ym cos(a>t +  <p), where ys is a 
source current, is, or a source voltage, vs, in the circuit.

2. Recall Euler’s identity, which is

e^a =  cos a + j  sin a

where a — cut + (p m this case.
3. Introduce the complex excitation so that for a voltage source, for example, we have

VS =  Re{ K meJtat+*^}

where Vmej(a*+*] is a complex exponential excitation.
4. Use the complex excitation and the differential equation along with the assumed response xe =  where A is to be

determined. Note that A will normally be a complex quantity.
5. Determine the constant A =  so that

Xe _ Aej(<*+<P) — fieJ(ut+4-P)
6. Recognize that the desired response is

x(t) — Re{xe} =  B cos {cot +  0  -  fl)

E x a m p l e  1 0 . 4 - 1  R e sp o n se  o f  an AC C irc u i t  

Find the steady-state response / of the RL circuit of Figure 10.4-1 when R =  2 0 , L =  1 H, and vs =  10 sin 3/ V.

Solution
First, we will rewrite the voltage source so that it is expressed as a cosine waveform as follows:

vs =  10 sin 31 = 10 cos (3t -  90°)
Using the complex excitation, we have

v* =  10 e^3'" 900)
Introduce the complex excitation into the circuit’s differential equation, which is

L - j -  + Rie =  ve dt

obtaining —  + 2 /* =  10 ej{3t- 90°)
dt

Assume that the response is

ie = AeJ(i'~90°) (10.4-9)
where A  is a complex quantity to be determined. Substituting the assumed solution, Eq. 10.4-9, into the 
differential equation and taking the derivative, we have

f l A e ' { i ' ~ ‘m ' ) +  2 A e ^ - w )  =  \ Q e J { l ' ~ W )

Therefore, f l A  + 2 A = \ Q

or . 10 10
A = ------- = ---------- 0-Jp

J3 +  2 V 9 T 4
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where « =  tan-> I  =  56.3°
2

Then the solution is

,• _  ^7(3-90") _  ^ _
V B  y /U

i =  A eA3,~90°) =  e --'56 3°eJ(}‘- 90°) =  eA3'-<46}°)

Consequently, the actual response is

i(f) =  Re{/e} =  -12= cos (3* -  146.3°) A 
V 13

Steinmetz observed the process we just used and decided to formulate a method for solving the 
sinusoidal steady-state response o f  circuits using, complex num ber notation. The development o f  this 
approach is the subject o f  the next section.

EXERCISE 10.4-1 Find a and b when

10
a -I- jb

A nsw ers: a — 3 and b =  — 3

=  2 .36e '45

EXERCISE 10.4-2 Find A and 0 when

[a / o] ( - 3 + JS) = fS 2

Answ ers: A =  3.75 and 0 =  —20.56°

10.5 T H E  P H A S O R  -----------------------------------------------------------------------------------

A sinusoidal current or voltage at a given frequency is characterized by its amplitude and phase angle. 
For example, the current response in the RL circuit considered in Example 10.4-1 was

i(f) -  Re{/me'<"'+*-«} -  / m cos (u t  + <j> -  ft)

The magnitude 7m and the phase angle (0  — /?), along with knowledge o f  oo, completely specify the 
response. Thus, we may write i(t) as

/(/) =  R e{ /m<? '(* - * V “"}

However, we note that the complex factor eja}t remained unchanged throughout all our previous 
calculations. Thus, the information we seek is represented by

I =  I meA+-t> =  I n /4 > - P  (10.5-1)

where I is called a phasor. A phasor is a complex number that represents the magnitude and phase o f a 
sinusoid. The term phasor is used instead o f vector because the angle is time based rather than space 
based. A phasor may be written in exponential form, polar form, or rectangular form.

Phasors may be used when the circuit is linear, the steady-state response is sought, and all
independent sources are sinusoidal and have the same frequency.
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A real sinusoidal current, where 0 — (</> — /?), is written as
i(t) =  /m  COS (cttf - f  0 )

It can be represented by
/ ( f )  =  K t { l mej{ol,+e)}

We then decide to drop the notation Re and the redundant ei<J* to obtain the phasor representation

I = I meje =  I m Id

This abbreviated representation is the phasor notation. Phasor quantities are complex and thus are 
printed in boldface in this book. You may choose to use the underline notation as follows:

Although we have dropped or suppressed the complex frequency e /a>t, we continue to note that we are 
in the complex frequency form and are performing calculations in the frequency domain. We have 
transformed the problem from the time domain to the frequency domain by the use of phasor notation. 
A transform is a means of encoding to simplify a calculation process. One example of a mathematical 
transform is the logarithmic transform.

A transform is a change in the mathematical description of a physical variable to facilitate 
computation.

The actual steps involved in transforming a function in the time domain to the frequency domain 
are summarized in Table 10.5-1. Because it is easy to move through these steps, we usually jump 
directly from step 1 to step 4.

For example, let us determine the phasor notation for
i =  5sin(100f+  120°)

We have chosen to use cosine functions as the standard for phasor notation. Thus, we express the 
current as a cosine waveform:

i = 5 cos (100/+ 30°)
At this point, it is easy to see that the information we require is the amplitude and the phase. Thus, the 
phasor is

1 =  5 /30°
Of course, the reverse process from phasor notation to time notation is exactly the reverse of the steps required 
to go from the time to the phasor notation. Thus, if we have a voltage in phasor notation:

V =  24 /125°
the time-domain notation is

v(f) =  24 cos (cot +  125°)

Transformation from the Time Domain to the Frequency Domain

1. Write the function in the time domain, y(t), as a cosine waveform with a phase angle <p as
y(t) a  Ym cos (aft + <p)

2. Express the cosine waveform as the real part of a complex quantity by using Euler’s identity so that

y{t) m  Rc{Yme«**^}
3. Drop the real part notation.
4. Suppress the e ' while noting the value of a> for later use, obtaining the phasor

Y = Y ne» = Ym/+



Transformation from the Frequency Domain to the Time Domain

1. Write the phasor in exponential form as
Y = Y m e #

2. Reinsert the factor eJwt so that you have

3. Reinsert the real part operator Re as
Re

4. Use Euler's identity to obtain the time function
y ( t )  =  Re{ =  Y m  cos ( a *  +  fi)

^ 4 2 8 ^ - —  S in u s o id a l  S te a d y -S ta te  A n a ly s is

where the frequency co was noted in the original statement o f  the circuit formulation. This 
transformation from the frequency domain to the time domain is summarized in Table 10.5-2.

FIGURE 10.5-1

A phasor is a transform ed version o f  a sinusoidal voltage or current waveform  and 
consists o f  the m agnitude and phase angle information o f  the sinusoid.

The phasor m ethod uses the transform ation  from  the tim e dom ain to the frequency 
dom ain to obtain m ore easily  the sinusoidal steady-state  solu tion  o f  the d ifferen tial 

L equation. C onsider the RL  c ircu it o f  F igure 10.5-1. W e w ish to find the solu tion  for the 
steady-state current i w hen the voltage source is vs =  Vm coscot V and co — 1 0 0 rad/s. 

Also, for this circuit, let R =  200 H  and L =  2 H. Then we may write the differential
RL circuit. equation as

L ^  +  Ri =  vs (10.5-2)
a t

Because vs =  Vm cos (cot + <p) = Re{Kme***>} (10.5-3)

we will use the assumed solution

/ =  Im cos (cot + p) = Re { ImeJ(a),+fi)} (10.5-4)

Therefore, we may substitute Eqs. 10.5-3 and 10.5-4 into Eq. 10.5-2 and suppress the Re notation to 
obtain

(jcoLIm +  R Im)ej{to,+0) =  VmeJ{a,+V

Suppress the e 7" ' to obtain

{jcoL + R )Ime »  = V me »

Now we recognize the phasors

I -

and Vs =

Therefore, in phasor notation, we have

(jcoL + R) I =  V s

Solving for I, we have

V, V,
1 =

jcoL -j- R j 200 4" 200
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for a) = 100, L =  2, and R = 200. Therefore, because

y s = y m/ o i
we have

I =   ̂ /_45°
283 /45° 283

Using the method of Table 10.5-2, we may transform this result back to the time domain to obtain the 
steady-state time solution as

«'(')= 008 OOOf-45°) A

It is clear that we can use phasors directly to obtain a linear algebraic equation expressed in 
terms of the phasors and complex numbers and then solve for the phasor variable of interest. After 
obtaining the phasor we desire, we simply transform it back to the time domain to obtain the 
steady-state solution.

E x a m p l e  1 0 . 5 - 1  A n a ly s is  o f  AC C irc u i ts  U s in g  P h a so rs  J -

Find the steady-state voltage v for the RC circuit shown in Figure 10.5-2 
when / =  10 coscot A, R = 1 fl, C =  10 mF, and co = 100 rad/s. / = 10 cos cot A ( V

Solution
. £• i i i . FIGl RE 10.5-2 An/?C circuit withFirst, we nnd the phasor representation of the source current as . , ,a sinusoidal current source.

l = I m/ o i =  10 Zo! (10.5-5)
We seek to find the voltage v by first obtaining the phasor V.

Write the node voltage differential equation for the circuit to obtain
v dv
Z  +  C j ' - i  ( 1 0 . 5 - 6 )

Because j =  10Re{ey""}

and v =  FmRe{ey(a"+ >̂}

we substitute into Eq. 10.5-6 and suppress the Re notation to obtain

V,

We now suppress the ejwt and obtain

Q + > c ) Vme »  = 10ey0

Recalling the phasor representation of Eq. 10.5-5, we have 

Because R — 1, C =  10 2, and to =  100, we have

(i +yi)v = i
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or V =
i + y i

Therefore, V =  — ^ / - 4 5 °
n/2 /4 5 0 V 2

Transforming from the phasor notation back to the steady-state tim e solution, we have

v — ” 7^ cos (100/ 45°) V
s f i

EXERCISE 10.5-1 Express the current z as a phasor.
(a) i =  4 cos (cot — 80°) (b) i =  10 cos (cot +  20°) (c) i =  8 sin (cot -  20°)

Answers: (a) 4 / —80°

(b) 10 7+20°
(c) 8 / - 1 10°

EXERCISE 10.5-2 Find the steady-state voltage v represented by the phasor 
(a) V =  10 7-140° ( b ) V  =  8 0+ /75

Answers: (a) v =  10 cos (cot — 140°)

(b) 109.7 cos (cot +  43.2°)

: Ri

(a)

V = R\

10.6 P H A S O R  R E L A T I O N S H I P S  FOR R, L, 
A N D  ^ E L E M E N T S  --------------------------------

(b)
FIGURE 10.6-1
(a) The v-i time-domain 
relationship for R.
(b) The frequency- 
domain relationship
for R.

In the preceding section, we found that the phasor representation is actually a transformation 
from the time domain into the frequency domain. With this transform, we have converted the 
solution o f a differential equation into the solution o f an algebraic equation.

In this section, we determine the relationship between the phasor voltage and the 
phasor current o f the elements: R , L, and C. We use the transform ation from the time to the 
frequency domain and then solve for the phasor relationship for a specified element. We are 
using the method o f Tables 10.5-1 and 10.5-2 as recorded in the last section.

Let us begin with the resistor, as shown in Figure 10.6-la . The voltage—current 
relationship in the time domain is

v = Ri

Now consider the steady-state voltage

v =  Vm cos (cot +  </>)

Then

V =  Re{Kme 

Assume that the current is o f the form

( 10.6- 1)

}

-  R e{ /n j{a»t+P)  1

(10.6-2)

(10.6-3)



Then substitute Eqs. 10.6-2 and 10.6-3 into Eq. 10.6-1 and suppress the Re notation to obtain

y m e H ° » + * )  =  r  I m e j { u , , + P )

Suppress ei<0‘ to obtain

VmeJ* =  R ImeJfi

Therefore, we note that p = <p, and
\  = Rl (10.6-4)

Because P =  0, the current and voltage waveforms are in phase. This phasor relationship is shown in
Figure 10.6-16

For example, if the voltage across a resistor is v =  10 cos 1 Or, we know that the current will be
10/ =  — cos 101

in the time domain.
In the frequency domain, we first note that the voltage is

V  =  1 0 / o °

Then, using the phasor relationship of the resistor, Eq. 10.6-4, we have

V _  10 /o°
~  R ~  R

Then, obtaining the time-domain expression for I, we have

• 10i =  — cos 1 Or
A

Now, consider the inductor as shown in Figure 10.6-2a. The time-domain
voltage-current relationship is i i

Phasor Relationships for /?, L, and C Elements - ©

o-
di  + S

V =  I -  (10.6-5) di < i
dt v = Ldi i L v = y°>L

Again, we use the complex voltage as - r -  rO--------- 1 o--------- 1

v =  Re{^1B«-'(<u'+*)} (10.6-6) (a) (b)

and assume that the current is FIGURE 10.6-2 (a) The time-domain
v-/ relationship for an inductor. (b) The 

I _  Re|y m£./(atf+0) j  (10 6 7) frequency-domain relationship for an
m inductor.

Substituting Eqs. 10.6-6 and 10.6-5 into Eq. 10.6-5 and suppressing the Re notation, we have

VmeJ* e ^  = 4 { V ;V ?} 
at 3

Taking the derivative, we have

Vme » e Ja* =  ja>UmeJtt*eJfi 

Now suppressing the we have

=jcoLImejfi (10.6-8)
or

v  =yW ,I (10.6-9)
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This phasor relationship is shown in Figure 10.6-2b. Because j= e ji*' . Eq 10.6-8 can also be written as

Vme »  =  <oUmej W eif>

Therefore,
<j> = p  + W

Thus, the voltage leads the current by exactly 90c.
As an illustration, consider an inductor o f  2 H with =  100 ra d s  and with voltage 

v =  10 cos {(Dt +  50°) V. Then the phasor voltage is

v  =  10/50°
and the phasor current is

V

S in u s o id a l  S te a d y -S ta te  A n a ly s is

I =
j(x)L

Because coL =  200, we have

1 =
10/50° 

7 2 0 0  2 0 0 / 9 0
=  0.05 / —■40' A

Then the current expressed in the time domain is

1 =  0.05 cos (lOOr — 40°) A

Therefore, the current lags the voltage by 90c.
Finally, let us consider the case o f  the capacitor, as shown in 

Figure 10.6-3a. The current-voltage relationship is
1 = C dt o \ =jo)Ot

1
. = 4

d t
' jojC

( 10.6- 10)

( 1 0 .6 - 1 1 )

(a) (b )

FIGL RE 10.6-3 (a) The time-domain v-i 
relationship for a capacitor. (b ) The frequency - 
domain relationship for a capacitor.

We assume that the voltage is

V =  Vm cos (cot +  <t>) =  Re{

and the current is o f  the form

1 =  R } ( 1 0 .6 - 1 2 )

Suppress the Re notation in Eqs. 10.6-11 and 10.6-12 and substitute 
them into Eq. 10.6-10 to obtain

a t
Taking the derivative, we have

Suppressing the we obtain

or

I meJwleJP =  j c o C V n e ^ e *

I me jp =  jw C V me *

I =  jw C V (10.6-13)

This phasor relationship is shown in Figure 10.6-3&. Because j  =  e^90 . the current leads the 
voltage by 90 As an example, consider a voltage v =  100 cos (ot V and let us find the current when
a> =  1000 rad s and C  =  1 mF. Because

v  = 100/00
we have

I =  j<D C V =  ((oCe'90 )100e/ ‘ =  ( 1 ^ ) 1 0 0  =  lP o A o



Therefore, transforming this phasor into the time domain, we have

i =  100 cos (cot +  90°) A

We can rewrite Eq. 10.6-13 as

V =  — I (10.6-14)
jco C

Using this form, we summarize the phasor equations for sources and the resistor, inductor, and 
capacitor in Table 10.6-1, where the phasor voltage is expressed in its relationship to the phasor 
current.

Phasor Relationships for R, L, and CEIements — ©

T able 10.6 1 Time-Domain and Frequency-Domain Relationships

ELEMENT TIME DOMAIN FREQUENCY DOMAIN

Corrent Source Q j  i(t) = A cos {cot + 9) M j  l(<o) = Ae>6

Voltage source (  * )  v(t) = B cos (cot + <p) f f )  V(co) = Bej +
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EXERCISE 10.6-1 A current in an elem ent is / =  5 cos 100/ A. Find the steady-state voltage v 
(/) across the elem ent for (a) a resistor o f  10 f t , (b) an inductor L =  10 mH, and (c) a capacitor 
C  =  1 mF.

Answers: (a) 50 cos 100/ V

(b) 5cos(100/ +  90°) V

(c) 50 cos(100/ — 90°) V

EXERCISE 10.6-2 A capacitor C = 1 0 ^ F  has a steady-state voltage across it o f 
v — 100cos(500f +  30°) V. Find the steady-state current in the capacitor.

Answ er: i =  0.5 cos (500f — 120°) A

EXERCISE 10.6-3 The voltage v(/) and current i(t) for an elem ent are shown in Figure 
E 10.6-3. Determ ine w hether the elem ent is an inductor or a capacitor.

The relationships in the frequency domain for the phasor current and phasor voltage o f a capacitor, 
inductor, and resistor are summarized in Table 10.6-1. These relationships appear to be similar to 
O hm ’s law for resistors.

We will define the impedance o f an element as the ratio o f  the phasor voltage to the phasor 
current, which we denote by Z. Therefore,

n
a)

FIGURE E 10.6-3

10.7 I M P E D A N C E  A N D  A D M I T T A N C E

(10.7-1)

This is called O hm ’s law in phasor notation.
Because V =  Vm and I =  l m /j$ , we have

(10.7-2)
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Thus, the impedance is said to have a magnitude |Z| and a phase angle 9 — <p fi. Therefore,

Vm

and

\Z \= -

e = <t>-p

(10.7-3)

(10.7-4)

— ©

Impedance in ac circuits has a role similar to the role of resistance in dc circuits.

Also, because it is a ratio of volts to amperes, impedance has units of ohms. Impedance is the ratio of 
two phasors; however, it is not a phasor itself. Impedance is a complex number that relates one phasor 
V to the other phasor I as

V =  ZI (10.7-5)

The phasors V and I may be transformed to the time domain to yield the steady-state voltage or 
current, respectively. Impedance has no meaning in the time domain, however.

With the concept of impedance, we can solve for the behavior of sinusoidally excited circuits, 
using complex algebra in the same way we solved resistive circuits.

Because the impedance is a complex number, it may be written in several forms, as follows:

Z =  |Z| [o  —> polar form
=  Zeje —► exponential form (10.7-6)
=  R +  jX  —► rectangular form

where R is the real part and X  is the imaginary part of the complex number Z. We introduce the 
notation, in Eq. 10.7-6, |Z| =  Z. Thus, the magnitude of the impedance can be written as Z (not
boldface). The R = ReZ is called the resistive part of the impedance, and X  — ImZ is called the
reactive part of the impedance. Both R and X  are measured in ohms.

We also note that the magnitude of the impedance is

Z =  v V  + X 2 (10.7-7)
and the phase angle is

6 = tan-1 -
R (10.7-8)

Figure 10.7-1. As an example, let us consider
Z =  2 +j2  

Then, Z = V s

and 0 = 45°

in Im
>

! Z I / X
Reactance

s '  o \
R Re
Resistance

impedance that follows from their V-I relationship. For a resistor, we have FIGl RE ,0 -7- 1 Graphical representation
o f  i m p e d a n c e .

V =  /?I
and, therefore,

For the inductor, we have
Z = R (10.7-9)

V -  jcoLl
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and, therefore,

Z =  jcoL (10.7-10)

Finally, for the capacitor, we have

jcoC

so that

jcoC coC
(10.7-11)

The impedances for R , L , and C are used in Table 10.6-1 to represent resistors, inductors, and 
capacitors in the frequency domain. The unit for an impedance is ohms.

The reciprocal o f impedance is called the admittance and is denoted by Y :

Admittance is analogous to conductance for resistive circuits. The units o f  adm ittance are siemens,

Therefore, |Y| =  1/|Z | and the angle o f  Y is —0. We may also write the magnitude relation as
Y =  1 /Z .

Using the form

Note that G is not simply the reciprocal o f R , nor is B  the reciprocal o f  X. The real part o f 
admittance, G, is called the conductance , and the imaginary part, B, is called the susceptance. The 
units o f  G and B  are siemens.

The impedance o f  an element is Z =  R +  jX .  The element is inductive if  the reactive part X  is 
positive, capacitive \ fX is  negative. Because Y is the reciprocal o f  Z and Y =  G -f jB , one can also say 
that if B is positive, the element is capacitive and that a negative B  indicates an inductive element.

Let us consider the capacitor C  =  1 mF and find its impedance and admittance. The impedance 
o f a capacitor is

Z = j ^ c

Therefore, in addition to the value o f C =  1 mF, we need the frequency co. If we consider the case 
co =  100  rad/s, we obtain

(10.7-12)

abbreviated as S. Recalling from Eq. 10.7-6 that Z =  Z  [d ,  we have

(10.7-13)

Z = R + j X

we obtain

(10.7-14)

z  = -^- =  — = —io/= io 7 - 90° n
yo.i j

To find the admittance, we note that
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FIGURE E 10.7-1 A circuit represented (a) in the time domain and (b) in the frequency domain.

EXERCISE 10.7- 1 Figure E 10.7-la shows a circuit represented in the time domain. Figure 
10 .7 . \b shows the same circuit represented in the frequency domain, using phasors and impedances. 
ZR, Zc , ZLi, and ZL2 are the impedances corresponding to the resistor, capacitor, and two inductors 
in Figure 10.7-la. Vs is the phasor corresponding to the voltage of the voltage source. Determine 
Zr, Zc , ZLi, ZL2, and Vs.

Hint: 5 sin 5/ =  5 cos (5/ — 90°)

Answer: Z r  =  8  H ,  Z c  =  ■

ZL2 =  >5(4) =  j20  ft. and Vs =  5 7 -90° V

FIGURE E 10.7-2 A circuit represented (a) in the time domain and (6) in the frequency domain.

EXERCISE 10.7-2 Figure E 10.7-2c? shows a circuit represented in the time domain. Figure E
10.7-26 shows the same circuit represented in the frequency domain, using phasors and imped­
ances. ZR, Zc , ZLi, and ZL2 are the impedances corresponding to the resistor, capacitor, and two 
inductors in Figure E 10.7-2a. Is is the phasor corresponding to the current of the current source. 
Determine ZR, Zc , ZL1, ZL2, and Is.

Answer: ZR = 8 n, zc =

*(3 )
Z l2 =y3(4) — j  12 n , and Is =  4 / l5 °  A

1 4 / 4  _
=  ~j =  -7 4  n ,  ZLI =y3(2) = j6  a ,



10.8 K I R C H H O F F ' S  L A W S  U S I N G  P H A S O R S

438 J ------- S in u s o id a l  S te a d y -S ta te  A n a lys is

K irchhoff s current law and voltage law were considered earlier in the time domain. Consider the KVL 
around a closed path, which requires that

Vi V>2 4" V3 4- • • • 4- v„ =  0 (10.8-1)

For sinusoidal steady-state voltages, we may write the equation in terms o f cosine waveforms as

Vmi cos (cot +  0 \ ) +  Vm2 cos (cot +  #2) H--------t- Vmn cos (cot 4- 0n) — 0 (10.8-2)

All the information concerning each voltage v„ is incorporated in the magnitude and phase, V^  and 0n 
(assuming we keep note o f co, which is the same for each term). Equation 10.8-2 can be rewritten, using 
Euler’s identity, as

Re{Kmi +  • • • +  R e{F my (V ‘‘’'} -  0

or Re{ Vm e je' e Jw‘ +  • • • +  V =  0

We can factor out the ejwt to obtain

R e { (V mieJ9' +  • • • +  Vm„eJ0")eJW’} =  0  

W riting ej6p as Vp, we have

Re(Vj -f V 2 H--------b y n)eja)t} — 0

Because ej(Dt cannot equal zero, we require that

V 1 + V 2 +  --- +  Vll =  0 (10.8-3)

Therefore, we have the important result that the sum o f the phasor voltages in a closed path is 
zero. Thus,

K irchhoff s voltage law holds in the frequency domain with phasor voltages.

Using a similar process, one can show that

FIGURE 10.8-1 Impedances
in series.

K irchhoff s current law holds in the frequency domain for phasor currents.

so that at a node, we have

I, + 12 H--------b I* =  0 (10.8-4)

Because both the KVL and the KCL hold in the frequency domain, it is easy to conclude that all the 
techniques o f analysis we developed for resistive circuits hold for phasor currents and voltages. For 
example, we can use the principle o f superposition, source transformations, Thevenin and Norton 
equivalent circuits, and node voltage and mesh current analysis. All these methods apply as long as the
circuit is linear.

First, let us consider impedances connected in series, as shown in Figure 10.8-1. 
The phasor current I flows through each impedance. Applying KVL, we can write

V, +  V2 +  • • • +  V„ =  V

Because Vy =  ZyI, we have

(Zi +  Z 2 + ----- 1- Z „)I =  V

Therefore, the equivalent impedance seen at the input terminals is

Z e q  —  Z j\ -f" Z»2 4" * * +  Z jn (10.8-5)
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Thus, the equivalent impedance for a series o f impedances is the sum o f the +
individual impedances. V

Consider the set o f parallel admittances shown in Figure 10.8-2. It easily
can be shown that the equivalent admittance Yeq is o---- i:

i
*2

n _ „ :

Yeq = Y, + Y2 + • ■ • + Y„
FIGURE 10.8-2 Admittances in 

(10.8-6) parallel.

In the case o f two parallel admittances, we have

Y, + Y 2

and the corresponding equivalent impedance is

1 1 Z ,Z 2
(10.8-7)  

Cq Yeq Y ! + Y 2 Z , + Z 2

Similarly, the current divider and voltage divider rules hold for phasor currents and 
voltages. Table 10.8-1 summarizes the equations for voltage and current division in the frequency 
domain.

Table 10 8 Voltage and Current Division in the Frequency Domain

CIRCUIT EQUATIONS

Voltage division

Current division

Ii = h = I 
Z, .V, =

V2 =

Zi -I- z 2 
z 2 

Z, + z 2

V, = V2 = V

11 ” z, ■ 1: 1

E x a m p l e  1 0 . 8 - 1  A n a l y s i s  o f  A C  C ir c u i t s  U s in g  I m p e d a n c e s

Determine the steady-state current i(t) in the RLC circuit shown in Figure 10.8-3a, using phasors and impedances.

R= 9Q
-AAAt-

us(/)=100cosl00f V (T )
Hr)

C= 1 mF “  v,

- y w y \
L= 10 mH

(a)

~  CZHh
I Zi

h
— d >

( b )

1

FIGURE 10.8-3 The circuit from 
Example 10.8-1 represented (a) in 
the time domain and (b) in the 
frequency domain.
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Solution
First, we represent the circuit in using phasors and impedances as shown in Figure 10.8-36. Noticing that the 
frequency of the sinusoidal input in Figure 10.8-3a is co = 100 rad/s, the impedances in Figure 10.8-36 are 
determined to be

Z | = f l  =  , a Z!  =  _ L  / | [ | | n J n . - | -  J2  — y i o n

and Z3 = > i = y ( l0 0 ) ( 0 .0 0 1 ) = ; i n

The input phasor in Figure 10.8-36 is
v s = 100/00 V

Next, we use KVL in Figure 10.8-36 to obtain
Z, I  +  Z2I +  Z3I =  v s 

Substituting for the impedances and the input phasor gives

(9 — y'10 +  y l)I =  100 /p°

or

, _ i o o A _  ■o A „ 7 ,8 6 ^ ! a

9 ~ J 9 9n/2/ -4 5 °

Therefore, the steady-state current in the time domain is
/(f) =  7.86 cos (100/+  45°) A

E x a m p l e  1 0 . 8 - 2  V o lta g e  D iv is io n  
U s in g  Im p e d a n c e s

INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 10.8-4#. The input to the circuit is the voltage o f  the voltage source,

vs(0  =  7.28 cos ( 4 f +  77°) V 

The output is the voltage across the inductor, v0(t). Determine the steady-state output voltage, vo(0-

3 Q 3 Q

vAt) 7 .2 8 /7 7 °  V V0(o>)

(a) (b)

FIGURE 10.8-4 The circuit considered in 
Example 10.8-2 represented (a) in the time 
domain and (b) in the frequency domain.

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltage. The 
circuit has reached steady state. Consequently, the circuit in Figure 10.8-4# can be represented in the frequency 
domain, using phasors and impedances. Figure 10.8-46 shows the frequency-domain representation o f the circuit 
from Figure 10.8-4#. The impedance o f the inductor is jcoL — y(4)(0.54) =  y 2 .1 6 fl, as shown in Figure 10.8-46.
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Apply the voltage divider principle to the circuit in Figure 10.8-46 to represent the output voltage in the 
frequency domain as

V „ H  =  J—  ( -7 .2 8 /7 7 ° )  =  2 1 6 ^ ~  ( -7 .2 8 /7 7 !)
01 ' 3+/2.16V  ----- )  3 .7 0 /3 6 !V '

(2.16)(—7.28) ^ 1T  ̂_ 360
3.70 ^ ------------ ---------

=  -4.25 /l3 1 °  = 4 .2 5 /311°

In the time domain, the output voltage is represented as
vo(0 =  4.25 cos (4/ +  311°) V

E x a m p l e  1 0 . 8 - 3  AC Ci r c u i t  An a l y s i s £  INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 10.8-5<?. The input to the circuit is the voltage of the voltage source,

vs(f) =  7.68 cos (2t +  47°) V 

The output is the voltage across the resistor,

vo(0 =  1.59 cos (2 / + 125°) V 

Determine capacitance, C, of the capacitor.

I v0(t) vs(tt>) v > )
l( (O) FIGURE 10.8-5 The circuit considered in 

Example 10.8-3 represented (a) in the time
(b) domain and (b) in the frequency domain.

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltage. 
Apparently, the circuit has reached steady state. Consequently, the circuit in Figure 10.8-5^ can be represented in 
the frequency domain, using phasors and impedances. Figure 10.8-5& shows the frequency-domain representation 
of the circuit from Figure 10.8-5a. The impedance of the capacitor is

1 = J = __ J _ = __ J_
jcoC j 2coC (oC 2 C  

The phasors corresponding to the input and output sinusoids are

V s(tu) =  7.68/47° V
and

V 0(ft>) =  1.59/125° V 
The current I(<w) in Figure 10.8-5/) is given by

. V„(o>) 1.59/125° /I(w) =  _ i _ i  = ------£ = = *  1.59/125° A
1 l / 0!
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The capacitor voltage, Vc(a>), in Figure 10.8-56 is given by 

Vc(a>) =  Vs((u) — V0 (oj) =  7.68/45° -  1.59/l2 5 °  
=  (5.23 +  y5.62) -  (-0.91 +  1.30) 
=  (5.23 +  0.91) +7(5.62 -  1.30) 
=  6.14 +  y'4.32 
=  7.51 /35° 

The impedance of the capacitor is given by

_ , - L  =  V ^ ) = 7 . 5 l ^ : = 4 7 , / - W

2 C I(ct>) 1,59 /125°

Solving for C gives

C =
-90°

2^4.72 / —90°) 2 (4 .72 / - 9 0 ° )
0.106 F

E x a  m  p l E 1 0 . 8  - 4 A C C i r c u i t  A n a l y s i s INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 10.8-6a. The input 
to the circuit is the voltage o f the voltage source, vs(0 , 
and the output is the voltage across the 4 -0  resistor, 
v0(f). When the input is vs(t) =  8.93 cos(21 +  54°) V, 
the corresponding output is vo(0  =  3 .83cos(2 r+  
83°) V. Determine the voltage across the 9-fl resistor, 
va(r), and the value o f the capacitance, C, o f the 
capacitor.

(a) (b )

FIGURE 10.8-6 The circuit considered in Example 10.8-4 
represented (a) in the time domain and (b) in the 
frequency domain.

Solution
The input voltage is a sinusoid. The output voltage is 
also sinusoid and has the same frequency as the input 
voltage. Apparently, the circuit has reached steady 
state. Consequently, the circuit in Figure 10.8-6tf can
be represented in the frequency domain, using phasors and impedances. Figure 10.8-66 shows the frequency- 
domain representation o f the circuit from Figure 10.8-6a. The voltages Vs(o;), Va(co), and V0(fr>) in Figure 10.8-6b 
are the phasors corresponding to vs(0 , va(f), and vo(0  from Figure 10.8-6a. The capacitor and the resistors are 
represented as impedances in Figure 10.8-66. The impedance o f  the capacitor is —j\/c o C  =  —j \ / 2 C  where
2 rad/s is the value o f the frequency o f vs(r).

The phasors corresponding to the input and output sinusoids are

V,(a>) =  8 .9 3 /5 4 °  V
and

V0(<w) =  3 .8 3 /8 3 °  V
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First, we calculate the value of Va(«>). Apply KVL to the mesh in Figure 10.8-6b that consists of the two resistors 
and the voltage source to get

Va(a>) =  V „ H  -  V .H  =  (3.83^83!) -  (8 .93 /54!)
=  (0.47 +  >3.80) -  (5.25 +/7.22)
=  —4.78 —>3.42 

=  5.88/216°

The voltage across the 9-Cl resistor, va(f), is the sinusoid corresponding to this phasor

va(f) =  5.88 cos (2f +  216°) V 

We can determine the value of the capacitance by applying Kirchhoff s current law (KCL) at node b in Figure
10.8-6a:

v.H  , v.H  , VqM _ 0
_  • _L 9 4

(/2C)Va(<w) +  =  0

Solving this equation for j2C  gives

4Va(a>) + 9V,(a>)
J - 3 6 V .H

Substituting the values of the phasors Va(&>) and Vc(w) into this equation gives

4(—4.78 — y3.42) + 9(0.47 + y3.80) 
—36^5.88 /2160) 

-14.89 +y20.52
-36(5.88/216°)

_ 25.35 /126°
(36/-180°) (5.88/216°)

= 25'35 /126° — (—180° + 216°) (36)(5.88) L------ 1-----------1
= 0.120/900 
=  y0.120

0.12
Therefore, the value of the capacitance is C =  — =  0.06 =  60 mF.

10.9 N O D E  V O L T A G E  A N D  M E S H  C U R R E N T  A N A L Y S I S  
U S I N G  P H A S O R S  ------------------------------------------------------------

Circuit analysis in the frequency domain follows the same procedure as we used for resistive circuits; 
however, we use impedances and phasors instead of resistances and time functions. Because Ohm’s 
law can be used in the frequency domain, we use the relationship V =  ZI for the passive elements and 
proceed to use the node voltage and mesh current techniques.
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FIGURE 10.9-1 Circuit for which we 
wish to determine va and vv

i a

j

FIGURE 10.9-2 Circuit equivalent to that 
of Figure 10.9-1 in phasor form.

At node b, we have

As an example o f the node voltage method using phasors, consider the 
circuits o f  Figure 10.9-1 when ig = I m coscot. For a specified cv and for 
specified L and C, we can obtain the impedance for the L and C elements. 
W hen co =  1000 rad/s and C =  100//F , we obtain

Z, =  ^ - = - . / 1 0 ft 
jcoC

When L =  5 mH for the inductor, we have the impedance

Z l  =  ju>L =  j5  f l

Then, we may redraw the circuit shown in Figure 10.9-1, using the 
phasor format shown in Figure 10.9-2. Clearly, Z 3 =  10 f l ,  and Z 2 is obtained 
from the parallel com bination o f  the 5 -fl resistor and the inductor’s imped­
ance, Z L. Rather than obtaining Z 2, let us determine Y2, which is readily found 
by adding the two parallel admittances as follows:

Y2 = l  +  ^  =  l  +  i  =  k l - . / ) S5 j  5

Using KCL at node a, we have
Va t Va ~ Vb

=  Is

Vb Vb - 1 
Z2 z 3

(10.9-1)

(10.9-2)

(10.9-3)

(10.9-4)

Rearranging Eqs. 10.9-1 and 10.9-2, we obtain
(Y 1 + Y 3)Va +  ( - Y 3)Vb =  Is

( - Y 3)Va +  (Y2 +  Y3)Vb =  0

where we use the admittance Y„ =  1 /Z„ and Is =  I m /o°
We find that Eqs. 10.9-3 and 10.9-4 are similar to the node voltage equations we found in 

Chapter 4 for resistive circuits. In this case, however, we obtain the node voltage equations in terms of 
phasor currents, phasor voltages, and complex impedances and admittances.

In general, we may state that for circuits containing only adm ittances and independent sources, 
KCL at node k requires that the coefficient o f  Vk be the sum o f the adm ittances at node k, and the 
coefficients o f the other terms be the negative o f  the admittance between those nodes and the kth node.

Let us proceed to solve for Va for the circuit shown in Figures 10.9-1 and 10.9-2 when 
/ m =  10 A. Substituting the admittances into Eqs. 10.9-3 and 10.9-4, we have

(10.9-5)
1 1

7̂ i o + r o
Va +

10

- 1

To Va + Vl-J> + To

10

v b = 0 (10.9-6)

We then use Cram er’s rule to solve for Va, obtaining

Va =
100(3 - 2 / )  100(3 — 2/)(4 —/) 100, x /
---- M  = ----------- ------—  ( 1 0 -  11/) =  87.5A 47.7°174 + 7  17

Therefore, we have the steady-state voltage va:

va =  87.5 cos (1000/ — 47.7°) V

The general nodal analysis methods o f Chapter 4 may be used here, where we are careful to note 
that we use complex impedances and admittances and phasor voltages and currents. After we have 
determined the desired phasor currents or voltages, we transform them back to the time domain to 
obtain the steady-state sinusoidal current or voltage desired. We use the concept o f  a supemode, if 
necessary, and include the effect o f  a dependent source, if  required.
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E x a m p l e  10 . 9 - 1  AC Ci r c u i t  wi t h  a S u p e r n o d e

A circuit is shown in Figure 10.9-3 with co — 10 rad/s, L — 
0.5 H, and C = 10 mF. Find the node voltage v in its sinusoi­
dal steady-state form when vs =  10 cos V.

Solution
The circuit has a dependent voltage source between two nodes, 
so we identify a supemode as shown in Figure 10.9-4, where 
we also show the impedance for each element. For example, 
the impedance of the inductor is ZL =  jcoL = j 5. Similarly, 
the impedance for the capacitor is

Zc = - j \0
jcoC j

First, we note that Y\ = \/R \ =  1/10. We now wish to 
bring together the two parallel admittances for R2 and C to yield 
one admittance Y2 as shown in Figure 10.9-5. We then obtain 

1 1  1 / 1

10/

y 2 T^+ 1o _ T (̂1+y)s

FIGURE 10.9-4 Frequency-domain representation of 
the circuit for Example 10.9-1.

Ri z t
We may obtain Y3 for the series resistance and inductance as 

where Z 3 =  R̂  +  Z l =  5 -f j5£l. Therefore, we have

v "  r h = r o l 5 ~ J5>s
Writing the KCL at the supemode of Figure 10.9-5, we have

Y i ( V  -  V . )  +  Y 2V  +  Y 3(V  +  101) =  0 (10.9-7)

Furthermore, we note that

®~' ^rl(Vs'“ V) (10.9-8) FIGURE 10.9-5 Circuit for Example 10.9-1 with
Substituting Eq. 10.9-8 into Eq. 10.9-7, we obtain three admittances and the supemode identified.

Vl (V - Vs) + Y2V + Y3[V + 10Y, (Vs - V)] = 0
Rearranging, we have

(Y, + Y2 + Y3 - 10Y, Y3)V = (Y, - 10Y,Y3)Vs

Therefore,

Because Vs =  lo /o^ , we have

V =  - (Y, -  W Y tY ^V s  
Y, + Y 2 + Y 3 — 10Y,Y3

V =

Therefore, we obtain

G i r ^ 5 - ^ ) 10

To + To(1 +J)

1 -  (* -  j ) ... ioy 
2 + j

10 (2 + j)

10
v =  -^= cos ( lOf +  63.4°) V
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Node Voltage Analysis Using the Phasor Concept to Find the Sinusoidal Steady-State Node Voltages

1. Convert the independent sources to phasor form.
2. Select the nodes and the reference node and label the node voltages in the time domain, v„, and their corresponding phasor voltages, V„.
3. If the circuit contains only independent current sources, proceed to step 5; otherwise, proceed to step 4.
4. If the circuit contains a voltage source, select one of the following three cases and the associated method:

CASE METHOD

a. The voltage source connects node q and the reference node. Set =  Vs and proceed.
b. The voltage source lies between two nodes. Create a supemode including both nodes.
c. The voltage source in series with an impedance lies between node Replace the voltage source and series impedance with a parallel

d and the ground, with its positive terminal at node d. combination of an admittance Yi =  1/Zi and a current source
I] =  VSY| entering node d.

5. Using the known frequency of the sources, co, find the impedance of each element in the circuit.
6. For each branch at a given node, find the equivalent admittance of that branch, Y„.
7. Write KCL at each node.
8. Solve for the desired node voltage Va, using Cramer’s rule.
9. Convert the phasor voltage Va back to the time-domain form.

Mesh Current Analysis Using the Phasor Concept to Find 
the Sinusoidal Steady-State Mesh Currents

1. Convert the independent sources to phasor form.
2. Select the mesh currents and label the currents in the time domain, and the corresponding phasor currents, I„.
3. If the circuit contains only independent voltage sources, proceed to step 5; otherwise, proceed to step 4.
4. If the circuit contains a current source, select one of the following two cases and the associated method:

CASE METHOD

a. The current source appears as an element of only one mesh, n. Equate the mesh current I„ to the current of the current source,
b. b. The current source is common to two meshes. accounting for the direction of the source current.

Create a supermesh as the periphery of the two meshes. In step 6, 
write one KVL equation around the periphery of the supermesh. Also 
record the constraining equation incurred by the current source.

5. Using the known frequency of the sources, co, find the impedance of each element in the circuit.
6. Write KVL for each mesh.
7. Solve for the desired mesh current I„, using Cramer’s rule.
8. Convert the phasor current I„ back to the time-domain form.

The processes of node voltage and mesh current analysis, using phasors for determining the steady- 
state sinusoidal response o f a circuit, are recorded in Tables 10.9-1 and 10.9-2, respectively.

Mesh current analysis, using the method o f Table 10.9-2, is relatively straightforward. When 
you have the impedance o f  each element, you may readily write the KVL equations for each mesh.

E x a m p l e  1 0 . 9 - 2  AC C i r c u i t  A n a l y s i s  U s i n g  M e s h  E q u a t i o n s

Find the steady-state sinusoidal current i\ for the circuit o f Figure 10.9-6 
when vs =  10\/2  cos (cot -f 45°) V and co =  100 rad/s. Also, L =  30 mH 
and C — 5 mF.

3ii

F IG U R E  10.9-6 Circuit of  Example
10 .9 -2 .
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Solution
First, we transform the source voltage to phasor form to obtain

Vs= 10v/2Z45!= 10+ 10/V
We then select the two mesh currents as I, and Ij, as shown in Figure 10.9-7. Because the frequency of the source 
is to =  100, we find that the inductance has an impedance of

ZL =  jcoL — f t  n

The capacitor has an impedance of

' " C J' G )
We can then summarize the circuit’s phasor currents and the impedance of 
each element by redrawing the circuit in terms of phasors, as shown in 
Figure 10.9-7. Now we can write the KVL equations for each mesh, 
obtaining

mesh 1: (3 + y3)Ii —f th  = Vs 
mesh 2 : (3 —7*3)Ii +  (ft ~ f i ) h  = 0 

Solving for l x, using Cramer’s rule, we have

(10  -hy 10)/

Jz-j2

FIGURE 10.9-7 Circuit of Example 
10.9-2 with phasors and impedances.

where the determinant is 

Therefore, we have

Continuing, we obtain

11

A =  (3 +J3)(j) +/3(3 —J3) =  6 +  12j 

10i -  10
Ii =

6 + 12/

n ^ - n J Q ^ Z i l g )

' 6 ( 1 + 2, )  6 ( V 5 Z m )  ^

Thus, the steady-state time response is

/, =  1.05 cos (100/ +  71.6°) A

E x a m p l e  1 0 . 9 - 3  AC Ci r c u i t  A n a l y s i s  Us i n g  I m p e d a n c e s  j

Find the steady-state current i\ when the voltage source is vs =
10\/2 cos (cot -I- 45°) V and the current source is is =  3 cos cot A 
for the frequency-domain circuit of Figure 10.9-8. The circuit of 
the figure provides the impedance in ohms for each element at the 
specified co.

FIGURE 10.9-8 Frequency-domain
circuit o f  Example 10.9-3.
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Solution
First, we transform the independent sources into phasor form. The voltage source is

Vs =  10 \fl/_A^ =  10(1 +J)V
and the current source is

Is =  3 / o i  a
We note that the current source connects the two meshes and provides a constraining equation:

I2 - I 1 =  Is (10.9-9)
Creating a supermesh around the periphery o f the two meshes, we write one KVL equation, obtaining

I lZ l + l 2(Z2 + Z3) =  v s (10.9-10)
Because we wish to solve for I h we will use I2 from Eq. 10.9-9 and substitute it into Eq. 10.9-10, obtaining

I , Z i + ( I ,  +  Ii)(Z 2 +  Z3) =  Vs

Rearranging, we have
(Zi +  Z2 +  Z3)Ii -  Vs -  (Z2 4- Z3)IS

Therefore, we have
v s — (z2 +  Z3)IS

I 1 — Z, 4- Z 2 4~ Z 3 

Substituting the impedances and the sources, we have

( 1 0 + 7 1 0 ) - ( 2 - 7 2 ) 3
I. = =  2 + 7 8  =  8 .2 5 /7 6 1  A

Thus, we obtain
z'i =  8.25 cos (cot 4- 76°) A

E x a m p l e  1 0 . 9 - 4  AC C i r c u i t  A n a l y s i s  U s i n g  N o d e  E q u a t i o n s

Find the steady-state voltage v for the circuit o f  Figure 10.9-9a

(b)

FIGURE 10.9-9 (a) Time- 
domain and (6) frequency- 
domain representation of the 
circuit for Example 10.9-4.

Solution
First, represent the circuit in the frequency domain, using im pedances and phasors. The im pedance o f  the
inductor is

ju )L  =  7 1 0 0 0 ( 1 0  x  1 0 - 3) =  7 I O f t



Superposition. Thevenin and Norton Equivalents, and Source Transform ations ( m s )  

The impedance of the capacitor is

= — = -/ion
jcoC j 1000 (100 x 10 '6) “ j  

The phasor representation of the input current is

1 0 / 0 1 = 1 0 A

Figure 10.9-96 shows the frequency-domain representation of the circuit. The phasor voltage V can be obtained 
by applying Kirchhoff s current law at the top node of the circuit in Figure 10.9-96 to get

V V V in---- 1-------------- 1--------=  10
1 0 1 0 + yio —710

or

V
1 0 + 10

—__ ( —  +  _ ^ _  =  0.1 V +  (0.05 -y0.05)V +  y'0 .1V =  10
+yio vio-yio/ -yio

Solving for V, we have

V = --------^ ------- =  63.3 7-18.4°
0.158 7-18.4°

Therefore, we have the steady-state voltage as
v =  63.3 cos (1000*- 18.4°) V.

10.10 S U P E R P O S I T I O N ,  T H E V E N I N  A N D  N O R T O N  
E Q U I V A L E N T S ,  A N D  S O U R C E
T R A N S F O R M A T I O N S  ---------------------------------------------------------------

Circuits in the frequency domain with phasor currents and voltages and impedances are analogous to 
the resistive circuits we considered earlier. Because they are linear, we expect that the principle of 
superposition and the source transformation method will hold. Furthermore, we can define Thevenin 
and Norton equivalent circuits in terms of impedance or admittance.

First, let us consider the superposition principle, which may be restated as follows: For a linear 
circuit containing two or more independent sources, any circuit voltage or current may be calculated as 
the algebraic sum of all the individual currents or voltages caused by each independent source acting 
alone.

If a linear circuit is excited by several sinusoidal sources all having the same frequency, <t>, then 
superposition may be used. If a linear circuit is excited by several sources all having different 
frequencies, then superposition must be used.

The superposition principle is particularly useful if a circuit has two or more sources acting at 
different frequencies. Clearly, the circuit will have one set of impedance values at one frequency and a 
different set of impedance values at another frequency. We can determine the phasor response at each 
frequency. Then we find the time response corresponding to each phasor response and add them. Note 
that superposition, in the case of sources operating at different frequencies, applies to time responses 
only. We cannot superpose the phasor responses.
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f  \  
E x a m p l e  1 0 . 1  0 - 1  S u p e r p o s i t i o n

1

5 £2

FIGURE 10.10-1 Circuit of Example 10.10-1.

Using the superposition principle, find the steady-state current i 
for the circuit shown in Figure 10.10-1 when vg =  10 cos 10/V, 
zs =  3 A, L =  1.5 H, and C =  lOmF.

Solution
The principle o f  superposition says that the response to the 
voltage source and current source acting together is equal to
the sum o f the response to the voltage source acting alone plus the response to the current source acting alone. Let 
/j denote the response to the voltage source acting alone. Figure 10.10-2# shows the circuit that is used to calculate 
i {. In Figure 10.10-26, this circuit has been represented in the frequency domain using impedances and phasors.
Similarly, let i2 denote the response to the voltage source acting alone. Figure 10.10-3# shows the circuit that is
used to calculate z2. In Figure 10.10-36, this circuit has been represented in the frequency domain.

The first step is to convert the independent sources into phasor form, noting that the sources operate at 
different frequencies. For the voltage source operating at co =  10, we have

V s =  10/o° V

We note that the current source is a direct current, so we can state that co =  0 for the current source. The phasor 
form o f the current source is then

h 3 /0 °  A

The second step is to convert the circuit to phasor form with the impedance o f  each elem ent as shown in 
Figure 10.10-26.

Now let us determine the phasor current I l5 which is the component o f  current I due to the voltage source. 
We remove the current source, replacing it with an open circuit across the 10-H resistor. Then we may find the 
current I] due to the first source as

l ' = T T ~ T — y  ( 1 0 . 10- 1)5 jcoL +  Zip

where Z p is the impedance o f  the capacitor and the 10 -fl resistance in parallel. Recall that co =  10 and C  =  10 mF. 
Therefore, because Z c =  —y 1 () 11. we have

Z CR (-y lO )lO
r  +  z c l o - y i o 5 ( i - y )  a

5 Q

c i  i o ( r

( a )

5 Q

5 n
r^A A A r

yl 5 Q
I —► V V V I ♦------c

JL h
p vs

-j\o  n  - ^ 1 0 Q < / ?

' i  c
(b)

i o n -

( b )

FIGURE 10.10-2
(a) Circuit for Example 
10.10-1 for the voltage 
source acting alone. (6 ) 
Representation in the 
frequency domain.

FIGURE 10.10-3 (a) Circuit for 
Example 10.10-1 for the current 
source acting alone. (b) 
Representation in the frequency 
domain.
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Substituting Zp and coL = 15 into Eq. 10.10-1, we have
10/0°

1. = -
10 10

/ —45°
5 + j \ 5  +  ( 5 - j 5 )  l O + j l O  V500

Therefore, the time-domain current resulting from the voltage source is
i, =  0.71 cos (10/ -  45°) A

Now let us determine the phasor current I2 due to the current source. Setting the voltage source to zero 
results in a short circuit. Because co =  0 for the dc source, the capacitor impedance becomes an open circuit 
because Zc =  1 /jcoC =  00. The inductor’s impedance becomes a short circuit because ZL = jcoL = 0. Hence, we 
obtain the circuit shown in Figure 10.10-36. We see that we have returned to a familiar resistive circuit for a dc 
source. Then the response due to the current source is

15
-2 A

Therefore, using the principle of superposition, the total steady-state current is i
i = 0.71 cos (10/ — 45°) — 2 A

i\ + 12 or

Method

= t >
Zs is the same in 

both circuits o (a)

I -ob

FIGURE 10.10-4 Two equivalent sources when Vs =  ZSIS.

Method

Set Vs = lsZs

= >  V,
Zs is the same in 

both circuits O (b)
FIGURE 10.10-5 Method of source transformations.
(1a) Converting a voltage source to a current source. (b) Converting 
a current source to a voltage source.

Now let us consider the source transformations for frequency-domain (phasor) circuits. The 
techniques considered for resistive circuits discussed in Chapter 5 can readily be extended. The source 
transformation is concerned with transforming a voltage source and its associated series impedance to 
a current source and its associated parallel impedance, or vice versa, as shown in Figure 10.10-4. The 
method of transforming from one source to another source is summarized in Figure 10.10-5.

E x a m p l e  1 0 . 1 0 - 2  S o u r c e  T r a n s f o r m a t i o n s  in AC C i r c u i t s

A circuit has a voltage source vs in series with two elements, as shown in Figure
10.10-6. Determine the phasor equivalent current source form when vs =  
10 cos (cot -f 45°) V and co =  100 rad/s.

10 £2 100 mH

FIGURE 10.10-6 Circuit o f
Example 10.10-2.
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Solution
First, we determine the equivalent current source as

s z s

Because Z s =  10 + 7 10 and Vs =  10 /4 5 ° , we obtain

1 0 / 4 5 °  1 0

^ 2 0 0 /4 5 !  V 200

The equivalent current source circuit is shown in Figure 10.10-7

/o° A

z5

X
FIGURE 10.10-7 Circuit o f 
Example 10.10-2 transformed 
to a current source where 
Zs =  10 4- y 10 f l  and
IS =  1/ ^ A .

T hevenin’s and N orton’s theorem s apply to phasor current or voltages and im ped­
ances in the same way that they do for resistive circuits. The Thevenin theorem  is used to 
obtain an equivalent circuit as discussed in C hapter 5. The Thevenin equivalent circuit is 
shown in Figure 10.10-8.

A procedure for determining the Thevenin equivalent circuit is as follows:

FIGURE 10.10-8 The
Thevenin equivalent 1 • Identify a separate circuit portion o f  a total circuit.
c i r c u i t  /2. Determine the Thevenin voltage Vt =  Voc, the open-circuit voltage at the terminals.

3. (a) Find Zt by deactivating all the independent sources and reducing the circuit to an 
equivalent impedance; (b) if  the circuit has one or more dependent sources, then either 
short-circuit the term inals and determine Isc from which Zt =  Voc/ I sc; or (c) deactivate 
the independent sources, attach a current source at the terminals, and determine both V 
and I at the terminals from which Zt =  V/I.

E x a m p l e  1 0 . 1 0 - 3  T h e v e n i n  E q u i v a l e n t  C i r c u i t

Find the Thevenin equivalent circuit for the circuit shown in Figure 10.10-9 when Z\ =  1 -j- y f t and Z 2 =  —j  1 f l

; = 2 Z0 < h Zl

X -o b  FIGURE 10.10-9 Circuit o f Example 10.10-3.

Solution
The open-circuit voltage is

V oc =  IsZ, =  (2  Z0^)(1 + / )  =  2 n /2 /4 5 °  V

The impedance Z t is found by deactivating the current source by replacing it with an open circuit. Then we have
Zi in series with Z 2, so that

z t = z, + z 2 =  ( i + y ) - y =  i n
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E x a m p l e  1 0 . 1 0 - 4  T h e v e n i n  E q u i v a l e n t  C i r c u i t

Find the Thevenin equivalent circuit of the frequency-domain circuit shown in Figure 10.10-10 in phasor form.

10 Q

20 V

3V

Is = 2/0*03 v < i o a VqC 

—O
FIGURE 10.10-10 Circuit of Example 10.10-4.

FIGURE 10.10-11 (a) Circuit of Example 10.10-4 with an 
open circuit at the output and the current source transformed to 
a voltage source. (b) Circuit with a test current source 
connected at the output terminal.

Solution
The Thevenin voltage V, =  Voc. so we first determine Voc. Note that with the open circuit,

V =  10 L =  20 /0° V 

Then, for the mesh on the right, using KVL, we have

V~- =  3V 4- V =  4V =  80 /o° V
Examining the circuit of Figure 10.10-10, we transform the current source and 10-0 resistance to the voltage 
source and 10-0 series resistance as shown in Figure 10.10-1 la. When the voltage source is deactivated and a 
current source is connected at the terminals as shown in Figure 10.10-11/?, KVL gives

V0 =  y 101 +  4V =  (y 10 +  40) I 
Therefore, Zt =  40 +y 10 O

Now let us consider the procedure for finding the Norton equivalent circuit. The steps 
are similar to those used for the Thevenin equivalent because Zt in series with the Thevenin 
voltage is equal to the Norton impedance in parallel with the Norton current source. The 
Norton equivalent circuit is shown in Figure 10.10-12.

To determine the Norton circuit, we follow this procedure:

1.

2 .

3.

Identify a separate circuit portion of a total circuit.

The Norton current In is the current through a short circuit at the terminals, so In =  L*.

Find Z, by (a) deactivating all the independent sources and reducing the circuit to an 
equivalent impedance, or (b) if the circuit has one or more dependent sources, find the 
open-circuit voltage at the terminals, Voc, so that

FIGURE 10.10-12 The 
Norton equivalent circuit 
expressed in terms of a 
phasor current and an 
impedance.
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E x a m p l e  1 0 . 1 0 - 5  N o r t o n  E q u i v a l e n t  C i r c u i t

Find the Norton equivalent o f  the circuit shown in Figure 10.10-13 
in phasor and impedance forms. Assume that Vs =  lQo/o° V. Z j  =  5  4- j 5

I
*2- / 4

i n

* 3  = 1 - / 2

Solution
First, let us find the equivalent impedance by deactivating the 
voltage source by replacing it with a short circuit. Because Z\ f i g u r e  1 0 . 1 0 - 1 3  Circuit o f  E x a m p l e  1 0 . 1 0 - 5 .  

appears in parallel with Z 2, we have

(5 +y'5)(/4)
Z, =  Z 3 +

=  (1 - J 2 )  +

_ Z 1Z i _ 

Z , +  z2 
20 
53

(1 -  j 2 ) +
(5 + J5) +  04)
93 34 (  1 \

(2 4 -/7 ) =  5 3  ■*"•/53 =  ( 5 3 )  ^9 3

7,L\ l 3

I <5>b

We now proceed to determine the Norton equi valent current F I G U R E  1 0 . 1 0 - 1 4  C i r c u i t  o f  E x a m p l e  1 0 . 1 0 - 5  

source by determining the current flowing through a short circuit w i t h  a  s h o r t  c i r c u i t  a t  t e r m i n a l s  a - b .  

connected at terminals a-b , as shown in Figure 10.10-14
We will use mesh currents to find Isc as shown in Figure 10.10-14. The two m esh KVL equations are

mesh 1 : (Zi -K Z2)I -h (—Z2)ISc =  Vs 
mesh 2: ( - Z 2)I +  (Z2 +  Z3)ISC =  0 

Using C ram er’s rule, we find In =  ISc as follows:

Z 2VS (/4)100
Isc --

(Z , +  Z 2)(Z 2 +  Z i)  -  z\ (5 + 79)(1  + j2 )  -  ( - 1 6 )
y400 400

=  ^ ( 19  +  3̂ ) A3 + y l 9  370

FIGURE 10.11-1 An RLC circuit.

10.11 P H A S O R  D I A G R A M S

Phasors representing the voltage or current o f  a circuit are tim e quantities transform ed or converted 
into the frequency domain. Phasors are com plex num bers and can be portrayed in a com plex plane. 
The relationship o f  phasors on a com plex plane is called a phasor diagram.

Let us consider an RLC  series circuit as shown in Figure 10.11-1. The 
impedance o f each elem ent is also identified in the diagram. Because the current 
flows through all elements and is common to all, we take I as the reference phasor.

I = / /o°

Then the voltage phasors are

V p  =  Rl = R l /o°

V L =  jcoLl =  (oLI / 90°

- f l  I

( o C

V- =  =  —- 7 —90°
cdC  o)C

( 10.11-1)

( 1 0 . 11-2 )

(10.11-3)



P h a s o r  C ircu i ts  a n d  th e  O p e r a t io n a l  A m p l i f i e r --------^ 4 5 5 ^

These phasors are shown in the phasor diagram of Figure 10.11-2. Note 
that KVL for this circuit requires that

v s =  V r  + VL -h  v c

A phasor diagram is a graphical representation of phasors and 
their relationship on the complex plane.

The current I and the voltage across the resistor are in phase. The 
inductor voltage leads the current by 90°, and the capacitor voltage lags 
the current by 90°. For a given L and C, there will be a frequency w that 
results in

|vL| = |Vc|
Referring to Eqs. 10.11-2 and 10.11-3, this equality of voltage magnitudes occurs when

_1_
coC 

1

FIG U RE 10.11-2 Phasor diagram for the RLC  
circuit o f Figure 10.11-1.

(oL =  ■

or LC

When co2 = 1 / LC, the magnitudes of the inductor voltage and capacitor voltage are equal. Because 
they are out of phase by 180°, they cancel, and the resulting condition is

VS =  VR

and then Vs is in phase with I. This condition is called resonance.

EXERCISE 10.11-1 Consider the RLC series circuit of Figure
10.11-1 when L = 1 mH and C =  1 mF. Find the frequency co when the 
current, source voltage, and VR are all in phase.

Answer: co = 1000 rad/s

EXERCISE 10.11-2 Draw the phasor diagram for the circuit of 
Figure E 10.11-2 when V =  V /o ° . Show each current on the diagram. FIG U RE E 10.11-2

10.12 P H A S O R  C I R C U I T S  A N D  T HE O P E R A T I O N A L
A M P L I F I E R  ---------------------------------------------------------------------------------

The discussion in the prior sections considered the behavior of operational amplifiers and their 
associated circuits in the time domain. In this section, we consider the behavior of operational 
amplifiers and associated RLC circuits in the frequency domain, using phasors.

Figure 10.12-1 shows two frequently used operational amplifier circuits, the inverting amplifier 
and the noninverting amplifier. These circuits are represented using impedances and phasors. This 
representation is appropriate when the input is sinusoidal and the circuit is at steady state. Vs is the 
phasor corresponding to a sinusoidal input voltage, and VQ is the phasor representing the resulting 
sinusoidal output voltage. Both circuits involve two impedances, Z| and Z2.
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(a)

FIGURE 10.12-1 (a) An inverting 
amplifier and (b) a noninverting 
amplifier.

Now let us determine the ratio o f  output-to-input voltage, V0 /V s, for the inverting amplifier 
shown in Figure 10.12-la. This circuit can be analyzed by writing the node equation at node a as

Y ^ + ^ - l l = 0
L a\ / L  2

W hen the operational amplifier is ideal, and i! are both 0. Then,

^  =  0  z, z 2

Finally, Vs
z 2

z l

( 10. 12- 1)

( 10.12-2)

(10.12-3)

Next, we will determine the ratio o f  output-to-input voltage, V0 /V s, for the noninverting 
amplifier shown in Figure 10.12-16. This circuit can be analyzed by writing the node equation at node
a as

(V, +  V ,)  V 0 - ( V S +  V, )
+  Ii = 0z, z 2

When the operational amplifier is ideal, V! and I] are both 0. Then,

V s  _  V o _ -  v s

Z | Z

(10.12-4)

=  0

Finally,
v 0 _  z, + z 2
Vs z,

(10.12-5)

Typically, impedances Zi and Z 2 are obtained using only 
resistors and capacitors. O f course, in theory, we could use 
inductors, but their cost and size relative to capacitors result in 
little use o f inductors with operational amplifiers.

An example o f  the inverting amplifier is shown in Figure 
10.12-2, The impedance Z„, where n is equal to 1 or 2, is a 
parallel RnCn impedance so that

1

R n

R n  +  7j0)Cn
1 + ju)C nR„

:i 0 . 12-6 )

FIGURE 10.12-2 Operational amplifier 
Using Eqs. 10.12-3 and 10.12-6, one may obtain the ratio V0/V s. with two RC circuits connected.
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E x a m p l e  1 0 . 1 2 - 1  AC Amp l i f i e r  J-

Find the ratio V0/V s for the circuit of Figure 10.12-2 when R\ — 1 kft. R2 — 10 kft, Ci — 0, and C2 0.1 n f  
for co =  1000 rad/s.

Solution
The circuit of Figure 10.12-2 is an example of the inverting amplifier shown in Figure 10.12-1 a. Using Eqs. 10.12-
3 and 10.12-6 , we obtain

R 2
V0 _  Zj_ _  _  1 +  jjoCjRi =  _ *2(1 +j(^C]R ])
X~s ~  Ri R \(\+ jo )C 2Rz)

1 +jwC\R\
Substituting the given values of R\, R2, C\, C2, and a> gives

V o _  1Q4 ( l +  y T 0 ° ( 0 ) l 0 3) _  10

Vs 103 (1 +_/103 (0.1 x 10"6) 104) 1 + j

EXERCISE 10.12-1 Find the ratio V0/V s for the circuit shown in Figure 10.12-2  when 
Rl = R2 = 1 kn, C2 =  0, Cl =  1 mF, and w =  1000 rad/s.

Answer: V0/V s =  —1 — j

10.13 THE C O M P L E T E  R E S P O N S E

Next, we consider circuits with sinusoidal inputs that are subject to abrupt changes, as when a switch
opens or closes. To find the complete response of such circuits, we:

• Represent the circuit by a differential equation.

• Find the general solution of the homogeneous differential equation. This solution is the natural 
response, vn(/). The natural response will contain unknown constants that will be evaluated later.

• Find a particular solution of the differential equation. This solution is the forced response, vf (t).

• Represent the response of the circuit as v(t) = vn(r) +  vf (t).

• Use the initial conditions, for example, the initial values of the currents in inductors and the 
voltages across capacitors to evaluate the unknown constants.

Consider the circuit shown in Figure 10.13-1. Before time t = 0, this circuit is at
steady state, so all its voltages and currents are sinusoidal with a frequency of 5 rad/s. At time 
t =  0 , the switch closes, disturbing the circuit. Immediately after t — 0 , the currents and 
voltages are not sinusoidal. Eventually, the disturbance dies out and the circuit is again at 
steady state (most likely a different steady state). Once again, the currents and voltages are all 
sinusoidal with a frequency of 5 rad/s.

^  vd)

FIGURE 10.13-1 The circuit
considered in Example 10.13-1.
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Two different steady-state responses are used to find the complete response o f  this circuit. The 
steady-state response before the switch closes is used to determine the initial condition. The steady- 
state response after the switch closes is used as the particular solution o f the differential equation 
representing the circuit.

r LE x a m  p l e  1 0  .1  3  - 1 C o m p l e t e  R e s p o n s e

A

Determine v(r), the voltage across the capacitor in Figure 10.13-1, both before and after the switch closes.

Solution
Step 1: For t < 0, the switch is open and the circuit is at steady state.

The open switch acts like an open circuit, so the two 2 -0  resistors are connected in series. Replacing the 
series resistors with an equivalent resistor produces the circuit shown in Figure 10.13-2^. Next, we use 
impedances and phasors to represent the circuit in the frequency domain as shown in Figure 10.13-26.

Using voltage division in the frequency domain gives

The capacitor voltage is continuous, so the capacitor voltage immediately after the switch closes is the same as 
immediately before the switch closes. That is,

Step 2: For t >  0, the switch is closed. Eventually, the circuit will reach a new steady state.
The closed switch acts like a short circuit. A short circuit in parallel with a resistor is equivalent to a short 

circuit, so we have the circuit shown in Figure 10.13-3a. The steady-state response o f  the circuit can be obtained 
by representing the circuit in the frequency domain as shown in Figure 10.13-36.

v(0—) =  lim v(t) =  8.485 cos (0 -  45°) =  6 V
v t-+0-

v(0 -h) =  v(0 —) =  6  V

FIGURE 10.13-2 The circuit from 
Figure 10.13-1 before the switch closes, 
represented (a) in the time domain and 
(b) in the frequency domain.(b)

FIGURE 10.13-3 The circuit from 
Figure 10.13-1 after the switch closes, 
represented (a) in the time domain and (b) 
in the frequency domain.
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Rx = 2 Q
rf )  voc=\2 cos 5/ V C = 0.05 F ^  i/M

V H =  =  4 8 _ =  1 0 .7 4 /-2 6 16!V
I > \ 2 - j 4 j \  *— )  4.47/-6 3 .4 °

In the time domain,
v(r) =  10.74 cos (5/ — 26.6°) V

Step 3: Immediately after t = 0, the switch is closed but the |--------------- W r
circuit is not at steady state. We must find the complete 
response of a first-order circuit.

In Figure 10.13-2a, the capacitor is connected to a series 
voltage source and resistor, that is, a Thevenin equivalent FIGURE 10.13-4 Identifying R, and v« in Figure
circuit. We can identify Rt and voc as shown in Figure 10.13-4. io.i3-2a.

Consequently, the time constant of the circuit is
r = Rt C = 2 x 0.05 =  0.1 1/s

The natural response of the circuit is
v„(f) =  K e -'01

The steady-state response for t > 0 can be used as the forced response, so
Vf (t) = 10.74 cos (5 /-2 6 .6 °) V

The complete response is
v(/) =  vn(0 +  V f (t) = K e - '0' +  10.74 cos (51 -  26.6°)

The constant, K, is evaluated using the initial capacitor voltage, v(0+):
6 =  v(0+) =  Ke~° +  10.74 cos (0 -  26.6°) =  K +  9.6

Thus, K — —3.6 and
v(f) =  —3.6e~10' +  10.74 cos (51 -  26.6°) V

Step 4: Summarize the results.
The capacitor voltage is

0  = 1 8.485 cos (5/ — 45°) V f o r f < 0
VU \  -3 .6 e - '° '+  10.74cos (5f -  26.6°) V f o r / > 0

Figure 10.13-5 shows the capacitor voltage as a function of time:

Complete Response of a Switched Circuit with Sinusoidal Input

Using voltage division in the frequency domain gives

10

1  5
Q)O)
I  0

|  - 5 Q.
O

-10

Time, seconds
FIGURE 10.13-5 The complete response, plotted using 
MATLAB.
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E x a m p l e  1 0 . 13 - 2  R e s p o n s e s  o f  Var ious  T y p es  o f  Circui ts

The input to each o f  the circuits shown in Figure 10.13-6 is the voltage source voltage. The output o f  each circuit 
is the current i(t). Determine the output o f each o f  the circuits.

6 a  /w 
— V W — —

* ) l 2 c o s 5 f V  2 H

(b)

4 fi 2 £1 iit)

4  n  2  n  ' < ' )

-M/V-------1— V W -----

f )  12 cos 5r V 2 H

< = 0

(f)
FIGURE 10.13-6 Six circuits 
considered in Example 10.13-2.

Solution
In this example, we consider similar circuits in contrasting situations. In some cases, the circuit changes abruptly 
at time t =  0. Consequently, the circuit is not at steady state and we seek a complete response— consisting o f  both 
a steady-state part and a transient part. In other cases, there is no abrupt change and so no transient part o f  the 
response. We seek only the steady-state response. In one case, the input provides the inductor voltage directly, and 
we can determine the response using the constitutive equation o f  the inductor.
Case 1: The circuit in Figure 10.13-6a will be at steady state until time t =  0. Because the input is constant before time 
t — 0, all o f the element voltages and currents will be constant. At time t =  0, the input changes abruptly, disturbing the 
steady state. Eventually the disturbance dies out and the circuit is again at steady state. All o f the element voltages and 
currents will again be constant, but they will have different constant values because the input has changed.

The three stages can be illustrated as shown 
in Figure 10.13-7. Figure 10.13-7a represents the 
circuit for t <  0. The source voltage is constant 
and the circuit is at steady state, so the inductor 
acts like a short circuit. The inductor current is

/« )  =  g =  5 A

In particular, immediately before t =  0, z(0—) =
0.667 A. The current in an inductor is continuous, so FIGLRE The circuit from Figure 10.13-6*, (a) at steady state

for t < 0 , (h) after t =  0 but before the circuit reaches steady state, and 
/(0 -f) == / (0—) =  0.667 A (c) at steady state for t > 0 .

6Q i i t ) 6 Q i i t )
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Figure 10.13-76 represents the circuit immediately after / =  0. The input is constant but the circuit i s  not at 
steady state, so the inductor does not act like a short circuit. The part of the circuit that is connected to the inductor 
has the form of a Thevenin equivalent circuit, so we recognize that

R, =  6 fi and v,* =  1 2 V

Consequently,

The time constant of the circuit is

,sc _  6 -  2 A

2 1
X ~ R t ~ 6 ~ 3

Finally,

i ( t )  =  / s c  +  (»'(0+) -  i s c ) e ~ , / r  =  2 +  (0.667 -  2 ) e ~ 1 '  =  2 -  1 . 3 3 e - 3 '  A

As / increases, the exponential part of /(/) gets smaller. When t =  5r =  1.667 s,

i(t) = 2 -  1.33^~3(1 667) = 2 -  0.009 «  2 A

The exponential part of /(/) has become negligible, so we recognize that the circuit is again at steady state and that 
the new steady-state current is i(t) =  2 A.

Figure 10.13-7c represents the circuit after the disturbance has died out and the circuit has reached steady 
state, that is, when t > 5r. The source voltage is constant and the circuit is at steady state, so the inductor acts like 
a short circuit. As expected, the inductor current is 2 A.
Case 2: The circuit in Figure 10.13-66 does not contain a switch and the input 
does not change abruptly, so we expect the circuit to be at steady state. The input 
is sinusoidal at a frequency of 5 rad/s, so all of the element currents and voltages 
will be sinusoidal at a frequency of 5 rad/s. We can find the steady-state response 
by representing the circuit in the frequency domain, using impedances and 
phasors as shown in Figure 10.13-8.

Ohm’s law gives

I(<w) =
12 / 0° 1 2 / 0 °

FIG U RE 10.13-8 The circuit in 
Figure 10.13-6/) is represented 
in the frequency domain.

6 + . / 10 11.66 / 591
=  1.03 7 -59° A

The corresponding current in the time domain is

/(/) =  1.03 cos (5f -  59°) A

Case 3: The voltage source, resistor, and inductor in the circuit in Figure 10.13-6c are connected in parallel. The 
element voltage of the resistor and inductor are each equal to the voltage source voltage. The current in the resistor 
is given by Ohm’s law to be

12 p~5t
*r(0 =  — z—  =  2e~St A

The current in the inductor is

1 1
h if)  = l J o v(r) dr  +  <l(0 ) =  -  Xle-S'dx +  «t (0 )

-  1) +  iL(0 ) =  - 1.2<T5' +  1.2 +  iL(0 )
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4 Q 2 n  ' (t) 6 a  ,U) 6  a  ' (,)

FIGURE 10.13-9 The circuit from Figure 10.13-6d, (a) steady state for t < 0, (b) after t — 0 but before the circuit reaches steady 
state, and (c) at steady state for t > 0 .

Finally, using KCL gives

i(t) =  iR(/)  +  iL(/) =  2e~5' -  1.2e~5' +  1.2 +  /L(0) =  0 .8e~5' +  1.2 +  /L(0)

Before time t =  0, the voltage o f source voltage is zero. If  the circuit is at steady state, z‘l ( 0 )  =  0. Then

i(t) =  0.8^~5 /-h 1.2 A

Case 4: The circuit in Figure 10.13-6<i will be at steady state until the switch opens at time t =  0. Because the 
source voltage is constant, all o f  the element voltages and currents will be constant. At time t =  0, the switch 
opens, disturbing the steady state. Eventually the disturbance dies out and the circuit is again at steady state. All o f 
the element voltages and currents will be constant, but they will have different constant values because the circuit 
has changed.

The three stages can be illustrated as shown in Figure 10.13-9. Figure 10.13-9(3 represents the circuit for 
/ <  0. The closed switch is represented as a short circuit. The source voltage is constant and the circuit is at steady 
state, so the inductor acts like a short circuit. The inductor current is

i ( f )  =  0 A

In particular, immediately before t =  0, /(0 —) =  0 A. The current in an inductor is continuous, so

i’(0 + ) *= i ( 0 - )  =  0 A

Figure 10.13-96 represents the circuit immediately after t — 0. The input is constant but the circuit is not at 
steady state, so the inductor does not act like a short circuit. The part o f  the circuit that is connected to the inductor 
has the form o f a Thevenin equivalent circuit, so we recognize that

R t =  6  f l  and voc =  12 V

Consequently,

'“ = ! = 2 A

The time constant o f  the circuit is

_  L  _  2  _  1
Z ~~RX~ 6 ~ 1

Finally,

/(/) =  he +  ( i(0 + ) -  ix )e~l/z =  2 +  (0 -  2 )e~3< = 2 -  2e~3' A 

As t increases, the exponential part o f i(t) gets smaller. When t =  5 r =  1.667 s,

i(t) =  2 -  2e~3(l 667) =  2 -  0.013 «  2 A



The exponential part of i(/) has become negligible, so we recognize that the circuit is again at steady state and that 
the steady state current is i(t) = 2 A.

Figure 10.13-9c represents the circuit after the disturbance has died out and the circuit has reached steady 
state, that is, when t >  St. The source voltage is constant and the circuit is at steady state, so the inductor acts like 
a short circuit. As expected, the inductor current is 2 A.
Case 5: The circuit in Figure 10.13-6? does not contain a switch and the input does not change abruptly, so we 
expect the circuit to be at steady state. Because the source voltage is constant, all of the element voltages and 
currents will be constant. Because the source voltage is constant and the circuit is at steady state, the inductor acts 
like a short circuit. (We’ve encountered this circuit twice before in this example, after the disturbance died out in 
cases 2 and 4.) The current is given by

Case 6 : We expect that the circuit in Figure 10.13-6/will be at steady state before the switch opens. As before, 
opening the switch will change the circuit and disturb the steady state. Eventually, the disturbance will die out and 
the circuit will again be at steady state. We will see that the steady-state current is constant before the switch opens 
and sinusoidal after the switch opens.

Figure 10.13-10a shows the circuit before the switch opens. Applying KVL gives

2*(0  +  2 — i(t) = 0

Consequently, the inductor current is i(t) =  0 before the switch opens. The current in an inductor is continuous, so

i(0+) = i(0—) = 0 A

Figure 10.13-10/? represents the circuit after the switch opens. We can determine the inductor current by 
adding the natural response to the forced response and then using the initial condition to evaluate the constant in 
the natural response.

First, we find the natural response. The part of the circuit that is connected to the inductor has the form of the 
Thevenin equivalent circuit, so we recognize that

R\ =  6 f l

T h e  C o m p le t e  R e s p o n s e

6 Q M

6 Q Kco) 
~/W \r

FICL RE 10.13-10 The circuit from Figure 10.13-6/,
(a) before the switch opens, (b) after the switch opens, 
and (c) the steady-state circuit for t > 0 represented in 
the frequency domain.



The time constant o f  the circuit is
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r - ^ _  6

2

6  3

The natural response is

in( t ) = K e - 3 ,A

We can use the steady-state response as the forced response. As in case 2, we obtain the steady-state 
response by representing the circuit in the frequency as shown in Figure 10.13-10c. As before, we find 
I(a;) =  1.03 /  —59° A. The forced response is

10.14 U S I N G  M A T L A B  FOR A N A L Y S I S  OF S T E A D Y - S T A T E  
C I R C U I T S  W I T H  S I N U S O I D A L  I N P U T S  -----------------------

A nalysis o f  steady-state linear circuits with sinusoidal inputs using phasors and im pedances 
requires com plex arithm etic. M ATLAB can be used to reduce the effort required to do this com plex 
arithm etic. C onsider the circuit shown in Figure 10.14-la . The input to this circuit, vs(7), is a 
sinusoidal voltage. At steady state, the output, vo(0 , will also be a sinusoidal voltage as shown in 
Figure 10.14-la . This circuit can be represented in the frequency dom ain, using phasors and

Then,

if (t) =  1.03 cos (5/ — 59°) A 

/(f) =  !„(/) +  if(/) =  K e~lt +  1.03 cos (51 -  59°) A.

At t =  0,

i(0) =  K e~° +  1.03 cos ( -5 9 ° )  =  K  +  0.53 

i(t) =  —0.53e~3' +  1.03 cos (51 -  59°) A J

L

(a)

R \ jcoL FIGURE 10.14-1 A
steady-state circuit excited 
by a sinusoidal input voltage. 
This circuit is represented 
both (a) in the time domain and
(b) in the frequency domain.(b)



impedances as shown in Figure 10.14-16. Analysis of this circuit proceeds as follows. Let Z, 
denote the impedance of the series combination of R t and jwL. That is,

Z \= R \  +jcoL (10.14-1)

Next, let Y2 denote the admittance of the parallel combination of Rj and 1 /jwC. That is,

Y 2 =  - J - + > C  (10.14-2)
K 2

Let Z2 denote the corresponding impedance, that is,

z  * (10.14-3)
*2

Using MATLAB for Analysis of Steady-State Circuits with Sinusoidal Inputs — < 0

.................................. ............................................................-
% Describe the input voltage source.
% ---------------------------------------------------
w = 2;
A = 12;
theta = (pi/180)*60;
Vs = A*exp(j*theta)
%----------------------------------------------------
%Describe the resistors, inductor and capacitor.%----------------------------------------------------
Rl = 6;
L = 4;
R2 = 12;
C = 1/24;%----------------------------------------------------
% Calculate the equivalent impedances of the 
% series resistor and inductor and of the 
% parallel resistor and capacitor
% --------------------------------------------------------------

Zl = Rl + j *w*L % Eqn 10.14-1
Y2 = 1/R2 + j*w*C; % Eqn 10.14-2
Z2 = 1 / Y2 % Eqn 10.14-3
% --------------------------------------------------------------

% Calculate the phasor corresponding to the 
% output voltage.
% --------------------------------------------------------------

Vo = Vs * Z2/(Z1 + Z2) % Eqn 10.14-4
B = abs(Vo); 
phi = angle (Vo) ;
%------------------------------- ----------- -----------------------------------
%
%---------------------------------------------------
T = 2 *pi/w ;
tf = 2*T; N * 100; dt = tf/N; 
t = 0 : dt : tf;
%-------------- --------------- ------ --------------

Plot the input and output voltages.

for k = 1 : 101
vs(k) * A * cos (w * t(k) + theta); 
vo (k) = B * cos (w * t (k) + phi);

end
plot {t, vs, t , vo)

FIGURE 10.14-2 MATLAB input file corresponding to the circuit shown in Figure 10.14-1.
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FIGURE 10.14-3 MATLAB plots showing the input and output voltages o f the circuit shown in Figure 10.14-1.

Finally, VG is calculated from Vs using voltage division. That is,

V 0 =  y ^ - V s (10.14-4)
L \ +  Z 2

Figure 10.14-2 shows a MATLAB input file that uses Eqs. 10.14-1 through 10.14-3 to find the 
steady-state response o f the circuit shown in Figure 10.14-1. Equation 10.14-4 is used to calculate VQ. 
Next, B = |V0| and </> =  /V 0 are calculated and used to determine the magnitude and phase angle o f 
the sinusoidal output voltage. Notice that MATLAB, not the user, does the complex arithmetic needed 
to solve these equations. Finally, MATLAB produces the plot shown in Figure 10.14-3, which displays 
the sinusoidal input and output voltages in the time domain.

10.15 U S I N G  P S P I C E  T O A N A L Y Z E  AC C I R C U I T S

To use PSpice to analyze an ac circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a AC SweepYNoise simulation.

3. Run the simulation.

4. Open an output file to view the simulation results.

Table 10.15-1 shows some PSpice parts used to analyze ac circuits. W hen sim ulating ac 
circuits, we will represent independent voltage and current sources using the PSpice parts VAC and 
IAC, respectively. These PSpice parts each have properties named ACM AG and ACPHASE. We 
will edit the value o f these properties to specify the am plitude and phase angle o f  a sinusoid. 
(Consequently, ACM AG and ACPHASE also represent the m agnitude and phase angle o f  the 
phasor corresponding to the sinusoid.)



Using PSpice to Analyze AC Circuits

T ii  . i ,  i PSpice Parts for AC Circuits and the Libraries in Which They Are Found

DESCRIPTION PSPICE NAME LIBRARYSYMBOL

— 0
lVac / 
OVdcV

AC voltage source VAC SOURCE

lA ac/
0Adc\

AC current source 1AC SOURCE

Print element voltage

Print node voltage

VPRJNT2

VPR1NT1

SPECIAL

SPECIAL

IPRINT

M Print element current IPRINT SPECIAL

We will add the PSpice parts VPRINT1, VPRINT2, and IPRINT from Table 10.15-1 to specify 
those current and voltage values that PSpice is to print into the output file. Each of these PSpice parts 
has properties named AC, REAL, IMAG, MAG, and PHASE. We will edit the value of each of these 
properties to be y. Then, when we simulate the circuit, PSpice will print the value of the corresponding 
phasor in both rectangular form and polar form.

E x a m p l e  10.15-1 U s i n g  P S p i c e  to A n a l y z e  AC C i r c u i t s

Consider the ac circuit shown in Figure 10.15-1, in which

vs(/) =  12 cos (100/+ 15°) V and is(t) =  1.5 cos (100/+ 135°) A 

Use PSpice to determine the voltages vi and v3 and the current i2.

FIGURE 10.15-1 An AC circuit.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in Figure 10.15-2 (see Appendix A). Notice 
that we have used the PSpice parts VAC and IAC from Table 10.15-1 to represent the sources. Also, we have
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IPRINT

) 2H

vrXMAG = 12Vac 
L>VACPHASE= 15

5H

CMAG = 1.5Aac 4mF 
'ACPHASE = 135

------------ X ------
- o

FIGURE 10.15-2 The circuit of Figure 10.15-1 as drawn in the OrCAD workspace.

edited the ACM AG and ACPHASE properties o f these sources, setting ACM AG =12  and ACPHASE — 15 for 
the voltage source and ACM AG =  1.5 and ACPHASE — 135 for the current source.

Figure 10.15-2 also shows that we have added PSpice parts V PRINT1, IPRINT, and VPRINT2 to 
m easure v K/2, and v3. These printers are connected to the circuit in the same way that am m eters and voltm eters 
would be connected to m easure v { i2, and v3. N otice the m inus sign on the VPRINT2 printer. It indicates the 
term inal near the minus sign o f  the polarity o f  the m easured voltage. Sim ilarly, the current m easured by the 
IPRINT printer is the current directed tow ard the term inal m arked by the m inus sign. The m inus sign on the 
VPRINT1 printer can be ignored. This printer m easures the node voltage at the node to w hich it is connected.

We will perform a AC SweepYNoise simulation. (Select Pspice\New Simulation Profile from the OrCAD 
Capture menu bar; then select AC SweepYNoise from the Analysis Type drop-down list. Set both the Start 
Frequency and End Frequency to 100/(27t) =  15.92. Select a Linear Sweep and set the Total Points to 1.) Select 
PSpiceYRun Simulation Profile from the OrCAD Capture menu bar to run the simulation.

After we run the simulation, OrCAD Capture will open a Schematics window. Select View\Output File 
from the menu bar on the Schematics window. Scroll down through the output file to find the printer voltage and 
currents:

FREQ
15.92E+00

FREQ
15.92E+00 

FREQ
15.92E+00

VM( N 6 1 5 )
1 .579E+01

IM ( V _ P R IN T 2 )
6 . 6 9 4 E -0 1

V M (N 2 5 6 ,N 7 6 1 ) 
4 . 5 3 3 E + 0 1

V P ( N 6 1 5  )
- 8 . 1 1 2 E + 0 0

I P ( V _ P R IN T 2 ) 
1 .2 7  2 E + 0 2

V P ( N 2 5 6 ,N 7 6 1 )
2 . 9 4 2 E + 0 1

V R ( N 6 1 5 )
1 . 5 6 4 E + 0 1

I R ( V _ P R IN T 2 ) 
- 4 . 0 4 5 E -0 1

V R ( N 2 5 6 , N 7 6 1 )
3 .9 4 9 E + 0 1

V I ( N 615)
-2 .229E+00

II (V_PRINT2) 
5.334E-01

V I (N256,N761) 
2.227E+01

This output requires some interpretation. The labels VM, VP, VR, and VI indicate the magnitude, angle, real part, 
and imaginary part o f a voltage, and the labels IM, IP, IR, and II indicate the magnitude, angle, real part, and 
imaginary part o f a current. The labels N614, N256, and N761 are node numbers generated by PSpice. VM(N615) 
refers to the voltage at a single node, that is, the node voltage v j. IM (V_PRINT2) refers to a current, that is, i2. VM 
(N256,N761) refers to a voltage between two nodes, that is, v3. Consequently, the simulation results indicate that

v ,(r) =  15.79 cos (1 OOr — 8.1°) =  15.64 cos (100/) +  2.229 sin (100/) V, 

i2(t) =  0.6694 cos (100/ +  127.2°) =  -0 .4 0 4 5  cos (100/) -  0.5334 sin (100/) V,

and

v3(/) =  45.33 cos (100/ +  29.40) =  39.49 cos (100/) -  22.27 sin (100/) V
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Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.

10.16 H O W C A N W E C H E C K  . . . ?

E x a m p l e  1 0 . 1 6 - 1  How Can We Check Ari thmet ic 
with Complex Numbers?

It is known that

10
-  = A / 53°

R - j 4

A computer program states that A = 2. H ow  can we check this result? (Notice that values are given to only two 
significant figures.)

Solution
The equation for the angle is

- ta n -  [ - £ ]  = 53°

Then, we have

Solving for A in terms of R, we obtain

R = ---'/ = 3 014tan (-53°)

10
A = -------------— =  1.997

(R2 + 16)

Therefore, A — 2 is correct to two significant figures.

r  ---- ■-■■■ ----------- ---------------------------------------

------------- ( E x a m p l e  1 0 . 1 6 - 2  How Can We Check AC Circui t  Analysis?

Consider the circuit shown in Figure 10.16-1. Suppose we know that the capacitor voltages are 

1.96 cos (100/ — 101.3°) V and 4.39 cos (100/-37.88°) V 

we do not know which voltage is V | ( / )  and which is v jO ) .  How can we check the capacitor voltages?
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F I G U R E  1 0 . 1 6 - 1  A n  e x a m p l e  c i r c u i t .

v i( t)  =  1 .96cos (100 1 -  101.3°)

Solution
Let us guess that 

and

v2(/) =  4 .3 9 cos (lOOr -  37.88°)

and then check to see whether this choice satisfies the node equations representing the circuit. These node 
equations are

1 0 - V ,

Ri
r \ • ™  , V i - V 2 
— = j ( o C  1 Vl  H------- -------
J < 2

and

y'a>C2V 2 Vi - v 2
R i

where V] and V2 are the phasors corresponding to vi(/) and v2(/). That is,

V, =  1.96e_' I013° and V 2 =  4 .39e_/57 88°

Substituting the phasors V , and V2 into the left-hand side o f  the first node equation gives

1 0 - 1  96e~/l013 ,
-----------------*----- =  0.001 +  j l .9 2  x 10 “ 410  x 10

Substituting the phasors V] and V2 into the right-hand side o f the first node equation gives

1 96e~jl0L3 — 4 39e ~/37-88
/  • 100  x  1 0" • 1.96e~j m 3 + —--------------------^------------
J 10  x 103

=  -1 9 .3  x 10“ 4 +  y'3.89 x 10“ 5

Because the right-hand side is not equal to the left-hand side, V , and V2 do not satisfy the node equation. That 
means that the selected order o f V|(f) and v2(t) is not correct. Instead, use the reverse order so that

v,(;) =  4.39 cos (100? -  37.88°)

and

v2(f) =  1.96 cos (1 0 0 ? -  101.3°)

Now the phasors V, and V2 will be

V, =  4 .39e_y37 88° and V2 =  1.96e“' l0 ir

Substituting the new values o f the phasors V) and V2 into the left-hand side o f  the first node equation gives
10 — 4  3 9 e ~ /37 88
--------- -̂----- r------=  6.353 x 10 4 +  /'2.696 x 10 4[.39e"|

10 x I03
=  6.353 x 10~4 +  >2.696 x 10“4



D e s ig n  E x a m p le — ©

S u b s t i t u t i n g  t h e  n e w  v a l u e s  o f  t h e  p h a s o r s  V ,  a n d  V 2  i n t o  t h e  r i g h t - h a n d  s i d e  o f  t h e  f i r s t  n o d e  e q u a t i o n  g i v e s

,  ^788 4 . 3 9 e - '37 88 -  1 . 9 6 e ^ 1 0 1 3

j  ■ 1 0 0  • 1 0 - 6 4 . 3 9 e - y  + ---------------------------------------------------------------------

=  + 6 . 5 4 5  x  1 0 " 4 + y 2 . 6 9  x  1 0 “ 4

B e c a u s e  t h e  r i g h t - h a n d  s i d e  i s  v e r y  c l o s e  t o  e q u a l  t o  t h e  l e f t - h a n d  s i d e ,  V ,  a n d  V 2 s a t i s f y  t h e  f i r s t  n o d e  e q u a t i o n .  

T h a t  m e a n s  t h a t  v , ( < )  a n d  v 2 ( t )  a r e  p r o b a b l y  c o r r e c t .  T o  b e  c e r t a i n ,  w e  w i l l  a l s o  c h e c k  t h e  s e c o n d  n o d e  e q u a t i o n .  

S u b s t i t u t i n g  t h e  p h a s o r s  V ,  a n d  V 2 i n t o  t h e  l e f t - h a n d  s i d e  o f  t h e  s e c o n d  n o d e  e q u a t i o n  g i v e s

j -  1 0 0  - 2  x  1 0 ~6 1 . 9 6 < T ' 1 0 1 3  = + 3 . 8 4  x  1 0 “ 4 - > 7 . 6 8 1  x  1 0 ~5

S u b s t i t u t i n g  t h e  p h a s o r s  V ,  a n d  V 2  i n t o  t h e  r i g h t - h a n d  s i d e  o f  t h e  s e c o n d  n o d e  e q u a t i o n  g i v e s

4  3 9 e " '37 88 -  1  9 6 e ~ i m  3  a  <
------------------------ L Z r L --------------- =  3 .8 5  x  1 0 ~4 —  Z 7 . 7 3 5  x  1 0 “ 5

10  x  10 3

B e c a u s e  t h e  r i g h t - h a n d  s i d e  i s  e q u a l  t o  t h e  l e f t - h a n d  s i d e ,  V ,  a n d  V 2 s a t i s f y  t h e  s e c o n d  n o d e  e q u a t i o n .  N o w  w e  a r e  

c e r t a i n  t h a t

v , ( f )  =  4 . 3 9  c o s  ( 1 0 0 /  -  3 7 . 8 8 ° )  V

a n d

v 2 ( f )  =  1 . 9 6  c o s  ( l O O f  -  1 0 1 . 3 ° )  V

— | 1 0 . 1 7  D E S I G N  E X A M P L E  I-----------------------------------------------------

OP AMP CIRCUIT

F i g u r e  1 0 . 1 7 - l a  s h o w s  t w o  s i n u s o i d a l  v o l t a g e s ,  o n e  l a b e l e d  a s  i n p u t  a n d  t h e  o t h e r  l a b e l e d  a s  

o u t p u t .  W e  w a n t  t o  d e s i g n  a  c i r c u i t  t h a t  w i l l  t r a n s f o r m  t h e  i n p u t  s i n u s o i d  i n t o  t h e  o u t p u t  

s i n u s o i d .  F i g u r e  1 0 . 1 7 - 1 6  s h o w s  a  c a n d i d a t e  c i r c u i t .  W e  m u s t  f i r s t  d e t e r m i n e  w h e t h e r  t h i s  

c i r c u i t  c a n  d o  t h e  j o b .  T h e n ,  i f  i t  c a n ,  w e  w i l l  d e s i g n  t h e  c i r c u i t ,  t h a t  i s ,  s p e c i f y  t h e  r e q u i r e d  

v a l u e s  o f R u  R 2 ,  a n d  C .

v2(t) -  2 sin(2jrl000r + 120°) V

(a)

FIGURE 10.17-1 (a) Input and output voltages, (b) Proposed circuit.
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Define the S ituation and the A ssum ptions
The input and output sinusoids have different amplitudes and phase angles but the same 
frequency:

/  =  1000 Hz

or, equivalently,

co = 2 tt 1000 rad/s

We now know that this must be the case. When the input to a linear circuit is a sinusoid, the 
steady-state output will also be a sinusoid having the same frequency.

In this case, the input sinusoid is

vi(r) =  sin (27zT000/) =  cos (27rl000/ — 90°) V

and the corresponding phasor is

V, =  \e~JW° =  1 7 - 9 0 °  V

The output sinusoid is

V2(/) -  2 sin (2tt1000/ +  120°) -  2 cos (2tt1000/ +  30°) V 

and the corresponding phasor is

V2 =  2ejW  V

The ratio o f  these phasors is

V , l e r l i r

The magnitude o f  this ratio, called the gain, G, o f the circuit used to transform the input 
sinusoid into the output sinusoid is

G =
V2

=  2
V,

The angle o f this ratio is called the phase shift, 6 , o f  the required circuit:

0 =  /  V 7 = 1 2 0 °

Therefore, we need a circuit that has a gain o f 2 and a phase shift o f  120°.

S tate the G oal
Determine whether it is possible to design the circuit shown in Figure 10.17-16 to have a gain 
of 2 and a phase shift o f 1 20°. If it is possible, specify the appropriate values o f R \, R 2, and C.

G en era te  a P lan
Analyze the circuit shown in Figure 10.17-16 to determine the ratio o f the output phasor to the 
input phasor, V2/ V 1. Determine whether this circuit can have a gain o f  2 and a phase shift o f  
120°. If so, determine the required values o f R u R2, and C.

A ct on the Plan
The circuit in Figure 10.17-16 is a special case o f the circuit shown in Figure 10.12-1. The 
impedance Z\ in Figure 10.12-1 corresponds to the resistor /?, in Figure 10.17-16, and



D e s ig n  E x a m p l e --------( 473

i m p e d a n c e  Z 2  c o r r e s p o n d s  t o  t h e  p a r a l l e l  c o m b i n a t i o n  o f  r e s i s t o r  R 2  a n d  c a p a c i t o r  C .  T h a t  i s ,

Z ,  = / ? ,

a n d

R 2 { \ / j c o C )  R 2

Z 2  =

T h e n ,  u s i n g  E q .  1 0 . 1 2 - 3 ,

V 2 Z 2 ^ 2 / ( 1  - f  j t o C R 2 )  _  R 2 / R

V ,  Z i  R \  1  + j ( o C R 2

T h e  p h a s e  s h i f t  o f  t h e  c i r c u i t  i n  F i g u r e  1 0 . 1 7 - 1 6  i s  g i v e n  b y

0 =  /  — =  / -  V f t l —  =  1 8 0 °  -  t a n " 1 o ) C R 2  ( 1 0 . 1 7 - 1 )

/  Vi /  1 +  JC0CR2

W h a t  v a l u e s  o f  p h a s e  s h i f t  a r e  p o s s i b l e ?  N o t i c e  t h a t  c o ,  C ,  a n d  R 2  a r e  a l l  p o s i t i v e ,  w h i c h  m e a n s  

t h a t

0 °  <  t a n - 1  c o C R 2  <  9 0 0

T h e r e f o r e ,  t h e  c i r c u i t  s h o w n  i n  F i g u r e  1 0 . 1 7 - 1 6  c a n  b e  u s e d  t o  o b t a i n  p h a s e  s h i f t s  b e t w e e n  9 0 °  

a n d  1 8 0 ° .  H e n c e ,  w e  c a n  u s e  t h i s  c i r c u i t  t o  p r o d u c e  a  p h a s e  s h i f t  o f  1 2 0 ° .

T h e  g a i n  o f  t h e  c i r c u i t  i n  F i g u r e  1 0 . 1 7 - 1 6  i s  g i v e n  b y

G  =
V 2 R i / R i

V , 1  +  j c o C R 2

R i / R \  _  R i / R \  ( 1 0 . 1 7 - 2 )

y j  1 +  aP-C2R\ V 1 +  tan2(180° — ff)

N e x t ,  f i r s t  s o l v e  E q .  1 0 . 1 7 - 1  f o r  R2 a n d  t h e n  E q .  1 0 . 1 7 - 1  f o r  R, t o  g e t

tan (180°-61 )
Rl = ----- ---------

a n d

V  1  +  t a n 2  ( 1 8 0 °  -  6 )

T h e s e  e q u a t i o n s  c a n  b e  u s e d  t o  d e s i g n  t h e  c i r c u i t .  F i r s t ,  p i c k  a  c o n v e n i e n t ,  r e a d i l y  a v a i l a b l e ,  

a n d  i n e x p e n s i v e  v a l u e  o f  t h e  c a p a c i t o r ,  s a y ,

C  =  0 . 0 2  / z F

N e x t ,  c a l c u l a t e  v a l u e s  o f  R x a n d  R 2  f r o m  t h e  v a l u e s  o f  a ; ,  C ,  G ,  a n d  0 .  F o r  c o  =  6 2 8 3  r a d / s ,  

C  =  0 . 0 2  n F ,  G  =  2 ,  a n d  6  =  1 2 0 ° ,  w e  c a l c u l a t e

R\ =  3446 H and R2 =  13.78 kH

and the design is complete.
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Verify the Proposed Solution
When C =  0.02 /iF , R\ =  3446 ft, and R2 =  13.78 kft, the network function o f the circuit is 

v 2 R2/R ] 4
V, 1 +  ju>CR2 1 +  >(0 .2756 x 10~3)

In this case, a> =  27rlOOO, and Vi =  1 / —90°. so

V2
V, 1 +  j(2 n  x 103) (0.2756 x 10~3) 

as required by the specifications.

— r r  =  2  / 1 2 0 °

10.18 S U M M A R Y
O  W i t h  t h e  p e r v a s i v e  u s e  o f  a c  e l e c t r i c  p o w e r  i n  t h e  h o m e  a n d  

i n d u s t r y ,  i t  i s  i m p o r t a n t  f o r  e n g i n e e r s  t o  a n a l y z e  c i r c u i t s  w i t h  

s i n u s o i d a l  i n d e p e n d e n t  s o u r c e s .

O  T h e  s t e a d y - s t a t e  r e s p o n s e  o f  a  l i n e a r  c i r c u i t  t o  a  s i n u s o i d a l  

i n p u t  i s  i t s e l f  a  s i n u s o i d  h a v i n g  t h e  s a m e  f r e q u e n c y  a s  t h e  

i n p u t  s i g n a l .

O  C i r c u i t s  t h a t  c o n t a i n  i n d u c t o r s  a n d  c a p a c i t o r s  a r e  r e p r e s e n t e d  

b y  d i f f e r e n t i a l  e q u a t i o n s .  W h e n  t h e  i n p u t  t o  t h e  c i r c u i t  i s  

s i n u s o i d a l ,  t h e  p h a s o r s  a n d  i m p e d a n c e s  c a n  b e  u s e d  t o  

r e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n .  I n  t h e  f r e q u e n c y  

d o m a i n ,  t h e  c i r c u i t  i s  r e p r e s e n t e d  b y  a l g e b r a i c  e q u a t i o n s .  T h e  

o r i g i n a l  c i r c u i t ,  r e p r e s e n t e d  b y  a  d i f f e r e n t i a l  e q u a t i o n ,  i s  

c a l l e d  t h e  t i m e - d o m a i n  r e p r e s e n t a t i o n  o f  t h e  c i r c u i t .

O T h e  s t e a d y - s t a t e  r e s p o n s e  o f  a  l i n e a r  c i r c u i t  w i t h  a  s i n u s o i d a l  

i n p u t  i s  o b t a i n e d  a s  f o l l o w s :

1 .  T r a n s f o r m  t h e  c i r c u i t  i n t o  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

p h a s o r s  a n d  i m p e d a n c e s .

2 .  R e p r e s e n t  t h e  f r e q u e n c y - d o m a i n  c i r c u i t  b y  a l g e b r a i c  

e q u a t i o n s ,  f o r  e x a m p l e ,  m e s h  o r  n o d e  e q u a t i o n s .

3 .  S o l v e  t h e  a l g e b r a i c  e q u a t i o n s  t o  o b t a i n  t h e  r e s p o n s e  o f  

t h e  c i r c u i t .

4. T r a n s f o r m  t h e  r e s p o n s e  i n t o  t h e  t i m e  d o m a i n ,  u s i n g  

p h a s o r s .

O  T a b l e  1 0 . 6 - 1  s u m m a r i z e s  t h e  r e l a t i o n s h i p s  u s e d  t o  t r a n s f o r m  

a  c i r c u i t  f r o m  t h e  t i m e  d o m a i n  t o  t h e  f r e q u e n c y  d o m a i n  o r

v i c e  v e r s a .

O  W h e n  a  c i r c u i t  c o n t a i n s  s e v e r a l  s i n u s o i d a l  s o u r c e s ,  w e  

d i s t i n g u i s h  t w o  c a s e s .

1 .  W h e n  a l l  o f  t h e  s i n u s o i d a l  s o u r c e s  h a v e  t h e  s a m e  

f r e q u e n c y ,  t h e  r e s p o n s e  w i l l  b e  a  s i n u s o i d  w i t h  t h a t  

f r e q u e n c y ,  a n d  t h e  p r o b l e m  c a n  b e  s o l v e d  i n  t h e  s a m e  

w a y  t h a t  i t  w o u l d  b e  i f  t h e r e  w a s  o n l y  o n e  s o u r c e .

2 .  W h e n  t h e  s i n u s o i d a l  s o u r c e s  h a v e  d i f f e r e n t  f r e q u e n c i e s ,  

s u p e r p o s i t i o n  i s  u s e d  t o  b r e a k  t h e  t i m e - d o m a i n  c i r c u i t  u p  

i n t o  s e v e r a l  c i r c u i t s ,  e a c h  w i t h  s i n u s o i d a l  i n p u t s  a l l  a t  t h e  

s a m e  f r e q u e n c y .  E a c h  o f  t h e  s e p a r a t e  c i r c u i t s  i s  a n a l y z e d  

s e p a r a t e l y  a n d  t h e  r e s p o n s e s  a r e  s u m m e d  in the time 
domain.

O  M A T L A B  g r e a t l y  r e d u c e s  t h e  c o m p u t a t i o n a l  b u r d e n  a s s o ­

c i a t e d  w i t h  s o l v i n g  m e s h  o r  n o d e  e q u a t i o n s  h a v i n g  c o m p l e x  

c o e f f i c i e n t s .

P R O B L E M S

Section 10.2 Sinusoidal Sources

P 10.2-1 E x p r e s s  t h e  f o l l o w i n g  s u m m a t i o n s  o f  s i n u s o i d s  i n  t h e  

g e n e r a l  f o r m  A  s m ( c u t  4 -  0 )  b y  u s i n g  t r i g o n o m e t r i c  i d e n t i t i e s .

( a )  / ( / )  =  2  c o s ( 6 /  +  1 2 0 ° )  +  4  s i n ( 6 /  -  6 0 ° )

( b )  v ( f )  =  5 \ / 2  c o s  8 /  4 -  1 0  s i n  ( 8 /  4 -  4 5 ° )

P 10.2 -2 A  s i n u s o i d a l  v o l t a g e  h a s  a  m a x i m u m  v a l u e  o f  1 0 0  V ,  a n d  

t h e  v a l u e  i s  1 0  V  a t  /  =  0 .  T h e  p e r i o d  i s  T  =  1  m s .  D e t e r m i n e  v ( f ) .

P 10.2-3 A  s i n u s o i d a l  c u r r e n t  i s  g i v e n  a s  /  =  3 0 0  c o s  

( 1 2 0 0 t t /  4 -  5 5 ° )  m A .  D e t e r m i n e  t h e  f r e q u e n c y / a n d  t h e  v a l u e  

o f  t h e  c u r r e n t  a t  /  =  2  m s .
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P 10.2-4 P l o t  a  g r a p h  o f  t h e  v o l t a g e  s i g n a l  

v ( / )  =  1 5  c o s  ( 6 2 8 /  +  4 5 ° )  m V

P 10.2-5 F i g u r e  P  1 0 . 2 - 5  s h o w s  a  s i n u s o i d a l  v o l t a g e ,  v ( / ) ,  

p l o t t e d  a s  a  f u n c t i o n  o f  t i m e ,  / .  R e p r e s e n t  v ( / )  b y  a  f u n c t i o n  o f  

t h e  f o r m  A  c o s  ( c o t  +  0 ) .

A n s w e r :  v ( / )  =  1 8  c o s  ( 3 9 3 /  -  2 7 ° )

Figure P 10.2-5

P 10.2-6 F i g u r e  P  1 0 . 2 - 6  s h o w s  a  s i n u s o i d a l  v o l t a g e ,  v ( / ) ,  

p l o t t e d  a s  a  f u n c t i o n  o f  t i m e ,  / .  R e p r e s e n t  v ( / )  b y  a  f u n c t i o n  o f  

t h e  f o r m  A  c o s ( a > /  +  0 ) .

t

Figure P 10.2-6

Section 10.3 Steady-State Response of an RL Circuit 
for a Sinusoidal Forcing Function

P 10.3-1 F i n d  t h e  f o r c e d  r e s p o n s e  / f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 3 - 1  w h e n  v s ( / )  =  1 0  c o s  ( 3 0 0 / )  V .

A n s w e r :  i ( t )  =  1 . 2 4  c o s  ( 3 0 0 /  -  6 8 ° )  A

25 mH

P 10 .3-2  Find the forced response v for the circuit o f  Figure
P 10.3-2 when is(t) =  0.5 cos cot A and co =  1000 rad/s.

Figure P 10.3-2

P 10.3-3 F i n d  t h e  f o r c e d  r e s p o n s e  / ( / )  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 3 - 3 .

A n s w e r :  / ' ( / )  =  2  c o s  ( 4 /  +  4 5 ° )  m A

Figure P 10.3-3

Section 10.4 Complex Exponential Forcing Function 

P 10.4-1 D e t e r m i n e  t h e  p o l a r  f o r m  o f  t h e  q u a n t i t y

( 5 / 3 6 . 9 ° H 1 0 / - S 3 . n  

( 4  +  / 3 )  +  ( 6 — y 8 )

A n s w e r :  2 y ' 5  / l 0 . 3 6 °

P 10.4-2 D e t e r m i n e  t h e  p o l a r  a n d  r e c t a n g u l a r  f o r m  o f  t h e  

e x p r e s s i o n

5 / + 8 1 . 8 7 °  ( 4  - y 3  +  3 v ^ r p )

A n s w e r :  2 8  / + 4 5 °  =  1 4 y / 2  +  j  1 4  \ [ 2

P 10.4-3 G i v e n  A =  3  + / 7 ,  B =  6  / l 5 ° ,  a n d  C  =  5 e ' 2 J \  

f i n d  (A*C*)/B.

A n s w e r :  0 . 6 5  - y ' 6 . 3 2

P 10.4-4 D e t e r m i n e  a a n d  b w h e n  ( a n g l e s  i n  d e g r e e s )

( 6  / i 2 ( n  ( - 4  +  ; 3  +  2 e J l s )  = a + j b

P 10.4-5 F i n d  a ,  b ,  A ,  a n d  0  a s  r e q u i r e d  ( a n g l e s  g i v e n  i n  

d e g r e e s ) .

(a) Ae'120 +jb = -4  + y 3

(b) 6 e J l 2 0 ( — 4  +jb +  % e # )  =  1 8

(c) ( a  +  j 4 ) j 2  =  2  +  A e ' 6 0

P  10.4-6 F i n d  t h e  s t e a d y - s t a t e  r e s p o n s e ,  v ( / ) ,  f o r  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  P 1 0 . 4 - 6 .

A n s w e r :  v ( t )  =  - ^ =  c o s  ( 2 /  -  4 5 ° )  V
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cos 2f V ( I

Figure P 10.4-6

P 10.4-7 F i n d  t h e  s t e a d y - s t a t e  r e s p o n s e ,  v ( / ) ,  f o r  t h e  c i r c u i t  F i g u r e  P 1 0 . 5 - 3  

s h o w n  i n  F i g u r e  P  1 0 . 4 - 7 .

4  c o s  5 t  V  f  *

1 5  c o s  4 f  V  (  * 2  H  <  v ( t )

I------------ W V ------------1 •----- \A A ------L
1
P  y(,H =  0 . 2 5  F  4  H  ■

r  -

P 10.5-4 F i n d  t h e  r e s p o n s e  v  f o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 0 . 5 - 4  w h e n  zs  =  1 0  c o s  1 0 0 / A .

A n s w e r :  v  =  7 . 0 7 1  c o s ( 1 0 0 /  —  4 5 ° )

Figure P 10.4-7

Section 10.5 The Phasor

P 10.5-1 F i n d  t h e  s t e a d y - s t a t e  r e s p o n s e ,  v ( / ) ,  f o r  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  P  1 0 . 5 - 1 .

d

H i n t :  F i r s t ,  s h o w  2  —  /  +  6 /  =  1 5  c o s  4 1  

d t

A n s w e r :  v ( / )  =  1 2  c o s  ( 4 1  - 1 -  3 7 ° )  V

Figure P 10.5-4

P 10.5-5 F i n d  t h e  c u r r e n t  / ( / )  f o r  t h e  R L C  c i r c u i t  o f  F i g u r e  

P  1 0 . 5 - 5  w h e n  v s  =  4  c o s  1 0 0 / V .

A n s w e r :  / ( / )  =  2 \ / 2  c o s  ( 1 0 0 /  +  4 5 ° )  A

I Q  10 mH

Figure P 10.5-1

P 10.5-2 F i n d  t h e  s t e a d y - s t a t e  r e s p o n s e ,  i ( t ) ,  f o r  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  P  1 0 . 5 - 2 .

A n s w e r :  i { t )  =  0 . 3 9 8  c o s  ( 2 t  —  8 5 ° )  A

1  a  a  4  Q

Figure P 10.5-5

Section 10.6 Phasor Relationships for R, L, and C  
Elements

P 10.6-1 R e p r e s e n t  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 6 - 1  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

6 Q

P 10.6-2 R e p r e s e n t  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 6 - 2  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

Figure P 10.5-2

P 1 0 . 5 - 3  F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 5 - 3 ,  f i n d  v ( t )  w h e n  

v s  =  2  s i n  5 0 0 /  V .

1 2  c o s  ( 5 r - 3 0 ° )  V

0 . 2 5  F = f =

6 Q  

------ W N r

i(f)

2  H

0 . 0 5  F  = i =  t A t )

■ e - 1
15 cos (5r + 60°) V

Answer: v(/) =  1.25 cos (500/ -  141°) V F igu re P 10.6-2
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P 10.6-3 R e p r e s e n t  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 6 - 3  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

3 cos (21 + 15°) A

2.5  cos (2/ + 135°) A

Figure P 10.6-3

v ( / )  =  20 c o s  (20/ +  1 5 ° )  V  a n d  / ( f )  =  1 . 4 9  c o s  (20/ +  6 3 ° )  A

D e t e r m i n e  t h e  v a l u e s  o f  t h e  r e s i s t a n c e ,  R , a n d  c a p a c i t a n c e ,  C

i(t) n C

P 10.6-7 The voltage and current for the circuit shown in
Figure P 10.6-7 are given by

c

R

•AAAr

v ( t )

P 10.6-4 R e p r e s e n t  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 6 - 4  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

8 i> < /)

Figure P 10.6-7

P 10.6-8 G i v e n  t h a t

i !  ( r )  =  3 0  c o s  ( 4 /  +  4 5 ° )  m A

a n d

i 2  ( / )  =  - 4 0  c o s  ( 4 / )  m A  

D e t e r m i n e  v ( / )  f o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 6 - 8 .

P 10.6-9 F i g u r e  P  1 0 . 6 - 9  s h o w s  a n  a c  c i r c u i t  r e p r e s e n t e d  i n  

b o t h  t h e  t i m e  d o m a i n  a n d  t h e  f r e q u e n c y  d o m a i n .  D e t e r m i n e  

t h e  v a l u e s  o f  A ,  B ,  a ,  a n d  b .

Figure P 10.6-4

P 10.6-5 Each of the following pairs of element voltage and 
element current adheres to the passive convention. Indicate 
whether the element is capacitive, inductive, or resistive and 
find the element value.

(a) v(/) =  15 cos (400/ +  30°); / =  3 sin (400/ +  30°)
(b) v(/) = 8 sin (900/ 4  50°); i = 2 sin (900/ + 140°)
(c) v(/) =  20cos (250/ +  60°); i — 5 sin (250/ +  150°)

Answers: (a) L =  12.5 mH
(b) C =  277.77 /xF
(c) R = 411

P 10.6-6 Two circuit elements are connected in series, so 
V= V, -f v2. Find v(/) when vj(/) =  150 cos (377/ -  n/6) V 
and V2 =  200 /+ 6 0 °V.

Answer: v(/) =  2 5 0 cos (377/ +  23.1°) V

Z. =  / 4 Z 5 4 . 2 °  Q

Z3 = a + jb Q

Figure P 10.6-9
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Section 10.7 Im pedance and A dm ittance

P 10.7-1 F i n d  Z  a n d  Y  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 7 - 1  

o p e r a t i n g  a t  1 0  k H z .

F i g u r e  P 1 0 . 7 - 1

P 10.7-2 F i n d  R  a n d  L  o f  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 7 - 2  w h e n

v ( / )  =  1 0  c o s  ( c o t  +  4 0 ° )  V ;  i ( t )  =  2  c o s  ( c o t  + 1 5 ° )  m A ,  a n d  

a >  =  2  x  1 0 6  r a d / s .

A n s w e r :  R  =  4 . 5 3 2  k f i ,  L  =  1 . 0 5 7  m H

F i g u r e  P 1 0 . 7 - 2

P 10.7-3 C o n s i d e r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 7 - 3  w h e n  

R  =  6  0 ,  L  =  2 1  m H ,  a n d  C  —  2 2  / i F .  D e t e r m i n e  t h e  f r e ­

q u e n c y  /  w h e n  t h e  i m p e d a n c e  Z  i s  p u r e l y  r e s i s t i v e ,  a n d  f i n d  

t h e  i n p u t  r e s i s t a n c e  a t  t h a t  f r e q u e n c y .

P 10.7-4 C o n s i d e r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 7 - 4  w h e n  R  =  

1 0  k f i  a n d  /  =  1  k H z .  F i n d  L  a n d  C  s o  t h a t  Z  =  1 0 0  +  j O f l .

A n s w e r :  L  =  0 . 1 5 8 7  H  a n d  C  =  0 . 1 5 8  f i ¥

L

F i g u r e  P  1 0 . 7 - 4

P 10.7-5 F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 7 - 5 ,  f i n d  t h e  v a l u e  o f  C  

r e q u i r e d  s o  t h a t  Z  =  5 9 0 . 7  f l  w h e n  /  =  1  M H z .

A n s w e r :  C  =  0 . 2 7  n F

300 Q

P 10.7-6 D e t e r m i n e  t h e  i m p e d a n c e  Z  f o r  t h e  c i r c u i t  s h o w n  i n  

F i g u r e  P  1 0 . 7 - 6 .

2 . 5  H  2  m F

1 . 5  H

F i g u r e  P 1 0 . 7 - 6

P 10.7-7 F i g u r e  P  1 0 . 7 - 7  s h o w s  a n  a c  c i r c u i t  r e p r e s e n t e d  i n  

b o t h  t h e  t i m e  d o m a i n  a n d  t h e  f r e q u e n c y  d o m a i n .  S u p p o s e

Zl =  1 5 . 3  / — 2 4 . 1 °  C l  a n d  Z 2  =  1 4 . 4 / 5 3 . 1 °  f l  

D e t e r m i n e  t h e  v o l t a g e  v ( f )  a n d  t h e  v a l u e s  o f  R l9  R 2 ,  L, a n d  C .

Section 10.8 K irchhoffs Laws Using Phasors

P 10.8-1 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 1 ,  f i n d  ( a )  

t h e  i m p e d a n c e s  a n d  Z 2  i n  p o l a r  f o r m ,  ( b )  t h e  t o t a l  

c o m b i n e d  i m p e d a n c e  i n  p o l a r  f o r m ,  a n d  ( c )  t h e  s t e a d y - s t a t e  

c u r r e n t  / ( / ) .

A n s w e r s :  ( a )  Z ,  = 5 / 5 3 . 1 ° ;  Z 2  =  8 v ^ 2 / - 4 5 °

( b )  Z ,  + Z 2  =  1 1 . 7 / - 2 0 0

( c )  i ( t )  =  ( 8 . 5 5 )  c o s  ( 1 2 5 0 ?  +  2 0 ° )  A
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I 3 f t  3.2 mH | 110, ° /F |
n — K ----------V S A r - f i

J i ____________ I

100 cos (1250f) V

Figure P 10.8-1

P 10.8-2 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 2  i s  a t  s t e a d y  

s t a t e .  T h e  v o l t a g e s  v s ( / )  a n d  v 2 ( / )  a r e  g i v e n  b y

v , ( f )  =  7 . 6 8  c o s  ( 2 /  +  4 7 ° ) V

a n d

v 2 ( / )  =  1 . 5 9  c o s  ( I t  +  1 2 5 ° )  V  

F i n d  t h e  s t e a d y - s t a t e  v o l t a g e  v ^ r )

A n s w e r :  v j  ( / )  =  7 . 5 1  c o s  ( 2 t  +  3 5 ° )  V  

+  -

i \ ( t )  =  7 4 4 c o s  ( 2 1  —  1 1 8 ° )  m A

a n d

6 ft

-r* Vl2 F

P 10.8-5 T h e  b i g  t o y  f r o m  t h e  h i t  m o v i e  B i g  i s  a  c h i l d ’ s  

m u s i c a l  f a n t a s y  c o m e  t r u e — a  s i d e w a l k - s i z e d  p i a n o .  L i k e  a  

h o p s c o t c h  g r i d ,  t h i s  o n c e - h o t  C h r i s t m a s  t o y  i n v i t e s  a n y o n e  

w h o  p a s s e s  t o  j u m p  o n ,  m o v e  a b o u t ,  a n d  m a k e  m u s i c .  T h e  

d e v e l o p e r  o f  t h e  t o y  p i a n o  u s e d  a  t o n e  s y n t h e s i z e r  a n d  s t e r e o  

s p e a k e r s  a s  s h o w n  i n  F i g u r e  P  1 0 . 8 - 5  ( G a r d n e r ,  1 9 8 8 ) .  D e t e r ­

m i n e  t h e  c u r r e n t  / '( / )  f o r  a  t o n e  a t  7 9 6  H z  w h e n  C  =  1 0  t x ¥ .

Speaker

20 ft

v = 12 cos (Dt V

Figure P 10.8-5 Tone synthesizer.

3 mH

P 10.8-6 D e t e r m i n e  B  a n d  L  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 8 - 6  

w h e n  i ( t )  =  B  c o s  ( 3 /  —  5 1 . 8 7 ° )  A .

A n s w e r :  B  =  1 . 6  a n d  L  =  2  H

Ht)
Figure P 10.8-2

P 10.8-3 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 3  i s  a t  s t e a d y  

s t a t e .  T h e  c u r r e n t s  i \ ( / )  a n d  i 2 ( t )  a r e  g i v e n  b y

i 2 ( t )  =  5 4 0 . 5  c o s  ( I t  +  1 0 0 ° )  m A  

F i n d  t h e  s t e a d y - s t a t e  c u r r e n t  / '( / ) .

A n s w e r :  i ( t )  =  4 6 0  c o s  ( 2 1  +  1 9 6 ° )  m A

'i l l !  * 2  0 .0 5  F

- w v — 1(-

10 Q
v ^ t )  1 0  f t  ^  ( + )  v 2 ( t )

Figure P 10.8-3

P 10.8-4 D e t e r m i n e  i ( t )  o f  t h e  R L C  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 0 . 8 - 4  w h e n  v s  =  2  c o s  ( 4 /  +  3 0 ° )  V .

A n s w e r :  i ( t )  =  0 . 1 8 5  c o s  ( A t  -  2 6 . 3 ° )  A  

M  3 H

Figure P 10.8-6

P 10.8-7 D e t e r m i n e  / ( / ) ,  v ( f ) ,  a n d  L  f o r  t h e  c i r c u i t  s h o w n  i n  

F i g u r e  P  1 0 . 8 - 7 .

A n s w e r :  i ( t )  =  1 . 3 4  c o s  ( 2 /  —  8 7 ° )  A ,  v ( / )  =  7 . 2 9  c o s  ( 2 1  —  

2 4 ° )  V ,  a n d  L  =  4  H

3 .05  cos (21 -  77°) A 1.72 cos (21 -  69°) A

Figure P 10.8-4

Figure P 10.8-7

P 10.8-8 S p i n a l  c o r d  i n j u r i e s  r e s u l t  i n  p a r a l y s i s  o f  t h e  l o w e r  

b o d y  a n d  c a n  c a u s e  l o s s  o f  b l a d d e r  c o n t r o l .  N u m e r o u s  e l e c ­

t r i c a l  d e v i c e s  h a v e  b e e n  p r o p o s e d  t o  r e p l a c e  t h e  n o r m a l  n e r v e  

p a t h w a y  s t i m u l u s  f o r  b l a d d e r  c o n t r o l .  F i g u r e  P  1 0 . 8 - 8  s h o w s  

t h e  m o d e l  o f  a  b l a d d e r  c o n t r o l  s y s t e m  i n  w h i c h  v s  =  

2 0 c o s a > / V  a n d  c o  =  1 0 0  r a d / s .  F i n d  t h e  s t e a d y - s t a t e  v o l t a g e  

a c r o s s  t h e  1 0 - H  l o a d  r e s i s t o r .

Answer: v(/) =  10%/2 cos (100/ +  45°) V
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1 mF
- K —

i l O O p F  10 Regular nerve 
^  h ^  pathway load

Figure P 10.8-8

P 10.8-9 T h e r e  a r e  5 0 0  t o  1 0 0 0  d e a t h s  e a c h  y e a r  i n  t h e  U n i t e d  

S t a t e s  f r o m  e l e c t r i c  s h o c k .  I f  a  p e r s o n  m a k e s  a  g o o d  c o n t a c t  w i t h  

h i s  h a n d s ,  t h e  c i r c u i t  c a n  b e  r e p r e s e n t e d  b y  F i g u r e  P  1 0 . 8 - 9 ,  i n  

w h i c h  v s  =  1 6 0  c o s  c o t V  a n d  c o  =  2 n f .  F i n d  t h e  s t e a d y - s t a t e  

c u r r e n t  / f l o w i n g  t h r o u g h  t h e  b o d y  w h e n  ( a ) /  =  6 0  H z  a n d  ( b )  

f  =  4 0 0  H z .

A n s w e r :  ( a )  i ( t )  =  0 . 5 3  c o s  ( \ 2 0 n t  +  5 . 9 ° )

( b )  / ( / )  =  0 . 6 2 5  c o s  ( 8 0 0 ^  - I -  5 9 . 9 ° )  A

P 10.8-11 Determine the steady-state current, /(/), for the
circuit shown in Figure P 10.8-11.

5 H 5 mF

Figure P 10.8-11

Person's body

Figure P 10.8-9

P 10.8-10 D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( t ) ,  a n d  c u r ­

r e n t ,  i ( t ) ,  f o r  e a c h  o f  t h e  c i r c u i t s  s h o w n  i n  F i g u r e  P  1 0 . 8 - 1 0 .

v ( t )

\ i ( t )

u( t )

P 10.8-12 D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( f ) ,  f o r  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 1 2 .

P 10.8-13 D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( f ) ,  f o r  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 1 3 .

2.5 H

20 Q 10 mF
------------I I —

5 mF

Z )  10 cos(4r + 60°) V 5 H r  v d )  40  n

Figure P 10.8-10

Figure P 10.8-13

P 10.8-14 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 1 4  

i s  t h e  c u r r e n t  s o u r c e  c u r r e n t

i g ( f )  =  2 5  c o s  ( 1 0 /  +  1 5 ° )  m A

T h e  o u t p u t  i s  t h e  c u r r e n t  D e t e r m i n e  t h e  s t e a d y - s t a t e  

r e s p o n s e ,  i ' i ( f ) .
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iiif) Determine the values o f  the resistances /?, and R2.

5 H C is(,) (

40 Q.

J  5 mF 

2 H
«i— V W — H

2 mF

------- II----------
25 a

i— v w — ■

Figure P 10.8-14

P 10.8-15 Determine the steady-state voltage, v(/), and cur­
rent, /(/), for each o f  the circuits shown in Figure P 10.8-15.

80 Q

Figure P 10.8-17

P 10.8-18 D eterm ine the steady-state current, /(/), for the 
circuit shown in Figure P 10 .8 -18.

20 cos (5r + 30°) mA

(a)

(b)
Figure P 10.8-15

Figure P 10.8-18

P 10.8-16 Determine the steady-state current, i(t), for the ™ . .u * j  * * u  t . \  a. . J P 10.8-19 D eterm ine the steady-state  voltage, v(r), and
circuit in Figure P 10.8-16.

I iit)

current, /(/), for each o f  the c ircu its show n in Figure 
P 10.8-19.

iit)

P 10.8-17 W hen the switch in the circuit shown in Figure 
P 10.8-17 is open and the circuit is at steady state, the capacitor 
voltage is

v(t) =  14.14 cos ( 1 0 0 / - 4 5 ° )  V

When the switch is closed and the circuit is at steady state, the 
capacitor voltage is

v(f) =  17.89 cos ( 1 0 0 / -  26.6°) V

iit)

) cos (10r + 15°) V 4iit)

(b)

Figure P 10.8-19
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P 10.8-20 D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( t ) ,  f o r  e a c h  

o f  t h e  c i r c u i t s  s h o w n  i n  F i g u r e  P  1 0 . 8 - 2 0 .

( b )

F i g u r e  P  1 0 . 8 - 2 0

P 10.8-21 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 8 - 2 1  

i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e

v s ( f )  =  5  c o s  ( 2 t  +  4 5 ° )  V

T h e  o u t p u t  i s  t h e  i n d u c t o r  v o l t a g e ,  v ( t ) .  D e t e r m i n e  t h e  s t e a d y -  

s t a t e  o u t p u t  v o l t a g e .

0.1 F

F i g u r e  P  1 0 . 8 - 2 1

P 10.8-22  Determine the steady-state voltage v(t) for the
circuit of Figure P 10.8-22.

H i n t :  A n a l y z e  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

i m p e d a n c e s  a n d  p h a s o r s .  U s e  v o l t a g e  d i v i s i o n  t w i c e .  A d d  t h e  

r e s u l t s .

A n s w e r :  v ( t )  =  3 . 5 8  c o s  ( 5 /  +  4 7 . 2 ° )  V

F i g u r e  P  1 0 . 8 - 2 2

P 10.8-23 D e t e r m i n e  t h e  v o l t a g e  v ( t )  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 8 - 2 3 .

H i n t :  A n a l y z e  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

i m p e d a n c e s  a n d  p h a s o r s .  R e p l a c e  p a r a l l e l  i m p e d a n c e s  w i t h  

a n  e q u i v a l e n t  i m p e d a n c e  t w i c e .  A p p l y  K V L .

A n s w e r :  v ( t )  =  1 4 . 4  c o s  ( 3 /  —  2 2 ° )  V

P 10.8-24 T h e  i n p u t  t o  t h e  c i r c u i t  i n  F i g u r e  P  1 0 . 8 - 2 4  i s  t h e  

v o l t a g e  s o u r c e  v o l t a g e ,  v s ( 0 -  T h e  o u t p u t  i s  t h e  v o l t a g e  v 0 ( / ) .  

W h e n  t h e  i n p u t  i s  v s ( / )  =  8  c o s  ( 4 0 / )  V ,  t h e  o u t p u t  i s  

v 0 ( t )  =  2 . 5  c o s  ( 4 0 f  +  1 4 ° )  V .  D e t e r m i n e  t h e  v a l u e s  o f  t h e  

r e s i s t a n c e s  R \  a n d  R 2 .

F i g u r e  P  1 0 . 8 - 2 4

Section 10-9 Node Voltage and Mesh Current 
Analysis Using Phasors

P 10.9-1 F i n d  t h e  p h a s o r  v o l t a g e  V c  f o r  t h e  c i r c u i t  s h o w n  i n  

F i g u r e  P  1 0 . 9 - 1 .



P r o b l e m s - ©

2 / 0 °  a ( T )

Figure P 10.9-1

P 10.9-2 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 2 ,  d e t e r m i n e  

t h e  p h a s o r  c u r r e n t s  I s , I c , I I ,  a n d  I R  i f  o )  =  1 0 0 0  r a d / s .

A n s w e r :  I s  =  0 . 3 4 7  7 - 2 5 . 5 °  A  

^  =  0 . 4 6 1  / l  1 2 . 9 °  A

l i  = 0 . 7 2 0  7 - 6 7 . 1 °  A  

IR =  0 . 2 3 0 / 2 2 . 9 °  A

150 Q

P 10.9-5 A  c o m m e r c i a l  a i r l i n e r  h a s  s e n s i n g  d e v i c e s  t o  i n d i ­

c a t e  t o  t h e  c o c k p i t  c r e w  t h a t  e a c h  d o o r  a n d  b a g g a g e  h a t c h  i s  

c l o s e d .  A  d e v i c e  c a l l e d  a  s e a r c h  c o i l  m a g n e t o m e t e r ,  a l s o  

k n o w n  a s  a  p r o x i m i t y  s e n s o r ,  p r o v i d e s  a  s i g n a l  i n d i c a t i v e  

o f  t h e  p r o x i m i t y  o f  m e t a l  o r  o t h e r  c o n d u c t i n g  m a t e r i a l  t o  a n  

i n d u c t i v e  s e n s e  c o i l .  T h e  i n d u c t a n c e  o f  t h e  s e n s e  c o i l  c h a n g e s  

a s  t h e  m e t a l  g e t s  c l o s e r  t o  t h e  s e n s e  c o i l .  T h e  s e n s e  c o i l  

i n d u c t a n c e  i s  c o m p a r e d  t o  a  r e f e r e n c e  c o i l  i n d u c t a n c e  w i t h  a  

c i r c u i t  c a l l e d  a  b a l a n c e d  i n d u c t a n c e  b r i d g e  ( s e e  F i g u r e  

P  1 0 . 9 - 5 ) .  I n  t h e  i n d u c t a n c e  b r i d g e ,  a  s i g n a l  i n d i c a t i v e  o f  

p r o x i m i t y  i s  o b s e r v e d  b e t w e e n  t e r m i n a l s  a  a n d  b  b y  s u b t r a c t ­

i n g  t h e  v o l t a g e  a t  b ,  v b ,  f r o m  t h e  v o l t a g e  a t  a ,  v a  ( L e n z ,  1 9 9 0 ) .

T h e  b r i d g e  c i r c u i t  i s  e x c i t e d  b y  a  s i n u s o i d a l  v o l t a g e  

s o u r c e  v 8 =  s i n  ( 8 0 0 7 T / )  V .  T h e  t w o  r e s i s t o r s ,  R  =  1 0 0  f l ,  a r e  

o f  e q u a l  r e s i s t a n c e .  W h e n  t h e  d o o r  i s  o p e n  ( n o  m e t a l  i s  

p r e s e n t ) ,  t h e  s e n s e  c o i l  i n d u c t a n c e ,  L s ,  i s  e q u a l  t o  t h e  r e f e r e n c e  

c o i l  i n d u c t a n c e ,  L r  =  4 0  m H .  I n  t h i s  c a s e ,  w h a t  i s  t h e  m a g n i ­

t u d e  o f  t h e  s i g n a l  V a -  V b ?

W h e n  t h e  a i r l i n e r  d o o r  i s  c o m p l e t e l y  c l o s e d .  

L s  =  6 0  m H .  W i t h  t h e  d o o r  c l o s e d ,  w h a t  i s  t h e  p h a s o r  r e p r e ­

s e n t a t i o n  o f  t h e  s i g n a l  V a  —  V b ?

Figure P 10.9-2

P 10.9-3 F i n d  t h e  t w o  n o d e  v o l t a g e s ,  v a ( / )  a n d  v b ( / ) ,  f o r  t h e  

c i r c u i t  o f  F i g u r e  P  1 0 . 9 - 3  w h e n  v s ( / )  =  1 . 2  c o s  4 0 0 0 / .

A n s w e r :  v s ( / )  =  1 . 9 7  c o s  ( 4 0 0 0 / -  1 7 1 ° )  V  

v b ( f )  =  2 . 2 1  c o s  ( 4 0 0 0 /  -  1 4 4 ° )  V

Door

Figure P 10.9-3

P 10.9-4 D e t e r m i n e  t h e  v o l t a g e  v a  f o r  t h e  c i r c u i t  i n  F i g u r e  

P  1 0 . 9 - 4  w h e n / s  =  2 0  c o s  ( o a t  +  5 3 . 1 3 ° )  A a n d w  =  1 0 4 r a d / s .

A n s w e r :  v a ( | )  =  3 3 9 . 4  c o s  ( 1 0 4 /  - h  4 5 ° )  V

40 n

F i g u r e  P 10.9-5 A i r l i n e  d o o r  s e n s i n g  u n i t .

P 10.9-6 U s i n g  a  t i n y ,  d i a m o n d - s t u d d e d  b u r r  o p e r a t i n g  a t  

1 9 0 . 0 0 0  r p m .  c a r d i o l o g i s t s  c a n  r e m o v e  l i f e - t h r e a t e n i n g  p l a q u e  

d e p o s i t s  i n  c o r o n a r y  a r t e r i e s .  T h e  p r o c e d u r e  i s  f a s t ,  u n ­

c o m p l i c a t e d ,  a n d  r e l a t i v e l y  p a i n l e s s  ( M c C a r t y ,  1 9 9 1 ) .  T h e  

R o t a b l a t o r ,  a n  a n g i o p l a s t y  s y s t e m ,  c o n s i s t s  o f  a n  a d v a n c e r  

c a t h e t e r ,  a  g u i d e  w i r e ,  a  c o n s o l e ,  a n d  a  p o w e r  s o u r c e .  T h e  

a d v a n c e r  c a t h e t e r  c o n t a i n s  a  t i n y  t u r b i n e  t h a t  d r i v e s  t h e  f l e x i ­

b l e  s h a f t  t h a t  r o t a t e s  t h e  c a t h e t e r  b u r r .  T h e  m o d e l  o f  t h e  

o p e r a t i o n a l  a n d  c o n t r o l  c i r c u i t  i s  s h o w n  i n  F i g u r e  P  1 0 . 9 - 6 .  

D e t e r m i n e  v ( / ) ,  t h e  v o l t a g e  t h a t  d r i v e s  t h e  t i p ,  w h e n  

v s  =  v / 2 c o s ( 4 0 f -  1 3 5 ° )  V .

A n s w e r :  v ( t )  =  \ / 2 c o s  ( 4 0 /  —  1 3 5 ° )  V

1 so F -p. v(r)

Figure P 10.9-4 Figure P 10.9-6 Control circuit for Rotablator.
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P 10.9-7 F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 9 - 7 ,  i t  i s  k n o w n  t h a t

v 2 ( / )  =  0 . 7 5 7 1  c o s  ( I t  +  6 6 . 7 ° )  V  

v 3 ( f )  =  0 . 6 0 6 4  c o s  ( 2 1  -  6 9 . 8 ° )  V

D e t e r m i n e  i \ ( t ) .

5 Q

^ V c

1 0  c o s  c o t  V  f  *

10 Q
AAA

1 mH 1  a
AAA|— W v — '

i
1— W v — I

h ^ 1  mF - ^ 1  mF

r T

P 10.9-8 D e t e r m i n e  I j ,  I 2, V L ,  a n d  V c  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 9 - 8 ,  u s i n g  K V L  a n d  m e s h  a n a l y s i s .

A n s w e r :  I \ = 2 . 5  /2 9 .0 °  A  

I 2  =  1 . 8  / 1 0 5 °  A  

V u  =  1 6 . 3 / 7 8 . 7 °  V  

V c  =  7 . 2 / l 5 °  V  

4 Q

2 4 / 6 0 °

F i g u r e  P  1 0 . 9 - 1 0  I n d u c t i o n  b u l b  c i r c u i t .

P 10.9-11 T h e  d e v e l o p m e n t  o f  c o a s t a l  h o t e l s  i n  v a r i o u s  p a r t s  

o f  t h e  w o r l d  i s  a  r a p i d l y  g r o w i n g  e n t e r p r i s e .  T h e  n e e d  f o r  

e n v i r o n m e n t a l l y  a c c e p t a b l e  s h a r k  p r o t e c t i o n  i s  m a n i f e s t  w h e r e  

t h e s e  d e v e l o p m e n t s  t a k e  p l a c e  a l o n g s i d e  s h a r k - i n f e s t e d  w a t e r s  

( S m i t h ,  1 9 9 1 ) .  O n e  c o n c e p t  i s  t o  u s e  a n  e l e c t r i f i e d  l i n e  

s u b m e r g e d  i n  t h e  w a t e r  t o  d e t e r  t h e  s h a r k s ,  a s  s h o w n  i n  F i g u r e  

P  1 0 . 9 - 1 1  a .  T h e  c i r c u i t  m o d e l  o f  t h e  e l e c t r i c  f e n c e  i s  s h o w n  i n  

F i g u r e  P  1 0 . 9 - 1 1 6 ,  i n  w h i c h  t h e  s h a r k  i s  r e p r e s e n t e d  b y  a n  

e q u i v a l e n t  r e s i s t a n c e  o f  1 0 0  H .  D e t e r m i n e  t h e  c u r r e n t  f l o w i n g  

t h r o u g h  t h e  s h a r k ’ s  b o d y ,  / ( / ) ,  w h e n  v s  =  3 7 5  c o s  4 0 0 / V .

E l e c t r i c

f e n c e

F i g u r e  P  1 0 . 9 - 8

P 10.9-9 D e t e r m i n e  t h e  c u r r e n t  i ( t )  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 9 - 9 ,  u s i n g  m e s h  c u r r e n t s  w h e n  c o  =  1 0 0 0  r a d / s .

1 0  s i n  c o t  V

F i g u r e  P  1 0 . 9 - 9

P 10.9-10 T h e  i d e a  o f  u s i n g  a n  i n d u c t i o n  c o i l  i n  a  l a m p  

i s n ’ t  n e w ,  b u t  a p p l y i n g  i t  i n  a  c o m m e r c i a l l y  a v a i l a b l e  

p r o d u c t  i s .  A n  i n d u c t i o n  c o i l  i n  a  b u l b  i n d u c e s  a  h i g h -  

f r e q u e n c y  e n e r g y  f l o w  i n  m e r c u r y  v a p o r  t o  p r o d u c e  l i g h t .  

T h e  l a m p  u s e s  a b o u t  t h e  s a m e  a m o u n t  o f  e n e r g y  a s  a  

f l u o r e s c e n t  b u l b  b u t  l a s t s  s i x  t i m e s  l o n g e r ,  w i t h  6 0  t i m e s  

t h e  l i f e  o f  a  c o n v e n t i o n a l  i n c a n d e s c e n t  b u l b .  T h e  c i r c u i t  

m o d e l  o f  t h e  b u l b  a n d  i t s  a s s o c i a t e d  c i r c u i t  a r e  s h o w n  i n  

F i g u r e  P  1 0 . 9 - 1 0 .  D e t e r m i n e  t h e  v o l t a g e  v ( / )  a c r o s s  t h e  2 - 0  

r e s i s t o r  w h e n  C  =  4 0  / z F ,  L  =  4 0  ^ H ,  v s  =  1 0  c o s  ( c o 0 t  +  3 0 ° ) ,  

a n d  a > o  =  1 0 5  r a d / s .

Answer: v(t) =  6.45 cos (105/ 4- 44°) V

1 0 0 / i F  

----1(-----
2 5 / i F

2 5 0  m H

S h a r kS o u r c e  j E l e c t r i c  f e n c e

( b )

F i g u r e  P  1 0 . 9 - 1 1  E l e c t r i c  f e n c e  f o r  r e p e l l i n g  s h a r k s .

P 10.9-12 D e t e r m i n e  t h e  n o d e  v o l t a g e s  a t  n o d e s  a  a n d  b  o f  

e a c h  o f  t h e  c i r c u i t s  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 2 .

2 5  Q



Figure P 10.9-12

P 10.9-13 D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( / ) ,  f o r  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 3 .

15 cos (8/ + 45°) V

v s ( / )  =  2 5  c o s  ( 1 0 0 /  —  1 5 ° )  V

vs(t)

Figure P 10.9-14

40 ft <  v0(t)

P r o b l e m s --------^ 4 8 5 ^

8 cos (10r + 210°) V

Figure P 10.9-15

P 10.9-16 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 6  h a s  t w o  

i n p u t s :

v ,  ( / )  =  5 0  c o s  ( 2 0 /  —  7 5 ° )  V  

v 2 ( / )  =  3 5  c o s  ( 2 0 / +  1 1 0 ° ) V

W h e n  t h e  c i r c u i t  i s  a t  s t e a d y  s t a t e ,  t h e  n o d e  v o l t a g e  i s

v ( / )  =  2 1 . 2 5  c o s  ( 2 0 /  -  1 6 8 . 8 ° )  V

D e t e r m i n e  t h e  v a l u e s  o f  R  a n d  L .

5 mF 50 ft 6 H

Figure P 10.9-13

P 10.9-14 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 4  

i s  t h e  v o l t a g e  s o u r c e  v o l t a g e ,  v s ( / ) .  T h e  o u t p u t  i s  t h e  r e s i s t o r  

v o l t a g e ,  v 0 ( / ) .  D e t e r m i n e  t h e  o u t p u t  v o l t a g e  w h e n  t h e  c i r c u i t  i s  

a t  s t e a d y  s t a t e  a n d  t h e  i n p u t  i s Figure P 10.9-16

P 10.9-17 D e t e r m i n e  t h e  s t e a d y - s t a t e  c u r r e n t ,  / ( / ) ,  f o r  t h e  

c i r c u i t  s h o w T i  i n  F i g u r e  P  1 0 . 9 - 1 7 .

2 mF

P 10.9-15 W h e n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 5  i s  a t  

s t e a d y  s t a t e ,  t h e  m e s h  c u r r e n t  i s

i ( 0  =  0 . 8 3 9 4  c o s  ( 1 0 / +  1 3 8 . 5 ° )  A  

D e t e r m i n e  t h e  v a l u e s  o f  L  a n d  R .
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P 10.9-18 D e t e r m i n e  t h e  s t e a d y - s t a t e  c u r r e n t ,  i ( f ) ,  f o r  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 8 .

Figure P 10.9-18

P 10.9-19 D e t e r m i n e  t h e  s t e a d y  s t a t e  v o l t a g e ,  v 0 ( / ) ,  f o r  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 1 9 .

8  H  1 0  m F  1 0  Q

P 10.9-20 D e t e r m i n e  t h e  s t e a d y - s t a t e  c u r r e n t ,  / ( / ) ,  f o r  e a c h  o f  

t h e  c i r c u i t s  s h o w n  i n  F i g u r e  P  1 0 . 9 - 2 0 .

4  i ( t )

(a)

i F i g u r e  P 1 0 . 9 - 2 0

P 10.9-21 A  c i r c u i t  h a s  t h e  f o r m  s h o w n  i n  F i g u r e  P  1 0 . 9 - 2 1  

w h e n  i s \ =  1  c o s  1 0 0 /  A  a n d  i &  =  0 . 5  c o s  ( 1 0 0 /  —  9 0 ° )  A .  

F i n d  t h e  v o l t a g e  v a  i n  t h e  t i m e  d o m a i n .

! A n s w e r :  v a  =  y / 5  c o s  ( 1 0 0 /  -  6 3 . 5 ° )  V

Figure P 10.9-21

P 10.9-22 U s e  m e s h  c u r r e n t  a n a l y s i s  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 0 . 9 - 2 2  t o  f i n d  t h e  s t e a d y - s t a t e  v o l t a g e  a c r o s s  t h e  i n d u c t o r ,  

v L ,  w h e n  v s i  =  2 0 c o s c t > / V ,  =  3 0 c o s ( o > /  -  9 0 ° )  V ,  a n d  

c o  =  1 0 0 0  r a d / s .

A n s w e r :  v l  =  2 4 \ / 2  c o s  { c o t  4 -  8 2 ° )  V

Figure P 10.9-22

P 10.9-23 D e t e r m i n e  t h e  n o d e  p h a s o r  v o l t a g e s  a t  t e r m i n a l s  a  

a n d  b  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 9 - 2 3  w h e n  \ s  =  y ' 5 0  V  a n d  

V , = / 3 0 V .

A n s w e r :  V a  =  1 4 . 3 3  / - 7 1 . 7 5 °  V  a n d  V b  =  3 6 . 6 7  / f &  V

Figure P 10.9-23

P 10.9-24 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 9 - 2 4  i s  a t  s t e a d y  

s t a t e .  T h e  v o l t a g e  s o u r c e  v o l t a g e s  a r e  g i v e n  b y

v i  ( 0  =  1 2  c o s  ( 2 /  —  9 0 ° )  V  a n d  v 2 ( / )  =  5  c o s  ( 2 / +  9 0 ° )  V

T h e  c u r r e n t s  a r e  g i v e n  b y

i \  ( / )  =  7 4 4  c o s  ( 2 /  -  1 1 8 ° )  m A ,  i 2 ( t )  =  5 4 0 . 5  c o s  ( 2 /  4  1 0 0 ° )  m A  

D e t e r m i n e  t h e  v a l u e s  o f  / ? , ,  R 2 ,  L ,  a n d  C
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P 10.10-1 F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 0 - 1 ,  f i n d  i ( t )  w h e n

v i  =  1 2  c o s  ( 4 0 0 0 /  +  4 5 ° )  V  a n d  v 2  =  5  c o s  3 0 0 0 /  V .

Section 10.10 Superposition, Thevenin and Norton
Equivalents, and Source Transformations

-AA/V
6  k f t

3  -  c o s  ( 4 1 +  4 5 ° )  V  ( T j
0 . 0 5  H

1 2  c o s  ( 4 r  +  4 5 ° )  V

Figure P 10.10-3

I j  5  s i n  3 t  V

i(t) 0 . 5  H

P 10.10-5 Find the Thevenin equivalent circuit for the circuit 
shown in Figure P  1 0 . 1 0 - 5 ,  using the mesh current method.

A n s w e r :  V ,  =  3 . 7 1  / —  1 6 °  V  

Z t  =  2 4 7  / — 1 6 °  C l

Figure P 10.10-1

P 10.10-2 D e t e r m i n e  / ( / )  o f  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 0 - 2 .

H i n t :  R e p l a c e  t h e  v o l t a g e  s o u r c e  b y  a  s e r i e s  c o m b i n a t i o n  o f  a  

d c  v o l t a g e  a n d  a  s i n u s o i d a l  v o l t a g e  s o u r c e .

A n s w e r :  i ( t )  =  0 . 1 6 6  c o s  ( 4 /  —  1 3 5 ° )  +  0 . 5  m A

P 10.10-6 A  p o c k e t - s i z e d  m i n i d i s c  C D  p l a y e r  s y s t e m  h a s  a n  

a m p l i f i e r  c i r c u i t  s h o w n  i n  F i g u r e  P  10.10-6  w i t h  a  s i g n a l  v s =  

10 c o s  ( c o t  +  5 3 .1 ° )  a t  c o  =  1 0 ,0 0 0  r a d / s .  D e t e r m i n e  t h e  

T h e v e n i n  e q u i v a l e n t  a t  t h e  o u t p u t  t e r m i n a l s  a - b .

Figure P 10.10-2

P 10.10-3 D e t e r m i n e  i ( t )  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 0 - 3 .  

A n s w e r :  i ( t )  =  1 . 9  c o s  ( 4 /  - I-  2 6 . 6 ° )  +  0 . 8  c o s  ( 3 / +  1 6 6 ° )  A

P 10.10-4 D e t e r m i n e  t h e  T h e v e n i n  e q u i v a l e n t  c i r c u i t  f o r  

t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 4  w h e n  v s  =  5  

c o s  ( 4 0 0 0 / - 3 0 ° ) .

A n s w e r :  V t =  5 . 7 / - 2 1 . 9 °  V  

Z ,  = 2 3  7 - 8 1 . 9 °  f t

Figure P 10.10-6

P 10.10-7 A n  A M  r a d i o  r e c e i v e r  u s e s  t h e  p a r a l l e l  R L C  c i r c u i t  

s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 7 .  D e t e r m i n e  t h e  f r e q u e n c y .  f 0, a t  

w h i c h  t h e  a d m i t t a n c e  Y  i s  a  p u r e  c o n d u c t a n c e .  T h e  A M  r a d i o  

w i l l  r e c e i v e  t h e  s i g n a l  b r o a d c a s t  a t  t h e  f r e q u e n c y  f 0. W h a t  i s  

t h e  “ n u m b e r ”  o f  t h i s  s t a t i o n  o n  t h e  A M  r a d i o  d i a l ?

A n s w e r :  f 0 =  8 0 0  k H z ,  w h i c h  c o r r e s p o n d s  t o  8 0  o n  t h e  A M  

r a d i o  d i a l .

3 9 . 6

Figure P 10.10-7

P 10.10-8 A  l i n e a r  c i r c u i t  i s  p l a c e d  w i t h i n  a  b l a c k  b o x  w i t h  

o n l y  t h e  t e r m i n a l s  a - b  a v a i l a b l e ,  a s  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 8 .  

T h r e e  e l e m e n t s  a r e  a v a i l a b l e  i n  t h e  l a b o r a t o r y :  ( 1 )  a  5 0 - H  

r e s i s t o r ,  ( 2 )  a  2 . 5 - / u F  c a p a c i t o r ,  a n d  ( 3 )  a  5 0 - m H  i n d u c t o r .  

T h e s e  t h r e e  e l e m e n t s  a r e  p l a c e d  a c r o s s  t e r m i n a l s  a - b  a s  t h e  

l o a d  Z L , a n d  t h e  m a g n i t u d e  o f  V  i s  m e a s u r e d  a s  ( 1 )  2 5  V ,  ( 2 )  

1 0 0  V ,  a n d  ( 3 )  5 0  V ,  r e s p e c t i v e l y .  I t  i s  k n o w n  t h a t  t h e  s o u r c e s  

w i t h i n  t h e  b o x  a r e  s i n u s o i d a l  w i t h  c o  =  2  x  1 0 3  r a d / s .  D e t e r ­

m i n e  t h e  T h e v e n i n  e q u i v a l e n t  f o r  t h e  c i r c u i t  i n  t h e  b o x  a s  

s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 8 .
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y'4 Q

3 /3 0° A Q )

2 0 /4 5 °  V 0
160 nH

Figure P 10.10-10

P 10.10-11 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  10 . 1 0 - 1 1  

i s  t h e  c u r r e n t  s o u r c e  c u r r e n t

i , ( f )  =  3 6  c o s  ( 2 5 0  +  4 8  c o s  ( 5 0 /  +  4 5 ° )  m A

D e t e r m i n e  t h e  s t e a d y - s t a t e  c u r r e n t ,  / ( / ) .

4 / ( 0

P 10.10-12 The inputs to the circuit shown in Figure
P 10.10-12 are

a n d

Figure P 10.10-8 A  c i r c u i t  w i t h i n  a  b l a c k  b o x  i s  c o n n e c t e d  t o  a  

s e l e c t e d  i m p e d a n c e  Z L .

P 10.10-9 C o n s i d e r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 0 - 9 ,  o f  w h i c h  

w e  w i s h  t o  d e t e r m i n e  t h e  c u r r e n t  I .  U s e  a  s e r i e s  o f  s o u r c e  

t r a n s f o r m a t i o n s  t o  r e d u c e  t h e  p a r t  o f  t h e  c i r c u i t  c o n n e c t e d  t o  

t h e  2 - 0  r e s i s t o r  t o  a  N o r t o n  e q u i v a l e n t  c i r c u i t ,  a n d  t h e n  f i n d  

t h e  c u r r e n t  i n  t h e  2 - 0  r e s i s t o r  b y  c u r r e n t  d i v i s i o n .

v s l  ( 0  =  3 0  c o s  ( 2 0 /  4 -  7 0 ° )  V  

v s 2 ( / )  =  1 8  c o s  ( 1 0 / -  1 5 ° )  V

T h e  r e s p o n s e  o f  t h i s  c i r c u i t  i s  t h e  c u r r e n t ,  i ( t ) .  D e t e r m i n e  t h e  

s t e a d y - s t a t e  r e s p o n s e  o f  t h e  c i r c u i t .

20 Q 4 H 20 Q 5 mF

Figure P 10.10-9

P 10.10-10 F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 0 - 1 0 ,  d e t e r m i n e  

t h e  c u r r e n t  I  u s i n g  a  s e r i e s  o f  s o u r c e  t r a n s f o r m a t i o n s .  T h e  

s o u r c e  h a s  c o  —  2 5  x  1 0 3  r a d / s .

A n s w e r :  i ( t )  =  4  c o s  ( 2 5 , 0 0 0 /  —  4 4 ° )  m A

P 10.10-13 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 1 3  i l l u s t r a t e s  

a n  e x p e r i m e n t a l  p r o c e d u r e  f o r  d e t e r m i n i n g  t h e  T h e v e n i n  

e q u i v a l e n t  o f  a n  a c  c i r c u i t .  W h e n  R  =  2 0  O ,  t h e  s t e a d y - s t a t e  

v o l t a g e  a c r o s s  t e r m i n a l s  a - b  i s  m e a s u r e d  t o  b e

v ( / )  =  3 . 0  c o s  ( 2 0 / -  1 0 0 . 9 ° )  V

W h e n  t h a t  r e s i s t a n c e  i s  c h a n g e d  t o  R  =  4 0  O ,  t h e  s t e a d y - s t a t e  

v o l t a g e  i s  m e a s u r e d  t o  b e

v ( 0  = 4 . 8 8  c o s  ( 2 0 / -  9 5 . 8 ° )  V

D e t e r m i n e  t h e  v a l u e s  o f  A ,  6 ,  R u  a n d  L t .

* t

- v w
Z )  v o c  = ^  cos (20/ + 0) V

a

- o —

+

v ( t )

Figure P 10.10-13

P 10.10-14 T h e  c i r c u i t  i n  F i g u r e  P  1 0 . 1 0 - 1 4  i l l u s t r a t e s  a n  

e x p e r i m e n t a l  p r o c e d u r e  f o r  d e t e r m i n i n g  t h e  N o r t o n  e q u i v a l e n t  

o f  a n  a c  c i r c u i t .  W h e n  R  =  2 0  O ,  t h e  s t e a d y - s t a t e  o u t p u t  

c u r r e n t  i s  m e a s u r e d  t o  b e

/ ( / )  =  1 . 0 2 5  c o s  ( 1 0 / -  1 0 8 . 5 ° )  A

W h e n  t h e  r e s i s t a n c e  i s  c h a n g e d  t o  R  =  4 0  O ,  t h e  s t e a d y - s t a t e  

o u t p u t  c u r r e n t  i s  m e a s u r e d  t o  b e

i ( 0  =  0 . 8 4 8  c o s  ( 1 0 / -  1 0 0 . 7 ° )  A

D e t e r m i n e  t h e  v a l u e s  o f  B ,  0 ,  R u  a n d  L t .
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/ (/ ) T h e n  w e  r e p l a c e  t h e  4 - H  i n d u c t o r  w i t h  a  c a p a c i t o r  h a v i n g  

c a p a c i t a n c e  C  a n d  m e a s u r e  t h e  s t e a d y - s t a t e  o u t p u t  v o l t a g e  a s  

v ( f )  =  £ c o s ( 1 5 / - 4 5 ° )  V  

W h a t  v a l u e  o f  c a p a c i t a n c e  C  i s  r e q u i r e d  t o  c a u s e  t h e  p h a s e  

a n g l e  o f  t h e  o u t p u t  t o  b e  — 4 5 ° ?

Figure P 10.10-14

*P 10.10-15 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 0 . 1 0 - 1 5  i s  t h e  v o l t a g e  s o u r c e  v o l t a g e

v s ( / )  =  A  c o s  ( 2 5 /  +  0 )  V

T h e  o u t p u t  i s  t h e  v o l t a g e ,  v ( / ) .  T h e  “ R L C  c i r c u i t ”  c o n s i s t s  o n l y  

o f  r e s i s t o r s ,  c a p a c i t o r s ,  a n d  i n d u c t o r s .  C o n s i d e r  t h e  f o l l o w i n g  

e x p e r i m e n t .  W e  c o n n e c t  a  s e r i e s  r e s i s t o r  a n d  i n d u c t o r  b e t w e e n  

t e r m i n a l s  a  a n d  b ,  a s  s h o w n ,  a n d  m e a s u r e  t h e  s t e a d y - s t a t e  

v o l t a g e ,  v { t ) .  W h e n  R  =  1 0  0 ;  a n d  L  =  5  H ,  w e  m e a s u r e  

v ( / )  =  7 . 0 6 3  c o s  ( 2 5 /  4  5 0 . 2 ° )  V

W h e n  w e  c h a n g e  t h e  s e r i e s  r e s i s t a n c e  a n d  i n d u c t a n c e  t o  R  =  

2 5  H  a n d  L  =  1 0  H ,  w e  m e a s u r e

v ( / )  =  8 . 2 8 2  c o s  ( 2 5 / 4  4 7 . 8 ° )  V

D e t e r m i n e  t h e  s t e a d y - s t a t e  v o l t a g e ,  v ( / ) ,  t h a t  w e  w i l l  m e a s u r e  

a f t e r  c h a n g i n g  t h e  r e s i s t a n c e  a n d  i n d u c t a n c e  t o  R  =  1 0  0  a n d

Z , =  8 H .

H i n t :  D e t e r m i n e  t h e  T h e v e n i n  e q u i v a l e n t  o f  t h e  c i r c u i t  t o  

t h e  l e f t  o f  t e r m i n a l s  a - b .

Figure P 10.10-16

P 10.10-17 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 0 . 1 0 - 1 7  i s  t h e  v o l t a g e  s o u r c e  v o l t a g e

V g ( f )  =  5  +  3 0 c o s (  1 0 0 / )  V  

D e t e r m i n e  t h e  s t e a d y - s t a t e  c u r r e n t ,  / ( / ) .

I * (/ )

Figure P 10.10-17

P 10.10-18 D e t e r m i n e  t h e  v a l u e  o f  V ,  a n d  Z t  s u c h  t h a t  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 1 8 6  i s  t h e  T h e v e n i n  e q u i v a l e n t  

c i r c u i t  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 1 8 a .

A n s w e r :  V ,  =  3 . 5 8  / 4 T  a n d  Z ,  =  4 . 9  + y l . 2  ft

Figure P 10.10-15

*P 10.10-16 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 0 . 1 0 - 1 6  i s  t h e  v o l t a g e  s o u r c e  v o l t a g e

v s ( / )  =  A  c o s  ( 1 5 /  4  0 )  V

T h e  o u t p u t  i s  t h e  v o l t a g e ,  v ( / ) .  T h e  “ R L C  c i r c u i t ”  c o n s i s t s  

o n l y  o f  r e s i s t o r s ,  c a p a c i t o r s ,  a n d  i n d u c t o r s .  C o n s i d e r  t h e  

f o l l o w i n g  e x p e r i m e n t .  W e  c o n n e c t  a  2 5 - f i  r e s i s t o r  a c r o s s  

t e r m i n a l s  a - b  a s  s h o w n  a n d  m e a s u r e  t h e  s t e a d y - s t a t e  o u t p u t  

v o l t a g e  t o  b e

v ( / )  =  9 . 7 7  c o s  ( 1 5 /  4  3 1 . 6 ° )  V

N e x t ,  w e  r e p l a c e  t h e  2 5 - H  r e s i s t o r  w i t h  a  4 - H  i n d u c t o r  a n d  

m e a s u r e  t h e  s t e a d y - s t a t e  o u t p u t  v o l t a g e  t o  b e

v(/) =  18.9 cos ( 1 5 /4  90.9°) V

( b )

Figure P 10.10-18

P 10.10-19 D e t e r m i n e  t h e  v o l t a g e  v ( / )  f o r  t h e  c i r c u i t  o f  

F i g u r e  P 10 . 1 0 - 1 9 .

H i n t :  U s e  s u p e r p o s i t i o n .

Answer: v(t) =  3.58 cos (5/ 4  47.2°) 4  14.4 cos (3/ -  22°) V
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P 10.10-20 U s i n g  t h e  p r i n c i p l e  o f  s u p e r p o s i t i o n ,  d e t e r m i n e  

i ( t )  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 0 - 2 0  w h e n  v \  =  

1 0  c o s  1 0 / V .

A n s w e r :  i  =  — 2  +  0 . 7 1  c o s  ( 1 0 /  —  4 5 ° )  A  

5  a  1 . 5  H

3 > a

F i g u r e  P 10.11-4

Section 10.12 Phasor Circuits and the Operational 
Am plifier

P 10.12-1 F i n d  t h e  s t e a d y - s t a t e  r e s p o n s e  v c ( / )  i f  v s ( / )  

\ / 2 c o s  1 0 0 0 /  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 0 . 1 2 - 1 .

A n s w e r :  v 0 ( / )  =  1 0  c o s  ( 1 0 0 0 /  —  2 2 5 ° )

1 0  k Q

Section 10.11 Phasor Diagrams

P 10.11-1 U s i n g  a  p h a s o r  d i a g r a m ,  d e t e r m i n e  V  w h e n  V  =
V j  -  V 2  +  V ;  a n d  V !  =  3  +  ; 3 ,  V 2  =  4  +  > 2 ,  a n d  V 3  =  - 3  

— j 2 .  ( U n i t s  a r e  v o l t s . )

A n s w e r :  V  =  5  / 1 4 3 . 1 °  V

P 10.11-2 C o n s i d e r  t h e  s e r i e s  R L C  c i r c u i t  o f  F i g u r e  P  1 0 . 1 1  - 2  

w h e n  R  =  1 0  O ,  L  =  1  m H ,  C  =  1 0 0  / z F ,  a n d  c o  =  1 0 3  r a d / s .  

F i n d  I  a n d  p l o t  t h e  p h a s o r  d i a g r a m .

1 0 / 0 °  v ( l

F i g u r e  P 10.11-2

P 10.11-3 C o n s i d e r  t h e  s i g n a l

i ( t )  =  7 2 \ / 3  c o s  8 /  +  3 6 \ / 3  s i n  ( 8 f  +  1 4 0 ° )

+  1 4 4  c o s  ( 8 /  4 -  2 1 0 ° )  4 -  2 5  c o s  ( 8 /  +  0 )

U s i n g  t h e  p h a s o r  p l a n e ,  f o r  w h a t  v a l u e  o f  </> d o e s  t h e  | I |  a t t a i n  

i t s  m a x i m u m ?

P 10.11-4 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 1 - 4  c o n t a i n s  a  

s i n u s o i d a l  c u r r e n t  s o u r c e  o f  2 5  / o °  A .  A n  a m m e t e r  r e a d s  t h e  

m a g n i t u d e  o f  t h e  c u r r e n t .  A m m e t e r  A i  r e a d s  1 5  A ,  a n d  

a m m e t e r  A 2  r e a d s  6  A .  F i n d  t h e  r e a d i n g  o f  a m m e t e r  A 3 .

H i n t :  T h e  a m m e t e r  m e a s u r e s  t h e  m a g n i t u d e  o f  t h e  c u r r e n t  

t h r o u g h  t h e  a m m e t e r .

Answer: 26 A

F i g u r e  P 10.12-1

P 10.12-2 D e t e r m i n e  V 0 / V s  f o r  t h e  o p  a m p  c i r c u i t  s h o w n  

F i g u r e  P  1 0 . 1 2 - 2 .

* 3

| — - v a —

F i g u r e  P 10.12-2 A m p l i f i e r  c i r c u i t  f o r  d i s c  p l a y e r .

P 10.12-3 D e t e r m i n e  V 0 / V s  f o r  t h e  o p  a m p  c i r c u i t  s h o w n  

F i g u r e  P  1 0 . 1 2 - 3 .

V 0  J a R x C x { \  + R 1 / R 2 )
A n s w e r :  —  = ------------ ------------------— — ------------

V s  1  +  j c o R \ C \

Figure P 10.12-3
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P 10.12-4 For the circuit o f  Figure P 10.12-4, determ ine vo(0  
when Vg =  5cosa> /m V  and /  =  10 kHz.

Answer: vc =  0.5 cos {cot -  89.5°) mV 

1 kQ 10 kQ

Figure P 10.12-4

P 10.12-5 Determine the ratio V0/V s for the circuit shown in 
Figure P 10.12-5.

Figure P 10.12-5

P 10.12-6 Determ ine the ratio V 0/V s for both o f  the circuits 
shown in Figure P 10.12-6.

Z l  h

Figure P 10.12-6

P 10 12-7 Determine the ratio V 0/ V s for the circuit shown in
Figure P 10.12-7.

Z3 Z4

P 10.12-8 W hen the input to the circuit shown in Figure 
P 10.12-8 is the voltage source voltage

vs(0  = 2  cos (10000  V 

the output is the voltage

vo(0  =  5 cos ( 1 0 0 0 / -7 1 .6 ° )  V 

D eterm ine the values o f  the resistances R i and R2.

Figure P 10.12-8

P 10.12-9 W hen the input to the circuit show n in Figure 
P 10.12-9 is the voltage source voltage 

v,(f) = 4  cos (100/) V 

the output is the voltage

vo(/) =  8 c o s ( 1 0 0 /+  135°)V  

D eterm ine the values o f  C  and R

P 10.12-10 The circuit show n in Figure P 10.12-10 is called a 
grounded sim ulated inductor because its input im pedance is 
given by

Z  =  j(oL tq
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T h a t  i s ,  t h e  c i r c u i t  a c t s  l i k e  a  g r o u n d e d  i n d u c t o r  h a v i n g  

i n d u c t a n c e  L e q . E x p r e s s  Z . e q  a s  a  f u n c t i o n  o f  t h e  c a p a c i t a n c e  

a n d  t h e  r e s i s t a n c e s .

Figure P 10.12-10

P 10.12-11 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 2 - 1 1  

i s  t h e  v o l t a g e  s o u r c e  v o l t a g e ,  v s ( / ) .  T h e  o u t p u t  i s  t h e  v o l t a g e  

vQ(/). T h e  i n p u t  v s ( t )  =  2 . 5  c o s  ( 1 0 0 0 / )  V  c a u s e s  t h e  o u t p u t  t o  

b e  v 0 ( / )  =  8  c o s  ( 1 0 0 0 /  - I -  1 0 4 ° )  V .  D e t e r m i n e  t h e  v a l u e s  o f  

t h e  r e s i s t a n c e s  a n d  R 2 .

A n s w e r s :  R \  =  1 5 1 5  f l  a n d  R 2 =  2 0  k f l .

C  =  0 . 2  |l iF

Figure P 10.12-11

Section 10.16 How Can W e Check . . . ?

P 10.16-1 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  i n  F i g u r e  P  1 0 . 1 6 - 1  

i n d i c a t e s  t h a t  t h e  v a l u e s  o f  t h e  n o d e  v o l t a g e s  a r e  V i  =  

2 0 / — 9 0 °  a n d  V 2 =  4 4 . 7  /  — 6 3 . 4 ° . A r e  t h e  v a l u e s  c o r r e c t ?

H i n t :  C a l c u l a t e  t h e  c u r r e n t  i n  e a c h  c i r c u i t  e l e m e n t ,  u s i n g  t h e  

v a l u e s  o f  V ]  a n d  V 2 . C h e c k  t o  s e e  w h e t h e r  K C L  i s  s a t i s f i e d  a t  

e a c h  n o d e  o f  t h e  c i r c u i t .

P 10.16-2 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  i n  F i g u r e  P  1 0 . 1 6 - 2  

i n d i c a t e s  t h a t  t h e  m e s h  c u r r e n t s  a r e  i \ ( t )  =  0 . 3 9  c o s  ( 5 /  +  

3 9 ° )  A  a n d  i 2 ( t )  —  0 . 2 8  c o s  ( 5 /  +  1 8 0 ° )  A .  I s  t h i s  a n a l y s i s  

c o r r e c t ?

H i n t :  R e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

i m p e d a n c e s  a n d  p h a s o r s .  C a l c u l a t e  t h e  v o l t a g e  a c r o s s  e a c h  

c i r c u i t  e l e m e n t ,  u s i n g  t h e  v a l u e s  o f  l \  a n d  I 2 .  C h e c k  t o  s e e  

w h e t h e r  K V L  i s  s a t i s f i e d  f o r  e a c h  m e s h  o f  t h e  c i r c u i t .

Figure P 10.16-2

P 10.16-3 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  i n  F i g u r e  P  1 0 . 1 6 - 3  

i n d i c a t e s  t h a t  t h e  v a l u e s  o f  t h e  n o d e  v o l t a g e s  a r e  v \  ( / )  =  

1 9 . 2  c o s  ( 3 /  +  6 8 ° )  V  a n d  v 2 ( / )  =  2 . 4  c o s  ( 3 /  +  1 0 5 ° )  V .  I s  

t h i s  a n a l y s i s  c o r r e c t ?

H i n t :  R e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

i m p e d a n c e s  a n d  p h a s o r s .  C a l c u l a t e  t h e  c u r r e n t  i n  e a c h  c i r c u i t  

e l e m e n t ,  u s i n g  t h e  v a l u e s  o f  a n d  V 2 . C h e c k  t o  s e e  w h e t h e r  

K C L  i s  s a t i s f i e d  a t  e a c h  n o d e  o f  t h e  c i r c u i t .

v i

Figure P 10.16-3

P 10.16-4 A  c o m p u t e r  p r o g r a m  r e p o r t s  t h a t  t h e  c u r r e n t s  o f  t h e  

c i r c u i t  o f  F i g u r e  P  1 0 . 1 6 - 4  a r e  1  —  0 . 2 / 5 3 . 1 °  A ,  I j  =  

6 3 2  / - 1 8 . 4 °  m A ,  a n d  I 2  =  1 9 0  / l  1 . 6 °  m A . V e r i f y  t h i s  r e s u l t .
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Figure P 10.16-4

P 10.16-5 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 0 . 1 6 - 5  w a s  b u i l t  

u s i n g  a  2 - p e r c e n t  r e s i s t o r  h a v i n g  a  n o m i n a l  r e s i s t a n c e  o f  5 0 0  H  

a n d  a  1 0 - p e r c e n t  c a p a c i t o r  w i t h  a  n o m i n a l  c a p a c i t a n c e  o f  5  ^ F .  

T h e  s t e a d y - s t a t e  c a p a c i t o r  v o l t a g e  w a s  m e a s u r e d  t o  b e

v ( f )  =  1 8 . 3  c o s  ( 2 0 0 / -  2 4 ° )  V

T h e  v o l t a g e  s o u r c e  r e p r e s e n t s  a  s i g n a l  g e n e r a t o r .  S u p p o s e  t h a t  t h e  

s i g n a l  g e n e r a t o r  w a s  a d j u s t e d  s o  c a r e f u l l y  t h a t  e r r o r s  i n  t h e  

a m p l i t u d e ,  f r e q u e n c y ,  a n d  a n g l e  o f  t h e  v o l t a g e  s o u r c e  v o l t a g e  

a r e  a l l  n e g l i g i b l e .  I s  t h e  m e a s u r e d  r e s p o n s e  e x p l a i n e d  b y  t h e  

c o m p o n e n t  t o l e r a n c e s ?  T h a t  i s ,  c o u l d  t h e  m e a s u r e d  v ( / )  h a v e  b e e n  

p r o d u c e d  b y  t h i s  c i r c u i t  w i t h  a  r e s i s t a n c e  R  t h a t  i s  w i t h i n  2  p e r c e n t  

o f  5 0 0  1 1  a n d  a  c a p a c i t a n c e  C t h a t  i s  w i t h i n  5  p e r c e n t  o f  5  / x F ?

|----- V A -----

20 cos (200/) V ( M  C -

Figure P 10.16-5

PSpice Problems
SP 10-1 T h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 0 - 1  h a s  t w o  i n p u t s ,  

v s ( / )  a n d  ; s ( / ) ,  a n d  o n e  o u t p u t ,  v ( / ) .  T h e  i n p u t s  a r e  g i v e n  b y  

v s ( / )  =  1 0  s i n  ( 6 /  +  4 5 ° ) V

a n d

i's ( / )  =  2  s i n  ( 6 /  +  6 0 ° )  A

U s e  P S p i c e  t o  d e m o n s t r a t e  s u p e r p o s i t i o n .  S i m u l a t e  t h r e e  

v e r s i o n s  o f  t h e  c i r c u i t  s i m u l t a n e o u s l y .  ( D r a w  t h e  c i r c u i t  i n  

t h e  P S p i c e  w o r k s p a c e .  C u t  a n d  p a s t e  t o  m a k e  t w o  c o p i e s .  E d i t  

t h e  p a r t  n a m e s  i n  t h e  c o p i e s  t o  a v o i d  d u p l i c a t e  n a m e s .  F o r  

e x a m p l e ,  t h e  r e s i s t o r  w i l l  b e  R l  i n  t h e  o r i g i n a l  c i r c u i t .  C h a n g e  

R l  t o  R 2  a n d  R 3  i n  t h e  t w o  c o p i e s . )  U s e  t h e  g i v e n  v s ( / )  a n d  zs ( / )  

i n  t h e  f i r s t  v e r s i o n .  S e t  i s ( / )  =  0  i n  t h e  s e c o n d  v e r s i o n  a n d  

v s ( / )  =  0  i n  t h e  t h i r d  v e r s i o n .  P l o t  t h e  c a p a c i t o r  v o l t a g e ,  v ( / ) ,  

f o r  a l l  t h r e e  v e r s i o n s  o f  t h e  c i r c u i t .  S h o w  t h a t  t h e  c a p a c i t o r  

v o l t a g e  i n  t h e  f i r s t  v e r s i o n  o f  t h e  c i r c u i t  i s  e q u a l  t o  t h e  s u m  o f  

t h e  c a p a c i t o r  v o l t a g e s  i n  t h e  s e c o n d  a n d  t h i r d  v e r s i o n s .

H i n t :  U s e  P S p i c e  p a r t s  V S I N  a n d  I S I N  f o r  t h e  v o l t a g e  a n d  

c u r r e n t  s o u r c e .  P S p i c e  u s e s  h e r t z  r a t h e r  t h a n  r a d / s  a s  t h e  u n i t  

f o r  f r e q u e n c y .

R e m a r k :  N o t i c e  t h a t  v ( / )  i s  s i n u s o i d a l  a n d  h a s  t h e  s a m e  

f r e q u e n c y  a s  v s ( / )  a n d  i s ( t ) .

1 H 3 Q

! Ut)

SP 10-2 T h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 0 - 1  h a s  t w o  

i n p u t s ,  v s ( / )  a n d  i $ ( t ) ,  a n d  o n e  o u t p u t ,  v ( t ) .  T h e  i n p u t s  a r e

g i v e n  b y  

a n d

v s ( / )  =  1 0  s i n  ( 6 /  +  4 5 ° )  V  

i s ( f )  =  2  s i n  ( 1 8 / +  6 0 ° )  A

U s e  P S p i c e  t o  d e m o n s t r a t e  s u p e r p o s i t i o n .  S i m u l a t e  t h r e e  

v e r s i o n s  o f  t h e  c i r c u i t  s i m u l t a n e o u s l y .  ( D r a w  t h e  c i r c u i t  i n  

t h e  P S p i c e  w o r k s p a c e .  C u t  a n d  p a s t e  t o  m a k e  t w o  c o p i e s .  E d i t  

t h e  p a r t  n a m e s  i n  t h e  c o p i e s  t o  a v o i d  d u p l i c a t e  n a m e s .  F o r  

e x a m p l e ,  t h e  r e s i s t o r  w i l l  b e  R l  i n  t h e  o r i g i n a l  c i r c u i t .  C h a n g e  

R l  t o  R 2  a n d  R 3  i n  t h e  t w o  c o p i e s . )  U s e  t h e  g i v e n  v s ( / )  a n d  i s ( t )  

i n  t h e  f i r s t  v e r s i o n .  S e t  i s ( / )  =  0  i n  t h e  s e c o n d  v e r s i o n  a n d  

v s ( / )  =  0  i n  t h e  t h i r d  v e r s i o n .  P l o t  t h e  c a p a c i t o r  v o l t a g e ,  v ( / ) ,  

f o r  a l l  t h r e e  v e r s i o n s  o f  t h e  c i r c u i t .  S h o w  t h a t  t h e  c a p a c i t o r  

v o l t a g e  i n  t h e  f i r s t  v e r s i o n  o f  t h e  c i r c u i t  i s  e q u a l  t o  t h e  s u m  o f  

t h e  c a p a c i t o r  v o l t a g e s  i n  t h e  s e c o n d  a n d  t h i r d  v e r s i o n s .

H i n t :  U s e  P S p i c e  p a r t s  V S I N  a n d  I S I N  f o r  t h e  v o l t a g e  a n d  

c u r r e n t  s o u r c e .  P S p i c e  u s e s  h e r t z  r a t h e r  t h a n  r a d / s  a s  t h e  u n i t  

f o r  f r e q u e n c y .

R e m a r k :  N o t i c e  t h a t  v ( / )  i s  n o t  s i n u s o i d a l .

SP 10-3 T h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 0 - 1  h a s  t w o  i n p u t s ,  

v s ( / )  a n d  zs ( / ) ,  a n d  o n e  o u t p u t ,  v ( / ) .  T h e  i n p u t s  a r e  g i v e n  b y

v s ( / )  =  1 0  s i n  ( 6 /  +  4 5 ° )  V

a n d

/ , ( / )  =  0 . 8  A

U s e  P S p i c e  t o  d e m o n s t r a t e  s u p e r p o s i t i o n .  S i m u l a t e  t h r e e  

v e r s i o n s  o f  t h e  c i r c u i t  s i m u l t a n e o u s l y .  ( D r a w  t h e  c i r c u i t  i n  

t h e  P S p i c e  w o r k s p a c e .  C u t  a n d  p a s t e  t o  m a k e  t w o  c o p i e s .  E d i t  

t h e  p a r t  n a m e s  i n  t h e  c o p i e s  t o  a v o i d  d u p l i c a t e  n a m e s .  F o r  

e x a m p l e ,  t h e  r e s i s t o r  w i l l  b e  R l  i n  t h e  o r i g i n a l  c i r c u i t .  C h a n g e  

R l  t o  R 2  a n d  R 3  i n  t h e  t w o  c o p i e s . )  U s e  t h e  g i v e n  v s ( / )  a n d  zs ( / )  

i n  t h e  f i r s t  v e r s i o n .  S e t  i s ( / )  =  0  i n  t h e  s e c o n d  v e r s i o n  a n d
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v s ( / )  =  0  i n  t h e  t h i r d  v e r s i o n .  P l o t  t h e  c a p a c i t o r  v o l t a g e ,  v ( / ) ,  

f o r  a l l  t h r e e  v e r s i o n s  o f  t h e  c i r c u i t .  S h o w  t h a t  t h e  c a p a c i t o r  

v o l t a g e  i n  t h e  f i r s t  v e r s i o n  o f  t h e  c i r c u i t  i s  e q u a l  t o  t h e  s u m  o f  

t h e  c a p a c i t o r  v o l t a g e s  i n  t h e  s e c o n d  a n d  t h i r d  v e r s i o n s .

H i n t :  U s e  P S p i c e  p a r t s  V S I N  a n d  I D C  f o r  t h e  v o l t a g e  a n d  

c u r r e n t  s o u r c e .  P S p i c e  u s e s  h e r t z  r a t h e r  t h a n  r a d / s  a s  t h e  u n i t  

f o r  f r e q u e n c y .

R e m a r k :  N o t i c e  t h a t  v ( f )  l o o k s  s i n u s o i d a l ,  b u t  i t ’ s  n o t  s i n u s ­

o i d a l  b e c a u s e  o f  t h e  d c  o f f s e t .

SP 10-4 T h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 0 - 1  h a s  t w o  i n p u t s ,  

v s ( / )  a n d  i s ( / ) ,  a n d  o n e  o u t p u t ,  v ( / ) .  W h e n  i n p u t s  a r e  g i v e n  b y

v s ( 0  =  V m  s i n  6 t  V

a n d

h ( 0  ~  A

L i n e a r i t y  r e q u i r e s  t h a t  A  b e  p r o p o r t i o n a l  t o  V m  a n d  t h a t  B  b e  

p r o p o r t i o n a l  t o  / m . C o n s e q u e n t l y ,  w e  c a n  w r i t e  A — k \  V m  a n d  

B  =  k z l m ,  w h e r e  k x a n d  k 2  a r e  c o n s t a n t s  y e t  t o  b e  d e t e r m i n e d .

( a )  U s e  P S p i c e  t o  d e t e r m i n e  t h e  v a l u e  o f  k \  b y  s i m u l a t i n g  t h e  

c i r c u i t ,  u s i n g  V m  =  1  V  a n d  / m  =  0 .

( b )  U s e  P S p i c e  t o  d e t e r m i n e  t h e  v a l u e  o f  k 2  b y  s i m u l a t i n g  t h e  

c i r c u i t ,  u s i n g  V m  =  0  V  a n d  I m  =  1 .

( c )  K n o w i n g  k x a n d  k 2 ,  s p e c i f y  t h e  v a l u e s  o f  V m  a n d  / m  t h a t  

a r e  r e q u i r e d  t o  c a u s e

v 0 ( r )  =  5  s i n  ( 6 f  +  0 )  +  5  V

S i m u l a t e  t h e  c i r c u i t ,  u s i n g  P S p i c e  t o  v e r i f y  t h e  s p e c i f i e d  

v a l u e s  o f  V m  a n d  I m .

the output will be

v0(t) =  A sin (6t +  0) + B V

Design Problems
DP 10-1 D e s i g n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  1 0 - 1  t o  

p r o d u c e  t h e  s p e c i f i e d  o u t p u t  v o l t a g e  v G ( / )  w h e n  p r o v i d e d  

w i t h  t h e  g i v e n  i n p u t  v o l t a g e  V j ( / ) .

C

F I G U R E  D P  1 0 - 1

DP 10-2 D e s i g n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  1 0 - 2  t o  

p r o d u c e  t h e  s p e c i f i e d  o u t p u t  v o l t a g e  v G ( / )  w h e n  p r o v i d e d  

w i t h  t h e  g i v e n  i n p u t  v o l t a g e  V j ( r ) .

v0{t) = 2 .5  cos (1 0 0 0 / -  76°) V

F IG U R E  DP 10-2
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DP 10-3 D e s i g n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  1 0 - 3  t o  

p r o d u c e  t h e  s p e c i f i e d  o u t p u t  v o l t a g e  v Q( / )  w h e n  p r o v i d e d  

w i t h  t h e  g i v e n  i n p u t  v o l t a g e  v * ( / ) .

L r 2 <  v0(t) = 2.5 cos (40/ + 14°) V 

o

FIGURE DP 10-3

DP 10-4 S h o w  t h a t  i t  i s  n o t  p o s s i b l e  t o  d e s i g n  t h e  c i r c u i t  s h o w n  

i n  F i g u r e  D P  1 0 - 4  t o  p r o d u c e  t h e  s p e c i f i e d  o u t p u t  v o l t a g e  v Q( / )  

w h e n  p r o v i d e d  w i t h  t h e  g i v e n  i n p u t  v o l t a g e  V j( / ) .

L  *2 ^  v0(t) = 2.5 cos (40/ -  14°) V 

o

FIGURE DP 10-4

DP 10-5 A  c i r c u i t  w i t h  a n  u n s p e c i f i e d  R , L ,  a n d  C  i s  s h o w n  i n  

F i g u r e  D P  1 0 - 5 .  T h e  i n p u t  s o u r c e  i s  i s  =  1 0  c o s  1 0 0 0 / A ,  a n d  

t h e  g o a l  i s  t o  s e l e c t  t h e  R ,  L ,  a n d  C  s o  t h a t  t h e  n o d e  v o l t a g e  i s  

v  =  8 0  c o s  1 0 0 0 / V .

Figure DP 10-5

DP 10-6 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e D P  1 0 - 6  i s  t h e  

v o l t a g e  s o u r c e  v o l t a g e

T h e  o u t p u t  i s  t h e  s t e a d y - s t a t e  c a p a c i t o r  v o l t a g e  

v 0 ( / )  =  / f c o s ( 1 0 0 0 /  +  <9) V

(a)  S p e c i f y  v a l u e s  f o r  R  a n d  C  s u c h  t h a t  0  =  — 3 0 ° .  D e t e r m i n e  

t h e  r e s u l t i n g  v a l u e  o f  A .

(b)  S p e c i f y  v a l u e s  f o r  R  a n d  C  s u c h  t h a t  A  =  5  V .  D e t e r m i n e  

t h e  r e s u l t i n g  v a l u e s  o f  0 .

( c )  I s  i t  p o s s i b l e  t o  s p e c i f y  v a l u e s  f o r  R  a n d  C  s u c h  t h a t  A  =  4  

a n d  0  =  - 6 0 ° ?  ( I f  n o t ,  j u s t i f y  y o u r  a n s w e r .  I f  s o ,  s p e c i f y  R  

a n d  C . )

(d)  I s  i t  p o s s i b l e  t o  s p e c i f y  v a l u e s  o f  R  a n d  C  s u c h  t h a t  A  =  

7 . 0 7  V  a n d  0  =  — 4 5 ° ?  ( I f  n o t ,  j u s t i f y  y o u r  a n s w e r .  I f  s o ,  

s p e c i f y  R  a n d  C . )

v,(f) =  10 cos (1000/) V Figure DP 10-6
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11.1 I N T R O D U C T I O N

In this chapter, we continue our study o f ac circuits. In particular, we will see the following:

• The power supplied or received by any element o f  an ac circuit can be conveniently calculated after 
representing the circuit in the frequency domain.

Power in ac circuits is an important topic. Engineers have developed an extensive  
vocabulary to describe power in an ac circuit. W e’ll encounter average power, real and 
reactive power, com plex power, the power factor, rms values, and more.

• AC circuits that contain coupled inductors and/or ideal transformers can be conveniently analyzed 
in the frequency domain.

Both coupled inductors and ideal transformers consist o f  m agnetically coupled coils. 
(C oils may be tightly coupled or loosely coupled. The coils o f  an ideal transformer are 
perfectly coupled.) After representing coupled inductors and transformers in the frequency 
domain, we will be able to analyze ac circuits containing these devices.

11.2 E L E C T R I C  P O W E R

Human civilization’s progress has been enhanced by society’s ability to control and distribute energy. 
Electricity serves as a carrier o f energy to the user. Energy present in a fossil fuel or a nuclear fuel is 

. converted to electric power to transport and readily distribute it to customers. By means o f
496 j transmission lines, electric power is transmitted and distributed to essentially all the residences,

industries, and commercial buildings in the United States and Canada.
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FIGURE 11.2-1 AC power high- 
voltage transmission lines. Courtesy 
of Pacific Gas and Electric Company.

FIGURE 11.2-2 A large hydroelectric power plant. 
Courtesy of Hydro Quebec.

FIG U RE 11.2-3 A large wind-power 
turbine and generator. Courtesy o f 
EPRI Journal.

E l e c t r i c  p o w e r  m a y  b e  t r a n s p o r t e d  r e a d i l y  w i t h  l o w  a t t e n d a n t  l o s s e s ,  a n d  i m p r o v e d  m e t h o d s  f o r  

s a f e  h a n d l i n g  o f  e l e c t r i c  p o w e r  h a v e  b e e n  d e v e l o p e d  o v e r  t h e  p a s t  9 0  y e a r s .  F u r t h e r m o r e ,  m e t h o d s  o f  

c o n v e r t i n g  f o s s i l  f u e l s  t o  e l e c t r i c  p o w e r  a r e  w e l l  d e v e l o p e d ,  e c o n o m i c a l ,  a n d  s a f e .

M e a n s  o f  c o n v e r t i n g  s o l a r  a n d  n u c l e a r  e n e r g y  t o  e l e c t r i c  p o w e r  a r e  c u r r e n t l y  i n  v a r i o u s  s t a g e s  o f  

d e v e l o p m e n t  o r  o f  p r o v e n  s a f e t y .  G e o t h e r m a l  e n e r g y ,  t i d a l  e n e r g y ,  a n d  w i n d  e n e r g y  m a y  a l s o  b e  

c o n v e r t e d  t o  e l e c t r i c  p o w e r .  T h e  k i n e t i c  e n e r g y  o f  f a l l i n g  w a t e r  m a y  r e a d i l y  b e  u s e d  t o  g e n e r a t e  

h y d r o e l e c t r i c  p o w e r .

T h e  n e c e s s i t y  o f  t r a n s m i t t i n g  e l e c t r i c a l  p o w e r  o v e r  l o n g  d i s t a n c e s  f o s t e r e d  t h e  d e v e l o p m e n t  o f  

a c  h i g h - v o l t a g e  p o w e r  l i n e s  f r o m  p o w e r  p l a n t  t o  e n d  u s e r .  A  m o d e m  t r a n s m i s s i o n  l i n e  i s  s h o w n  i n  

F i g u r e  1 1 . 2 - 1 .

E l e c t r i c  e n e r g y  g e n e r a t i o n  u s e s  o r i g i n a l  s o u r c e s  s u c h  a s  h y d r o p o w e r ,  c o a l ,  a n d  n u c l e a r  e n e r g y .  

A n  e x a m p l e  o f  a  l a r g e  h y d r o e l e c t r i c  p o w e r  p r o j e c t  i s  s h o w n  i n  F i g u r e  1 1 . 2 - 2 .  A  t y p i c a l  h y d r o e l e c t r i c  

p o w e r  p l a n t  c a n  g e n e r a t e  1 0 0 0  M W .  O n  t h e  o t h e r  h a n d ,  m a n y  r e g i o n s  a r e  t u r n i n g  t o  s m a l l  g e n e r a t o r s  

s u c h  a s  t h e  w i n d - p o w e r  d e v i c e  s h o w n  i n  F i g u r e  1 1 . 2 - 3 .  A  t y p i c a l  w i n d - p o w e r  m a c h i n e  m a y  b e  c a p a b l e  

o f  g e n e r a t i n g  7 5  k W .

A  u n i q u e  e l e m e n t  o f  t h e  A m e r i c a n  p o w e r  s y s t e m  i s  i t s  i n t e r c o n n e c t e d n e s s .  A l t h o u g h  t h e  p o w e r  

s y s t e m  o f  t h e  U n i t e d  S t a t e s  c o n s i s t s  o f  m a n y  i n d e p e n d e n t  c o m p a n i e s ,  i t  i s  i n t e r c o n n e c t e d  b y  l a r g e  

t r a n s m i s s i o n  f a c i l i t i e s .  A n  e l e c t r i c  u t i l i t y  i s  o f t e n  a b l e  t o  s a v e  m o n e y  b y  b u y i n g  e l e c t r i c i t y  f r o m  

a n o t h e r  u t i l i t y  a n d  b y  t r a n s m i t t i n g  t h e  e n e r g y  o v e r  t h e  t r a n s m i s s i o n  l i n e s  o f  a  t h i r d  u t i l i t y .

T h e  p o w e r  l e v e l s  f o r  s e l e c t e d  e l e c t r i c a l  d e v i c e s  o r  p h e n o m e n a  a r e  s h o w n  i n  F i g u r e  1 1 . 2 - 4 .

11.3 I N S T A N T A N E O U S P O W E R A N D A V E R A G E P O W E R

W e  a r e  i n t e r e s t e d  i n  d e t e r m i n i n g  t h e  p o w e r  g e n e r a t e d  a n d  a b s o r b e d  i n  a  c i r c u i t  o r  i n  a n  e l e m e n t  o f  a  

c i r c u i t .  E l e c t r i c a l  e n g i n e e r s  t a l k  a b o u t  s e v e r a l  t y p e s  o f  p o w e r ,  f o r  e x a m p l e ,  i n s t a n t a n e o u s  p o w e r ,  

a v e r a g e  p o w e r ,  a n d  c o m p l e x  p o w e r .  W e  w i l l  s t a r t  w i t h  a n  e x a m i n a t i o n  o f  t h e  i n s t a n t a n e o u s  p o w e r ,  

w h i c h  i s  t h e  p r o d u c t  o f  t h e  t i m e - d o m a i n  v o l t a g e  a n d  c u r r e n t  a s s o c i a t e d  w i t h  o n e  o r  m o r e  c i r c u i t  

e l e m e n t s .  T h e  i n s t a n t a n e o u s  p o w e r  i s  l i k e l y  t o  b e  a  c o m p l i c a t e d  f u n c t i o n  o f  t i m e .  T h i s  p r o m p t s  u s  t o
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F I G U R E  1 1 . 2 - 4  P o w e r  l e v e l s  f o r  s e l e c t e d  e l e c t r i c a l  d e v i c e s  o r  p h e n o m e n a .

look for a simpler measure o f the power generated and absorbed in a circuit element, such as the 
average power.

ri Consider the circuit element shown in Figure 11.3-1. Notice that the element voltage
v(t) and the element current i(t) adhere to the passive convention. The instantaneous power delivered 
to this circuit element is the product o f  the voltage v(t) and the current /(/), so that

p(t) =  v(t) i{t) (11.3-1)

The unit o f power is watts (W). We can always calculate the instantaneous power because no 
3 1  restrictions have been placed on either v(t) or i(t). The instantaneous power can be a quite complicated 

function o f t when v(t) or /(/) is itself a complicated function o f t.
Suppose that the voltage v(t) is a periodic function having period T. That is,

v(0 =  v(t +  T)
because the voltage repeats every T  seconds. Then, for a linear circuit, the current will also be a 
periodic function having the same period, so

i(f) =  /(' +  T)
Therefore, the instantaneous power is

p(t) = v(t)i(t)
= v{t +  T)i{t + T)

The average value o f a periodic function is the integral o f the time function over a complete period, 
divided by the period. We use a capital P to denote average power and a lowercase p  to denote



Ins tantaneous Power and Average Power 

i n s t a n t a n e o u s  p o w e r .  T h e r e f o r e ,  t h e  a v e r a g e  p o w e r  P  i s  g i v e n  b y

1 f l o+T  

' = f l  p m
( 1 1 . 3 - 2 )

w h e r e  t 0  i s  a n  a r b i t r a r y  s t a r t i n g  p o i n t  i n  t i m e .

N e x t ,  s u p p o s e  t h a t  t h e  v o l t a g e  v ( t )  i s  s i n u s o i d a l ,  t h a t  i s ,

v ( 0  =  ^ m ( C 0 S  ( D t  +  0 \ )

T h e n ,  f o r  a  l i n e a r  c i r c u i t  a t  s t e a d y  s t a t e ,  t h e  c u r r e n t  w i l l  a l s o  b e  s i n u s o i d a l  a n d  w i l l  h a v e  t h e  s a m e  

f r e q u e n c y ,  s o

/ ( / )  =  / m ( c o s o t f  +  0 \ )

T h e  p e r i o d  a n d  f r e q u e n c y  o f  v ( t )  a n d  i ( t )  a r e  r e l a t e d  b y

2  71

T h e  i n s t a n t a n e o u s  p o w e r  d e l i v e r e d  t o  t h e  e l e m e n t  i s

P { t )  =  V mI m COS ( ( D t  - f  0 y )  COS ( ( D t  +  0 \ )

U s i n g  t h e  t r i g o n o m e t r i c  i d e n t i t y  ( s e e  A p p e n d i x  C )  f o r  t h e  p r o d u c t  o f  t w o  c o s i n e  f u n c t i o n s ,

V m I m
p { t ) [ c o s  ( 0 v  —  # i )  +  c o s  ( 2u>t +  9\ +  #i)]

W e  s e e  t h a t  t h e  i n s t a n t a n e o u s  p o w e r  h a s  t w o  t e r m s .  T h e  f i r s t  t e r m  w i t h i n  t h e  b r a c k e t s  i s  i n d e p e n d e n t  o f  

t i m e ,  a n d  t h e  s e c o n d  t e r m  v a r i e s  s i n u s o i d a l l y  o v e r  t i m e  a t  t w i c e  t h e  r a d i a n  f r e q u e n c y  o f  v ( t ) .

T h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  e l e m e n t  i s

P  —  4 [  [ c o s  ( 0 v  -  # i )  4 -  c o s  ( 2 c o t  4 -  0 \  4 -  # i ) ]  d t

T Jo 2

w h e r e  w e  h a v e  c h o s e n  t 0  =  0 .  T h e n  w e  h a v e

P  =  —  [  c o s  ( f l y  -  0 \ ) d t  4 -  ] z  [  V m J m  c o s  ( 2 c o t  - 1 -  f l y  +  G \ ) d t

1  J o  *  *  J o  2

_ VmI m cos(0v - 0 l) f T ^  Vn I t
2  T

[  d t  4 -  V ™ l m  [  c o s  +  0 \  +  0 \  ) d t  
J o  2  T  J 0

T h e  s e c o n d  i n t e g r a l  i s  z e r o  b e c a u s e  t h e  a v e r a g e  v a l u e  o f  t h e  c o s i n e  f u n c t i o n  o v e r  a  c o m p l e t e  p e r i o d  i s  

z e r o .  T h e n  w e  h a v e

( 1 1 . 3 - 3 )

Example 1 1 .3-1 A v e r a g e  P o w e r

F i n d  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  a  r e s i s t o r  R  w h e n  t h e  c u r r e n t  t h r o u g h  t h e  r e s i s t o r  i s  i ( t ) .  a s  s h o w n  i n  F i g u r e

1 1 . 3 - 2 .

A n

2 T t (s) ► F IG lf RE 11.3-2 Current through a resistor in Example 11.3-1.
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Solution
The current waveform repeats every T seconds and attains a maximum value o f  Im. Using the period from t =  0 to 
t =  T, we have

Then the instantaneous power is

i =  ^ ?  0 < t < T  
T

[ 2 . 2
p  =  i  R  =  — 0 < t < T

It is sufficient to find the average power over 0 <  t < T  because the power is periodic with period T. Then the 
average power is

' r % ^ ,T2
Integrating, we have

p = U r-
T J o  : 

r 3 J0 r 3 3

E x am  p le 1 1 . 3 - 2 A v e r a g e  P o w e r

The circuit shown in Figure 11.3-3 is at steady state. The mesh current is

i(t) — 721 cos (100? — 41°) mA

The element voltages are

vs(r) =  20 cos ( 100? — 15°) V

vR(?) =  18 cos (100? — 41°) V

vL(?) =  8.66 cos (100? + 49°) V

Find the average power delivered to each device in this circuit.
U r ( / )  _

- M \ N —

2 5  a  V  

v A t )  =  2 0  c o s  ( 1 0 0 /  -  1 5 ° )  V  1 2 0  m H  ^  v L ( t )

F I G U R E  1 1 . 3 - 3  A n  R L  c i r c u i t  w i t h

a  s i n u s o i d a l  v o l t a g e  s o u r c e .

Solution
Notice that vs(/) and i(t) don’t adhere to the passive convention. Thus, vs(f) i(t) is the power delivered by the 
voltage source. Therefore, the average power calculated using Eq. 11.3-3 is the average power delivered by the 
voltage source. The average power delivered by the voltage source is

P , - < i ° ) < 0, 7 2 l >  c o s  (  —  1 5 °  —  ( — 4 1 ° ) )  =  6 . 5  W
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T h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  v o l t a g e  s o u r c e  i s  - 6 . 5  W .

B e c a u s e  v R ( r )  a n d  i ( t )  d o  a d h e r e  t o  t h e  p a s s i v e  c o n v e n t i o n ,  t h e  a v e r a g e  p o w e r  c a l c u l a t e d  u s i n g  E q .  1 1 . 3 - 3  i s  

t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  r e s i s t o r .  T h e  p o w e r  d e l i v e r e d  t o  t h e  r e s i s t o r  i s

P R  =  (18)(0-7^LL c o s  ( - 4 1 °  -  ( - 4 1 ° ) )  =  6 . 5  W

T h e  p o w e r  d e l i v e r e d  t o  t h e  i n d u c t o r  i s

^  =  ( 8 - 6 6 1 ( 0 . 7 2 0  C 0 , ( 4 9 . _ ( _ 4 | . ) )  =  o w

W h y  i s  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  i n d u c t o r  e q u a l  t o  z e r o ?  T h e  a n g l e  o f  t h e  e l e m e n t  v o l t a g e  i s  9 0 °  l a r g e r  

t h a n  t h e  a n g l e  o f  t h e  e l e m e n t  c u r r e n t .  B e c a u s e  c o s ( 9 0 ° )  =  0 ,  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  i n d u c t o r  i s  z e r o .  

T h e  a n g l e  o f  t h e  i n d u c t o r  v o l t a g e  w i l l  a l w a y s  b e  9 0 °  l a r g e r  t h a n  t h e  a n g l e  o f  t h e  i n d u c t o r  c u r r e n t .  T h e r e f o r e ,  t h e  

a v e r a g e  p o w e r  d e l i v e r e d  t o  a n y  i n d u c t o r  i s  z e r o .

EXERCISE 11.3-1 D e t e r m i n e  t h e  i n s t a n t a n e o u s  p o w e r  d e l i v e r e d  t o  a n  e l e m e n t  a n d  s k e t c h  

p ( t )  w h e n  t h e  e l e m e n t  i s  ( a )  a  r e s i s t a n c e  R  a n d  ( b )  a n  i n d u c t o r  L .  T h e  v o l t a g e  a c r o s s  t h e  e l e m e n t  i s  

v ( 0  =  V m  c o s  ( c o t  +  0 )  V .

A n s w e r s :

V 2

( a )  P K  =  [ 1  +  c o s  ( 2 c o t  +  2 0 ) ]  W
2  R

V 2
( b )  P L  =  — 2 -  c o s  ( 2 t u t  +  2 9  -  9 0 ° )  W

I C jO L

11.4 E F F E C T I V E  V A L U E  OF A P E R I O D I C  W A V E F O R M

T h e  v o l t a g e  a v a i l a b l e  f r o m  a  w a l l  p l u g  i n  a  r e s i d e n c e  i s  s a i d  t o  b e  1 1 0  V .  O f  c o u r s e ,  t h i s  i s  n o t  t h e  

a v e r a g e  v a l u e  o f  t h e  s i n u s o i d a l  v o l t a g e  b e c a u s e  w e  k n o w  t h a t  t h e  a v e r a g e  w o u l d  b e  z e r o .  I t  i s  a l s o  n o t  

t h e  i n s t a n t a n e o u s  v a l u e  o r  t h e  m a x i m u m  v a l u e ,  F m ,  o f  t h e  v o l t a g e  v  =  V m  c o s  c o t .

T h e  e f f e c t i v e  v a l u e  o f  a  v o l t a g e  i s  a  m e a s u r e  o f  i t s  e f f e c t i v e n e s s  i n  d e l i v e r i n g  p o w e r  t o  a  l o a d  

r e s i s t o r .  T h e  c o n c e p t  o f  a n  e f f e c t i v e  v a l u e  c o m e s  f r o m  a  d e s i r e  t o  h a v e  a  s i n u s o i d a l  v o l t a g e  ( o r  c u r r e n t )  

d e l i v e r  t o  a  l o a d  r e s i s t o r  t h e  s a m e  a v e r a g e  p o w e r  a s  a n  e q u i v a l e n t  d c  v o l t a g e  ( o r  c u r r e n t ) .  T h e  g o a l  i s  t o  

f i n d  a  d c  l re f T  ( o r / c f f )  t h a t  w i l l  d e l i v e r  t h e  s a m e  a v e r a g e  p o w e r  t o  t h e  r e s i s t o r  a s  w o u l d  b e  d e l i v e r e d  b y  a  

p e r i o d i c a l l y  v a r y i n g  s o u r c e ,  a s  s h o w n  i n  F i g u r e  1 1 . 4 - 1 .

FIG U RE 11.4-1 The goal is to find a dc voltage, Vefr, 
for a specified vs(t) that will deliver the same average 
power to R as would be delivered by the ac source.
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The average power delivered to the resistor R by a periodic current is

P  =  j £ i 2R d t  (11.4-1)

We select the period, r, o f  the periodic current as the integration interval.
The power delivered by a direct current is

P = I \b R (11.4-2)

where 7etr is the dc current that will deliver the same power as the periodically varying current. That is,
7efr is defined as the steady (constant) current that is as effective in delivering power as the periodically
varying current.

We equate Eqs. 11.4-1 and 11.4-2, obtaining

Solving for 7eff, we have

(11.4-3)

We see that 7eff is the square root o f  the mean o f the squared value. Thus, the effective current 7eff is 
commonly called the root-mean-square current 7 ^ .

The effective value o f  a current is the steady current (dc) that transfers the same average power 
as the given varying current.

Of course, the effective value o f the voltage in a circuit is similarly found from the equation

r *  =  r L  =  - = l  v 2 d t

ThuS Vm* =  \ b z l  V2d t

Now let us find the o f a sinusoidally varying current i =  7m cos cot. Using Eq. 11.4-3 and a 
trigonometric formula from Appendix C, we have

I 2m cos2cot d t =  i f  ~  (1 +  cos 2cot) d t  =  (11 *4-4)
V  *  J o  2  y / 2

because the integral o f cos 2cot is zero over the period T. Remember that Eq. 11.4-4 is true only for
sinusoidal currents.

In practice, we must be careful to determine whether a sinusoidal voltage is expressed in terms o f  
its effective value or its maximum value 7m. In the case o f  power transmission and use in the home, the 
voltage is said to be 110 V or 220 V, and it is understood that these values refer to the rms or effective 
values o f the sinusoidal voltage.

In electronics or communications circuits, the voltage could be described as 10 V, and the person 
is typically indicating the maximum or peak amplitude, Vm. Henceforth, we will use Vm as the peak 
value and Frms as the rms value. Sometimes it is necessary to distinguish from Fm by the context 
in which the voltage is given.
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E x a m p l e  1 1 . 4 - 1  E f f e c t i v e  V a l u e

F i n d  t h e  e f f e c t i v e  v a l u e  o f  t h e  c u r r e n t  f o r  t h e  s a w t o o t h  w a v e f o r m  s h o w n  i n  F i g u r e  1 1 . 4 - 2 .

/ /

y / /
-T 2 T FIG URE 11.4-2 A sawtooth current waveform.

Solution
F i r s t ,  w e  w i l l  e x p r e s s  t h e  c u r r e n t  w a v e f o r m  o v e r  t h e  p e r i o d  0  <  t  <  T .  T h e  c u r r e n t  i s  t h e n

T h e  e f f e c t i v e  v a l u e  i s  f o u n d  f r o m

e f f  T J o  T J o  T 2  7

T h e r e f o r e ,  s o l v i n g  f o r  7 e f f ,  w e  h a v e

I t ’ s  w o r t h  n o t i c i n g  t h a t  t h e  r m s  v a l u e  o f  a  s a w t o o t h  w a v e f o r m  w i t h  a m p l i t u d e  / m  i s  d i f f e r e n t  t h a n  t h e  r m s  v a l u e  o f  

a  s i n u s o i d a l  w a v e f o r m  h a v i n g  a m p l i t u d e  7 m .

EXERCISE 11.41 F i n d  t h e  e f f e c t i v e  v a l u e  o f  t h e  f o l l o w i n g  c u r r e n t s :  ( a )  c o s  3 1  - I -  c o s  3 1 ;

( b )  s i n  3 1  +  c o s ( 3 f  +  6 0 ° ) ;  ( c )  2  c o s  3 /  +  3  c o s  5 1

A n s w e r :  ( a )  y / 2  ( b )  0 . 3 6 6  ( c )  2 . 5 5

11.5 C O M P L E X  P O W E R

S u p p o s e  t h a t  a  l i n e a r  c i r c u i t  w i t h  a  s i n u s o i d a l  i n p u t  i s  a t  s t e a d y  s t a t e .  A l l  t h e  e l e m e n t  v o l t a g e s  a n d  

c u r r e n t s  w i l l  b e  s i n u s o i d a l ,  w i t h  t h e  s a m e  f r e q u e n c y  a s  t h e  i n p u t .  S u c h  a  c i r c u i t  c a n  b e  a n a l y z e d  i n  t h e  

f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s .  I n d e e d ,  w e  c a n  c a l c u l a t e  t h e  p o w e r  g e n e r a t e d  o r  a b s o r b e d  i n  a  

c i r c u i t  o r  i n  a n y  e l e m e n t  o f  a  c i r c u i t ,  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s .

F i g u r e  1 1 . 5 - 1  r e p r e s e n t s  t h e  v o l t a g e  a n d  c u r r e n t  o f  a n  e l e m e n t  i n  b o t h  t h e  t i m e  d o m a i n  

a n d  t h e  f r e q u e n c y  d o m a i n .  N o t i c e  t h a t  t h e  e l e m e n t  c u r r e n t  a n d  v o l t a g e  a d h e r e  t o  t h e  p a s s i v e  

c o n v e n t i o n .  I n  a  p r e v i o u s  s e c t i o n ,  t h e  i n s t a n t a n e o u s  p o w e r  a n d  t h e  a v e r a g e  p o w e r  w e r e  c a l c u l a ­

t e d  f r o m  t h e  t i m e - d o m a i n  r e p r e s e n t a t i o n s  o f  t h e  e l e m e n t  c u r r e n t  a n d  v o l t a g e ,  v ( / )  o r  i ( t ) .  I n  c o n t r a s t ,  

w e  n o w  t u r n  o u r  a t t e n t i o n  t o  t h e  f r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n s  o f  t h e  e l e m e n t  c u r r e n t  a n d  

v o l t a g e

I M  =lm[0 1 and V(<») =  Vm /0v (11.5-1)
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v { t )  =  v m  c o s  ( c o t  +  0 V )

|  i(t) = / m cos (cot + 0t)
.  1 *

1(a)) = Ime>6 '

V ( t o )  =  V m e ' ® v

( a )

o

F I G U R E  1 1 . 5 - 1  A  l i n e a r  c i r c u i t  i s  e x c i t e d  b y  a  s i n u s o i d a l  i n p u t .  T h e  c i r c u i t  h a s  r e a c h e d  s t e a d y  s t a t e .  T h e  e l e m e n t  

v o l t a g e  a n d  c u r r e n t  c a n  b e  r e p r e s e n t e d  i n  ( a )  t h e  t i m e  d o m a i n  o r  ( b )  t h e  f r e q u e n c y  d o m a i n .

The complex power delivered to the element is defined to be

VI- (Pm / - f t )  Fm/ n
S =  -  =  . / f l y  —  0 )

2 2

where I* denotes the complex conjugate o f  I (see Appendix B). The magnitude o f  S

|S| =
V  T* xrx1 rr

(11.5-2)

(11.5-3)

is called the apparent-power.
Converting the complex power, S, from polar to rectangular form gives

s  =  cos (dv -  9i) + j ^ Y ^  sin (0V -  6>i) (11.5-4)

The real part o f S is equal to the average power that we calculated previously in the time domain! (See 
Eq. 11.3-3.) Recall that the average power was denoted as P. We can represent the complex power as

(11.5-5)

where

is the average power and

P =

s  = P + j Q

VmI m
COS (0y  ~  Q\)

Q -- sin (^v -  0i)

(11.5-6)

(11.5-7)

is the reactive power. The complex power, average power, and reactive power are all the product o f a 
voltage and a current. Nonetheless, it is conventional to use different units for these three types o f  
power. We have already seen that the units o f the average power are watts. The units o f  complex power 
are volt-amps (VA), and the units o f reactive power are volt-amps reactive (VAR). The formulas used 
to calculate power in the frequency domain are summarized in Table 11.5-1.

Let’s return to Figure 11.5-1 b. The impedance o f the element can be expressed as

I M  I m / 0 \  An -----------

Converting the impedance, Z, from polar to rectangular form gives

(11.5-8)

Z(a>) =  ^  cos (Ov — #i) +  j~ r ~  sin (dv — #i)
' m  * vn

(11.5-9)

We can represent the impedance as

Z(co) — R + j X
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Frequency-Domain Power Relationships

RELATIONSHIP USING RELATIONSHIP
QUANTITY PEAK VALUES USING rms VALUES UNITS

Element voltage, v(/) v(/) =  Vm cos (cut -I- 0V) v(f) =  ^rmsv/2 cos (a>t +  0V) V

Element current, i(t) i(t) =  7mcos(a>/ -f 0i) j(t) — Ims\/2  cos (eat +  0j) A

Complex power, S S =  cos (<9V - » i )  S =  t'™s/™s COS ( 0 v ^ e'>
y  j  + /^ rm s / rm s  s in  (0 V -  ^ i)

4 7 ^  Sin (0V -01)
... _  VmI m |S| =  F n n ,/^  VA

Apparent power, |S| 1̂ 1 —

p  _  ^ j n A n  , ^  =  ^ r m s ^ r m s c o s ( ^ V  —  ^ i )  W
Average power, P °  — 2 cos(^v — )

 ̂m̂ m (Q a \ Q ~  r̂mŝ rmsSUlĈ V — $l) VAR
Reactive power, Q U — ^ slIH“v -  )

w h e r e  R  =  —  c o s  ( G y  —  0 \ )  i s  t h e  r e s i s t a n c e  a n d  X  —  - y -  s i n  ( 0 y  —  # i )  i s  t h e  r e a c t a n c e .

'  m  ^  m

T h e  s i m i l a r i t y  b e t w e e n  E q s .  1 1 . 5 - 4  a n d  1 1 . 5 - 9  s u g g e s t s  t h a t  t h e  c o m p l e x  p o w e r  c a n  b e  

e x p r e s s e d  i n  t e r m s  o f  t h e  i m p e d a n c e

s  =  c o s  ( 0 v  -  01)  + 7 " y ~  S i n  (6 >v  -  0 ] )

=  ( y )  ^  c o s  (6 >v  -  0 i )  + 7 ' ( y j  y 2  s i n  ( 0 V  -  0 i )  ( 1 1 . 5 - 1 0 )

=  ( ^ R e ( Z )  + j ( ^ j l m ( Z )

I n  p a r t i c u l a r ,  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  e l e m e n t  i s  g i v e n  b y

/ > = ( y ) R e ( z )  ( 1 1 . 5 - 1 1 )

W h e n  t h e  e l e m e n t  i s  a  r e s i s t o r ,  t h e n  R e ( Z )  =  R

p . =

W h e n  t h e  e l e m e n t  i s  a  c a p a c i t o r  o r  a n  i n d u c t o r ,  t h e n  R e ( Z )  =  0 ;  t h u s ,  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  a  

c a p a c i t o r  o r  a n  i n d u c t o r  i s  z e r o .

F i g u r e  1 1 . 5 - 2  s u m m a r i z e s  E q s .  1 1 . 5 - 4  a n d  1 1 . 5 - 9 ,  u s i n g  ( a )  t h e  i m p e d a n c e  t r i a n g l e  a n d  ( b )  t h e  

p o w e r  t r i a n g l e .

Im (Z) Im (S)

I s L x ^

X Q

Re (2) Re (S)

(a)
( b )

MGIIRF. 11.5-2 (a) The impedance triangle where Z  =  R + jX  =  Z. (b ) The complex power triangle where 
^  “  + . / £ ? •
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E x a m p l e  1 1 . 5 - 1  C o m p l e x  P o w e r

The circuit shown in Figure i 1.5-3 consists o f  a source driving a load. The 
current source current is

i(t)  =  1.25 cos (5/ -  15°) A

(a) What is the value o f  the complex power delivered by the source to the 
load when R =  20 f l  and L =  3 H?

(b) What are the values o f the resistance, R, and inductance, L, when the source 
delivers 11.72 +  ;  11.72 VA to the load?

Solution
Represent the circuit in the frequency domain as shown in Figure 11.5-4, 
where I =  1.25 / -1 5 °  A. The equivalent impedance o f  the parallel resistor 
and inductor is

z  =  j(oLR  
R  -f- jcoL

(a) When i? =  20 f l  and I  =  3 H , the equivalent impedance is

z = . 7300 . = 12/53° a

source load

F I G U R E  1  L 5 - 3  A  c i r c u i t  

c o n s i s t i n g  o f  a  s o u r c e  d r i v i n g  

a  l o a d .

source load

F I G U R E  1 1 . 5 - 4  T h e  c i r c u i t  f r o m  

F i g u r e  1 1 . 5 - 3 ,  r e p r e s e n t e d  i n  t h e  

f r e q u e n c y  d o m a i n .

2 0 + y i5
The voltage across this impedance is

v  =  IZ =  (1.25 / —15°H12 753°’) =  1 5 /3 8 ° V  

The complex power delivered by the source is

s _ . V l * _ ( 1 5 ^ 8 ! ) ( l - 2 5 - Z i y ) *  (1 5 /6 8 D (1 .2 5 Z l5 ! )  =  9 3 7 5 /s 3 0 V A

(b) The voltage across the equivalent impedance can be calculated from the complex power and the current, using

S =
v r

When S =  11.72 + j \ \ .1 2  =  1 6 .5 7 /4 5 °  VA

y  »  2 0 M 7  A p  .  206.57 Z 4g ) .
1 n .25 7 - 1 5 ° ) 1 .2 5 /1 5 !

V 2 6 .5 2 /3 0 °

The equivalent impedance is

Z =  — =
1 1 .25 / - 1 5°

=  21.21 / 4 5 ° f i

It’s convenient to take the reciprocal:

~ ~ j —  ~
R 2 1 .2 1 /4 5 1

=  0.033338 - j 0.033338

Consequently,

R =
1

0.033338
=  30 O and 5 L =

1

0.033338
=  30 L =  6 H
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E x a m p l e  1 1 . 5 - 2  P a r a l l e l  L o a d s

i; ( / ) (

T h e  c i r c u i t  s h o w n  i n  F i g u r e  1 1 . 5 - 5  c o n s i s t s  o f  a  s o u r c e  d r i v i n g  a  l o a d  t h a t  c o n s i s t s  o f  t h e  p a r a l l e l  c o n n e c t i o n  o f

v ( t )  =  2 4  c o s  ( 5 1  +  3 0 ° )  V

S A  =  9 . 2 1 6  + > 6 . 9 1 2  V A  

Z B  = 4 2 . 4 2 6  ^ 5 !  V A

t w o  l o a d s .  T h e  v o l t a g e  s o u r c e  v o l t a g e  i s  

L o a d  A  r e c e i v e s  

T h e  i m p e d a n c e  o f  l o a d  B  i s

J - — ~T~ i
A B

L — o — -L J
FIG URE 11.5-5 A circuit consisting 
of a source driving a parallel load.

( a )  D e t e r m i n e  t h e  v a l u e  o f  t h e  c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  s o u r c e  t o  t h e  p a r a l l e l  l o a d .

( b )  D e t e r m i n e  t h e  v a l u e  o f  t h e  e q u i v a l e n t  i m p e d a n c e  o f  t h e  p a r a l l e l  l o a d .

Solution
R e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n  a s  s h o w n  i n  F i g u r e  1 1 . 5 - 6 ,  

w h e r e  V  =  2 4  / 3 0 °  V .  T h e  c u r r e n t  i n  l o a d  A  c a n  b e  c a l c u l a t e d  f r o m  t h e  

c o m p l e x  p o w e r  r e c e i v e d  b y  l o a d  A ,  u s i n g

S A = ^ I
I I

W h e n  S A  =  9 . 2 1 6 + y ' 6 . 9 1 2  =  1 1 . 5 2 / 3 6 . 9 °  V A  

^ 2 ( 1 1 . 5 2 / 3 6 . 9 ° ) V

- f f i

r I

A B

- L
I

| l 2

I i  =

FIG U RE 11.5-6 The circuit from 
Figure 11.5-5, represented in the

=  ( 0 . 9 6  / Z D *  =  0 9 6  / ~ 7 °  A  f l u e n c y  d o m a i n

2 4 / 3 0 °

T h e  c u r r e n t  i n  l o a d  B  c a n  b e  c a l c u l a t e d  a s

,  V  = 0 5 6 6 ^ i £ A

z b  4 2 . 4 2 6 / 4 5 °

T h e  s o u r c e  c u r r e n t  i s

1  =  1 ,  + l 2  =  1 , 5 2 2  / - 9 . 9 °  A

( a )  T h e  c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  s o u r c e  i s

V I *  ( 2 4  / 3 0 ° ) f  1 . 5 2 2  / — 9 . 9 ° ) *  /

S  =  —  =  - —  — M  — - - - -  ■ ■ =  1 8 . 2 6 5 / 3 9 . 9 °  =  1 4 . 0 2 + > 1 1 . 7 1  V A

( b )  T h e  e q u i v a l e n t  i m p e d a n c e  o f  t h e  p a r a l l e l  l o a d  i s

2 4 / 3 0 !

1  1 . 5 2 2 / — 9 . 9 '

=  1 5 . 7 6 8 / 3 9 . 9 ° n

C o m p l e x  p o w e r  i s  c o n s e r v e d .  T h e  s u m  o f  t h e  c o m p l e x  p o w e r  r e c e i v e d  b y  a l l  t h e  e l e m e n t s  o f  a  

c i r c u i t  i s  z e r o .  T h i s  f a c t  c a n  b e  e x p r e s s e d  b y  t h e  e q u a t i o n

£
all

elements

\ k i *

— - y -  =  0  ( 1 1 . 5 - 1 2 )



508 )------- AC S te a d y -S ta te  P o w e r

where V* and I* are the phasors corresponding to the element v oltage and current o f the Ath element of the 
circuit. The phasors V* and I* must adhere to the passive convention so that V*I**/2 is the complex power 
received by the Ath branch. The summation in Eq. 11.5-12 adds up the complex powers in all elements of the 
circuit. When an element o f the circuit is a source that is supplying power to the circuit, Vklk*/2 will be 
negative, indicating that positive complex power is being supplied rather than received. Sometimes 
conserv ation o f complex pow er is expressed as

E M = E M  ( 1 1 . 5 - 1 3 )

jourra other
elements

where phasors V* and I* adhere to the passive convention for the “ other elements” but do not adhere 
to the passive convention for the sources. When V* and I* do not adhere to the passive convention, then 
V k h */2 is the complex power supplied  by the Ath branch. We read Eq. 11.5-13 to say that the total 
complex power supplied by the sources is equal to the total complex power received by the other 
elements o f the circuit.

Equation 11.5-12 implies that both

and

E
all

Elements

E Im
all

Elements

R e| M , = 0

v<i;

Pk =  0 and ^  Qk =  0
all all

elements elements
Therefore,

In other words, average power and reactive power are both conserved.

L
E x a m p l e  1 1 . 5 - 3  C o n s e r v a t i o n  o f  C o m p l e x  P o w e r

Verify that complex power is conserved in the circuit o f  Figure 11.5-7 when vs =  100 cos 1000/ V.

f l = 1 0 Q  £  =  2 0 m H

+  V V v _  +

1>R (t) VL (t)

° c U ) + '
: c =  100/iF

F I G U R E  1 1 . 5 - 7  C i r c u i t  f o r  E x a m p l e s  1 1 . 5 - 3  a n d  1 1 . 5 - 4 .

Solution
The phasor corresponding to the source voltage is

Vs (a>) =  1 0 0 / o v
Writing and solving a mesh equation, we find that the phasor corresponding to the mesh current is

V s ( < w )  1 0 0IM  =
R +  jcoL 10 +  y'( 1000 ) (0.02) -  j --------------------- X-------- 7

coC A ’ •/ (1000)10 “4

=  7.07 7 - 4 5 °  A
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O h m ’ s  l a w  p r o v i d e s  t h e  p h a s o r s  c o r r e s p o n d i n g  t o  t h e  e l e m e n t  v o l t a g e s :

V R ( a > )  =  =  1 0 ( 7 . 0 7  Z = d 5 ! )  =  7 0 . 7 / ^ 4 5 1  V

V L ( a > )  =  j c o L  I ( a > )  =  > ( 1 0 0 0 ) ( 0 . 0 2 ) ( 7 . 0 7 / 4 5 ! )

=  ( 2 0 / 9 0 ° ) ( 7 . 0 7  / — 4 5 c l  =  1 4 1 . 4  / 4 5 °  V

vcW . -,JLiW - -y— ^pj(’07Ẑ £)

=  n 0 / 9 0 ° V 7 . 0 7 / - 4 5 o ’) =  7 0 . 7 / - 1 3 5 °  V  

C o n s i d e r  t h e  v o l t a g e  s o u r c e .  T h e  p h a s o r s  V s  a n d  1  d o  n o t  a d h e r e  t o  t h e  p a s s i v e  c o n v e n t i o n .  T h e  c o m p l e x  p o w e r

V S I *  _  1 0 0 ( 7 . 0 7  / - 4 5 ° ) *  _  1 0 0 ( 7 . 0 7  / 4 5 ° )

8 v =  2

1 0 0 ( 7 . 0 7 )  y 4 5 0  =  3 5 3  5  V A

i s  t h e  c o m p l e x  p o w e r  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e .

T h e  p h a s o r s  I  a n d  V R  d o  a d h e r e  t o  t h e  p a s s i v e  c o n v e n t i o n .  T h e  c o m p l e x  p o w e r

V R I *  (70.7 / —45o,)(7.07 / —45°')*
S r  =  — “ ------------------------------------

= (70.7Z^45!)(7.07Z45!) = (70.7)(7.07) /  . 4g0 = 25Q u  yA
2 2 L---------------------------

i s  t h e  c o m p l e x  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r .  S i m i l a r l y ,

= VjT _  (l4l.4/j£)(7.07Z»£) = (I4I.4)(7.07) /  _  ;0Q/  yA
2 2 2 -----------

i s  t h e  c o m p l e x  p o w e r  d e l i v e r e d  t o  t h e  i n d u c t o r ,  a n d

Sc = Vd* (70.7Z^135!)(7.07Z45!) (70.7)(7.07) / _ 135o + 45q

=  250/-90° V A

i s  t h e  c o m p l e x  p o w e r  d e l i v e r e d  t o  t h e  c a p a c i t o r .

T o  v e r i f y  t h a t  c o m p l e x  p o w e r  h a s  b e e n  c o n s e r v e d ,  w e  c a l c u l a t e  t h e  c o m p l e x  p o w e r  r e c e i v e d  b y  t h e  “ o t h e r  

e l e m e n t s ”  a n d  c o m p a r e  i t  t o  t h e  c o m p l e x  p o w e r  s u p p l i e d  b y  t h e  s o u r c e :

SR + Su + Sc = 250 /0° + 500 /90° + 250 / -9 0 Q

=  (250 +  j O )  +  (0 +  >500) +  (0 — >250)

= 250 + >250 = 353.5 /45! = Sv

A s  e x p e c t e d ,  t h e  c o m p l e x  p o w e r  s u p p l i e d  b y  t h e  s o u r c e  i s  e q u a l  t o  t h e  c o m p l e x  p o w e r  r e c e i v e d  b y  t h e  o t h e r  

\ ^ e l e m e n t s  o f  t h e  c i r c u i t .
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E x a m p l e  1 1 . 5 - 4  C o n s e r v a t i o n  o f  A v e r a g e  P o w e r

Verily that average power is conserved in the circuit o f  Figure 11.5-7 when vs =  100 cos lOOOf V.

Solution
The phasor corresponding to the source voltage is

V„(<u) =  100/ o v

Writing and solving a mesh equation, we find that the phasor corresponding to the mesh current is 

1(0,) = -------Vs(&)) j = -------------------- — ------------j-------=  7.07 7 - 4 5 ° A
R + j w L - j —  10 +  /( 1000)(0.02) - /

J J coC J (1000)10 -4

The average power absorbed by the resistor, the capacitor, and the inductor can be calculated using

< i i

P =

Because Re(Z) =  0 for the capacitor and for the inductor, the average power absorbed by each o f these devices is 
zero. Re(Z) =  R  for the resistor, so

( l l \  (7.072)
P r =  ( f  ) R  =  1 - 2 - 2 l 0 - 2 5 0 W

The average power supplied by the source is

P v =  Re(Sv) -  =  R e f 100^ -'07  ̂ /4 5 ° )  =  Re(353.5 As°) =  250 W

To verify that average power has been conserved, we calculate the average power received by the “ other
elements’' and compare it to the average power supplied by the source:

+  P l +  Pc =  250 +  0 +  0 =  250 =  P v

As expected, the average power supplied by the sources is equal to the average power received by the other
elements o f the circuit.

10 Q

10 Q

1 2  c o s  2 1

FIGURE E 11.5-2

EXERCISE 11.5-1 Determine the average power delivered to each element o f  
the circuit shown in Figure E 11.5-1. Verify that average power is conserved.

Answ er: 4.39 +  0 =  4.39 W

4 h EXERCISE 11.5-2 Determine the complex power delivered to each element 
o f the circuit shown in Figure E 11.5-2. Verify that complex power is conserved.

Answer: 6.606 +  7*5.248 -y*3.303 =  6.606 +7*1.982 VA
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11.6 P O WE R  F A C T OR

I n  t h i s  s e c t i o n ,  a s  i n  t h e  p r e v i o u s  s e c t i o n ,  w e  c o n s i d e r  a  l i n e a r  c i r c u i t  w i t h  a  s i n u s o i d a l  i n p u t  t h a t  i s  a t  

s t e a d y  s t a t e .  A l l  t h e  e l e m e n t  v o l t a g e s  a n d  c u r r e n t s  w i l l  b e  s i n u s o i d a l  a n d  w i l l  h a v e  t h e  s a m e  f r e q u e n c y  

a s  t h e  i n p u t .  S u c h  a  c i r c u i t  c a n  b e  a n a l y z e d  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s .  I n  p a r t i c u l a r ,  w e  

c a n  c a l c u l a t e  t h e  p o w e r  g e n e r a t e d  o r  a b s o r b e d  i n  a  c i r c u i t  o r  i n  a n y  e l e m e n t  o f  a  c i r c u i t ,  i n  t h e  

f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s  a n d  i m p e d a n c e s .

R e c a l l  t h a t  i n  S e c t i o n  1 1 . 5 ,  w e  s h o w e d  t h a t  t h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  e l e m e n t  s h o w n  i n

F i g u r e  1 1 . 5 - 1  i s

p  _  c o s  _  0\ )

a n d  t h a t  t h e  a p p a r e n t  p o w e r  i s

T h e  r a t i o  o f  t h e  a v e r a g e  p o w e r  t o  t h e  a p p a r e n t  p o w e r  i s  c a l l e d  t h e  p o w e r  f a c t o r  ( p f ) .  T h e  p o w e r  f a c t o r  

i s  c a l c u l a t e d  a s

p f  =  c o s  ( B y  -  0 i )

T h e  a n g l e  ( O y  —  0 \ )  i s  o f t e n  r e f e r r e d  t o  a s  t h e  p o w e r  f a c t o r  a n g l e .  T h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  

e l e m e n t  s h o w n  i n  F i g u r e  1 1 . 5 - 1  c a n  b e  e x p r e s s e d  a s

P  =  ^ Y L P f  ( 1 1 6 - 1 )

T h e  c o s i n e  i s  a n  e v e n  f u n c t i o n ,  t h a t  i s ,  c o s  ( 0 )  =  c o s  ( — 0 ) .  S o

p f  =  c o s  ( O y  -  0 \ )  =  c o s  ( 0 \  —  O y )

T h i s  c a u s e s  a  s m a l l  d i f f i c u l t y .  W e  c a n ’ t  c a l c u l a t e  O y  —  0 \  f r o m  ^ / w i t h o u t  s o m e  a d d i t i o n a l  i n f o r m a t i o n .  

F o r  e x a m p l e ,  s u p p o s e  p f  =  0 . 8 .  W e  c a l c u l a t e

3 6 . 8 7 °  =  c o s " 1 ( 0 . 8 )

b u t  t h a t ’ s  n o t  e n o u g h  t o  d e t e r m i n e  O y  —  0 \  u n i q u e l y .  B e c a u s e  t h e  c o s i n e  i s  e v e n ,  b o t h  c o s  ( 3 6 . 8 7 ° )  =

0 . 8  a n d  c o s  ( - 3 6 . 8 7 ° )  =  0 . 8 ,  s o  e i t h e r  O y  -  0 \  =  3 6 . 8 7 °  o r  O y  -  0 \  =  - 3 6 . 8 7 ° .  T h i s  d i f f i c u l t y  i s  

r e s o l v e d  b y  l a b e l i n g  t h e  p o w e r  f a c t o r  a s  l e a d i n g  o r  l a g g i n g .  W h e n  O y  —  0 \  >  0 ,  t h e  p o w e r  f a c t o r  i s  s a i d  

t o  b e  l a g g i n g ,  a n d  w h e n  0 y  —  0 \  <  0 ,  t h e  p o w e r  f a c t o r  i s  s a i d  t o  b e  l e a d i n g .  I f  t h e  p o w e r  f a c t o r  i s  

s p e c i f i e d  t o  b e  0 . 8  l e a d i n g ,  t h e n  0 y  —  0 \  =  — 3 6 . 8 7 ° .  O n  t h e  o t h e r  h a n d ,  i f  t h e  p o w e r  f a c t o r  i s  s p e c i f i e d  

t o  b e  0 . 8  l a g g i n g ,  t h e n  0 y  —  0 \  =  3 6 . 8 7 ° .

T h e  s i g n i f i c a n c e  o f  t h e  p o w e r  f a c t o r  i s  i l l u s t r a t e d  b y  t h e  

c i r c u i t  s h o w n  i n  F i g u r e  1 1 . 6 - 1 .  T h i s  c i r c u i t  m o d e l s  t h e  t r a n s ­

m i s s i o n  o f  e l e c t r i c  p o w e r  f r o m  a  p o w e r  u t i l i t y  c o m p a n y  t o  a  

c u s t o m e r .  T h e  c u s t o m e r ’ s  l o a d  i s  c o n n e c t e d  t o  t h e  p o w e r  

c o m p a n y ’ s  p o w e r  p l a n t  b y  a  t r a n s m i s s i o n  l i n e .  T y p i c a l l y ,  t h e  

c u s t o m e r  r e q u i r e s  p o w e r  a t  a  s p e c i f i e d  v o l t a g e .  T h e  p o w e r  

c o m p a n y  m u s t  s u p p l y  b o t h  t h e  p o w e r  u s e d  b y  t h e  c u s t o m e r  

a n d  t h e  p o w e r  a b s o r b e d  b y  t h e  t r a n s m i s s i o n  l i n e .  T h e  p o w e r  

a b s o r b e d  b y  t h e  t r a n s m i s s i o n  l i n e  i s  l o s t ;  i t  d o e s n ’ t  d o  a n y b o d y  

a n y  g o o d ,  a n d  w e  w a n t  t o  m i n i m i z e  i t .

T h e  c i r c u i t  i n  F i g u r e  1 1 . 6 - 2  m o d e l s  t h e  t r a n s m i s s i o n  o f  

e l e c t r i c  p o w e r  f r o m  a  p o w e r  u t i l i t y  c o m p a n y  t o  a  c u s t o m e r  i n  t h e  

f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .  O u r  o b j e c t i v e

Power plant Transmission line Customer’s load

FIG URE 11.6-1 Power plant supplying a customer’s 
electrical load. A transmission line connects the power 
plant to the customer’s terminals.
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F I G U R E  1 1 . 6 - 2  F r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n  o f  t h e  

p o w e r  p l a n t  s u p p l y i n g  a  c u s t o m e r ’ s  e l e c t r i c a l  l o a d .

is to find a way to reduce the power absorbed 
by the transmission line. In this situation, it is 
likely that we cannot change the transmission 
line, so we can't change R { or j a>L\. Similarly, 
because the customer requires a specified 
average power at a specified voltage, we 
can’t change Vm or P. In the following analy­
sis, we leave L u  Fm, and P  as variables for
the sake o f generality. We won’t need to 
repeat the analysis later if  we encounter a 
similar situation with a different customer and 
a different transmission line. We will see that 
it is possible to adjust the power factor by
adding a compensating impedance to the customer’s load. We will leave the power factor, p f  as a variable 
in our analysis because we plan to vary the power factor to reduce the power absorbed by the load. 

The impedance o f  the line is

rrn / \ ^1  . L\ R\ L\ .
Z l i n e ( ^ )  —  —  ~  y  =  + 7 ^ 1

The average power absorbed by the line is

1 2  1 2

P  L I N E  —  ^ R e ( Z L I N E )  = Z - ^ R {

Because the customer requires power at a specified voltage, we will treat the voltage across the load, 
Fm, and the average power delivered to the load, P, as known quantities. Recall from Eq. 11.6-1 that

P  = 1  r

~Pf

Solving for 7m gives

so

/ m  =

V m P f
R l

Increasingp f  will reduce the power absorbed in the transmission line. The power factor is the cosine o f  
an angle, so its maximum value is 1. Notice that p f  =  1 occurs when #v =  6\, that is, when the load 
appears to be resistive.

In Figure 11.6-3, a compensating impedance has been attached across the terminals o f the 
customer’s load. We plan to use this impedance to adjust the power factor o f the customer’s load. Because 
it is to the advantage o f both the power 
company and the user to keep the 
power factor o f  a load as close to 
unity as feasible, we say that we are 
correcting  the power factor o f  the 
load. We will denote the corrected 
power factor as pfc  and the corre­
sponding phase angle as 0C. That is,

p fc  =  cos Oq

We can represent the imped­
ance o f the load as

Z  = R + j X

F I G U R E  1 1 . 6 - 3  P o w e r  p l a n t  s u p p l y i n g  a  c u s t o m e r ’ s  e l e c t r i c a l  l o a d .  

A c o m p e n s a t i n g  i m p e d a n c e  h a s  b e e n  a d d e d  t o  t h e  c u s t o m e r ’ s  l o a d  t o  

c o r r e c t  t h e  p o w e r  f a c t o r .

jO) M

Power plant Transmission line Customer’s load

V s (o > )  =  A [ 0 °
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Z c  =  R c  + j X c

B e c a u s e  Z  i s  c o n n e c t e d  t o  d r a w  a  c u r r e n t  I ,  t h e  p o w e r  d e l i v e r e d  t o  Z  w i l l  r e m a i n  P. T h e  b e n e f i t  o f  t h e  

p a r a l l e l  i m p e d a n c e  i s  t h a t  t h e  p a r a l l e l  c o m b i n a t i o n  a p p e a r s  a s  t h e  l o a d  t o  t h e  s o u r c e ,  a n d  I L  i s  t h e  

c u r r e n t  t h a t  f l o w s  t h r o u g h  t h e  t r a n s m i s s i o n  l i n e .  W e  w a n t  Z c  t o  a b s o r b  n o  a v e r a g e  p o w e r .  T h e r e f o r e ,  

w e  c h o o s e  a  r e a c t i v e  e l e m e n t  s o  t h a t

Similarly, we can represent the impedance of the compensating impedance as

w h e r e  p f c  i s  t h e  c o r r e c t e d  p o w e r  f a c t o r ,  a n d  t h e  c o r r e c t e d  p h a s e  0 C  =  0 / > .  S o m e  a l g e b r a  i s  n e e d e d  t o  

c a l c u l a t e  RP a n d  X P \

C o m b i n i n g  E q s .  1 1 . 6 - 3  a n d  1 1 . 6 - 4  a n d  s o l v i n g  f o r  X c ,  w e  h a v e

R 2  - f  X 2

C  R  t a n  ( c o s - 1 p f c )  —  X  ( 1 1 . 6 - 5 )

W e  n o t e  t h a t  X c  m a y  b e  p o s i t i v e  o r  n e g a t i v e ,  d e p e n d i n g  o n  t h e  r e q u i r e d  p f c  a n d  t h e  o r i g i n a l  R  a n d  X  o f  

t h e  l o a d .  T h e  f a c t o r  t a n [ c o s _ 1  ( p f c ) }  w i l l  b e  p o s i t i v e  i f  p f c  i s  s p e c i f i e d  a s  l a g g i n g  a n d  n e g a t i v e  i f  i t  i s  

s p e c i f i e d  a s  l e a d i n g .

T y p i c a l l y ,  w e  w i l l  f i n d  t h a t  t h e  c u s t o m e r ' s  l o a d  i s  i n d u c t i v e ,  a n d  w e  w i l l  n e e d  a  c a p a c i t i v e  

i m p e d a n c e  Z c . R e c a l l  t h a t  f o r  a  c a p a c i t o r ,  w e  h a v e

Z c  = j X c

T h e  i m p e d a n c e  o f  t h e  p a r a l l e l  c o m b i n a t i o n ,  Z P ,  i s

T h e  p a r a l l e l  i m p e d a n c e  m a y  b e  w r i t t e n  a s

Z  p =  Rp +  j X  p — Zp /Op

a n d  t h e  p o w e r  f a c t o r  o f  t h e  n e w  c o m b i n a t i o n  i s

( 11.6-2)

(R + JX )jX c  
R  + j X  + j X c

R X l  +  j [ R 2 X c  +  ( X c  +  X ) X  A ~ c ]

w 2  +  ( ^ r + x c ) 2

R X \  . ^ X c ± V ( £ ± X ) X X c

R 2  +  ( X  +  X c ) 2  + J  R 2  +  ( X  +  X c ) 2

T h e r e f o r e ,  t h e  r a t i o  o f  X P  t o  R p  i s

X P  R 2  +  ( X c + X ) X  

R P  R X c
( 1 1 . 6 - 3 )

E q u a t i o n  1 1 . 6 - 2  m a y  b e  w r i t t e n  a s

( 1 1 . 6 - 4 )
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Note that we determine that Ac is typically negative. Combining Eqs. 11.6-5 and 11.6-6 gives

- 1  R2_ +  X 2

coC R tan (cos-1 p fc) -  X

Solving for a>C gives

_ X  — R tan (cos-1 p fc ) 
coC = ------------,------- ,----------

R2 + X 2

Let 0 =  tan-1 (  — ). Then

R  X  <  - \  r \ \— wi------- i  — -  tan cos p f c I
. .  . . .  r 2 + x 2 \ r  v y  ’ )

© ■ R

Rz~ + X
where 0 =  cos~l (p f)  and#c =  cos~ l (pfc).

ojC =  --j------- j  (ten ® “  tan °c )  (11 -6-7)

E x a m p l e  1 1 . 6 - 1  P a r a l l e l  L o a d s

A customer's plant has two parallel loads connected to the power utility’s distribution lines. The first load consists 
o f 50 kW o f  heating and is resistive. The second load is a set o f  motors that operate at 0.86 lagging power factor. 
The motors’ load is 100 kVA. Power is supplied to the plant at 10,000 volts rms. Determine the total current 
flowing from the utility’s lines into the plant and the plant’s overall power factor.

Solution
Figure 11.6-4a summarizes what is known about this power system.

First, consider the heating load. Because this load is resistive, the reactive power is zero. Therefore,
S, = P X =  50 kW

Next, consider the motors. The power factor is lagging, so 02 >  0°:

6>2 =  cos"1 ( p f2) =  cos"1 (0.86) =  30.7°

The complex power absorbed by the motors is

s 2 =  |S2| ^92 =  1 0 0 / 30 .7° kVA

The average power and reactive power absorbed by the motors is obtained by converting the complex power to 
rectangular form:

S2 =  IS21 cos 02 -I-y|S2| sin 02 =  100 cos 30.7° 4- j  100 sin 30.7° =  86 +  y‘51 kVA

R
2

R
2

R L
2 2

Power plant Transmission line Customer's load 

( a )

F IG U R E  11.6-4 Power system  for Exam ple 11.6-1.

R
2

L
2

Power plant Transmission line Customer’s load 

(b)
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T h e  t o t a l  c o m p l e x  p o w e r  S  d e l i v e r e d  t o  t h e  t o t a l  l o a d  i s  t h e  s u m  o f  t h e  c o m p l e x  p o w e r  d e l i v e r e d  t o  e a c h  

l o a d :

s  =  S i  + S 2  =  5 0  +  ( 8 6 + / 5 1 )  =  1 3 6 + y 5 1  k V A

T h e  a v e r a g e  p o w e r  a n d  r e a c t i v e  p o w e r  o f  t h e  c u s t o m e r ’ s  l o a d  i s

P — \36 k W  a n d  0  =  5 1 k V A R  

T o  c a l c u l a t e  t h e  p o w e r  f a c t o r  o f  t h e  c u s t o m e r ’ s  l o a d ,  f i r s t  c o n v e r t  S  t o  p o l a r  f o r m :

S  =  1 4 5 . 2 / 2 0 . 6 0  k V A  

T h e n  p f  =  c o s  ( 2 0 . 6 ° )  =  0 . 9 4  l a g g i n g

T h e  t o t a l  c u r r e n t  f l o w i n g  f r o m  t h e  u t i l i t y ’ s  l i n e s  i n t o  t h e  p l a n t  c a n  b e  c a l c u l a t e d  f r o m  t h e  a p p a r e n t  

p o w e r  a b s o r b e d  b y  t h e  c u s t o m e r ’ s  l o a d  a n d  t h e  v o l t a g e  a c r o s s  t h e  t e r m i n a l s  o f  t h e  c u s t o m e r ’ s  l o a d .  R e c a l l  t h a t

V J
ISI — m m  —  V  J 1^1 — ~  — y rmsi  rms

Therefore, />2 =  86kW and Q 2 =  51 kVAR

S o l v i n g  f o r  t h e  c u r r e n t  g i v e s

| S |  1 4 5 , 2 0 0
/  =  - L _ L  — --------------- --—  =  1 4 .5 2  A  r m s

V r m s  1 0 4

F i g u r e  1 1 . 6 - 4 6  s u m m a r i z e s  t h e  r e s u l t s  o f  t h i s  e x a m p l e .

E x a m p l e  1 1 . 6 - 2  P ow er F actor C orrection

A  l o a d  a s  s h o w n  i n  F i g u r e  1 1 . 6 - 5  h a s  a n  i m p e d a n c e  o f  Z  =  1 0 0  +  y ' 1 0 0  O .  F i n d  t h e  p a r a l l e l  c a p a c i t a n c e  r e q u i r e d  

t o  c o r r e c t  t h e  p o w e r  f a c t o r  t o  ( a )  0 . 9 5  l a g g i n g  a n d  ( b )  1 . 0 .  A s s u m e  t h a t  t h e  s o u r c e  i s  o p e r a t i n g  a t  c o  =  3 7 7  r a d / s .

Transmission 
line current

Power 
company Vs( ^  
generator

k Pi icfnm or'cCustomer’s
terminals

7, Parallel 7L\ impedance L Load

F1GLRE 11.6-5 Use o f an added parallel impedance Zj to correct the customer’s power factor.

Solution
T h e  p h a s e  a n g l e  o f  t h e  i m p e d a n c e  i s  G  =  4 5 ° ,  s o  t h e  o r i g i n a l  l o a d  h a s  a  l a g g i n g  p o w e r  f a c t o r  w i t h

c o s 6 >  =  c o s  4 5 °  =  0 . 7 0 7  

F i r s t ,  w e  w i s h  t o  c o r r e c t  t h e  p f  s o  t h a t  p f c  =  0 . 9 5  l a g g i n g .  T h e n ,  w e  u s e  E q .  1 1 . 6 - 5  a s  f o l l o w s :

1 0 0 2  +  1 0 0 2Y   ____

C  1 0 0  t a n  ( c o s - 1  0 . 9 5 )  -  1 0 0  

T h e  c a p a c i t o r  r e q u i r e d  i s  d e t e r m i n e d  f r o m

=  -297.9 n
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Therefore, because co =  377 rad/s.

C coX c 3 7 7 (-2 9 7 .9 )  8 9

If we wish to correct the load to /?/c =  1, we have

x  2  x 104 .QQ
c 100 tan (cos-1 1) -  100 

The capacitor required to correct the power factor to 1.0 is determined from

c  =  =  377(—200) =  13 3 mF

Because the uncorrected power factor is lagging, we can alternatively use Eq. 11.6-7 to determine C. For 
example, it follows that pfc  =  1. Then 0C =  0C. Therefore,

coC — — (tan 0 — tan 0C) =  ( 5 x  10~3)(tan (45°) -  tan (0°)) =  5 x  10~3 

2 X 1 0

As expected, this is the same value o f capacitance as was calculated using Eq. 11.6-5.

j E x a m p l e  1 1 . 6 - 3  C o m p l e x  P o w e r

The input to the circuit shown in Figure 11.6-6a is the voltage o f  the voltage source,

vs(/) =  7.28 cos {At +  77°) V 

The output is the voltage across the inductor,

vo(0  =  4.254 cos (4f +  311°) V
Determine the following:

(a) The average power supplied by the voltage source

(b)  The average power received by the resistor

(c) The average power received by the inductor

(d) The power factor o f the impedance o f  the series connection o f the resistor and inductor

+ VR(o>) -

V0(®>

F I G U R E  1 1 . 6 - 6  T h e  c i r c u i t  c o n s i d e r e d  i n  

E x a m p l e  1 1 . 6 - 3  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  

( b )  a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n .

INTERACTIVE EXAMPLE

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltage. 
Apparently, the circuit has reached steady state. Consequently, the circuit in Figure 11.6-6# can be represented in the
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f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s  a n d  i m p e d a n c e s .  F i g u r e  1 1 . 6 - 6 b  s h o w s  t h e  f r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n  o f  t h e  

c i r c u i t  f r o m  F i g u r e  1 1 . 6 - 6 a .  T h e  i m p e d a n c e  o f  t h e  i n d u c t o r  i s  , j w L  = > ( 4 )  ( 0 . 5 4 )  ~ j l .  1 6  f t ,  a s  s h o w n  i n  F i g u r e  1 1 . 6 - 6 6 .  

T h e  p h a s o r s  c o r r e s p o n d i n g  t o  t h e  i n p u t  a n d  o u t p u t  s i n u s o i d s  a r e

V c ( m )  =  7 . 2 8 / 7 7 ° V

a n d

V „ ( a > )  =  4 . 2 5 4 / 3 1 1 °  V

T h e  c u r r e n t  1 ( a ) )  i n  F i g u r e  1 1 . 6 - 6  b  i s  c a l c u l a t e d  f r o m  V 0 ( a > )  a n d  t h e  i m p e d a n c e  o f  t h e  i n d u c t o r ,  u s i n g  O h m ’ s  l a w :

I ( „ , )  =  X g M  =  4  2 5 4  i = =  =  / 3 1 1 °  —  9 0 °  =  1 . 9 6 9 / 2 2 1 ° A

K ’  j  2 . 1 6  2 . 1 6 / 9 0 °  2 . 1 6  L -------------------------------  ---------------

O n c e  w e  k n o w  I ( a > ) ,  w e  a r e  r e a d y  t o  a n s w e r  t h e  q u e s t i o n s  a s k e d  i n  t h i s  e x a m p l e .

(a) T h e  a v e r a g e  p o w e r  s u p p l i e d  b y  t h e  s o u r c e  i s  c a l c u l a t e d  f r o m  I ( o ; )  a n d  V s ( < w ) .  T h e  a v e r a g e  p o w e r  o f  t h e  s o u r c e  

i s  g i v e n  b y

| V s M | | l M |  ^  „  ( 7 . 2 8 ) ( 1 . 9 6 9 ) _______

----------------- ----------------c o s ( / V s M  -  / 1 ( a ) ) )  = ------------------ ------------------- c o s ( 7 7  -  2 2 1  )  ( i  1 . 6 - 8 )

=  7 . 1 6 7  c o s ( - 1 4 4 ° )  =  - 5 . 8  W

N o t i c e  t h a t  I ( & > )  a n d  V s ( c t > )  a d h e r e  t o  t h e  p a s s i v e  c o n v e n t i o n .  C o n s e q u e n t l y ,  E q .  1 1 . 6 - 8  g i v e s  t h e  p o w e r  

r e c e i v e d  b y  t h e  v o l t a g e  s o u r c e  r a t h e r  t h a n  t h e  p o w e r  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e .  T h e  p o w e r  s u p p l i e d  i s  

t h e  n e g a t i v e  o f  t h e  p o w e r  r e c e i v e d .  T h e r e f o r e ,  t h e  p o w e r  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e  i s

P S  =  5 . 8 W

(b) T h e  r e s i s t o r  v o l t a g e ,  V R ( < w ) ,  i n  F i g u r e  1 1 . 6 - 6 6  i s  g i v e n  b y

V r H  =  R  I ( < w )  =  3 ( 1 . 9 6 9 / 2 2 1 ° ’) =  5 . 9 0 7 / 2 2 1 °  V  

T h e  a v e r a g e  p o w e r  r e c e i v e d  b y  t h e  r e s i s t o r  i s  c a l c u l a t e d  f r o m  I ( a > )  a n d  V r ( c l > ) :

, M ^ c o s ( 2 2 , . _ 2 2 , . ,  ( u j M )

=  5 . 8  c o s ( 0 ° )  =  5 . 8  W

N o t i c e  t h a t  I ( g > )  a n d  V r(cd) a d h e r e  t o  t h e  p a s s i v e  c o n v e n t i o n .  C o n s e q u e n t l y ,  P R  i s  t h e  p o w e r  r e c e i v e d  b y  t h e  

r e s i s t o r ,  a s  r e q u i r e d .

A l t e r n a t e l y ,  t h e  p o w e r  r e c e i v e d  b y  a  r e s i s t o r  c a n  b e  c a l c u l a t e d  f r o m  t h e  c u r r e n t  I ( a > )  a n d  t h e  r e s i s t a n c e ,  

R .  T o  s e e  h o w ,  f i r s t  n o t i c e  t h a t  t h e  v o l t a g e  a n d  c u r r e n t  o f  a  r e s i s t o r  a r e  r e l a t e d  b y

V r H  =  a i m  = >  I V r M I A r H  =  f l f l i M l / i H )  = ►  { J ^ l  =  A H

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  f o r  | V R ( a > ) |  a n d  z V R ( c o )  i n t o  E q .  1 1 . 6 - 9  g i v e s

( 3 ) (  1 . 9 6 9 )
=  --------- ^ -  =  5 . 8 W

2
( c )  T h e  a v e r a g e  p o w e r  r e c e i v e d  b y  t h e  i n d u c t o r  i s  c a l c u l a t e d  f r o m  I ( « )  a n d  V 0 ( w ) :

=  4 . 1 8 8  c o s  ( 9 0 ° )  =  0 W

T h e  p h a s e  a n g l e  o f  t h e  i n d u c t o r  v o l t a g e  i s  a l w a y s  9 0 °  g r e a t e r  t h a n  t h e  p h a s e  a n g l e  o f  t h e  i n d u c t o r  c u r r e n t .  

C o n s e q u e n t l y ,  t h e  v a l u e  o f  a v e r a g e  p o w e r  r e c e i v e d  b y  a n y  i n d u c t o r  i s  z e r o .
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(e) The power factor o f  the impedance o f  the series connection o f  the resistor and inductor can be calculated from 
I(o,) and the voltage across the impedance. That voltage is V R(o>) +  V 0(o>), which is calculated by applying 
Kirchhoff s voltage law to the circuit in Figure 11.6-66:

Vr(o>) + VoM  + V »  = 0
V r M  + V oH  = —Vs(o>) =  —7.28 /jT_ 

=  (1 Z i801) (7.28 ZZ21) 

=  7.28 /2 5 7 °

Now the power factor is calculated as
p f  =  cos (/ ( V r M  +  V o M ) -  / » M ) =  C O S  (257° -  221°) =  0.809

The power factor is said to be lagging because 257° — 221° =  36° >  0.
Average power is conserved. In this example, that means that the average power supplied by the 

voltage source must be equal to the sum o f the average powers received by the resistor and the inductor. This 
fact provides a check on the accuracy o f  our calculations.

If the value o f  V 0(co) had not been given, then I(<w) would be calculated by writing and solving a mesh 
equation. Referring to Figure 11.6-66, the mesh equation is

3 i M  + y'2.16 im  + 7.28 /rr = o
Solving for I(w) gives

. s - 7 .2 8 / 7 T  (1 / l 8 0 ° ) (7 .2 8 /7 7 ° )
1 ( a ) )  =  ----------------------------------- = ---------------------------------------- 7-------------------------

3 + y2 .16  3 .6 9 7 /3 6 °

_  (lX?_j g) / i 8 0  +  77 — 36 =  1 .9 6 9 /2 2 1 °  A 
3.697 ----------------------

as before._________________________________________________________________________________ y

EXERCISE 11.6-1 A circuit has a large motor connected to the ac power lines [co =  (2^)60 =  
377 rad/s]. The model o f  the motor is a resistor o f  100 CL in series with an inductor o f  5 H. Find the 
power factor o f  the motor.

Answer:p f  =  0.053 lagging

EXERCISE 11.6-2 A circuit has a load impedance Z =  50+y80 f l, as shown in Figure 11.6-5. 
Determine the power factor o f the uncorrected circuit. Determine the impedance Zc required to 
obtain a corrected power factor o f  1.0.

Answer:p f  =  0.53 lagging, Zc =  —j l  11.25 f l

EXERCISE 11.6-3 Determine the power factor for the total plant o f  Example 11.6-1 when the 
resistive heating load is decreased to 30 kW. The motor load and the supply voltage remain as 
described in Example 11.6-1.

Answer: p f  — 0.915

EXERCISE 11.6-4 A 4-kW, 110- Vrms load, as shown in Figure 11.6-5, has a power factor o f  
0.82 lagging. Find the value o f the parallel capacitor that will correct the power factor to 0.95 
lagging when co =  377 rad/s.

Answer: C  =  0.324 mF
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I n  t h i s  s e c t i o n ,  l e t  u s  c o n s i d e r  t h e  c a s e  w h e n  t h e  c i r c u i t  c o n t a i n s  t w o  o r  m o r e  s o u r c e s .  F o r  e x a m p l e ,  

c o n s i d e r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  l  \ . l - \ a  w i t h  t w o  s i n u s o i d a l  v o l t a g e  s o u r c e s .  T h e  p r i n c i p l e  o f  

s u p e r p o s i t i o n  s t a t e s  t h a t  t h e  r e s p o n s e  t o  b o t h  s o u r c e s  a c t i n g  t o g e t h e r  i s  e q u a l  t o  t h e  s u m  o f  t h e  

r e s p o n s e s  t o  e a c h  v o l t a g e  s o u r c e  a c t i n g  a l o n e .  T h e  a p p l i c a t i o n  o f  t h e  p r i n c i p l e  o f  s u p e r p o s i t i o n  i s  

i l l u s t r a t e d  i n  F i g u r e  11.7-16, w h e r e / ,  i s  t h e  r e s p o n s e  t o  s o u r c e  1 a c t i n g  a l o n e ,  a n d  t h e  r e s p o n s e  i 2  i s  t h e  

r e s p o n s e  t o  s o u r c e  2  a c t i n g  a l o n e .  T h e  t o t a l  r e s p o n s e  i s

i  —  i \  - f  * 2  ( H - 7 - 1 )

T h e  i n s t a n t a n e o u s  p o w e r  i s

p  =  i 2 R  =  R(i\ +  i 2 ) 2  =  R{i \  +  i  \  +  2 / 1/ 2 )  

w h e r e  R i s  t h e  r e s i s t a n c e  o f  t h e  c i r c u i t .  T h e n  t h e  a v e r a g e  p o w e r  i s

p  =  y J o p d t = j f 0 ii \ + i \ + 2i^ ) dt

R f T .2 , R t T .2 , 2R f T . . , „ „ 2R r T . . J
—  —  J  1 1 d t  +  — J 1 2 d t  +  —  J  i \ h  d t  —  P \  +  P 2 +  —  J  i \ i 2  d t

(11 .7-2)

w h e r e  P x i s  t h e  a v e r a g e  p o w e r  d u e  t o  v j  a n d  P 2  i s  t h e  a v e r a g e  p o w e r  d u e  t o  v 2 . W e  w i l l  s e e  t h a t  w h e n  v j  

a n d  v 2  a r e  s i n u s o i d s  h a v i n g  d i f f e r e n t  f r e q u e n c i e s ,  t h e n

2 R  [ T  . . .
0 ( 1 1 . 7 - 3 )

W h e n  E q .  1 1 . 7 - 3  i s  s a t i s f i e d ,  t h e n  E q .  1 1 . 7 - 2  r e d u c e s  t o

P  =  P \ + P 2  ( H - 7 - 4 )

T h i s  e q u a t i o n  s t a t e s  t h a t  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  r e s i s t o r  b y  b o t h  s o u r c e s  a c t i n g  t o g e t h e r  i s  

e q u a l  t o  t h e  s u m  o f  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  r e s i s t o r  b y  e a c h  v o l t a g e  s o u r c e  a c t i n g  a l o n e .  

T h i s  i s  t h e  p r i n c i p l e  o f  p o w e r  s u p e r p o s i t i o n .  N o t i c e  t h a t  t h e  p r i n c i p l e  o f  p o w e r  s u p e r p o s i t i o n  i s  v a l i d  

o n l y  w h e n  E q .  1 1 . 7 - 3  i s  s a t i s f i e d .

N o w  l e t  u s  d e t e r m i n e  u n d e r  w h a t  c o n d i t i o n s  E q .  1 1 . 7 - 3  i s  s a t i s f i e d .  L e t  t h e  r a d i a n  f r e q u e n c y  f o r  

t h e  f i r s t  s o u r c e  b e  m e 0,  a n d  l e t  t h e  r a d i a n  f r e q u e n c y  f o r  t h e  s e c o n d  s o u r c e  b e  n c o .  T h e  c u r r e n t s  c a n  b e  

r e p r e s e n t e d  b y  t h e  g e n e r a l  f o r m

z‘ i =  I \  c o s  (meat +  <p) 
a n d  i2 = / 2  c o s  (ncot + 0)
I t  c a n  b e  s h o w n  t h a t

C o n s e q u e n t l y ,

J  cos(mcot +  0 ) c o s (ncot + 6)dt =  j 

ft,

0  m  ^  n

c o s ( 0  —  0 )  m  —  n

2 R

Y
m  /  n  

I 2  c o s  ( 0  —  6 )  m  =  n
( 1 1 . 7 - 5 )

i i < / ) 1 2 ( f )

f \  R  j r T " R  ]

j y  Q O  v 2 ^  « j ( r t
/  +

( b )

FIGURE 11.7-1 (a) A circuit 
) i’2(t) with two sources. (£) Using 

superposition to calculate the 
resistor current as /(f) =  i,(f) + 
h i t ) .



520 )------- AC S te a d y -S ta te  P o w e r

Therefore, in summary, the superposition o f  average pow er  states that the average power 
delivered to a circuit by several sinusoidal sources, acting together, is equal to the sum o f the average 
power delivered to the circuit by each source acting alone, if, and only if, no two o f the sources have 
the same frequency. Similar arguments show that superposition can be used to calculate the reactive 
power or the complex power delivered to a circuit by several sinusoidal sources, provided again that no 
two sources have the same frequency.

If two or more sources are operating at the same frequency, the principle o f  pow er  superposition 
is not valid, but the principle o f  superposition remains valid. In this case, we use the principle o f  
superposition to find each phasor current and then add the currents to obtain the total phasor current

I  =  I i  - h  I 2 +  • * * +  I #  

for N  sources. Then we have the average power

P j l l
2

(11.7-6)

where III =  / m.

E x a m p l e  1 1 . 7 - 1  P o w e r  S u p e r p o s i t i o n

The circuit in Figure 11.7-2  contains two sinusoidal sources. To illustrate power superposition, consider two cases:

(1) va «  =  1 2 c o s 3 / V  and vB(/) =  4 cos4r V

( 2 )  vA(/) =  12 cos 4/ V and vB(t) =  4 cos 41V

Find the average power absorbed by the 6 -0  resistor.

Solution
The application o f the principle o f  superposition is illustrated in Figure 1 1 .7 -2 6 ,  where i'j is the response to the 
voltage source A acting alone, and the response i 2  is the response to the voltage source B acting alone. The total

* ( / )

v A ( t )  =  1 2  c o s  ( O i t  V  ( * +  j  u B ( t )  =  4  c o s  c o 2 t  V

( a )

i \ { t ) i 2 ( * )

J T ” - 6 0  2 H

I V B ( * )

(b)
I i  ( c o ) l2to)

J ~  6  n  ; ' 2 < b i 6 0  i 2 a > 2

+  \
( T )  VBto)

(c)

F I G U R E  1 1 . 7 - 2  ( a )  A  c i r c u i t  w i t h  t w o  

s i n u s o i d a l  s o u r c e s .  ( b ) U s i n g  s u p e r p o s i t i o n  t o  

f i n d  t h e  r e s p o n s e  t o  e a c h  s o u r c e  s e p a r a t e l y .

( c )  R e p r e s e n t i n g  t h e  c i r c u i t s  f r o m  ( 6 )  i n  t h e  

f r e q u e n c y  d o m a i n .



r e s p o n s e  i s  i  =  +  i 2 .  I n  F i g u r e  1 1 . 7 - 2 c ,  t h e  c i r c u i t s  f r o m  F i g u r e  1 1 . 7 - 2 b  a r e  r e p r e s e n t e d  i n  t h e  f r e q u e n c y  d o m a i n ,

u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

N o w  c o n s i d e r  t h e  t w o  c a s e s .

C a s e  1 :  A n a l y s i s  o f  t h e  c i r c u i t s  i n  F i g u r e  1 1 . 7 - 2 c  g i v e s

I .  ( c o )  =  1 . 4 1 4  7 — 4 5 °  A  a n d  h ( < o )  =  0 . 4 / l 2 7 °  A  

T h e s e  p h a s o r s  c o r r e s p o n d  t o  d i f f e r e n t  f r e q u e n c i e s  a n d  c a n n o t  b e  a d d e d .  T h e  c o r r e s p o n d i n g  t i m e - d o m a i n  c u r r e n t s  a r e  

/ , ( / )  =  1 . 4 1 4  c o s  ( 3 /  -  4 5 ° ) A  a n d  i2(t) =  0 . 4  c o s  ( 4 /  -  1 4 3 ° )  A

U s i n g  s u p e r p o s i t i o n ,  w e  f i n d  t h a t  t h e  t o t a l  c u r r e n t  i n  t h e  r e s i s t o r  i s

/ ( / )  =  1 . 4 1 4  c o s  ( 3 *  -  4 5 ° )  - I -  0 . 4  c o s  ( 4 1 +  1 2 7 ° )  A

T h e  a v e r a g e  p o w e r  c o u l d  b e  c a l c u l a t e d  a s

P  =  -  f T  i 2  d t  =  -  f T  ( 1 . 4 1 4  c o s  ( 3 r  -  4 5 ° )  +  0 . 4  c o s  ( 4 /  +  1 2 7 ° ) ) 2  d t

T  J o  T j 0

B e c a u s e  t h e  t w o  s i n u s o i d a l  s o u r c e s  h a v e  d i f f e r e n t  f r e q u e n c i e s ,  t h e  a v e r a g e  p o w e r  c a n  b e  c a l c u l a t e d  m o r e  e a s i l y  

u s i n g  p o w e r  s u p e r p o s i t i o n :

1 . 4 1 4 2  0 . 4 2

P  =  P X +  P 2  = 1 _ 6  +  —  6  =  6 . 4 8  W

N o t i c e  t h a t  b o t h  s u p e r p o s i t i o n  a n d  p o w e r  s u p e r p o s i t i o n  w e r e  u s e d  i n  t h i s  c a s e .  F i r s t ,  s u p e r p o s i t i o n  w a s  u s e d  t o  

c a l c u l a t e  I i ( o > )  a n d  \ 2 { c o ) .  N e x t ,  P x w a s  c a l c u l a t e d  u s i n g  I i ( c l > ) ,  a n d  P 2  w a s  c a l c u l a t e d  u s i n g  I 2 ( c o ) .  F i n a l l y ,  p o w e r  

s u p e r p o s i t i o n  w a s  u s e d  t o  c a l c u l a t e  P  f r o m  P x a n d  P 2 .

C a s e  2: A n a l y s i s  o f  t h e  c i r c u i t s  i n  F i g u r e  1 1 . 7 - 2 c  g i v e s

I . f a r i  -  1 . 2  7 - 5 3 °  A  a n d  I - ? ( a > )  =  0 . 4  7 l 2 7 °  A  

B o t h  o f  t h e s e  p h a s o r s  c o r r e s p o n d  t o  t h e  s a m e  f r e q u e n c y ,  c o  =  4  r a d / s .  T h e r e f o r e ,  t h e s e  p h a s o r s  c a n  b e  a d d e d  t o  

o b t a i n  t h e  p h a s o r  c o r r e s p o n d i n g  t o  i ( t ) .

I ( o > )  =  I , H  +  h H  =  ( 1 . 2  7 - 5 3 ° )  +  ( 0 . 4  7 1 2 7 ° )  =  0 . 8  7 - 5 3 °  A  

T h e  s i n u s o i d a l  c u r r e n t  c o r r e s p o n d i n g  t o  t h i s  p h a s o r  i s

i ( f )  = 0 . 8  c o s  ( 4 /  —  5 3 ° )  A  

T h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r  i s

0.8
P  =  —  6 =  1 . 9 2  W

2
A l t e r n a t e l y ,  t h e  t i m e - d o m a i n  c u r r e n t s  c o r r e s p o n d i n g  t o  a n d  I 2 ( o > )  a r e

f i ( / )  =  1 . 2  c o s  ( 4 /  —  5 3 ° ) A  a n d  i 2 ( f ) = 0 . 4  c o s  ( 4 r - f  1 2 7 ° )  A

U s i n g  s u p e r p o s i t i o n ,  w e  f i n d  t h a t  t h e  t o t a l  c u r r e n t  i n  t h e  r e s i s t o r  i s

i ( t )  =  1 . 2  c o s  ( 4 /  —  5 3 ° )  - f  0 . 4  c o s  ( 4 /  - f  1 2 7 ° )  =  0 . 8  c o s  ( 4 t  -  5 3 ° )  A

S o  P  =  1 . 9 2  W ,  a s  b e f o r e .

s .  P o w e r  s u p e r p o s i t i o n  c a n n o t  b e  u s e d  i n  t h i s  c a s e  b e c a u s e  t h e  t w o  s i n u s o i d a l  s o u r c e s  h a v e  t h e  s a m e  f r e q u e n c y ^

T h e  P o w e r  S u p e r p o s i t io n  P r in c ip le

EXERCISE 11.7-1 D e t e r m i n e  t h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  r e s i s t o r  i n  F i g u r e  11 J-2a f o r  

t h e s e  t w o  c a s e s :

( a )  v A ( r )  =  1 2  c o s  3 1  V  a n d  v B ( / )  =  4  c o s  3 /  V ;

( b )  v A ( / )  =  1 2  c o s  4 r  V  a n d  v B ( / )  =  4  c o s  3 /  V

Answers; (a) 2.66 W (b) 4.99 W
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11.8 TH E  M A X I M U M  P O W E R  T R A N S F E R  T H E O R E M

In Chapter 5, we proved that for a resistive network, maximum power is transferred from a source to a 
load when the load resistance is set equal to the Thevenin resistance o f the Thevenin equivalent source. 
Now let us consider a circuit represented by a Thevenin equivalent circuit for a sinusoidal steady-state 
circuit, as shown in Figure 11.8-1, when the load is Z L.

We then have

Z t  =  R t  - \ ~ j X x

and z l  =  R y. + JX  i

The average power delivered to the load is

I 2
p  =  y R l

F I G U R E  1 1 . 8 - 1  T h e  T h e v e n i n  

e q u i v a l e n t  c i r c u i t  w i t h  a  l o a d  

i m p e d a n c e .

The phasor current I is given by

1  =

V,
Zt +  Z L (Rt + j X x) +  (R l + j X L) 

where we may select the values o f  R\ and X L. The average power delivered to the load is

_  I ^ R i  |Vt|2tfL/2
P  =

2 (Rt + R L )2 +  ( X t + X L )2

and we wish to maximize P. The term (Xx +  X L) can be eliminated by setting X L — - X t. We have

P  = | V t | 2 / ? L  

2 ( * ,  +  * l ) 2

The value o f R L that maximizes P  is determined by taking the derivative dP/dRL and setting it 
equal to zero. Then we find that d P /d R L =  0 when R L =  R t.

Consequently, we have

ZL -  * t - j X t

Thus, the maximum pow er transfer from a circuit with a Thevenin equivalent circuit with an 
impedance Zt is obtained when ZL is set equal to Zt*, the complex conjugate o f  Zt.

E x a m p l e  1 1 . 8 - 1  M a x im u m  P o w e r  T r a n s fe r

5 ~ ; 6  — IFind the load impedance that transfers maximum power to the load and determine I ----------  —L
the maximum power delivered to the load for the circuit shown in Figure 11.8-2. 10^0° v f ?

I

Solution
i  ^  u  | c  ~  .  F I G U R E  1 1 . 8 - 2  C i r c u i t  f o r

We select the load impedance, Z L, to be the complex conjugate o f Zt so that E x a m p l e  1 1 8  1  I m p e d a n c e s

z L = z ; = 5 + /6 n in ohms-
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\0/(f. _ [ /qo A
1  ~  5  +  5

T h e r e f o r e ,  t h e  a v e r a g e  p o w e r  t r a n s f e r r e d  t o  t h e  l o a d  i s

I 2  ( 1 ) 2
P  =  - & R l  = - ^ - 5  =  2 . 5  W

2  2

Then the m axim um  pow er transferred can be obtained  by noting that

EXERCISE 11.81 F o r  t h e  c i r c u i t  o f  F i g u r e  1 1 . 8 - 1 ,  f i n d  Z L  t o  o b t a i n  t h e  m a x i m u m  p o w e r  

t r a n s f e r r e d  w h e n  t h e  T h e v e n i n  e q u i v a l e n t  c i r c u i t  h a s  V t =  l o o / o ^ v  a n d  Z t  =  1 0  + 7 1 4  f t .  A l s o ,  

d e t e r m i n e  t h e  m a x i m u m  p o w e r  t r a n s f e r r e d  t o  t h e  l o a d .

A n s w e r :  Z l  =  1 0  —  y  1 4  0  a n d  P  =  1 2 5  W

EXERCISE 11.8-2 A  t e l e v i s i o n  r e c e i v e r  u s e s  a  c a b l e  t o  c o n n e c t  

t h e  a n t e n n a  t o  t h e  T V ,  a s  s h o w n  i n  F i g u r e  E  1 1 . 8 - 2 ,  w i t h  v s  =  4  c o s  c o t  

m V .  T h e  T V  s t a t i o n  i s  r e c e i v e d  a t  5 2  M H z .  D e t e r m i n e  t h e  a v e r a g e  

p o w e r  d e l i v e r e d  t o  e a c h  T V  s e t  i f  ( a )  t h e  l o a d  i m p e d a n c e  i s  Z  =  3 0 0  f t ;

( b )  t w o  i d e n t i c a l  T V  s e t s  a r e  c o n n e c t e d  i n  p a r a l l e l  w i t h  Z  =  3 0 0  f t  f o r  

e a c h  s e t ;  ( c )  t w o  i d e n t i c a l  s e t s  a r e  c o n n e c t e d  i n  p a r a l l e l  a n d  Z  i s  t o  b e  

s e l e c t e d  s o  t h a t  m a x i m u m  p o w e r  i s  d e l i v e r e d  a t  e a c h  s e t .

Antenna Cable
- v w -

200 Q

FIG URE E 11.8-2

TV set

Z L
Impedance of 
one TV set

A n s w e r s :  ( a )  9 . 6  n W  ( b )  4 . 9  n W  ( c )  5  n W

11.9 C O U P L E D  I N D U C T O R S

T h e  c o n c e p t  o f  s e l f - i n d u c t a n c e  w a s  i n t r o d u c e d  i n  C h a p t e r  7 .  W e  c o m m o n l y  u s e  t h e  t e r m  i n d u c t a n c e  

f o r  s e l f - i n d u c t a n c e ,  a n d  w e  a r e  f a m i l i a r  w i t h  c i r c u i t s  t h a t  h a v e  i n d u c t o r s .  I n  t h i s  s e c t i o n ,  w e  c o n s i d e r  

c o u p l e d  i n d u c t o r s ,  w h i c h  a r e  u s e f u l  i n  c i r c u i t s  w i t h  s i n u s o i d a l  s t e a d y - s t a t e  ( a c )  v o l t a g e s  a n d  c u r r e n t s  

a n d  a r e  a l s o  w i d e l y  u s e d  i n  e l e c t r o n i c  c i r c u i t s .

C o u p l e d  i n d u c t o r s ,  o r  c o u p l e d  c o i l s ,  a r e  m a g n e t i c  d e v i c e s  t h a t  c o n s i s t  o f  t w o  o r  m o r e  

m u l t i t u m  c o i l s  w o u n d  o n  a  c o m m o n  c o r e .

F i g u r e  1 1 . 9 - 1  a  s h o w s  t w o  c o i l s  o f  w i r e  w r a p p e d  a r o u n d  a  m a g n e t i c  c o r e .  T h e s e  c o i l s  a r e  s a i d  t o  

b e  m a g n e t i c a l l y  c o u p l e d .  A  v o l t a g e  a p p l i e d  t o  o n e  c o i l ,  a s  s h o w n  i n  F i g u r e  1 1 . 9 - l a ,  c a u s e s  a  v o l t a g e  

a c r o s s  t h e  s e c o n d  c o i l .  H e r e ' s  w h y .  T h e  i n p u t  v o l t a g e ,  v j ( f ) ,  c a u s e s  a  c u r r e n t  i \ ( t )  i n  c o i l  1 .  T h e  c u r r e n t  

a n d  v o l t a g e  a r e  r e l a t e d  b y

„  d i \

V i = L ' ^  ( H 9 - 1 )

w h e r e  L ,  i s  t h e  s e l f - i n d u c t a n c e  o f  c o i l  I . T h e  c u r r e n t  i t ( i )  c a u s e s  a  f l u x  i n  t h e  m a g n e t i c  c o r e .  T h i s  f l u x  

i s  r e l a t e d  t o  t h e  c u r r e n t  b y

<t> =  c \N  1 * 1 (1 1 .9 -2 )
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F I G U R E  1 1 . 9 - 1  T w o  m a g n e t i c a l l y  c o u p l e d  c o i l s  m o u n t e d  o n  a  m a g n e t i c  m a t e r i a l .  T h e  f l u x  0  i s  c o n t a i n e d  

w i t h i n  t h e  m a g n e t i c  c o r e .

where c x is a constant that depends on the magnetic properties and geometry o f  the core, and N x is the 
number o f turns in coil 1. The number o f turns in a coil indicates the number o f  times the wire is 
wrapped around the core. The flux, 0, is contained within the magnetic core. The core has a cross- 
sectional area A. The voltage across the coil 1 is related to the flux by

► di\
~dtv ' = N ' j - t = N ' j t { c x N x h )

C \ N \ (11.9-3)

Comparing Eqs. 11.9-1 and 11.9-3 shows that

(11.9-4)U  =  c xN \

A voltage, v2, at the terminals o f  the second coil is induced by 0 , which flows through 
the second coil. This voltage is related to the flux by

dcj) di\
V 2  =  A f 2  —  =  C M  N \ N 2 - J j  ■ M d h

d t
(11.9-5)

F I G U R E  1 1 . 9 - 2  C i r c u i t  

s y m b o l  f o r  c o u p l e d  

i n d u c t o r s .  I n  ( a ) ,  b o t h  

c o i l  c u r r e n t s  e n t e r  t h e  

d o t t e d  e n d s  o f  t h e  c o i l s .

I n  ( b ) ,  o n e  c o i l  c u r r e n t  

e n t e r s  t h e  d o t t e d  e n d  o f  

t h e  c o i l ,  b u t  t h e  o t h e r  c o i l  

c u r r e n t  e n t e r s  t h e  

u n d o t t e d  e n d .

where cM is a constant that depends on the magnetic properties and geometry o f  the core, N2 
is the number o f turns in the second coil, and M  =  cMN \N 2 is a positive number called the 
mutual inductance. The unit o f  mutual inductance is the henry, H.

The polarity o f the voltage v2, compared to the polarity o f  v1? depends on the way in 
which the coils are wrapped on the core. There are two distinct cases, and they are shown in 
Figures 11.9-1 a,b. The difference between these two figures is the direction in which coil 2 is 
wrapped around the core. A dot convention is used to indicate the way the coils have been 
wrapped on the coil. Notice that one end o f each coil is marked with a dot. When the reference 
direction o f the current o f one coil enters the dotted end o f that coil, the reference polarity o f  the 
induced voltage is positive at the dotted end o f the other coil. For example, in Figures 11.9-ltf, 
b , the reference direction o f the current i \ enters the dotted end o f the left coil. Consequently, in 
Figures 11.9-1 a,b, the + sign o f  the reference polarity o f  v2 is located at the dotted end o f the 
right coil.

The circuit symbol that is used to represent coupled inductors is shown in Figure 11.9-2 
with the dots shown and the mutual inductance identified as M. Two cases are shown in 
Figure 11.9-2. In Figure 11.9-2a, both coil currents enter the dotted ends o f  the coils. In 
Figure 11.9-2 b, one current, / t, enters the dotted end o f a coil, but the other current, /2, enters 
the undotted end on the coil. In both cases, the reference directions o f the voltage and current 
o f each coil adhere to the passive convention.
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S u p p o s e  b o t h  c o i l  c u r r e n t s  e n t e r  t h e  d o t t e d  e n d s  o f  t h e  c o i l s ,  a s  i n  F i g u r e  1 1 . 9 - 1  a ,  o r  b o t h  c o i l  

c u r r e n t s  e n t e r  t h e  u n d o t t e d  e n d s  o f  t h e  c o i l s .  T h e  v o l t a g e  a c r o s s  t h e  f i r s t  c o i l ,  V | ,  i s  r e l a t e d  t o  t h e  c o i l  

c u r r e n t s  b y

/  d i '  1  U d h -  

V' == ~dt ~dt

S i m i l a r l y ,  t h e  v o l t a g e  a c r o s s  t h e  s e c o n d  c o i l  i s  r e l a t e d  t o  t h e  c o i l  c u r r e n t s  b y

/  d i l  i  \ x d i x

Vl ~  ~dt ~dt

( 1 1 . 9 - 6 )

( 1 1 . 9 - 7 )

I n  c o n t r a s t ,  s u p p o s e  o n e  c o i l  c u r r e n t  e n t e r s  t h e  d o t t e d  e n d  o f  a  c o i l  w h i l e  t h e  o t h e r  c o i l  c u r r e n t  

e n t e r s  t h e  u n d o t t e d  e n d  o f  a  c o i l ,  a s  i n  F i g u r e  1 1 . 9 - 2  b .  T h e  v o l t a g e  a c r o s s  t h e  f i r s t  c o i l ,  v , ,  i s  r e l a t e d  t o  

t h e  c o i l  c u r r e n t s  b y

v i t l f - V
dh
dt

S i m i l a r l y ,  t h e  v o l t a g e  a c r o s s  t h e  s e c o n d  c o i l  i s  r e l a t e d  t o  t h e  c o i l  c u r r e n t s  b y

v 2  =  L 2
d i i

dt
M

d h

dt

( 1 1 . 9 - 8 )

( 1 1 . 9 - 9 )

T h u s ,  t h e  m u t u a l  i n d u c t a n c e  c a n  b e  s e e n  t o  i n d u c e  a  v o l t a g e  i n  a  c o i l  d u e  t o  t h e  c u r r e n t  i n  t h e  o t h e r  c o i l .

C o u p l e d  i n d u c t o r s  c a n  b e  m o d e l e d  u s i n g  i n d u c t o r s  ( w i t h o u t  c o u p l i n g )  a n d  d e p e n d e n t  s o u r c e s .  

F i g u r e  1 1 . 9 - 3  s h o w s  a n  e q u i v a l e n t  c i r c u i t  f o r  c o u p l e d  i n d u c t o r s .

T h e  u s e  o f  c o u p l e d  i n d u c t o r s  i s  u s u a l l y  l i m i t e d  t o  n o n - d c  a p p l i c a t i o n s  b e c a u s e  c o i l s  b e h a v e  a s  

s h o r t  c i r c u i t s  f o r  a  s t e a d y  c u r r e n t .

S u p p o s e  t h a t  c o u p l e d  i n d u c t o r s  a r e  p a r t  o f  a  l i n e a r  c i r c u i t  w i t h  a  s i n u s o i d a l  i n p u t  a n d  t h a t  t h e  

c i r c u i t  i s  a t  s t e a d y  s t a t e .  S u c h  a  c i r c u i t  c a n  b e  a n a l y z e d  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s .  T h e  

c o u p l e d  i n d u c t o r s  s h o w n  i n  F i g u r e  1 1 . 9 - 2 a  a r e  r e p r e s e n t e d  b y  t h e  p h a s o r  e q u a t i o n s

a n d

a n d

1 + j c o M  l 2 ( 1 1 . 9 - 1 0 )

2  + j i o M  I , ( 1 1 . 9 - 1 1 )

2 1 1 . 9 - 2 b  a r e  r e p r e s e n t e d  b y  t h e  p h a s o r  e q u a t i o n s

i  —  j c o M  I 2  ( 1 1 . 9 - 1 2 )

2  I i ( 1 1 . 9 - 1 3 )

' l ( ' )  L i L z  < 2 < '>

« l U )

o ------------------------------------- 1 L

+

V  ^ h  ,  \ 
/  M  v 2 U )  

f  d t

----------------------------------- o

- ©

( a )  ( b )

FIGURE 11.9-3 (a) Coupled inductors and (b) an equivalent circuit.
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The inductances, L\ and L2, and mutual inductance, A/, each depend on the magnetic properties 
and geometry o f  the core and the number o f  turns in the coils. Referring to Eqs. 11.9-4 and 11.9-5, we 
can write

L xL2 =  ( c , ^ ) ( c 2A^) = c xc 2 { N xN 2 ) 2 = = Y  (11.9-14)

where the constant k — c u /y jc \c 2 is called the coupling coefficient. Because the coupling coefficient 
depends on c \9 c2, and it depends on the magnetic properties and geometry o f the core. Solving Eq.
11.9-14 for the coupling coefficient gives

\fL\L~2
(11.9-15)

The instantaneous power absorbed by coupled inductors is

p(t) =  vi(f)j'i(/) +  v2(t)i2(t)

= [LXj t ix{ t ) ± M j t i2( t )y x(t)+ ( l2 j ( i2 i, ( / ) )  i2 (t) ( U 9 1 6 )

=  L \ h { t ) j t h ( t ) ± M j t {i\{t)i2{ t ) ) + L 2i2( t ) j t i2(t)

where - M  is used if  one current enters the undotted end o f a coil while the other current enters the 
dotted end; otherwise, +M is used. The energy stored in the coupled inductors is calculated by 
integrating the powder absorbed by the coupled inductors. The energy stored in coupled inductors is

KO =  J P (r )d r  = ^L\i\ + ̂ L2i \ ±  M i{i2 (11.9-17)

where, again, —M  is used if  one current enters the undotted end o f a coil while the other current enters 
the dotted end; otherwise, +M  is used. We can use this equation to find how large a value M  can attain 
in terms o f L x and L2. Because coupled inductors are a passive element, the energy stored must be 
greater than or equal to zero. The limiting quantity for M  is obtained when w =  0 in Eq. 11.9-17. Then
we have

X- L xi \  +  X- L 2i \ -  M h  <2 =  0 (11.9-18)

as the limiting condition for the case in which one current enters the dotted terminal and the other 
current leaves the dotted terminal. Now add and subtract the term i\i i  =  \JL \L 2 in the equation to 
generate a term that is a perfect square as follows:

2

W {

~  +  * i h { y / L \ L 2  -  M )  = 0

The perfect square term can be positive or zero. Therefore, to have w > 0, we require that

y / L j ^ > M  (11.9-19)

Thus, the maximum value o f M  is y/L \L i.
Therefore, the coupling coefficient o f  passive coupled inductors can be no larger than 1. In 

addition, the coupling coefficient cannot be negative because L ^ L 2, and M  are all nonnegative. When 
k — 0, no coupling exists. Therefore, the coupling coefficient must satisfy

0 <  k < 1 (11.9-20)

Most power system transformers have a k  that approaches 1, whereas k is low for radio circuits.
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i2U)

M

L i L 2 ) v2(t)
Circuit 2 1

(load)

1

i f i) A/f

jcoL2

Primary Secondary

( a )  ( b )

FIGURE 11.9-4 (a) Coupled inductors used as a transformer to couple two circuits magnetically and (b) a transformer used to couple a 
voltage source magnetically to an impedance.

F i g u r e  1 1 . 9 - 4 a  s h o w s  c o u p l e d  i n d u c t o r s  u s e d  a s  a  t r a n s f o r m e r  t o  c o n n e c t  a  s o u r c e  t o  a  l o a d .  T h e  

c o i l  c o n n e c t e d  t o  t h e  s o u r c e  i s  c a l l e d  t h e  primary coil, a n d  t h e  c o i l  c o n n e c t e d  t o  t h e  l o a d  i s  c a l l e d  t h e  

secondary coil. C i r c u i t  2  i s  c o n n e c t e d  t o  c i r c u i t  1  t h r o u g h  t h e  m a g n e t i c  c o u p l i n g  o f  t h e  t r a n s f o r m e r ,  

b u t  t h e r e  i s  n o  e l e c t r i c a l  c o n n e c t i o n  b e t w e e n  t h e s e  t w o  c i r c u i t s .  F o r  e x a m p l e ,  t h e r e  i s  n o  p a t h  f o r  

c u r r e n t  t o  f l o w  f r o m  c i r c u i t  1  t o  c i r c u i t  2 .  I n  a d d i t i o n ,  n o  c i r c u i t  e l e m e n t  i s  c o n n e c t e d  b e t w e e n  a  n o d e  

o f  c i r c u i t  1  a n d  a  n o d e  o f  c i r c u i t  2 .

F i g u r e  1 1 . 9 - 4 b  s h o w s  a  s p e c i f i c  e x a m p l e  o f  t h e  s i t u a t i o n  s h o w n  i n  F i g u r e  1 1 . 9 - 4 a .  T h e  s o u r c e  i s  

a  s i n g l e  s i n u s o i d a l  v o l t a g e  s o u r c e ,  a n d  t h e  l o a d  i s  a  s i n g l e  i m p e d a n c e .  T h e  c i r c u i t  h a s  b e e n  r e p r e s e n t e d  

i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s  a n d  i m p e d a n c e s .  T h e  c i r c u i t  i n  F i g u r e  1 1 . 9 - 4 b  c a n  b e  a n a l y z e d  

b y  w r i t i n g  m e s h  e q u a t i o n s .  T h e  t w o  m e s h  e q u a t i o n s  a r e

jo ) L \ \ \  — j  coM  I2 =  Vi 
- jc o M  Ii +  (JcoL 2 +  Z2)I2 =  0

S o l v i n g  f o r  I 2  i n  t e r m s  o f  V  j ,  w e  h a v e

1 2  =

jci) M

_ ( ( H 2(£ ,L 2 -  A/2) +  ( j w L i Z2))
( 1 1 . 9 - 2 1 )

W h e n  t h e  c o u p l i n g  c o e f f i c i e n t  o f  t h e  c o u p l e d  i n d u c t o r s  i s  u n i t y ,  t h e n  M  =  \ J L \ L 2  a n d  E q .  1 1 . 9 - 2 1  

r e d u c e s  t o

h  =

T h e  v o l t a g e  a c r o s s  t h e  i m p e d a n c e  i s  g i v e n  b y

jco M
V , —

j< D \jL \L i

jcv  L \ Z 2_
v 1 —

jcoL \7j2
v . - S ^ v ,

z 2v/I7

v2 = z2i2 = t/̂ v,

( 1 1 . 9 - 2 2 )

( 1 1 . 9 - 2 3 )

T h e  r a t i o  o f  t h e  i n d u c t a n c e s  i s  r e l a t e d  t o  t h e  m a g n e t i c  p r o p e r t i e s  a n d  g e o m e t r y  o f  t h e  c o r e  a n d  t h e  

n u m b e r  o f  t u r n s  i n  t h e  c o i l s .  R e f e r r i n g  t o  E q .  1 1 . 9 - 4 ,  w e  c a n  w r i t e

L 2  _  c j N \

L x  c \ N \

W h e n  b o t h  c o i l s  a r e  w o u n d  s y m m e t r i c a l l y  o n  t h e  s a m e  c o r e ,  t h e n  c ,  =  c 2 .  I n  t h i s  c a s e ,

Li N\ ,
zrwr <n , -2 4 >

w h e r e  n  i s  c a l l e d  t h e  turns ratio o f  t h e  t r a n s f o r m e r .  C o m b i n i n g  E q s .  1 1 . 9 - 2 3  a n d  1 1 . 9 - 2 4  g i v e s

v 2  ( 1 1 . 9 - 2 5 )

w h e r e  Vj i s  t h e  v o l t a g e  a c r o s s  t h e  p r i m a r y  c o i l ,  V2 i s  t h e  v o l t a g e  a c r o s s  t h e  s e c o n d a r y  c o i l ,  a n d  n  i s  t h e  

t u r n s  r a t i o .
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E x a m  p l e  1 1 . 9 -1  C o u p l e d  I n d u c t o r s  J--<

Find the voltage v2(f) in the circuit as shown in Figure 11.9-5a.

0  INTERACTIVE EXAMPLE

8 Q
i\U) I 2 U )

5  c o s  ( 4 f  +  4 5 ° )  V  ( !

2  H  

•« ---------------►

8 X

i > l ( 1)  < 4  H  3  H >  v 2 U )  > 1 2 C l  5 / 4 5 ° ( !

P r i m a r y S e c o n d a r y P r i m a r y S e c o n d a r y

(a) (b)

F I G U R E  1 1 . 9 - 5  A  c i r c u i t  i n  w h i c h  c o u p l e d  i n d u c t o r s  a r e  u s e d  a s  a  t r a n s f o r m e r .  T h e  c i r c u i t  i s  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  

a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s  a n d  i m p e d a n c e s .

Solution
First, represent the circuit in the frequency domain, using phasors and impedances, as shown in Figure
11.9-56. Notice that the coil currents, Ij and I2, both enter the dotted end o f  the coils. Express the coil voltages 
as functions o f  the coil currents, using the equations that describe the coupled inductors, Eqs.
11.9-10 and 11.9-11.

V! =y*16 i! + f i  l 2 

V 2 = j$  4 -y l2  I2

Next, write two mesh equations

and

5 ^ 4 5 !  =  81 , +  V,

V 2 =  — 1 2  I 2

Substituting the equations for the coil voltages into the mesh equations gives

5 / 4 5 !  =  8 I, +  (j 16 I, +  jS  l 2) =  (8 +  7 1 6 ) 1 , +  78 I2 

7 8 1 ,  + y ’ 1 2 1 2  =  — 1 2 12
and

Solving for I2 gives

Next, \ 2 is given by

Returning to the time domain,

I2 =  0.138 7 —141° A

V 2 =  - 1 2  I2 =  1 .6 5 6 /3 9 °  V 

v2 (t) =  1.656 cos ( 4 / +  39°) V
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T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  1 1 . 9 - 6 a  i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,

v s ( f )  =  5 . 9 4  c o s  ( 3 / +  1 4 0 ° )  V

T h e  o u t p u t  i s  t h e  v o l t a g e  a c r o s s  t h e  r i g h t - h a n d  c o i l ,  v G ( / ) .  D e t e r m i n e  t h e  o u t p u t  v o l t a g e ,  v Q( f ) .

5 ft 4 H 5 f t  7*12 ft

vM) ( I

_ _ _ _  *

2 H — » < 5 H

—o
+

v0(t) v > )  r y'6 ft — ^

>---------------o
i +

j  /15 ft V > )

f •
—o

!(©) f •
k---------------O

(a )  ( b )

FIGURE 11.9-6 The circuit considered in Example 11.9-2 represented (a) in the time domain and (3) in the frequency domain.

Solution
T h e  i n p u t  v o l t a g e  i s  a  s i n u s o i d .  T h e  o u t p u t  v o l t a g e  i s  a l s o  a  s i n u s o i d  a n d  h a s  t h e  s a m e  f r e q u e n c y  a s  t h e  i n p u t  

v o l t a g e .  A p p a r e n t l y ,  t h e  c i r c u i t  i s  a t  s t e a d y  s t a t e .  C o n s e q u e n t l y ,  t h e  c i r c u i t  i n  F i g u r e  1 1 . 9 - 6 a  c a n  b e  r e p r e s e n t e d  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s  a n d  i m p e d a n c e s .  F i g u r e  1 1 . 9 - 6 b  s h o w s  t h e  f r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n  

o f  t h e  c i r c u i t  f r o m  F i g u r e  1 1 . 9 - 6 a .

T h e  p h a s o r  c o r r e s p o n d i n g  t o  t h e  i n p u t  s i n u s o i d s  i s

V s ( o > )  =  5 . 9 4 / l 4 0 °  V

T h e  c i r c u i t  i n  F i g u r e  1 1 . 9 - 6 b  c o n s i s t s  o f  a  s i n g l e  m e s h .  N o t i c e  t h a t  t h e  m e s h  c u r r e n t ,  I ( a > ) ,  e n t e r s  t h e  u n d o t t e d  e n d s  

o f  b o t h  c o i l s .  A p p l y  K V L  t o  t h e  m e s h  t o  g e t

5  \ { u > )  +  ( j \ 2  I ( < w )  +  j 6  I ( a > ) )  +  ( J 6  I(o>) +  j \ 5  I ( o > ) )  -  5 . 9 4 / l 4 0 °  =  0  

5  I ( a > )  +  ( / 1 2  +  j 6  +  j 6  +  y ' 1 5 ) I ( a > )  -  5 . 9 4  / l 4 0 °  =  0

S o l v i n g  f o r  l ( a > )  g i v e s

I M  =
5 .9 4 / 140° 5 . 9 4  / l 4 0 °  5 . 9 4  / 1 4 0 °

5  + y ( 1 2  +  6  +  6  +  1 5 )  5 - 1 - / 3 9  3 9  3  / s 3 °
=  0 . 1 5 1  / 5 7 °  A

N o t i c e  t h a t  t h e  v o l t a g e ,  V 0 ( t i > ) ,  a c r o s s  t h e  r i g h t - h a n d  c o i l  a n d  t h e  m e s h  c u r r e n t ,  I ( < w ) ,  a d h e r e  t o  t h e  p a s s i v e  

c o n v e n t i o n .  T h e  v o l t a g e  a c r o s s  t h e  r i g h t - h a n d  c o i l  i s  g i v e n  b y

V0(<«>) =715 I(o») +J61(<u) = f l l  I(w) = /21(0.151 /57°

= (21 /90°)(0.151 /57°)
=  3 . 1 7 / l 4 7 °  V

I n  t h e  t i m e  d o m a i n ,  t h e  o u t p u t  v o l t a g e  i s  g i v e n  b y

v 0 ( f )  =  3 . 1 7  c o s  ( 3 r +  1 4 7 ° )  V J
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E x a m p l e  1 1 . 9 - 3  C o u p l e d  I n d u c t o r s INTERACTIVE EXAMPLE

The input to the circuit shown in Figure 11.9-7a is the voltage o f  the voltage source,

vs(r) =  5.94 cos (3 1 +  140°) V  

The output is the voltage across the right-hand coil. v0(f). Determine the output voltage. v0(r).

v M

5  n  / 1 2 n

5  H  v Q( t )

( a )  ( b )

F I G U R E  1 1 . 9 - 7  T h e  c i r c u i t  c o n s i d e r e d  i n  E x a m p l e  1 1 . 9 - 3 ,  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n .

Solution
The circuit shown in Figure 11.9-76 is very similar to the circuit shown in Figure 11.9-6a. There is only one 
difference: the dot o f the left-hand coil is located at the right o f the coil in Figure 11.9-6a  and at the left o f  the coil in 
Figure 11.9-7a. As in Example 11.9-2, our first step is to represent the circuit in the frequency domain, using phasors 
and impedances. Figure 11.9-76 shows the frequency-domain representation o f  the circuit from Figure 11.9-7a. 

The phasor corresponding to the input sinusoids is

V s(a>) =  5.94 /1 4 0 °  V

The circuit in Figure 11.9-7 consists o f  a single mesh. Notice that the mesh current, enters the dotted end o f  
the left-hand coil and the undotted end o f the right-hand coil. Apply KVL to the mesh to get

5 I ( o > )  +  ( j \ 2  I M  — y'6 I(a>)) +  ( — /6 I(a>) +  y l5  I ( o > ) )  -  5.94 / l 4 0 °  =  0 

5 I ( c o )  +  ( j l 2  - 7 6  - 7 6  + y l 5 )  I(a>) -  5.94 / l  40° -  0

Solving for I(<y) gives 

! ( & > )  =

5 .9 4 /l4 0 ° 5 .9 4 / l4 0 °  5 .9 4 /l4 0 °

5 + y ( 1 2 - 6 - 6 + 1 5 )  5 + 7 1 5  15.8/ 7 1 . 6
0 .376 /6 8 .4 °  A

Notice that the voltage, V 0(co), across the right-hand coil and the mesh current, I(a>), adhere to the passive 
convention. The voltage across the right-hand coil is given by

V 0(ai) =  715 I M  - 76 I(a>) =  7'9 I(<u) =  7 9 (0 .3 7 6 /6 8 4 !)

=  (9 / 9 0 0) (0.376 /6 8 .4 ° )

=  3 .3 8 /1 5 8 .4 °  V

In the time domain, the output voltage is given by

v0(f) =  3.38 cos (3/ +  158.4°) V



EXERCISE 11.9-1 D e t e r m i n e  t h e  v o l t a g e  vD f o r  t h e  c i r c u i t  o f  

Figure E 11.9-1.
Hint: Write a single mesh equation. The currents in the two coils are 
equal to each other and equal to the mesh current.

Answer: vG = 14 cos 4/ V

EXERCISE 11.9-2 Determine the voltage vG for the circuit of 
Figure E 11.9-2.

Hint: This exercise is the same as Exercise 11.9-1, except for the 
position of the dot on the vertical coil.

Answer: vD =  18 cos 41V

EXERCISE 11.9-3 Determine the current i0 for the circuit of 
Figure E 11.9-3.

Hint: The voltage across the vertical coil is zero because of the short circuit. 
The voltage across the horizontal coil induces a current in the vertical coil. 
Consequently, the current in the vertical coil is not zero.

Answer: iQ = 1.909 cos (41 — 90°) A

EXERCISE 11.9-4 Determine the current iQ for the circuit of 
Figure E 11.9-4.

Hint: This exercise is the same as Exercise 11.9-3, except for the 
position of the dot on the vertical coil.

Answer: iQ = 0.818 cos (41 -  90°) A

6 H

The Ideal Transformer - ©

24 cos 4/ V ( _ J 10 H v0

F I G U R E  E  1 1 . 9 - 1

24 cos 4 ,v Q )

6 H

10 H v0

F I G U R E  E  1 1 . 9 - 2

24 cos 41 V

F I G U R E  E  1 1 . 9 - 3

6 H

11.10 THE IDEAL TRANSFORMER

One major use of transformers is in ac power distribution. Transformers possess the ability to step up 
or step down ac voltages or currents. Transformers are used by power utilities to raise (step up) the 
voltage from 10 kV at a generating plant to 200 kV or higher for transmission over long distances. 
Then, at a receiving plant, transformers are used to reduce (step down) the voltage to 220 or 110 V for 
use by the customer (Coltman, 1988).

In addition to power systems, transformers are commonly used in electronic and communi­
cation circuits. They provide the ability to raise or reduce voltages and to isolate one circuit from 
another.

One of the coils, typically drawn on the left of the diagram of a transformer, is designated as the 
primary coil, and the other is called the secondary coil or winding. The primary coil is connected to the 
energy source, and the secondary coil is connected to the load.
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it(i) i2U)

F I G U R E  1 1 . 1 0 - 1  Circuit symbol for an ideal transformer. The ideal transformer has the same representation in (a) the 
time domain and (b) the frequency domain.

An ideal transform er is a model o f  a transform er with a coupling coefficient equal to unity.

The symbol for the ideal transformer is shown in Figure 11.10-1, where N\ and N 2 are the number 
o f turns in the primary and secondary coils. The time-domain representation o f  the transformer is shown 
in Figure 11.10-1#. In the time domain, the two defining equations for an ideal transformer are

and

( 11.10- 1) 

( 11.10-2)

where N i / N \  =  n is called the turns ratio o f  the transformer. The use o f  transform ers is usually 
limited to non-dc applications because the prim ary and secondary w indings behave as short circuits for 
a steady current.

The frequency-dom ain representation o f  the transform er is shown in Figure 11.10-16. The 
operation o f the ideal transform er is the same in the time dom ain as in the frequency domain. In the 
frequency domain, the two defining equations for an ideal transform er are

and

V2 =  x r VlN  i
(11.10-3)

(11.10-4)

The vertical bars in Figure 11.10-1 indicate the iron core, and we write ideal with the transform er to 
ensure recognition o f  the ideal case. An ideal transform er can be modeled using dependent sources, as 
shown in Figure 11.10-2.

i\(t) *2̂ )
0  —  1 ^  : N2rT ~  q
+ +

V2(t)

Ideal

(a)

\  I G I R E  11.10-2 (a) Ideal transformer and (h ) an equivalent circuit.

i2(f)

< ? > £ >  $ ’ i « C
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Circuit 2
► v 2 (r) (load)
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Ideal F
Primary Secondary 

FIGURE 11.10-4 An ideal transformer used to couple an

FIGURE 11.10-3 An ideal transformer used to couple two circuits impedance magnetically to a sinusoidal voltage source. This

magnetically. circuit is represented in the frequency domain, using impedances 
and phasors.

Notice that the voltage and current of both coils of the transformer in Figure 11.10-1 adhere to 
the passive convention. The instantaneous power absorbed by the ideal transformer is

p(t) -  V | ( f ) / | ( f )  +  v 2 ( / ) j ' 2 ( f )  =  v i ( f ) ( - w ' 2 ( f ) )  +  ( n V | ( / ) ) i 2 ( 0  =  0  ( 1 1 . 1 0 - 5 )

The ideal transformer is said to be lossless because instantaneous power absorbed by it is 
zero. A similar argument shows that the ideal transformer absorbs zero complex power, zero 
average power, and zero reactive power.

Figure 11.10-3 shows an ideal transformer that is used to connect a source to a load. The coil 
connected to the source is called the primary coil, and the coil connected to the load is called the 
secondary coil. Circuit 2 is connected to circuit 1 through the magnetic coupling of the transformer, 
but there is no electrical connection between these two circuits. Because the ideal transformer is 
lossless, all of the power delivered to the ideal transformer by circuit 1 is in turn delivered to circuit 2 
by the ideal transformer.

Let us consider the circuit of Figure 11.10-4, which has a load impedance Z2 magnetically 
coupled to a voltage source, using an ideal transformer.

The input impedance of the circuit connected to the voltage source is

Z, is called the impedance, seen at the primary of the transformer, or the impedance, seen by the 
voltage source.

The transformer is represented by the equations

V, =  y 2/n
and

Ii =  - n l 2

where n =  N2/N\ is the turns ratio of the transformer.
The current and voltage of the impedance, I2 and V2, do not adhere to the passive convention, so

V2 =  - Z 2I2
Therefore, for Z 1} we have

Z l = ^ L  ■ (
- n  I2 n2 \  l2 J  n2

The source experiences the impedance Z,, which is equal to Z2 scaled by the factor l /n 2. We 
sometimes say that Z, is the impedance Z2 reflected to the primary of the transformer.
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I(cd) l( to)

2  J

Z(a>)

(a) (b)

F I G U R E  1 1 . 1 0 - 5  T h e  c i r c u i t  s h o w n  i n  ( b )  i s  e q u i v a l e n t  t o  t h e  c i r c u i t  s h o w n  i n  ( a ) .

Suppose we are going to connect a load im pedance to a source. I f  we connect the load 
im pedance directly to the source, then the source sees the load im pedance Z 2. In contrast, i f  we 
connect the load im pedance to the source, using an ideal transform er, the source sees the im pedance 
Z \. In this context, we say that the transform er has changed the im pedance seen by the source from
Z 2 to Z j.

W e can form alize this result as the circuit equivalence illustrated in Figure 11.10-5. Figure 
1 1.10-5a shows circuit 1 connected to the left-hand coil o f  an ideal transform er. An im pedance, Z  
(cd), is connected in parallel with the right-hand coil o f  the ideal transform er. In Figure 11.10-56, the 
ideal transform er and im pedance have been replaced by a single equivalent im pedance, Z eq(co). The 
equivalent im pedance is related to the original im pedance by

Zeq (co) =  (^ 0  Z (a > )= ^ Z (< w )

The two circuits in Figure 11.10-5 are equivalent. All the currents and voltages o f  circuit 1, 
including I(o>) and V ( c o ) ,  are the same in Figure 11.10-56 as they are in Figure 11.10-5<z. W e can 
determ ine the values o f  I(a>) and V(&>) in Figure 11.10-5^ by calculating values o f  I(o>) and V (cl>) in 
Figure 11.10-56.

E x a m p l e  1 1 . 1 0 - 1  M a x im u m  P o w e r  T r a n s fe r

Often, we can use an ideal transform er to represent a transform er that connects the output o f  a stereo amplifier, V \ , 
to a stereo speaker, as shown in Figure 11.10-6. Find the value o f the turns ratio n that is required to cause 
maximum power to be transferred to the load when R L =  8 f t  and Rs — 48 ft.

Solution
The impedance seen at the primary due to R L is

F I G U R E  1 1 . 1 0 - 6  O u t p u t  o f  a n  a m p l i f i e r  c o n n e c t e d  

t o  a  s t e r e o  s p e a k e r  w i t h  r e s i s t a n c e  R L .

R l 8
Z ,  = - 4  =

n 2 n 2
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To a c h i e v e  m a x i m u m  power transfer, we require that
Z\ — R$

Because Rs = 48 ft, we require that Z| =  48 ft, so

a n d ,  t h e r e f o r e ,

or

2 = 1  =  1 
" 48 6

\ n J  6

N\ - V 6N 2

E x a m p l e  1 1 . 1 0 - 2  T ra n s fo rm e r  C irc u it INTERACTIVE EXAMPLE

The input to the circuit shown in Figure 11.10-7 is the voltage of the voltage source, vs(t). The output is the voltage 
across the 9-H inductor, vc(f). Determine the output voltage, v0(r).

Solution
The input voltage is a sinusoid. The output voltage is also a sinusoid and has the same frequency as the input 
voltage. Apparently, the circuit is at steady state. Consequently, the circuit in Figure 11.10-7 can be represented in 
the frequency domain, using phasors and impedances. Figure 11.10-8 shows the frequency-domain representation 
of the circuit from Figure 11.10-7.

In Figure 11.10-8, the impedance of the inductor is connected in series with the impedance of the 30-0 
resistor. This series impedance is connected in parallel with the right-hand coil of the transformer. Replace the 
transformer and the series impedance with the equivalent impedance, as shown in Figure 11.10-9. The equivalent 
impedance is given by

2

(30 +  y'36) =  67.5 -I-J81 ft

v0(o>)

FIGURE 11.10-7 The circuit considered in Example 11.10-2. FIG URE 11.10-8 The circuit from Figure 11.10-7, represented
in the frequency domain, using impedances and phasors.

Ka>) 8 Q
1— ° ~ — m ----------------

1

p V s t o )  =  7 5 . 5 / 2 6 ° V

1

Zgqffl)) = [ 2 ]*

replacing the transformer and the impedance o f  the series 
resistor and inductor with the equivalent impedance.
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Ito) = 0.682 1-21° A 
-o

l2(o>)
3 : 2

30 n
;36 il ■< V0to)

FIGURE 11.10-10 The circuit from Figure 11.10-9 
after determining the current I(a>).

In Figure 11.10-9. the im pedance o f  the 8 -0  resistor is connected in series with the equivalent impedance, 
Z eJa>). The current, \(co), is the current in this series impedance, and V s(o>) is the voltage across the series
impedance. Applying O hm ’s law gives

V s M
i M  =

75 .5 / 26° 75 .5 / 26°

8 +  Z eq((w) 8 +  67.5 + 7 8 1 110.73/ 4 T
=  0 .6 8 2 / —21° A (11.10-6)

Because the circuits in Figures 11.10-8 and 11.10-9 are equivalent, the current I(o>) in Figure 11.10-10 is 
also given by Eq. 11.10-6. Figure 11.10-10 shows the circuit from Figure 11.10-8 redrawn with the current I(<y) 
labeled.

Also, the current in the right-hand coil o f  the transform er has been labeled as hico). Because I(a>) and l 2(&>) 
are the currents in the coils o f  the ideal transformer, they are related by the equations describing the transformer:

I2M  =  - 0 I M  =  - 1 .0 2 3 / - 2 1 °  A

Notice that 12(co) and V 0(o>), the current and voltage o f  the j36-Cl impedance in Figure 11.10-10, do not adhere to 
the passive convention. Consequently,

V0 (o>) =  - / 3 6 I 2M  =  f/361(1.023 / —21°) =  (36 /9 0 ° )n .0 2 3  / —21°) =  3 6 .8 2 /6 9 °  V 

In the time domain, the output voltage is given by

v0(/) =  36.82 cos (At -f 69°) V

EXERCISE 11.10-1 D eterm ine the im pedance Z ab for the circuit o f  Figure E 1 1 . 1 0 - 1 . All the 
transform ers are ideal.

Figure E 11.10-1

A nsw er: Z ab =  4.063Z

11.11 H O W  C A N  W E  C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f  the 
specifications have been satisfied. In addition, com puter output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be exam ined critically.
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Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E x a m p l e  1 1 . 1 1 - 1  H o w  C an W e C h e c k  P o w er 
in AC C irc u its ?

The circuit shown in Figure 11.11-la has been analyzed using a computer, and the results are tabulated in Figure
11.11-16. The labels Xp and Xs refer to the primary and secondary coils of the transformer. The passive 
convention is used for all elements, including the voltage sources, which means that

(30) (1.76) cos (133° - 0 )  =  -18.00

is the average power absorbed by the voltage source. The average power supplied by the voltage source is +18.00
W.

How can we check that the computer analysis of this circuit is indeed correct?

Solution
Several things can be easily checked.

(1) The element current and voltage of each inductor should be 90° out of phase with each other so that the 
average power delivered to each inductor is zero. The element current and voltage of both L\ and L2 
satisfy this condition.

(2) An ideal transformer absorbs zero average power. The sum of the average power absorbed by the 
transformer primary and the secondary is

-5--2^ 1'76) (cos (9° -  (-47°))) +  ; - S-v '-17 ' cos (133° -  9°) =  2.56 +  (-2 .55) «  0 W 

so this condition is satisfied.

(3) All of the power delivered to the primary of the transformer is in turn delivered to the load. In this 
example, the load consists of the inductor L2 and the resistor R2. Because the average power delivered to

*i = i 0Q Li = 5H(D^ r-V s/v -.• 2:3

(a)

Element Voltage Current

Vin 1 0 30  Z O 30  Z  0° 1.76 Z  133°
R l 1 2 10 17.6 Z -4 7 ° 1.76 Z -4 7 °
L I 2 3 5 17.6 Z  43° 1.76 Z -4 7 °
Xp 3 0 2 5.2 Z  9° 1.76 Z  -4 7 °
Xs 4 5 3 7 .8  Z  9° 1.17 Z  133°
R2 4 5 12 7 .8  Z  9° 0 .6 5  Z  9°
L2 4 5 4 7.8  Z  9° 0 .9 8  Z  -8 1 °

Steady-state response: o) = 2 rad/s

(b)

F IG l RE! 11.11-1 (a) A circuit and (b ) the results from computer analysis for the circuit.
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the inductor is zero, all the pow er delivered to the transform er prim ary should be delivered by the 
secondary to the resistor R2. The pow er delivered to the transform er prim ary is

(5 .2)(1 .76)
2

The power delivered to R 2 is
(7 .8)(0 .65)

cos ( 9 ° - ( - 4 7 ° ) )  =  2.56 W 

cos (0) =  2.53 W
2

There seems to be some roundoff error in the voltages and currents provided by the com puter. Nonetheless, it 
seems reasonable to conclude that all the power delivered to the transform er primary is delivered by the 
secondary to the resistor R 2.

(4) The average power supplied by the voltage source should be equal to the average pow er absorbed by the 
resistors. We have already calculated that the average pow er delivered by the voltage source is 18 W. The 
average power absorbed by the resistors is

(17.6H 1.76) cQs ^  +  (7.8)(0.65) ^  ^  =  J 5  4 9  +  (2  ^  =  lg  Q2 w

so this condition is satisfied.

Because these four conditions are satisfied, we are confident that the com puter analysis o f  the circuit is correct.

1 1 . 1 2  D E S I G N  E X A M P L E

M A X IM U M  P O W E R  TR A N S FE R

The matching network in Figure 11.12-1 is used to interface the source with the load, which 
means that the m atching network is used to connect the source to the load in a desirable way. 
In this case, the purpose o f  the m atching network is to transfer as much pow er as possible to 
the load. This problem occurs frequently enough that it has been given a name, the m axim um  
power transfer problem.

An important example o f the application o f m axim um  power transfer is the connection 
o f a cellular phone or w ireless radio transm itter to the ce ll’s antenna. For example, the input 
impedance o f a practical cellular telephone antenna is Z =  (10 +  7 6 .28) (I  (Dorf, 1998).

Describe the Situation and the Assumptions
The input voltage is a sinusoidal function o f time. The circuit is at steady state. The matching 
network is to be designed to deliver as much pow er as possible to the load.

vs{t) = A cos {cot) 
A = 10 V 

a) = 2n * 105
Matching
network

Source

L = 10^H

Load

FIGURE 11.12-1 D e s i g n  t h e  m a t c h i n g  n e t w o r k  t o  t r a n s f e r  m a x i m u m  p o w e r  t o  t h e  load w h e r e  t h e

l o a d  i s  t h e  m o d e l  o f  a n  a n t e n n a  o f  a  w i r e l e s s  c o m m u n i c a t i o n  s y s t e m .
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L = 10//H

y'6.28 Q

r.
Load network

FIGURE 11.12-2 Z in is the impedance seen FIGURE 11.12-3 Using an ideal transformer as

looking into the matching network. the matching network.

State the Goal
To achieve maximum power transfer, the matching network should match the load and source 
impedances. The source impedance is

z s =  Rs + jwLs = 1 + j(2  ■ 71 ■ 105) (1 0 “6) =  1 +  yo.628 H

For maximum power transfer, the impedance Zln, shown in Figure 11.12-2, must be the 
complex conjugate of Zs. That is,

Zm =Z* =  1 -  j  0.628 fl

Generate a Plan
Let us use a transformer for the matching network as shown in Figure 11.12-3. The impedance 
Zin wiH he a function of n, the turns ratio of the transformer. We will set Zin equal to the 
complex conjugate of Zs and solve the resulting equation to determine the turns ratio, n.

Act on the Plan

Zin — ~2 +j(*)L) =  —r (10 +  >6.28)
n* nz

We require that

^2 (10 +  y‘6.28) =  1 —y‘0.628

This requires both
-7 1 0 = 1  (11.12-1)n2 v

and
^2 6.28 =  -0.628 (11.12.2)

Selecting « =  3.16

(for example, N2 = \5S and AT, =  50) satisfies Eq. 11.12-1 but not Eq. 11.12-2. Indeed, no 
positive value of n  will satisfy Eq. 11.12-2.

We need to modify the matching network to make the imaginary part of Zin
negative. This can be accomplished by adding a capacitor, as shown in Figure
11.12-4. Then,

Zin ~  »2 ( ^  = ~  { 10 +  76.28  -  j - — ~ ^nz \  coC) n2 \  y 2n • 10 • C /
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j
G)C ; 6 .2 8  Q

network

F I G U R E  1 1 . 1 2 - 4  T h e  m a t c h i n g  n e t w o r k  i s  m o d i f i e d  b y  a d d i n g  a  c a p a c i t o r .

We require that

i  ( l °  + J6.2S  =  1 - ,0 .6 2 8

This requires both

\
n

2 1 0 =  1 (11.12-3)

and

H 6 2 s - ^ w ^ ) = - o62s ( , u m )

First, solving Eq. 11.12-3 gives 
n =  3.16 

Next, solving Eq. 11.12-4 gives 
C =  0.1267 /nF

and the design is complete.

Verify the Proposed Solution
When n =  3.16 and C =  0.1267 /iF, the input impedance o f the matching network is

Zin =  h{R+J0jL+]̂c
i

1 0 + y (2 7 rx  105)(1 0 ~ 5) + -
3.162 y  v /v  '  j ( 2 n  x 105) (0.1267 x 10“6) /

=  1 — y'0.629 

as required.

11.13 S U M M A R Y
O With the adoption of ac power as the generally used 

conventional power for industry and the home, engineers 
became involved in analyzing ac power relationships.

O The instantaneous power delivered to this circuit element is 
the product of the element voltage and current. Let v(/) and 
iit) be the element voltage and current, chosen to adhere to 
the passive convention. Then p(t) =  v(/) i(t) is the instanta­
neous power delivered to this circuit element. Instantaneous 
power is calculated in the time domain.

O The instantaneous power can be a quite complicated func­
tion of t. When the element voltage and current are periodic 
functions having the same period, T, it is convenient to

t0+ T

calculate the average power P =  ^  /  i(t)v(t) dt.
to

O The effective value of a current is the constant (dc) current 
that delivers the same average power to a l-H resistor as the 
given varying current. The effective value of a voltage is the
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fable 11 1 Coupled Inductors

DEVICE SYMBOL (INCLUDING 
REFERENCE DIRECTIONS OF 
ELEMENT VOLTAGES AND 

CURRENTS)

DEVICE EQUATIONS 
IN THE TIME 

DOMAIN

DEVICE EQUATIONS 
IN THE 

FREQUENCY DOMAIN

/ ' l ( / )  f c W

o — —— — | M  I---------------- o
+  * L  <*— ►  J *  +

v x i t )  j L i  L 2 >  v 2 ( t )

d i ]  d i 2  

+ M ~ d f

d i o  d i  1
V 2  =  l 2 — + m —

\ l l  =  j o ) L i  I j  +  j a ) M \ 2  

V2 =  j ( o L 2 \ 2  +  j ( o M \ i

O 
1 —t O 
1

i \ ( t )  i 2 ( t )  

o  M  j — o
d i - i  d i o M l  =  j o ) L i l j  -  j ( o M \ 2

1> 1 ( t )  L 2 r  v 2 ®  

o ---------------- » L i — — o

d i o  d i \ V  2 =  j o ) L 2 \ 2  — j ( o M  1^

c o n s t a n t  ( d c )  v o l t a g e  t h a t  d e l i v e r s  t h e  s a m e  a v e r a g e  p o w e r  

a s  t h e  g i v e n  v a r y i n g  v o l t a g e .

O  C o n s i d e r  a  l i n e a r  c i r c u i t  w i t h  a  s i n u s o i d a l  i n p u t  t h a t  h a s  

r e a c h e d  s t e a d y  s t a t e .  A l l  t h e  e l e m e n t  v o l t a g e s  a n d  c u r r e n t s  

w i l l  b e  s i n u s o i d a l ,  w i t h  t h e  s a m e  f r e q u e n c y  a s  t h e  i n p u t .  

S u c h  a  c i r c u i t  c a n  b e  a n a l y z e d  i n  t h e  f r e q u e n c y  d o m a i n ,  

u s i n g  p h a s o r s  a n d  i m p e d a n c e s .  I n d e e d ,  w e  c a n  c a l c u l a t e  t h e  

p o w e r  g e n e r a t e d  o r  a b s o r b e d  i n  a  c i r c u i t  o r  i n  a n y  e l e m e n t  o f  

a  c i r c u i t ,  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  p h a s o r s .  T a b l e  

1 1 . 5 . 1  s u m m a r i z e s  t h e  e q u a t i o n s  u s e d  t o  c a l c u l a t e  a v e r a g e  

p o w e r ,  c o m p l e x  p o w e r ,  o r  r e a c t i v e  p o w e r  i n  t h e  f r e q u e n c y  

d o m a i n .

O  B e c a u s e  i t  i s  i m p o r t a n t  t o  k e e p  t h e  c u r r e n t  /  a s  s m a l l  a s  

p o s s i b l e  i n  t h e  t r a n s m i s s i o n  l i n e s ,  e n g i n e e r s  s t r i v e  t o  a c h i e v e  

a  p o w e r  f a c t o r  c l o s e  t o  1 .  T h e  p o w e r  f a c t o r  i s  e q u a l  t o  c o s  0 ,  

w h e r e  0  i s  t h e  p h a s e  a n g l e  d i f f e r e n c e  b e t w e e n  t h e  s i n u s o i d a l  

s t e a d y - s t a t e  l o a d  v o l t a g e  a n d  c u r r e n t .  A  p u r e l y  r e a c t i v e  i m ­

p e d a n c e  i n  p a r a l l e l  w i t h  t h e  l o a d  i s  u s e d  t o  c o r r e c t  t h e  p o w  e r  

f a c t o r .

O  F i n a l l y ,  w e  c o n s i d e r e d  t h e  c o u p l e d  c o i l s  a n d  t r a n s f o r m e r s .  

C o u p l e d  i n d u c t o r s  a n d  t r a n s f o r m e r s  e x h i b i t  m u t u a l  i n d u c t a n c e ,  

w h i c h  r e l a t e s  t h e  v o l t a g e  i n  o n e  c o i l  t o  t h e  c h a n g e  i n  c u r r e n t  i n  

a n o t h e r  c o i l .  T h e  e q u a t i o n s  t h a t  d e s c r i b e  c o u p l e d  c o i l s  a n d  

t r a n s f o r m e r s  a r e  c o l l e c t e d  i n  T a b l e s  1 1 . 1 3 - 1  a n d  1 1 . 1 3 - 2 .

Table 11.13-2 Ideal Transformers

DEVICE SYMBOL
(INCLUDING REFERENCE

DIRECTIONS OF ELEMENT DEVICE EQUATIONS
VOLTANGES AND IN THE

CURRENTS) FREQUENCY DOMAIN
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m r  1
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W S tL r  n  u  d  L L IVI o

Section 11.3 Instantaneous Power and Average 
Power

P 11.3-1 An RLC circuit is shown in Figure P 11.3-1. Find 
the instantaneous power delivered to the inductor when is =  1 
cos cot A and co =  6283 rad/s.

: 10 /iF

Figure P 11.3-1

P 11.3-2 Find the average power absorbed by the 0.6-kfl 
resistor and the average power supplied by the current source 
for the circuit of Figure P 11.3-2.

1.8 kQ
-AAAr-

0.6 kn

Answer: P = 200 W

10 Q V30F

source current =  -12.8  W

Pm = 6.4 W 

PL = 0 W

^voltage source =  6.4 W

1/5 H

Figure P 11.3-2

P 11.3-3 Use nodal analysis to find the average power 
absorbed by the 20-fl resistor in the circuit of Figure 
P 11.3-3.

Figure P 11.3-4 (a) The simulation training room for the Pilgrim 
Power Station. The power station is located at Plymouth, 
Massachusetts, and generates 700 MW. It commenced operation 
in 1972. Courtesy of Boston Edison. (b) One control circuit of the 
reactor.

P 11.3-5 Find the average power delivered to each element 
for the circuit of Figure P 11.3-5.

5 0 0 /iF  15  q

P 11.3-4 Nuclear power stations have become very complex 
to operate, as illustrated by the training simulator for the 
operating room of the Pilgrim Power Station shown in Figure 
P 11.3-4a. One control circuit has the model shown in Figure 
P 11.3-4b. Find the average power delivered to each element.

Answer: P<

P 11.3-6 A student experimenter in the laboratory encounters 
all types of electrical equipment. Some pieces of test equip­
ment are battery operated or operate at low voltage so that any 
hazard is minimal. Other types of equipment are isolated from 
electrical ground so that there is no problem if a grounded 
object makes contact with the circuit. Some types of test 
equipment, however, are supplied by voltages that can be 
hazardous or have dangerous voltage outputs. The standard 
power supply used in the United States for power and lighting 
in laboratories is the 120, grounded, 60-Hz sinusoidal supply. 
This supply provides power for much of the laboratory
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equipment, so an understanding o f  its operation is essential in 
its safe use (Bernstein, 1991).

Consider the case in which the experimenter has one hand 
on a piece o f electrical equipment and the other hand on a ground 
connection, as shown in the circuit diagram o f Figure P 113-6a.

The hand-to-hand resistance is 200 17. Shocks with an 
energy o f  30 J are hazardous to humans. Consider the model 
shown in Figure P 11.3-66, which represents the hum an with 
R. Determine the energy delivered to the human in 1 s.

Electrical
ground

(a)

120 V,

vAt)

Figure P 11.3-7

- r-  50 mF

P 11.3-8

(a) Find the average power delivered by the source to the
circuit shown in Figure P 11.3-8.

(b) Find the pow er absorbed by resistor R\ 

A nsw ers: (a) 30 W (b) 20 W

R ] = 1 Q

10 cos t V i n  < i  h

Figure P 11.3-8

Section 11.4 Effective Value of a Periodic Waveform

P 11.4-1 Find the rm s value o f  the current i for (a) i =  2  — 4 
cos 2 1  A, (b) i  =  3 sin j t  t  +  y / l  cos n  t  A, and (c)i =  2  cos 
2 1  +  4 \ / 2  cos ( 2 1 +  4 5 ° )  +  1 2  sin I t  A.

A nsw ers:  (a) 2 \ /3  (b) 2.35 A (c) 5y/2  A

P 11.4-2 D eterm ine the rm s value for each o f  the w aveform s 
shown in Figure P 11.4-2.

A nsw ers: (a) 4.10 V ( b )4 .8 1 V  (c )4 .1 0

i>(V)
6

(b )

Figure P 11.3-6 Student experimenter touching an electrical 
device.

P 11.3-7 An R LC  circuit is shown in Figure P 11.3-7 with a 
voltage source vs =  7 cos lOr V.

(a) Determine the instantaneous pow er delivered to the circuit 
by the voltage source.

(b) Find the instantaneous pow er delivered to the inductor.

Answers:

(a) p  =  7.54 +  15.2 cos (20/ -  60.3°) W
(b) p  =  28.3 cos (20/ -  30.6°) W

0.3 H

J ___ L _L
5 7 10 t (s)

(a)

u(V)

J ___ L _L

v(V)

5 7

(b )

10 t ( s)

J ___ L
5 7

(c)

10 ris)

Figure P 11.4-2

P 11.4-3 D eterm ine the rms value for each o f  the w aveform s 
shown in Figure P 11.4-3.

Answers: (a )4 .1 6  V (b) 4.16 V (c) 4.16
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Answer: =  4.24 V

P 11.4-5 Find the rms value o f  the voltage v(f) shown in
Figure P 11.4-5.

(b)

Figure P 11.4-5

P 11.4-6 Find the effective value of the current waveform 
shown in Figure P 11.4-6.

Answer: /eff =  8.66

10

l _

Figure P 11.4-3

P 11.4-4 Find the rms value for each of the waveforms of Figure P 11.4-6 
Figure P 11.4-4.

Answers: =  1.225 V
I  rms ==: 5 mA

P 11.4-7 Calculate the effective value of the voltage across 
the resistance R of the circuit shown in Figure P 11.4-7 when 
co =  100 rad/s.

Hint: Use superposition.

Answer: Veff=4.%2 V

10 cos cot v2q

( a)

Figure P 11.4-7

Section 11.5 Com plex Power

P 11.5-1 The complex power delivered by the voltage source 
in Figure P 11.5-1 is S =  3.6 +  j l 2  V A. Determine the values 
of the resistance, /?, and inductance, L.

Answer: R =  4 H and L — 2 FI

Figure P 11.4-4 Figure P 11.5-1
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P 11.5-2 T h e  c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  v o l t a g e  s o u r c e  

i n  F i g u r e  P  1 1 . 5 - 2  i s  S  =  1 8  + j 9  V A .  D e t e r m i n e  t h e  v a l u e s  o f  

t h e  r e s i s t a n c e ,  / ? ,  a n d  i n d u c t a n c e ,  L .

A n s w e r s :  R  —  4  f t  a n d  L  —  2  H

iit)

(a)

F i g u r e  P 11.5-4 ( a )  A n  e x p e r i m e n t a l  p h o t o v o l t a i c  p o w e r  p l a n t .

( b ) M o d e l  o f  p a r t  o f  t h e  e n e r g y  c o n v e r s i o n  c i r c u i t .  C o u r t e s y  o f  

E P R I  J o u r n a l .

P 11.5-5 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 5 - 5 ,  d e t e r m i n e

I  a n d  t h e  c o m p l e x  p o w e r  S  d e l i v e r e d  b y  t h e  s o u r c e  w h e n

V  =  5 0  / l 2 0 ° V  r m s .

A n s w e r :  S  =  1 0 0  4 - / 7 5  V A

12 a  j20 o

F i g u r e  P 11.5-2

P 11.5-3 D e t e r m i n e  t h e  c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  

v o l t a g e  s o u r c e  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 5 - 3 .

A n s w e r :  S  =  7 . 2  - f  y ’3 . 6  V A

i i  4 q

F i g u r e  P 11.5-5

P 11.5-6 F o r  t h e  c i r c u i t  o f  F i g u r e  P  1 1 . 5 - 6 ,  d e t e r m i n e  t h e  

c o m p l e x  p o w e r  o f  t h e  R ,  L ,  a n d  C  e l e m e n t s  a n d  s h o w  t h a t  t h e  

c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  s o u r c e s  i s  e q u a l  t o  t h e  

c o m p l e x  p o w e r  a b s o r b e d  b y  t h e  R ,  L , a n d  C  e l e m e n t s .

50 mF

F i g u r e  P 11.5-3

P 11.5-4 M a n y  e n g i n e e r s  a r e  w o r k i n g  t o  d e v e l o p  p h o t o v o l t a i c  

p o w e r  p l a n t s  t h a t  p r o v i d e  a c  p o w e r .  A n  e x a m p l e  o f  a n  e x p e r ­

i m e n t a l  p h o t o v o l t a i c  s y s t e m  i s  s h o w n  i n  F i g u r e  P  1 1 . 5 - 4 a .  A  

m o d e l  o f  o n e  p o r t i o n  o f  t h e  e n e r g y  c o n v e r s i o n  c i r c u i t  i s  s h o w n  

i n  F i g u r e  P  1 1 . 5 - 4 / ? .  F i n d  t h e  a v e r a g e ,  r e a c t i v e ,  a n d  c o m p l e x  

p o w e r  d e l i v e r e d  b y  t h e  d e p e n d e n t  s o u r c e .

A n s w e r :  S  =  +  y ‘8 / 9  V A

F i g u r e  P 11.5-6

P 11.5-7 A  c i r c u i t  i s  s h o w n  i n  F i g u r e  P  1 1 . 5 - 7  w i t h  a n  u n k n o w n  

i m p e d a n c e  Z .  H o w e v e r ,  i t  i s  k n o w n  t h a t  v ( Y )  =  1 0 0  c o s  ( l O O r  +  

2 0 ° )  V  a n d  i ( t )  =  2 5  c o s  ( l O O r - 1 0 ° )  A .  ( a )  F i n d  Z .  ( b )  F i n d  t h e  

p o w e r  a b s o r b e d  b y  t h e  i m p e d a n c e ,  ( c )  D e t e r m i n e  t h e  t y p e  o f  

e l e m e n t  a n d  i t s  m a g n i t u d e  t h a t  s h o u l d  b e  p l a c e d  a c r o s s  t h e  

i m p e d a n c e  Z  ( c o n n e c t e d  t o  t e r m i n a l s  a - b )  s o  t h a t  t h e  v o l t a g e  

v ( t )  a n d  t h e  c u r r e n t  e n t e r i n g  t h e  p a r a l l e l  e l e m e n t s  a r e  i n  p h a s e .

A n s w e r s :  ( a )  4 ^ 3 0 !  f t  ( b )  1 0 8 2 . 5  W  ( c )  1 . 2 5  m F

Kt)

v(t)

F i g u r e  P 11.5-7

P 11.5-8 F i n d  t h e  c o m p l e x  p o w e r  d e l i v e r e d  b y  t h e  v o l t a g e  

s o u r c e  a n d  t h e  p o w e r  f a c t o r  s e e n  b y  t h e  v o l t a g e  s o u r c e  f o r  t h e  

c i r c u i t  o f  F i g u r e  P  1 1 . 5 - 8 .

10 cos 21 V (3/4) Vl i /3 F

Figure P 11.5-8
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P 11.5-9 The circuit in Figure P 11.5-9 consists of a source
connected to a load.

(a) Suppose R =  9 O and L = 5 H. Determine the average, 
complex, and reactive powers delivered by the source to 
the load.

(b) Suppose R -  15H and £ =  3 H. Determine the average, 
complex, and reactive powers delivered by the source to 
the load.

(c) Suppose the source delivers 8.47 +  y 14.12 VA to the load. 
Determine the values of the resistance, R, and the induc­
tance, L.

(d) Suppose the source delivers 14.12 +  y'8.47 VA to the load. 
Determine the values of the resistance, /?, and the induc­
tance, L.

R

Figure P 11.5-9

P 11.5-10 The circuit in Figure P 11.5-10 consists of a source 
connected to a load. Suppose the amplitude of the source 
voltage is doubled so that Vj(/) =  48 cos (3/ +  75°) V. How will 
each of the following change?

(a) The impedance of the load
(b) The complex power delivered to the load
(c) The load current

*J ihit) = 24 cos (3f + 75°) V ! L

Source Load

Figure P 11.5-10

. ! )  !>,(r) = 24cos(3/ + 75°) V

Source Load

P 11.5-12 The circuit in Figure P 11.5-12 consists of a source 
connected to a load. The complex power delivered by the 
source to the load is S =  6.61 4- y 1.98 VA. Determine the 
values of R and C.

R  C

Source Load

Figure P 11.5-12

P 11.5-13 Design the circuit shown in Figure P 11.5-13, that 
is, specify values for R and L so that the complex power 
delivered to the RL circuit is 8 +  j6  VA.

Answer: R = 5.76 0  and L = 2.16 H

P 11.5-14 The source voltage in the circuit shown in Figure 
P 11.5-14 is Vs =  2 4 /3 0 0 V. Consequently,

Ii = 3.13/25 .40 A, l2 = 1.99/52.9° A and V4 = 8.88 
/ —10.6° V

Determine (a) the average power absorbed by Z4, (b) the 
average power absorbed by Z 1? and (c) the complex power 
delivered by the voltage source. (All phasors are given using 
peak, not rms, values.)

+ vi “ h  + v2 -

P 11.5-11 The circuit in Figure P 11.5-11 consists of a source 
connected to a load. Suppose the phase angle of the source 
voltage is doubled so that v* (r) =  24 cos (3/ +  150°) V. How 
will the following change?

(a) The impedance of the load
(b) The complex power delivered to the load
(c) The load current

Zj = 4 -  \2Q. 

0 Vs
Z2 = 5 + j5Q I + 

Z3 = 3 + j 8 £2 Z4

T

Figure P 11.5-11

Figure P 11.5-14

Section 11.6 Pow er Factor

P 11.6-1 An industrial firm has two electrical loads con­
nected in parallel across the power source. Power is supplied to 
the firm at 4000 V rms. One load is 30 kW of heating use, and 
the other load is a set of motors that together operate as a load 
at 0.6 lagging power factor and at 150 kVA. Determine the 
total current and the plant power factor.

Answer: I =  42.5 A rms and p f  — \ / \ f l

P 11.6-2 Two electrical loads are connected in parallel to a 
400-V rms, 60-Hz supply. The first load is 12 kVA at 0.7
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l a g g i n g  p o w e r  f a c t o r ;  t h e  s e c o n d  l o a d  i s  1 0  k V A  a t  0 . 8  l a g g i n g  

p o w e r  f a c t o r .  F i n d  t h e  a v e r a g e  p o w e r ,  t h e  a p p a r e n t  p o w e r ,  a n d  

t h e  p o w e r  f a c t o r  o f  t h e  t w o  c o m b i n e d  l o a d s .

A n s w e r :  T o t a l  p o w e r  f a c t o r  =  0 . 7 5  l a g g i n g

P 11.6-3 T h e  s o u r c e  o f  F i g u r e  P  1 1 . 6 - 3  d e l i v e r s  5 0  V A  w i t h  a  

p o w e r  f a c t o r  o f  0 . 8  l a g g i n g .  F i n d  t h e  u n k n o w n  i m p e d a n c e  Z .

A n s w e r :  Z  =  6 . 3 9  / 2 6 . 6 °  H

F i g u r e  P 11.6-4

i ' l

Figure P 11.6-5

P 11.6-6 A  r e s i d e n t i a l  e l e c t r i c  s u p p l y  t h r e e - w i r e  c i r c u i t  f r o m  

a  t r a n s f o r m e r  i s  s h o w n  i n  F i g u r e  P  1 1 . 6 - 6 a .  T h e  c i r c u i t  m o d e l  

i s  s h o w n  i n  F i g u r e  P  1 1 . 6 - 6 b .  F r o m  i t s  n a m e p l a t e ,  t h e  r e f r i g ­

e r a t o r  m o t o r  i s  k n o w n  t o  h a v e  a  r a t e d  c u r r e n t  o f  8 . 5  A  r m s .  I t  i s  

r e a s o n a b l e  t o  a s s u m e  a n  i n d u c t i v e  i m p e d a n c e  a n g l e  o f  4 5 °  f o r  

a  s m a l l  m o t o r  a t  r a t e d  l o a d .  L a m p  a n d  r a n g e  l o a d s  a r e  1 0 0  W  

a n d  1 2  k W .  r e s p e c t i v e l y .

(a) C alculate the currents in line 1, line 2, and the neutral wire.

(b)  C a l c u l a t e :  ( i ) P re f r i g i 0 r e f r i g » ( i i ) ^ >l a m p > 0 1 a m p ? ^ ^ d ( i i i ) / ? t o t a l ’  

g t o t a h  S t o t a l ,  a n d  o v e r a l l  p o w e r  f a c t o r .

( c )  T h e  n e u t r a l  c o n n e c t i o n  r e s i s t a n c e  i n c r e a s e s ,  b e c a u s e  o f  

c o r r o s i o n  a n d  l o o s e n e s s ,  t o  2 0  f t .  ( T h i s  m u s t  b e  i n c l u d e d  

a s  p a r t  o f  t h e  n e u t r a l  w i r e . )  U s e  m e s h  a n a l y s i s  a n d  

c a l c u l a t e  t h e  v o l t a g e  a c r o s s  t h e  l a m p .

7.2 kV -

(a)

F i g u r e  P 11.6-3

P 11.6-4 M a n n e d  s p a c e  s t a t i o n s  r e q u i r e  s e v e r a l  c o n t i n u o u s l y  

a v a i l a b l e  a c  p o w e r  s o u r c e s .  A l s o ,  i t  i s  d e s i r e d  t o  k e e p  t h e  

p o w e r  f a c t o r  c l o s e  t o  1 .  C o n s i d e r  t h e  m o d e l  o f  o n e  c o m m u n i ­

c a t i o n  c i r c u i t ,  s h o w n  i n  F i g u r e  P  1 1 . 6 - 4 .  I f  a n  a v e r a g e  p o w e r  o f  

5 0 0  W  i s  d i s s i p a t e d  i n  t h e  2 0 - 0  r e s i s t o r ,  f i n d  ( a )  ( b )

h  rm s>  ( c )  t h e  p o w e r  f a c t o r  s e e n  b y  t h e  s o u r c e ,  a n d  ( d )  | V S |.

V = IVI /  0° V
( b )

F i g u r e  P 11.6-6 R e s i d e n t i a l  c i r c u i t  w i t h  s e l e c t e d  l o a d s .

P 11.6-5 T w o  i m p e d a n c e s  a r e  s u p p l i e d  b y  V  =  1 0 0  

/ 1 6 0 ° V r m Q , a s  s h o w n  i n  F i g u r e  P  1 1 . 6 - 5 ,  w h e r e  1 =
2  / 1 9 0 °  A  r m s .  T h e  f i r s t  l o a d  d r a w s  P x =  2 3 . 2  W ,  a n d  

=  5 0  V A R .  C a l c u l a t e  I j ,  I 2 , t h e  p o w e r  f a c t o r  o f  e a c h  i m p e d ­

a n c e ,  a n d  t h e  t o t a l  p o w e r  f a c t o r  o f  t h e  c i r c u i t .

P 11.6-7 A  m o t o r  c o n n e c t e d  t o  a  2 2 0 - V  s u p p l y  l i n e  f r o m  

t h e  p o w e r  c o m p a n y  h a s  a  c u r r e n t  o f  7 . 6  A .  B o t h  t h e  c u r r e n t  

a n d  t h e  v o l t a g e  a r e  r m s  v a l u e s .  T h e  a v e r a g e  p o w e r  d e l i v e r e d  

t o  t h e  m o t o r  i s  1 3 1 7  W .

(a)  F i n d  t h e  a p p a r e n t  p o w e r ,  t h e  r e a c t i v e  p o w e r ,  a n d  t h e  

p o w e r  f a c t o r  w h e n  c o  =  3 7 7  r a d / s .

(b)  F i n d  t h e  c a p a c i t a n c e  o f  a  p a r a l l e l  c a p a c i t o r  t h a t  w i l l  r e s u l t  

i n  a  u n i t y  p o w e r  f a c t o r  o f  t h e  c o m b i n a t i o n .

( c )  F i n d  t h e  c u r r e n t  i n  t h e  u t i l i t y  l i n e s  a f t e r  t h e  c a p a c i t o r  i s  

i n s t a l l e d .

A n s w e r s :  ( a ) p f  =  0 . 7 8 8  (b) C  =  5 6 . 5  / / F  ( c )  /  =  6 . 0  A  r m s

P 11.6-8 T w o  l o a d s  a r e  c o n n e c t e d  i n  p a r a l l e l  a c r o s s  a  1 0 0 0 - V  

r m s ,  6 0 - H z  s o u r c e .  O n e  l o a d  a b s o r b s  5 0 0  k W  a t  0 . 6  p o w e r  

f a c t o r  l a g g i n g ,  a n d  t h e  s e c o n d  l o a d  a b s o r b s  4 0 0  k W  a n d  6 0 0  

k V A R .  D e t e r m i n e  t h e  v a l u e  o f  t h e  c a p a c i t o r  t h a t  s h o u l d  b e  

a d d e d  i n  p a r a l l e l  w i t h  t h e  t w o  l o a d s  t o  i m p r o v e  t h e  o v e r a l l  

p o w e r  f a c t o r  t o  0 . 9  l a g g i n g .

A n s w e r :  C  =  2 . 2  / x F

P 11.6-9 A  v o l t a g e  s o u r c e  w i t h  a  c o m p l e x  i n t e r n a l  i m p e d ­

a n c e  i s  c o n n e c t e d  t o  a  l o a d ,  a s  s h o w n  i n  F i g u r e  P  1 1 . 6 - 9 .  T h e
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load absorbs 1 k W of average power at 100 V rms with a power 
factor of 0.80 lagging. The source frequency is 200 rad/s.

(a) Determine the source voltage VY
(b )  Find the type and value of the element to be placed in 

parallel with the load so that maximum power is trans­
ferred to the load.

6 . 4  Q  2 4  m H

V -
Zl

T

F i g u r e  P  1 1 . 6 - 9

P 11.6-10 The circuit shown in Figure P 11.6-lOa can be 
represented in the frequency domain as shown in Figure 
P 11.6-10/). In the frequency domain, the value of the mesh 
current is I =  1.076 / —8.3 A.

(a) Determine the complex power supplied by the voltage 
source.

(b )  Given that the complex power received by Zj is 6.945 +  
j  13.89 VA, determine the values of R\ and L x.

(c) Given that the real power received by Z3 is 4.63 W at a power 
factor of 0.56 lagging, determine the values of R3 and I 3.

Z  i  — R  i  +  j ( o L  j

4 8  £ _ °  V  ( Y Z2 ~ 2̂ ~ J
. 1

co C9

Source Load

P 11.6-12 The circuit in Figure P 11.6-12 consists of a source 
connected to a load. Determine the impedance of the load and 
the complex power delivered by the source to the load under 
each of the following conditions:

(a) The source delivers 14.12 + y’8.47 VA to load ,4 and 8.47 + 
>14.12 VA to load B .

(b )  The source delivers 8.47 +yT4.12 VA to load A , and the 
impedance of load B is 15 + /9  fl.

(c) The source delivers 14.12 W to load A at a power factor of
0.857 lagging, and the impedance of load B is 9 +yT5 ft.

(d )  The impedance of load A is 15 +j9 ft, and the impedance 
of load B is 9 +y*15 ft.

r --------------------------------------  |
T 1

c o s  ( 3 »  +  7 5 ° )  V A B

1  „ _____________ - L 1

S o u r c e L o a d

F i g u r e  P  1 1 . 6 - 1 2

P 11.6-13 Figure P 11.6-13 shows two possible representa­
tions of an electrical load. One of these representations is used 
when the power factor of the load is lagging, and the other is 
used when the power factor is leading. Consider two cases:

(a) At the frequency co — 4 rad/s, the load has the power factor 
p f  = 0.8 lagging.

(b )  At the frequency co = 4 rad/s, the load has the power factor 
p f  = 0.8 leading.

In each case, choose one of the two representations of the load. 
Let R =  6 ft and determine the value of the capacitance, C, or 
the inductance, L.

F i g u r e  P  1 1 . 6 - 1 0

P 11.6-11 The circuit in Figure P 11.6-11 consists of a source 
connected to a load. The source delivers 14.12 W to the load at 
a power factor of 0.857 lagging. What are the values of the 
resistance, /?, and the inductance, LI

R

--------o---------- v w -

"  ) 2 4  cos (3 f+ 7 5 °)V

Figure P 11.6-11

^  C

F i g u r e  P  1 1 . 6 - 1 3

P 11.6-14 Figure P 11.6-14 shows two possible representa­
tions of an electrical load. One of these representations is used 
when the power factor of the load is lagging, and the other is 
used when the power factor is leading. Consider two cases:

(a) At the frequency co — 4 rad/s, the load has the power factor 
p f  = 0.8 lagging.

(b) At the frequency a> = 4 rad/s, the load has the power factor 
p f  = 0.8 leading.

In each case, choose one of the two representations of the load. 
Let R — 6 ft and determine the value of the capacitance, C, or 
the inductance, L.
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A n s w e r :  P  —  4 1 3  W

P  1 1 . 6 - 1 5  F i g u r e  P  1 1 . 6 - 1 5  s h o w s  t w o  e l e c t r i c a l  l o a d s .  

E x p r e s s  t h e  p o w e r  f a c t o r  o f  e a c h  l o a d  i n  t e r m s  o f  c o ,  R ,  a n d  L .

Figure P 11.6-14

(b)

Figure P 11.6-15

P 11.6-16 F i g u r e  P  1 1 . 6 - 1 6  s h o w s  t w o  e l e c t r i c a l  l o a d s .  

E x p r e s s  t h e  p o w e r  f a c t o r  o f  e a c h  l o a d  i n  t e r m s  o f  c o ,  R , a n d  C .

1
1

(a) ( b )

Figure P 11.6-16

1 4  A

Figure P 11.7-1

P 11.7-2 F i n d  t h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  8 - C l  r e s i s t o r  

i n  t h e  c i r c u i t  o f  F i g u r e  P  1 1 . 7 - 2 .

A n s w e r :  P  =  2 2  W

5  c o s  2 0 0 0 r  A

F i g u r e  P  1 1 . 7 - 2

P 11.7-3 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 7 - 3 ,  d e t e r m i n e  

t h e  a v e r a g e  p o w e r  a b s o r b e d  b y  e a c h  r e s i s t o r ,  R \  a n d  R 2. T h e  

v o l t a g e  s o u r c e  i s  v s  =  1 0  - I - 1 0  c o s  ( 5 /  +  4 0 ° )  V ,  a n d  t h e  c u r r e n t  

s o u r c e  i s  i s  =  4  c o s  ( 5 /  —  3 0 ° )  A .

2  H

P 11.6-17 T h e  s o u r c e  v o l t a g e  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 6 - 1 7  i s  V s  =  2 4  / 3 0 o V .  C o n s e q u e n t l y ,

1. =  3.13/2S.40 A. I2 =  1.99/52 .90 A and V4 =  8.88/-1 0 .6 °  V

D e t e r m i n e  ( a )  t h e  p o w e r  f a c t o r  o f  Z I?  ( b )  t h e  p o w e r  f a c t o r  o f  

Z 3 , a n d  ( c )  t h e  p o w e r  f a c t o r  o f  Z 4 . I n c l u d e  t h e  i n d i c a t i o n  o f  

l e a d i n g  o r  l a g g i n g .

P 11.7-4 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 7 - 4 ,  d e t e r m i n e  

t h e  e f f e c t i v e  v a l u e  o f  t h e  r e s i s t o r  v o l t a g e  v R  a n d  t h e  c a p a c i t o r  

v o l t a g e  v c .

+  V

Z 2 = 5  +  j 5 n  I +  

Z 3  =  3  +  j 8 Q  Z 4

J

2  f t  >  v R

+
2 0  m F  i  v c

Figure P 11.6-17

Section 11.7 The Power Superposition Principle

P 11.7-1 F i n d  t h e  a v e r a g e  p o w e r  a b s o r b e d  b y  t h e  2 - 0  r e s i s t o r  

i n  t h e  c i r c u i t  o f  F i g u r e  P  1 1 . 7 - 1 .

Figure P 11.7-4

Section 11.8 The Maximum Power Transfer 
Theorem

P 11.8-1 D e t e r m i n e  v a l u e s  o f  R  a n d  L  f o r  t h e  c i r c u i t  s h o w n  i n  

F i g u r e  P  1 1 . 8 - 1  t h a t  c a u s e  m a x i m u m  p o w e r  t r a n s f e r  t o  t h e  l o a d .



550 )------- AC S te a d y -S ta te  P o w e r

Answer: R =  800 O and L — 1.6 H

4000 ft

R 0.8 H

5 cos (lOOOr

Figure P 11.8-1

P 11.8-2 Is it possible to choose R and L for the circuit shown 
in Figure P 11.8-2 so that the average power delivered to the 
load is 12 mW?

Answer: Yes

Figure P 11.8-5

Section 11.9 Coupled Inductors
P 11.9-1 Two magnetically coupled coils are connected as 
show'n in Figure P 11.9-1. Show that an equivalent inductance 
at terminals a-b is Lab — L\ +  L2 — 2M.

a
o- M

b
o -

Figure P 11.8-2

P 11.8-3 The capacitor has been added to the load in the 
circuit shown in Figure P 11.8-3 to maximize the power 
absorbed by the 4000-0 resistor. What value of capacitance 
should be used to accomplish that objective?

Answer: 0.1 /zF

800 f t  0.32 H

Figure P 11.9-1

P 11.9-2 Two magnetically coupled coils are shown con­
nected in Figure P 11.9-2. Find the equivalent inductance I ab.

Figure P 11.8-3

P 11.8-4 What is the value of the average power delivered to 
the 2000-0 resistor in the circuit shown in Figure P 11.8-4? 
Can the average power delivered to the 2000-0 resistor be 
increased by adjusting the value of the capacitance?

Answers: 8 mW. No.

400 f t  0 .8 H

Figure P 11.9-2

P 11.9-3 The source voltage of the circuit shown in Figure 
P 11.9-3 is vs =  141.4 cos 100/ V. Determine z'i(f) and i2(t).

200 ft

Figure P 11.9-3

P 11.9-4 A circuit with a mutual inductance is shown in 
Figure P 11.9-4. Find the voltage V2 when co = 5000.

10 ft m  = 10 mH

F i g u r e  P  1 1 . 8 - 4

P 11.8-5 What is the value of the resistance R in Figure P 11.8-5 
that maximizes the average power delivered to the load?

■ 100 mH
400 f t

P 11.9-5 Determine v(t) for the circuit o f  Figure P 11.9-5
when v, =  10 cos 30/ V.
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Answer: v(t) =  23 cos (30/ +  9°)V

1/150 F 2 8  ft

Figure P 11.9-5

P 11.9-6 F i n d  t h e  t o t a l  e n e r g y  s t o r e d  i n  t h e  c i r c u i t  s h o w n  i n  

F i g u r e  P  1 1 . 9 - 6  a t  t  =  0  i f  t h e  s e c o n d a r y  w i n d i n g  i s  ( a )  o p e n -  

c i r c u i t e d ,  ( b )  s h o r t - c i r c u i t e d ,  ( c )  c o n n e c t e d  t o  t h e  t e r m i n a l s  o f  

a  7 - 0  r e s i s t o r .

A n s w e r s :  ( a )  1 5  J  ( b )  0  J  ( c )  5  J

Figure P 11.9-6

P 11.9-7 F i n d  t h e  i n p u t  i m p e d a n c e ,  Z, o f  t h e  c i r c u i t  o f  F i g u r e  

P  1 1 . 9 - 7  w h e n  c o  =  1 0 0 0  r a d / s .

A n s w e r :  Z =  8.4 /14° O

8 mH Ve mF

Figure P 11.9-7

P 11.9-8 A  c i r c u i t  w i t h  t h r e e  m u t u a l  i n d u c t a n c e s  i s  s h o w n  i n  

F i g u r e  P  1 1 . 9 - 8 .  W h e n  v s  =  1 0  c o s  2 /  V ,  M x =  2  H ,  a n d  A /2 =  

A /3 =  1  H ,  d e t e r m i n e  t h e  c a p a c i t o r  v o l t a g e  v ( t ) .

P 11.9-9 T h e  c u r r e n t s  / , ( / )  a n d  i 2 { t )  i n  F i g u r e  P  1 1 . 9 - 9  a r e  

m e s h  c u r r e n t s .  R e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n  

a n d  w r i t e  t h e  m e s h  e q u a t i o n s .

15 cos (25r + 30°) V 80 Q

Figure P 11.9-9

P 11.9-10 D e t e r m i n e  t h e  m e s h  c u r r e n t s  f o r  t h e  c i r c u i t  s h o w n  

i n  F i g u r e  P  1 1 . 9 - 1 0 .

P 11.9-11 D e t e r m i n e  t h e  c o i l  v o l t a g e s ,  v l s  v 2 ,  v 3 , a n d  v 4 ,  f o r  

t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 9 - 1 1 .

-  i>1 + 2 cos (5r + 45°) A

Figure P 11.9-11

P 11.9-12 F i g u r e  P  1 1 . 9 - 1 2  s h o w s  t h r e e  s i m i l a r  c i r c u i t s .  I n  

e a c h ,  t h e  i n p u t  t o  t h e  c i r c u i t  i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  

s o u r c e ,  v s ( / ) .  T h e  o u t p u t  i s  t h e  v o l t a g e  a c r o s s  t h e  r i g h t - h a n d  

c o i l ,  v 0 ( / ) .  D e t e r m i n e  t h e  s t e a d y - s t a t e  o u t p u t  v o l t a g e ,  v 0 ( / ) ,  f o r  

e a c h  o f  t h e  t h r e e  c i r c u i t s .
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’ 5 Q

4 H

5 H v0{()

■ Q -
us(r)=5.94 cos (3t + 140°) V 

(a)
4 H

\
2 H 5 H v0(t)

i»sU)=5.94 cos (3r + 140°) V
(b)

4 H

5Q 2 H 5 H v0it)

o
vs(t)=5.94 cos (3r + 140°) V

Figure P 11.9-12

-WV/—
4 n

T )  Vs(0 4 H

+

5 H uo(0

5 H t>0tf>

(b)
^ W V -  

4Q I 2H L*

us(f> 4 H S- ^  5 H v0(t)

(c)

Figure P 11.9-13

P 11.9-14 The circuit shown in Figure P 11.9-14 is repre­
sented in the time domain. Determine coil voltages vj 
and v2.

Answers: v\ =  104.0 cos (61 +  46.17°) V and v2 =  100.6 
cos (6t +  63.43°) V

1.5 cos (6/+ 90°) A

8 H

6 H

P 11.9-13 Figure P 11.9-13 shows three similar circuits. In 
each, the input to the circuit is the voltage of the voltage source,

vs(f) =  5.7 cos (4t +  158°) V

The output in each circuit is the voltage across the right-hand 
coil, vG(r). Determine the steady-state output voltage, vo(0, for 
each of the three circuits.

Figure P 11.9-14

P 11.9-15 The circuit shown in Figure P 11.9-15 is repre­
sented in the frequency domain. (For example, —J30 f l  is the 
impedance due to the mutual inductance of the coupled coils.) 
Suppose V(o>) =  70 /o° V. Then I, («) =  B /d  A and I2(<w) =
0.875 / —90° A. Determine the values of B and 9.

Answers: B — 1.75 A and 0 =  —90°

■i<©> -;25  Q I2(g»

j 30 Q
*-----► ^ /40 Q 4 =  -7*100 Q

Figure P 11.9-15

P 11.9-16 Determine the values of the inductances L x and L2 
in the circuit shown in Figure P 11.9-16, given that

and
i{t) =0.319 cos ( 4 / -  82.23°) A 

v(/) =  0.9285 cos (4/ -  62.20°) V.

i(t)

5cos 41 V ( +

F igu re P 11 .9-16
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4 H

P 11.9-17 Determine the complex power supplied by the
source in the circuit shown in Figure P 11.9-17.

J +

• v2 100 _/75

*] •

10 V rms ( l )

1 : n

Ideal

5 mA rms

MO kQ

30 Q ;20  Q

80 Z=50° V ( 1

Figure P I I .  10-3

1 : n

Ideal

5 Q

200 Q

Ideal

Figure P 11.10-4

Figure P 11.9-17

Section 11.10 The Ideal Transformer

P 11.10-1 F i n d  V i ,  V 2 , I i ,  a n d  I 2  f o r  t h e  c i r c u i t  o f  F i g u r e  

P  1 1 . 1 0 - 1  w h e n  n  =  5 .

I2

P 11.10-5 T h e  c i r c u i t  o f  F i g u r e  P  1 1 . 1 0 - 5  i s  o p e r a t i n g  a t  1 0  

r a d / s .  D e t e r m i n e  t h e  i n d u c t a n c e  L  a n d  t h e  t u r n s  r a t i o  n  t o  

a c h i e v e  m a x i m u m  p o w e r  t r a n s f e r  t o  t h e  l o a d .

A n s w e r :  n  =  2

P 11.10-2 A  c i r c u i t  w i t h  a  t r a n s f o r m e r  i s  s h o w n  i n  F i g u r e  

P  1 1 . 1 0 - 2 .

(a)  D e t e r m i n e  t h e  t u r n s  r a t i o ,  n .

(b)  D e t e r m i n e  t h e  v a l u e  o f  R a b .

( c )  D e t e r m i n e  t h e  c u r r e n t ,  / ,  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e .

A n s w e r s :  ( & )  n  —  5  (b )/?ab =  4 0 0 H

Figure P 11.10-5

P 11.10-6 F i n d  t h e  T h e v e n i n  e q u i v a l e n t  a t  t e r m i n a l s  a - b  f o r  

t h e  c i r c u i t  o f  F i g u r e  P  11.10-6 w h e n  v  =  16 c o s  31 V .

A n s w e r :  V o c  =  12 a n d  Z t  =  3 . 7 5  H

Figure P 11.10-2

P 11.10-3 F i n d  t h e  v o l t a g e  V c  i n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 1 0 - 3  . A s s u m e  a n  i d e a l  t r a n s f o r m e r .  T h e  t u r n s  r a t i o  i s  n  =  

1 / 3 .

A n s w e r :  V c  = 2 1 . 0  7 - 1 0 5 . 3 °

Figure P 11.10-6

P 11.10-7 F i n d  t h e  i n p u t  i m p e d a n c e  Z f o r  t h e  c i r c u i t  o f  

F i g u r e  P  1 1 . 1 0 - 7 .

A n s w e r :  Z =  6  C l

2Q
J W V

2:1

r ’ 6 Q

Ideal

Figure P 11.10-7

P 11.10-4 A n  i d e a l  t r a n s f o r m e r  i s  c o n n e c t e d  i n  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  P i l l  0 - 4 ,  w h e r e  v s  =  5 0  c o s  1 0 0 0 /  V a n d  n  =  

N 2 / N \  =  5 .  C a l c u l a t e  V ,  a n d  V 2 .

P 11.10-8 I n  l e s s  d e v e l o p e d  r e g i o n s  i n  m o u n t a i n o u s  a r e a s ,  

s m a l l  h y d r o e l e c t r i c  g e n e r a t o r s  a r e  u s e d  t o  s e r v e  s e v e r a l  r e s i ­

d e n c e s  ( M a c k a y ,  1 9 9 0 ) .  A s s u m e  e a c h  h o u s e  u s e s  a n  e l e c t r i c  

r a n g e  a n d  a n  e l e c t r i c  r e f r i g e r a t o r ,  a s  s h o w n  i n  F i g u r e  P  1 1 . 1 0 - 8 .  

T h e  g e n e r a t o r  i s  r e p r e s e n t e d  a s  V s  o p e r a t i n g  a t  6 0  H z  a n d  

V 2  =  2 3 0 /o °V. C a l c u l a t e  t h e  p o w e r  c o n s u m e d  b y  e a c h  h o m e  

c o n n e c t e d  t o  t h e  h y d r o e l e c t r i c  g e n e r a t o r  w h e n  n  =  5 .
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Source and line P 11.10-10 Find V, and \ { for the circuit o f  Figure
P 11.10-10 when n — 5.

8Q i\(t) i2(t)

P 11.10-9 Three similar circuits are shown in Figure 
P 11.10-9. In each of these circuits, vs(t) =  5 cos (41 +  
45°) V. Determine v2 (/) for each of the three circuits.

Answers: (a) v2 (/) =  0 V
(b) V2(/) =  1.656 cos(4r +  39°) V
(c) v2(/) =2.88cos(4/ +  45°) V

P 11.10-11 Determine v2 and i 2 for the circuit shown in 
Figure P 11.10-11 when n =  2. Note that i2 does not enter the 
dotted terminal.

Answers: v2 = 6.08 cos( 10/ +  47.7°) V 

i2 =  3.34 cos(10f -f 42°) V

2 0  m F  5 Q 2 Q

F i g u r e  P  1 1 . 1 0 - 9

P 11.10-12 The circuit shown in Figure P 11.10-12 is 
represented in the frequency domain. Given the line current 
lune =  0.5761 7-75.88° A, determine ^source* the average 
power supplied by the source; Pune* the average power 
delivered to the line; and PLoad, the average power delivered 
to the load.

Hint: Use conservation of (average) power to check your 
answers.

Answer: P Source =  42.15 W, PLine =  0.6638 W, and P^ od =  
41.49 W

120Z00 V

Source transformer 1 line transformer 2 load

F igure P 11.10-12
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P 11.10-13 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 1 . 1 0 - 1 3  i s  

r e p r e s e n t e d  i n  t h e  f r e q u e n c y  d o m a i n .  D e t e r m i n e  R  a n d  X y 

t h e  r e a l  a n d  i m a g i n a r y  p a r t s  o f  t h e  e q u i v a l e n t  i m p e d a n c e ,  Z e q .

Answer: R  =  1 8 0  C l  a n d  X  —  1 1 0  C l

4 a 2 n

a n d

i 2 ( t )  =  1 . 2 2 9  c o s  ( 4 / -  1 1 . 1 9 ° )  A

a n d

Figure P 11.10-13

Section 11.11 How Can We Check . . . ?

P 11.11-1 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 1 1 - 1  i n d i c a t e s  t h a t  w h e n

v s ( 0  =  1 2  c o s  ( A t  +  3 0 ° )  V  

t h e  m e s h  c u r r e n t s  a r e  g i v e n  b y

h ( t )  =  2 . 3 2 7  c o s  ( 4 /  -  2 5 . 2 2 ° )  A

vs(t) ( I

Figure P 11.11-2

P 11.11-3 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 1 1 - 3  i n d i c a t e s  t h a t  w h e n

v s ( f )  =  1 2  c o s  ( 4 / +  3 0 ° )  V

t h e  m e s h  c u r r e n t s  a r e  g i v e n  b y

/ , ( / )  =  1 . 0 0 1  c o s  ( A t -  4 7 . 0 1 ° )  A

i 2 ( t )  =  0 . 4 2 4 3  c o s  ( 4 /  -  1 5 . 0 0 ° )  A

a n d

C h e c k  t h e  r e s u l t s  o f  t h i s  a n a l y s i s  b y  c h e c k i n g  t h a t  t h e  e q u a ­

t i o n s  d e s c r i b i n g  c u r r e n t s  a n d  v o l t a g e s  o f  c o u p l e d  c o i l s  a r e  

s a t i s f i e d .

C h e c k  t h e  r e s u l t s  o f  t h i s  a n a l y s i s  b y  c h e c k i n g  t h a t  t h e  

a v e r a g e  p o w e r  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e  i s  e q u a l  t o  t h e  

s u m  o f  t h e  a v e r a g e  p o w e r s  r e c e i v e d  b y  t h e  o t h e r  c i r c u i t  

e l e m e n t s .

4 f l  2 Q

Figure P 11.11-1

P 11.11-2 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 1 1 - 2  i n d i c a t e s  t h a t  w h e n

v s ( t )  =  1 2  c o s  ( 4 / +  3 0 ° )  V

t h e  m e s h  c u r r e n t s  a r e  g i v e n  b y

i , ( f )  =  1 . 6 4 7  c o s  ( A t -  1 7 . 9 2 ° )  A  

i 2 ( t )  =  1 . 0 9 4  c o s  ( 4 / -  1 3 . 1 5 ° )  A

Figure P 11.11-3

P 11.11-4 C o m p u t e r  a n a l y s i s  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  

P  1 1 . 1 1 - 4  i n d i c a t e s  t h a t  w h e n

v s ( t )  =  1 2  c o s  ( A t  +  3 0 ° )  V

t h e  m e s h  c u r r e n t s  a r e  g i v e n  b y

i \ ( t )  =  2 5 . 6  c o s  ( A t  - I-  3 0 ° )  m A

i 2 ( t )  —  6 4  c o s  ( A t  - I -  3 0 ° )  m A
a n d

C h e c k  t h e  r e s u l t s  o f  t h i s  a n a l y s i s  b y  c h e c k i n g  t h a t  t h e  

c o m p l e x  p o w e r  s u p p l i e d  b y  t h e  v o l t a g e  s o u r c e  i s  e q u a l  t o  t h e  

s u m  o f  t h e  c o m p l e x  p o w e r s  r e c e i v e d  b y  t h e  o t h e r  c i r c u i t  

e l e m e n t s .

C h e c k  t h e  r e s u l t s  o f  t h i s  a n a l y s i s  b y  c h e c k i n g  t h a t  t h e  e q u a ­

t i o n s  d e s c r i b i n g  c u r r e n t s  a n d  v o l t a g e s  o f  i d e a l  t r a n s f o r m e r s  a r e  

s a t i s f i e d .

vs{t)

Figure P 11.11-4
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PSpice Problems
SP 11-1 The input to the circuit shown in Figure SP 11-1 is 
the voltage of the voltage source

vs(0 =  7.5 sin (5t +  15°) V

The output is the voltage across the 4-0  resistor, vQ(/). Use 
PSpice to plot the input and output voltages.

Hint: Represent the voltage source, using the PSpice part 
called VSIN.

8 Q
3 H

5 H 2 H - v0U) * 4 Q

The output is the voltage across the 9-11 resistor, vG(f). Use 
PSpice to determine the average power delivered to the 
transformer.

Hint: Represent the voltage source, using the PSpice part 
called VAC.

iit) 8 U
2:3

9Q ,

SP 11-2 The input to the circuit shown in Figure SP 11-1 is 
the voltage of the voltage source

vs(/) =  7.5 sin (51 +  15°) =  7.5 cos (51 -  75°) V

The output is the voltage across the 4-fl resistor, vQ(/). Use 
PSpice to determine the average power delivered to the 
coupled inductors.

Hint: Represent the voltage source, using the PSpice part 
called VAC. Use printers (PSpice parts called IPRINT and 
VPRINT) to measure the ac current and voltage of each coil.

SP 11-3 The input to the circuit shown in Figure SP 11-3 is 
the voltage of the voltage source,

SP 11-4 Determine the value of the input impedance, Z t, of 
the circuit shown in Figure SP 11-4 at the frequency co =  4 
rad/s.

Hint: Connect a current source across the terminals of the 
circuit. Measure the voltage across the current source. The 
value of impedance will be equal to the ratio of the voltage to 
the current.

8Q 2 Q

vs(f) =  48 cos (4/ +  114°) V Figure SP 11-4

Design Problems
DP 11-1 A 100-kW induction motor, shown in Figure 
DP 11-1, is receiving 100 kW at 0.8 power factor lagging. 
Determine the additional apparent power in kVA that is made 
available by improving the power factor to (a) 0.95 lagging 
and (b) 1.0. (c) Find the required reactive power in kVAR 
provided by a set of parallel capacitors for parts (a) and (b). (d) 
Determine the ratio of kVA released to the kVAR of capaci­
tors required for parts (a) and (b) alone. Set up a table, 
recording the results of this problem for the two values of 
power factor attained.

Induction motor 

Figure DP 11-1 Induction motor with parallel capacitor.
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DP 11-2 T w o  l o a d s  a r e  c o n n e c t e d  i n  p a r a l l e l  a n d  s u p p l i e d  

f r o m  a  7 . 2 - k V  r m s  6 0 - H z  s o u r c e .  T h e  f i r s t  l o a d  i s  5 0 - k V A  a t  

0 . 9  l a g g i n g  p o w e r  f a c t o r ,  a n d  t h e  s e c o n d  l o a d  i s  4 5  k W  a t  0 . 9 1  

l a g g i n g  p o w e r  f a c t o r .  D e t e r m i n e  t h e  k V A R  r a t i n g  a n d  c a p a c ­

i t a n c e  r e q u i r e d  t o  c o r r e c t  t h e  o v e r a l l  p o w e r  f a c t o r  t o  0 . 9 7  

l a g g i n g .

A n s w e r :  C —  1 . 0 1  / i F  

DP 11-3

(a)  D e t e r m i n e  t h e  l o a d  i m p e d a n c e  Z ab t h a t  w i l l  a b s o r b  m a x i ­

m u m  p o w e r  i f  i t  i s  c o n n e c t e d  t o  t e r m i n a l s  a - b  o f  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  D P  1 1 - 3 .

(b)  D e t e r m i n e  t h e  m a x i m u m  p o w e r  a b s o r b e d  b y  t h i s  l o a d .

( c )  D e t e r m i n e  a  m o d e l  o f  t h e  l o a d  a n d  i n d i c a t e  t h e  e l e m e n t  

v a l u e s .

5 Q a 100 mH

Figure DP 11-3

DP 11-4 S e l e c t  t h e  t u r n s  r a t i o  n  n e c e s s a r y  t o  p r o v i d e  m a x i m u m  

p o w e r  t o  t h e  r e s i s t o r  R  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  1 1 - 4 .  

A s s u m e  a n  i d e a l  t r a n s f o r m e r .  S e l e c t  n  w h e n  R  =  4  a n d  8  f t .

c o n n e c t i o n  o f  a  1 0 - f t  r e s i s t a n c e  a n d  a  1 0 - / / H  i n d u c t a n c e .  T h e  

Z s  c o n s i s t s  o f  a  1 - f t  r e s i s t a n c e  a n d  a  l - / z H  i n d u c t a n c e .

(a)  S e l e c t  a n  i n t e g e r  n t o  m a x i m i z e  t h e  e n e r g y  d e l i v e r e d  t o  t h e  

l o a d .  C a l c u l a t e  I 2  a n d  t h e  e n e r g y  t o  t h e  l o a d .

(b)  A d d  a  c a p a c i t a n c e  C  i n  s e r i e s  w  i t h  Z 2  t o  i m p r o v e  t h e  e n e r g y  

d e l i v e r e d  t o  t h e  l o a d .

Figure DP 11-5

DP 11-6 A  n e w  e l e c t r o n i c  l a m p  ( e - l a m p )  h a s  b e e n  d e v e l o p e d  

t h a t  u s e s  a  r a d i o - f r e q u e n c y  s i n u s o i d a l  o s c i l l a t o r  a n d  a  c o i l  t o  

t r a n s m i t  e n e r g y  t o  a  s u r r o u n d i n g  c l o u d  o f  m e r c u r y  g a s  a s  s h o w n  

i n  F i g u r e  D P  1 1  - 6 a .  T h e  m e r c u r y  g a s  e m i t s  u l t r a v i o l e t  l i g h t  t h a t  

i s  t r a n s m i t t e d  t o  t h e  p h o s p h o r  c o a t i n g ,  w h i c h ,  i n  t u r n ,  e m i t s  

v i s i b l e  l i g h t .  A  c i r c u i t  m o d e l  o f  t h e  e - l a m p  i s  s h o w n  i n  F i g u r e  

D P  1 1 - 6 b .  T h e  c a p a c i t a n c e  C  a n d  t h e  r e s i s t a n c e  R  a r e  d e p e n d e n t  

o n  t h e  l a m p ' s  s p a c i n g  d e s i g n  a n d  t h e  t y p e  o f  p h o s p h o r .  S e l e c t  R  

a n d  C  s o  t h a t  m a x i m u m  p o w e r  i s  d e l i v e r e d  t o  R ,  w h i c h  r e l a t e s  t o  

t h e  p h o s p h o r  c o a t i n g  ( A d l e r ,  1 9 9 2 ) .  T h e  c i r c u i t  o p e r a t e s  a t  c o q  =  

1 0 7  r a d / ' s .

j  3 f t

Figure DP 11-4

DP 11-5 A n  a m p l i f i e r  i n  a  s h o r t - w a v e  r a d i o  o p e r a t e s  a t  1 0 0  

k H z .  T h e  l o a d  Z 2  i s  c o n n e c t e d  t o  a  s o u r c e  t h r o u g h  a n  i d e a l  

t r a n s f o r m e r ,  a s  s h o w n  i n  F i g u r e  D P  1 1 - 5 .  T h e  l o a d  i s  a  s e r i e s

Phosphorus

Figure DP 11-6 E l e c t r o n i c  l a m p .
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12.1 I N T R O D U C T I O N

In this chapter, we will begin to analyze three-phase circuits. These circuits consist o f  three parts: a 
three-phase source, a three-phase load, and a transmission line. The three-phase source consists o f  
either three Y-connected sinusoidal voltage sources or three A-connected sinusoidal voltage sources. 
Similarly, the circuit elements that comprise the load are connected to form either a Y or a A. The 
transmission line is used to connect the source to the load and consists o f  either three or four wires. 
These circuits are described using names that identify the way in which the source and the load are 
connected. For example, the circuit shown in Figure 12.3-1 has a Y-connected, three-phase source and 
a Y-connected load. The circuit in Figure 12.3-1 is called a Y-to-Y circuit. The circuit in Figure 12.5-1 
has a Y-connected three-phase source and a A-connected load. The circuit in Figure 12.5-1 is called a 
Y-to-A circuit.

Notice that the Y-to-Y circuit in Figure 12.3-1 has been represented in the frequency domain, 
using impedances and phasors. This is appropriate because the three voltage sources that comprise a 
three-phase source are sinusoidal sources having the sam e frequency . Analysis o f  three-phase 
circuits using phasors and impedances will determine the steady-state response  o f  the three-phase 
circuit.

Before beginning our analysis o f  three-phase circuits, it is helpful to recall why it is advanta­
geous to use phasors to find the steady-state response o f  linear circuits to sinusoidal inputs. Circuits 
that contain capacitors or inductors are represented by differential equations in the time domain. We 
can solve these differential equations, but it is a lot o f work. Impedances and phasors represent the 
circuit in the frequency domain. Linear circuits are represented by algebraic equations in the 
frequency domain. These algebraic equations involve complex numbers, but they are still easier 
to solve than the differential equations. Solving these algebraic equations provides the phasor 
corresponding to the output voltage or current. We know that the steady-state output voltage or 
current will be sinusoidal and will have the same frequency as the input sinusoid. The magnitude and 
phase angle o f the phasor corresponding to the output voltage or current provide the magnitude and 

558 ) phase angle o f the output sinusoid.
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Table 12.1-1 Frequency Domain Power Relationships

RELATIONSHIP USING RELATIONSHIP USING
UNITSQUANTITY PEAK VALUES BMSVALUES

Element voltage, v(/) V (f) =  Vm COS ((Ot +  0y) v{l) =  VmuV̂ 2 COS (U)t +  0v) V

Element current, /(/) i(t) =  /m COS (o>t +  0|) i(l) = /nm\/2 COS ((Dt + 9\) A

Complex power, S S =  COS (Oy — 9\) 

Sin (0V -0 .)

S =  Vrmslrms COS (0y — &\)

"I",/^nns^nns sin (0y ^ l)

VA

Apparent power, |S| | S | -  — |S| — V rms  ̂rms VA

Average power, P p  =  Ladm. c o s  (<>v  _  o , ) P = ^rms/rms COS (0y -  0|) W

Reactive power, Q 0  =  ^ y £ s i n ( e v - e l ) Q =  * W r m s  Sin (dv -  Oy) VAR

We will be particularly interested in the power the three-phase source delivers to the three- 
phase load. Table 12.1-1 summarizes the formulas that can be used to calculate the power 
delivered to an element when the element voltage and current adhere to the passive convention. 
Table 12.1-1 also provides the equations for the sinusoidal element current and voltage. In the 
table, Im and Vm are the magnitudes of the sinusoidal current and voltage, whereas s and are 
the corresponding effective values of the current and voltage. Notice that the formulas for power 
in terms of /rms and are simpler than the corresponding formulas in terms of /m and Vm. In 
contrast, the equations giving the sinusoidal voltage and current are simpler when /m and Vm are 
used. When engineers are interested primarily in power, they are likely to use I ^ s  and V^s- On the 
other hand, when engineers are interested primarily in the sinusoidal currents and voltages, they 
are likely to use /m and Vm. In this chapter, we are interested mainly in power and will use effective 
values.

12.2 T H R E E - P H A S E  V O L T A G E S

The generation and transmission of electrical power are more efficient in polyphase systems 
employing combinations of two, three, or more sinusoidal voltages. In addition, polyphase circuits 
and machines possess some unique advantages. For example, the power transmitted in a three-phase 
circuit is constant or independent of time rather than pulsating, as it is in a single-phase circuit. In 
addition, three-phase motors start and run much better than do single-phase motors. The most 
common form of polyphase system employs three balanced voltages, equal in magnitude and 
differing in phase by 360°/3 =  120°.

An elementary ac generator consists of a rotating magnet and a stationary winding. The turns of 
the winding are spread along the periphery of the machine. The voltage generated in each turn of the 
winding is slightly out of phase with the voltage generated in its neighbor because it is cut by 
maximum magnetic flux density an instant earlier or later. The voltage produced in the first winding 
is v^.

It the first winding were continued around the machine, the voltage generated in the last turn 
would be 180° out of phase with that in the first, and they would cancel, producing no useful effect. For 
this reason, one winding is commonly spread over no more than one-third of the periphery; the other 
two-thirds of the periphery can hold two more windings used to generate two other similar voltages. A 
simplified version of three windings around the periphery of a cylindrical drum is shown in
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(a)

F I G U R E  1 2 . 2 - 1  ( a )  T h e  t h r e e  w i n d i n g s  o n  a  c y l i n d r i c a l  d r u m  u s e d  t o  o b t a i n  t h r e e - p h a s e  

v o l t a g e s  ( e n d  v i e w ) .  ( b )  B a l a n c e d  t h r e e - p h a s e  v o l t a g e s .

F I G U R E  1 2 . 2 - 2  G e n e r a t o r  w i t h  s i x  

t e r m i n a l s .

Figure 12.2-la. The three sinusoids (sinusoids are obtained with a proper w inding distribution and 
magnet shape) generated by the three sim ilar w indings are shown in Figure 12.2-16. Defining v^  as
the potential o f  terminal a w ith respect to terminal a', we describe the voltages as

âa' =  Vm COS COt

Vbb, =  v m cos (cot -  1 2 0 ° )  ( 1 2 . 2 - 1 )

Vcc' =  v m COS (cot -  240°)

where Vm is the peak value.

F I G U R E  1 2 . 2 - 3  P h a s o r  

r e p r e s e n t a t i o n  

o f  t h e  p o s i t i v e  p h a s e  

s e q u e n c e  o f  t h e  b a l a n c e d  

t h r e e - p h a s e  v o l t a g e s .

F I G U R E  1 2 . 2 - 4  T h e

n e g a t i v e  p h a s e  s e q u e n c e  

a c b  i n  t h e  Y  c o n n e c t i o n .

A three-phase circuit generates, distributes, and uses energy in the form o f  three 
voltages equal in m agnitude and symmetric in phase.

The three similar portions o f  a three-phase system are called phases. Because the 
voltage in phase aa' reaches its maxim um  first, followed by that in phase bb' and then by that 
in phase cc', we say the phase rotation is abc. This is an arbitrary convention; for any given 
generator, the phase rotation may be reversed by reversing the direction o f  rotation. The six- 
terminal ac generator is shown in Figure 12.2-2.

Using phasor notation, we may write Eq. 12.2-1 as

Vaa' =  Vm &

Vbb' =  Vm 7 -120°  

Vcc' =  v m 7 -240° =  Vm /\ 20°

(12.2-2)

The three voltages are said to be balanced voltages because they have identical am plitude, 
Vm, and frequency, co, and are out o f  phase with each other by exactly 120°. The phasor 
diagram o f the balanced three-phase voltages is shown in Figure 12.2-3. Exam ining 
Figure 12.2-3, we find

+  Vbb' +  VCC' — 0

= v a< v bb' *= v b, and Vcc/

(12.2-3) 

Vc as the threeFor notational ease, we henceforth use Va 
voltages.

The positive phase sequence is abc , as shown in Figure 12.2-3. The sequence acb is 
called the negative phase sequence, as shown in Figure 12.2-4.
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(a)

FIGURE 12.2-5 (a) Y-connected sources. The voltages Va, Vb, and Vc are 
called phase voltages, and the voltages Vab, Vbc, and Vca are called line-to- 
line voltages, (b) A-connected sources. The currents Ia, Ib, and Ic are called 
line currents, and the currents Iab, 1t*, and Ica are called phase currents.

FIG URE 12.2-6 The line-to-line voltage Vab 
o f the Y-connected source.

Often, the phase voltage in the Y connection is written as

Va= FmZo:
where Vm is the magnitude of the phase voltage.

Referring to the generator of Figure 12.2-2, there are six terminals and three voltages, va, vb, 
and vc. We use phasor notation and assume that each phase winding provides a source voltage in
series with a negligible impedance. Under these assumptions, there are two ways of interconnecting
the three sources, as shown in Figure 12.2-5. The common terminal of the Y connection is called the 
neutral terminal and is labeled n. The neutral terminal may or may not be available for connection. 
Balanced loads result in no current in a neutral wire, and thus it is often not needed.

The connection shown in Figure 12.2-50 is called the Y connection, and the A connection is shown 
in Figure 12.2-56. The Y connection selects terminals a', b' , and d  and connects them together as neutral. 
Then the line-to-line voltage, V^, of the Y-connected sources is

Vab =  Va - V b (12.2-4)

as is evident by examining Figure 12.2-5a. Because Va =  Vm[sf_ and Vb =  Vm / - 1 2 0 ° , we have

Vab = Vm -  M - 0 .5  ->0.866)
=  Fm(1.5+y0.866) (12.2-5)

=  V m / w _

This relationship is also demonstrated by the phasor diagram of Figure 12.2-6. Similarly,

=  v 5  Vm 7 -90° (12.2-6)

and =  y/3 7-210° (12.2-7)

Therefore, in a Y connection, the line-to-line voltage is \/3 times the phase voltage and is displaced 
30° in phase. The line current is equal to the phase current.

E X E R C IS E  1 2 .2 -1  The Y-connected three-phase voltage source has Vc 
Find the line-to-line voltage V^.

Answer: 207.8 7 -9 0 °  V rms

1 2 0 7 -2 4 0 °  V i
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12.3 T H E  Y - T O - Y  C I R C U I T

Consider the Y-to-Y circuit shown in Figure 12.3-1. This three-phase circuit consists o f three parts: a three- 
phase source, a three-phase load, and a transmission line. The three-phase source consists o f three Y- 
connected sinusoidal voltage sources. The impedances that comprise the load are connected to form a Y. The 
transmission line used to connect the source to the load consists o f four wires, including a wire connecting the 
neutral node o f the source to the neutral node o f the load. Figure 12.3-2 shows another Y-to-Y circuit. In 
Figure 12.3-2, the three-phase source is connected to the load using three wires, without a wire connecting 
the neutral node o f the source to the neutral node o f the load. To distinguish between these circuits, the circuit 
inFigure 12.3-1 is called a four-wire Y-to-Y circuit, whereas the circuit inFigure 12.3-2 is called a three-wire 
Y-to-Y circuit.

Analysis o f  the four-wire Y-to-Y circuit in Figure 12.3-1 is relatively easy. Each im pedance o f 
the three-phase load is connected directly across a voltage source o f  the three-phase source. Therefore, 
the voltage across the impedance is known, and the line currents are easily calculated as

IaA =  ^ ,  I b B = ^ ,  and I c c = ^  (12.3-1)
Z A Z C

The current in the wire connecting the neutral node o f  the source to the neutral node o f  the load is

I N„ =  IaA  +  IbB +  IcC =  +  ^  +  (12.3-2)
Z A  L  b Z c

The average pow er delivered by the three-phase source to the three-phase load is calculated by 
adding up the average pow er delivered to each im pedance o f  the load.

P  =  P a +  P b + P c (12.3-3)

where, for example, P A is the average pow er absorbed by Z A. P A is easily calculated once IaA is 
known.

For convenience, let the phase voltages o f  the Y-connected source be

Va =  Vp /( f_  V rms, Vh =  V? 7 -1 2 0 °  V rm s. and V . =  Vr 7 l2 0 °  V rm s

Notice that we are using effective values because the units o f  Vp are V rms.
W hen Z A =  Zb =  Zc =  Z = Z  [o ,  the load is said to be a balanced load. In general, analysis o f 

balanced three-phase circuits is easier than analysis o f  unbalanced three-phase circuits. The line 
currents in the balanced, four-wire Y-to-Y circuit are given by

V a f p 7 q!  , Vb Fp - Z l 2 0 !  j ,  Vc V p 7 120°
IaA =  —  =  ■ , , IbB =  =  — ------7-------, and IcC =  —  =

z  z / e  ' z  z / e  ' c z  z / e

*bB

F IG U R E  12.3-1 A  four-wire Y -to-Y  circuit.

*cC

F IG U R E  12.3-2 A three-wire Y -to-Y  circuit.
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Then

IaA =  y  IbB =  y  /-6> -  120°, and IcC =  y  / - 0 + .12O (12.3-4)

The line currents have equal magnitudes and differ in phase by 120°. I b B and IcC can be calculated
from 1^ by subtracting and adding 120° to the phase angle of IaA.

The current in the wire connecting the neutral node of the source to the neutral node of the load is

In„ =  IaA +  IbB +  IcC =  — /- (  ZlQl +  1 / —120° +  1 Zl2Q!)
z [ e

(12.3-5)

There is no current in the wire connecting the neutral node of the source to the neutral node of the load.
Because effective, or rms, values of the sinusoidal voltages and currents have been used instead 

of peak values, the appropriate formulas for power are those given in the tkrms values” column of 
Table 12.1-1. The average power delivered to the load is

P = PA + P B + P C = Fp-e cos (-61) +  Vp- f  cos (-0 ) +  Fp- ^  cos (-6 )

v l
P = 3 - ?  cos (0) (12.3-6)

where, for example, PA is the average power absorbed by ZA. Equal power is absorbed by each 
impedance of the three-phase load, ZA, ZB, and Zc . It is not necessary to calculate PA, PB, and Pc 
separately. The average power delivered to the load can be determined by calculating PA and 
multiplying by 3.

Next, consider the three-wire Y-to-Y circuit shown in Figure 12.3-2. The phase voltages of the 
Y-connected source are Va =  Vp/o ^ V  rms, Vb =  Vp / - 1 20° V rms, and Vc =  Vr / 120° V rms. 
The first step in the analysis of this circuit is to calculate VNn, the voltage at the neutral node of the 
three-phase load with respect to the voltage at the neutral node of the three-phase source. (This step 
wasn’t needed when the four-wire Y-to-Y circuit was analyzed because the fourth wire forced 
Yjsjn — 0.) It is convenient to select node n, the neutral node of the three-phase source, to be the 
reference node. Then Va, Vb, Vc, and VNn are the node voltages of the circuit. Write a node equation at 
node N to get

0 VNn ( Vb - VNn | Vc - VNn

ZA Zg

-  (^P ^6!)-V N n ! (VP/ ~  120°) — Vn„ 1 (F p / l2 0 ° ) — V 
ZA Zb Zc

(12.3-7)
Nn

Solving for VNn gives

Vv (Fp/ r 1203)ZAZc +  (F pZl20!)ZAZB +  (F PZo!)ZBZc
(12.3-8)T \

Z A Z lc  + Z a Z r  -f Z B Z c

Once VNn has been determined, the line currents can be calculated using

I ^ Nn . Vb — VNn , Vc -  VNn
*aA 7 • *bB — - ~ , and Icc —-----------

/̂ B Zc
(12.3-9)
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A nalysis o f  the three-wire Y -to-Y  circuit is much simpler when the circuit is balanced, that is, 
when ZA =  Zb =  Zc =  Z =  ZLO. When the circuit is balanced, Eq. 12.3-8 becom es

( V f  / - 1 2 0 °  )ZZ +  ( V P / l  20° )ZZ +  ( V P /0 °  )ZZ
y Nn -  z z T z z T z z

=  [ ( V? / - 1 2 0 °) + ( Vp A  2 0 °) +  ( Vp / o °  11 / 3

VNn =  0 (12.3-10)

When a three-wire Y-to-Y circuit is balanced, it is not necessary to write and solve a node equation to find 
VNn because VNn is known to be zero. Recall that VNn =  0 in the four-wire Y-to-Y circuit. The balanced 
three-wire Y-to-Y circuit acts like the balanced four-wire Y-to-Y circuit. In particular, the line currents are 
given by Eq. 12.3-4, and the average power delivered to the load is given by Eq. 12.3-6.

Ideally, the transmission line connecting the load to the source can be modeled using short 
circuits. That’s what was done in both Figure 12.3-1 and Figure 12.3-2. Sometimes it is appropriate to 
model the lines connecting the load to the source as impedances. For example, this is done when 
comparing the power that is delivered to the load to the power that is absorbed by the transmission line. 
Figure 12.3-3 shows a three-wire Y-to-Y circuit in which the transmission line is modeled by the line 
impedances ZaA, ZbB, and ZcC. The line impedances do not significantly complicate the analysis o f  the 
circuit because each line impedance is connected in series with a load impedance. After replacing 
series impedances by equivalent impedances, the analysis proceeds as before. If the circuit is not 
balanced, a node equation is written and solved to determine VNn. Once VNn has been determined, the 
line currents can be calculated. Both the power delivered to the load and the power absorbed by the line 
can be calculated from the line currents and the load and line impedances.

Analysis o f  balanced Y-to-Y circuits is simpler than analysis o f  unbalanced Y-to-Y circuits in 
several ways:

1. VNn =  0. It is not necessary to write and solve a node equation to determine V Nn.

2. The line currents have equal magnitudes and differ in phase by 120°. IbB and IcC can be calculated 
from IaA by subtracting and adding 120° to the phase angle o f  IaA.

3. Equal power is absorbed by each impedance o f  the three-phase load, Z A, Z B, and Zc . It is not 
necessary to calculate P A, P B, and Pc  separately. The average power delivered to the load can be 
determined by calculating P A and multiplying by 3.

The key to analysis of the balanced Y-to-Y circuit is calculation o f the line current, 1^. The per-phase 
equivalent circuit provides the information needed to the line current, 1^. This equivalent circuit consists o f  
the voltage source and impedances in one phase o f the three phases o f the three-phase circuit. Figure 12.3-4 
shows the per-phase equivalent circuit corresponding to the three-phase circuit shown in Figure 12.3-3. The

I- IG U R F  12.3-3 A  three-wire Y -to-Y  circuit with line im pedances.

F I G U R E  1 2 . 3 - 4  P e r - p h a s e  e q u i v a l e n t  c i r c u i t  f o r  t h e  

t h r e e - w i r e  Y - t o - Y  c i r c u i t  w i t h  l i n e  i m p e d a n c e s .
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The Balanced Y-to-Y Circuit

Phase voltages V. = vP/ r

Vh =  Vp / —120°

V.. = Vr /—240°

Line-to-line voltages V,b = \Z3Vf/ W

Vhc =  s / 3 V  p/-90‘

Vc, = v/3 Vp / - 2 1 0 °

VL = n/3 V v

Currents I L =  lp (line current =  phase current)

IA = ^ i  =  /pZ=fi with z r = z l e
£j\

Ib = Ia /-120c

Ic =  U  /-240

N o t e :  p  =  p h a s e ,  L  =  l i n e .

neutral nodes, n and N, are connected by a short circuit in the per-phase equivalent circuit to indicate that 
VNn =  0 in a balanced Y-to-Y circuit. The per-phase equivalent circuit can be used to analyze either three- 
wire or four-wire balanced Y-to-Y circuits, but it can be used only for balanced circuits.

The behavior of a balanced Y-to-Y circuit is summarized in Table 12.3-1.

r
Determine the complex power delivered to the three-phase load of a four-wire Y-to-Y circuit such as the one shown in 
Figure 12.3-1. The phase voltages of the Y-connected source are Va =  110 / 0° V rms, Vb =  110 / —120° V rms, and 
Vc =  110/l20° V rms. The load impedances are Z A  =  50 4-y80 fl, Z B  =  y‘50 fl, and Z c  =  100 +  j ' 2 5  0 .

Solution
The line currents of an unbalanced four-wire Y-to-Y circuit are calculated using Eq. 12.3-1. In this example,

I _ V a _  IIoZ q: , _  Vh _  110/ — 120° __J , v c 1 1 0 / 120°
ZA 50 +y'80 b B - ZB ~  y’50 *  ~  Zc ~  100 + j25

so

IaA =  1.16 7 -58° Arms. lhR =  2.2 7l50° A rms. and I,r  =  1.07/l0 6 °  A rms 
The complex power delivered to Z A  is

SA =  IaA* v a =  (1.16/ — 58°y (110Zbl) =  (1.16/5 8 °)(1 l o /o 0) =  68 +y 109 VA 
Similarly, we calculate the complex power delivered to Z B  and Z c  as

SB =  (2 .2 / 150°r  ( 11 0 / —120°  ̂ =  >242 VA
a n d

Sc =  (107/106!)* ( I l 0 / l 2 0 ° ) =  114+y28 VA 
The total complex power delivered to the three-phase load is

V  Sa + Sb +  Sc =  182 + /379 VA

E x a m p l e  12.3-1 F o u r - w i r e  U n b a l a n c e d  Y- Y  Ci r c u i t
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Determine the complex power delivered to the three-phase load o f  a four-wire Y-to-Y circuit such as the one 
shown in Figure 12.3-1. The phase voltages o f  the Y -connected source are V a =  110 /o °  V rms. 
Vb =  110 / —120° V rms, and Vc =  11 0 / l2 0 °  V rms. The load im pedances are Z A =  Z B =  Z c =  50 +  jSO  f I.

Solution
This example is similar to the previous example. The important difference is that this three-phase circuit is 
balanced. We need to calculate only one line current, 1 ^ ,  and the complex power, SA, delivered to only one o f  the 
load impedances, Z A. The power delivered to the three-phase load is 3SA. W e begin by calculating IaA as

V . =  M 0 ^  /
^  Z A 50 +  >80 --------

The complex power delivered to Z A is

SA -  I^ V a  =  f l - 1 6 / - 5 8 ° r  ( l i o / t f )  =  ( 1 .1 6 ^ 8 ! ) ( 1 1 0 Z V )  =  68 +  7 109 VA

The total power delivered to the three-phase load is
3Sa =  204 +  >326 VA

(The currents IbB and IcC can also be calculated using Eq. 12.3-1. Verify that IbB — 1 1 6  / —177° A rms and 
IcC =  1 .16 /6 2 °  A rms. Notice that IbB and IcC can be calculated from 1 ^  by subtracting and adding 120° to the 
phase angle o f 1^ . Also, check that the complex power delivered to ZB and to Zc is equal to the com plex power 
delivered to ZA. That is, Sb — 68 -I->109 VA and Sc =  68 +  >109 VA.)

E x a m p l e  1 2 . 3 - 3  T h r e e - W ir e  U n b a la n c e d  Y - Y  C ir c u i t

Determine the complex power delivered to the three-phase load o f  a three-wire Y-to-Y circuit such as the one 
shown in Figure 12.3-2. The phase voltages o f  the Y -connected source are Va — 1 l o / o °  V rms, 
Vh — 110 / —120° V rms, and Vr — 110 / l  20° V rms. The load im pedances are Z A =  50 +  >80 0 ,
Z B =  >50 O, and Z c =  100 +  >25 H.

Solution
This example seems similar to Example 12.3-1 but considers a three-wire Y-to-Y circuit instead o f the four-wire 
circuit considered in Example 12.3-1. Because the circuit is unbalanced, VNn is not known. We begin by writing 
and solving a node equation to determine VNn. The solution o f  that node equation is given in Eq. 12.3-8 to be

_  (110 / —120°) (50 +  >80)(100 +  J25) +  (110 / l 2 0 ° U50 +  y80)(/50) +  (Zl 100°)(/50)(100 +  >25) 
(50 +  >80) (100 +  y25) +  (50 + ./80)(/50) +  (/50)(100 +  j2 5 )

=  56 / —151° V rms 

Now that VNn is known, the line currents are calculated as

V , - V Nn I l o / o °  -  5 6 / - l 5 l °
= ““ J-----= --------50T/80-------= 1-71 A n n s

IbB =  —* — — =  2.45 / 3 0 A rms and Icc =  — ^ Nn = 1 . 1 9  / l 9 °  A rms 
Zb Zc
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SA =  I^V a =  I ^ Z a) =  (1.71 Zzz^Sir (1.71 Zr48!)(50 + /80) =  146 + ,234 VA 

Similarly, we calculate the complex power delivered to ZB and Zc as
SB = i;B(IbBZB) =  y'94 VA and Sc =  I*c (IccZc ) =  141 +y35 VA

The total complex power delivered to the three-phase load is
SA 4- SB 4- Sc =  287 +  y364 VA

The complex power delivered to ZA is

E x a m p l e  1 2 . 3 - 4  T h r e e - W i r e  B a l a n c e d  Y- Y Ci r c u i t

Determine complex power delivered to the three-phase load of a three-wire Y-to-Y circuit such as the one shown 
in Figure 12.3-2. The phase voltages of the Y-connected source are Va =  110/(F  V rms, 
Vb =  110 7-120° V rms, and Vc =  110/l2 0 °  V rms. The load impedances are ZA =  ZB =  Zc =  50 +y'80 fl.

Solution
This example is similar to Example 12.3-3. The important difference is that this three-phase circuit is balanced, so 
VNn =  0. It is not necessary to write and solve a node equation to determine VNn.

Balanced three-wire Y-to-Y circuits and balanced four-wire Y-to-Y circuits are analyzed in the same way. 
We need to calculate only one line current, I aA, and the complex power, Sa, delivered to only one of the load 
impedances, ZA. The power delivered to the three-phase load is 3Sa.

The line current is calculated as

The total power delivered to the three-phase load is
3Sa =  31^ Va =  204 +  y326 VA

f
E x a m p l e  1 2 . 3 - 5  Li n e  L o s s e s

Figure l2.3-5a shows a balanced three-wire Y-to-Y circuit. Determine average power delivered by the three- 
phase source, delivered to the three-phase load, and absorbed by the three-phase line.

Solution
The three-wire Y-to-Y circuit in Figure 12.3-5a looks different from the three-wire Y-to-Y circuit in Figure
12.3-2. One difference is cosmetic. The circuits are drawn differently, with all circuit elements drawn vertically or 
horizontally in Figure 12.3-5a. A more important difference is that the circuit in Figure 12.3-2 is represented in the 
frequency domain, using phasors and impedances, whereas the circuit in Figure 12.3-5a is represented in the time 
domain. Because the circuit is represented in the time domain, the magnitude, rather than the effective value, of 
the source voltage is given.

Because this three-phase circuit is balanced, it can be analyzed using a per-phase equivalent circuit. Figure
12.3-56 shows the appropriate per-phase equivalent circuit.
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100  cos

(377/ + 240) 
Source Line

(a)

Load Source Line

(b)

Load

FIGl RE 12.3-5 (a) A balanced three-wire Y-to-Y circuit and (6) the per-phase equivalent circuit. 

The line current is calculated as

U M  =
100

=  1 .894 / - 1 8.7° A
50+;(377) (0.045)

The phase voltage at the load is

V anH  -  (40 +y(377)(0.04))IaAM  = 81 / r  V
Because peak values o f  the sinusoidal voltages and currents have been used instead o f  effective values, the 
appropriate formulas for pow er are those given in the “ peak values”  colum n o f  Table 12.1-1. The power 
delivered by the source is calculated as

U M  =  1.894/ - 1 8.7° A and V ^fw ) =  100/p °  V 
(100) (1.894)so cos (18.7°) =  89.7 W

The power delivered to the load is calculated as
/ 1 894

La (co) =  1 .894/ - 1 8 .7 °  A and R A =  40 f t , so P A = — — 40 = 1 \ J  W

The power lost in the line is calculated as

I,A(a>) =  1.894 7 -1 8 .7 °  A and 7 ^  =  10 0 ,  so 10 =  17.9 W

The three-phase load receives 3 P a  — 215.1 W , and 3 /^ a  =  53.7 W is lost in the line. A total o f  80 percent o f  the 
power supplied by the source is delivered to the load. The other 20 percent is lost in the line. The three-phase
source delivers 3P a =  269.1 W.

— -----------------------  E x a m p l e  1 2 . 3 - 6  R e d u c in g  L in e  L o s s e s

As noted in Example 12.3-5, 80 percent o f the power supplied by the source is delivered to the load, and the other 
20 percent is lost in the line. The loss in the line can be reduced by reducing the current in the line. Reducing the 
current in the load would reduce the power delivered to the load. Transform ers provide a way o f reducing the line
current without reducing the load current.
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10 j  (377) (0.005) 4000

FIG U RE 12.3-6 (a) A 
per-phase equivalent 
circuit for a balanced 
Y-to-Y circuit with 
step-up and step-down 
transformers and
(b) the corresponding 
frequency-domain 
circuit used to calculate 
the line current.

In this example, two three-phase transformers are added to the three-phase circuit considered in Example
12.3-5. A transformer at the source steps up the voltage and steps down the current. Conversely, a transformer at 
the load steps down the voltage and steps up the current. Because the turns ratios of these transformers are 
reciprocals of each other, the voltage and current at the load are unchanged. The current in the line will be reduced 
to reduce the power lost in line. The line voltage will increase. The higher line voltage will require increased 
insulation and increased attention to safety.

Figure 12.3-6a shows the per-phase equivalent circuit of the balanced three-wire Y-to-Y circuit that 
includes the two transformers. Determine the average power delivered by the three-phase source, delivered to the 
three-phase load, and absorbed by the three-phase line.

Solution
To analyze the per-phase equivalent circuit in Figure 12.3-6a, notice that

1. The secondary voltage of the left-hand transformer is 10 times the primary voltage, that is, 1000 cos (3771).

2. The impedance connected to the secondary of the right-hand transformer can be reflected to the primary of 
this transformer by multiplying by 100. The result is a 4000-0 resistor in series with a 4-H inductor.

These observations lead to the one-mesh circuit shown in Figure 12.3-66. The mesh current in this circuit is the 
line current of the three-phase circuit. This line current is calculated as

. / x 1000 /
aA(w) - 4010 + y-(377)(4.oo5) " 0 2334/~20 6 A

The current into the dotted end of the secondary of the left-hand transformer in Figure 12.3-6a is — IaA(̂ >), so the 
current into the dotted end of the primary of this transformer is

I .M  =  -K K -Ia A H ) =  2.334 / —20.6° A
T h e  c u r r e n t  i n t o  t h e  d o t t e d  e n d  o f  t h e  p r i m a r y  o f  t h e  r i g h t - h a n d  t r a n s f o r m e r  i s  I (1a ( ( ^ ) .  s o  t h e  c u r r e n t  i n t o  t h e  d o t t e d  

e n d  o f  t h e  s e c o n d a r y  i s

IA(w) =  - ( - 1 0  IaA(w)) =  2.334 7-20.6° A



The phase voltage at the load is

V an(w) -  (40 + y (3 7 7 )(0 .0 4 ))IA(o>) =  9 9 .7 7 / W  

The power delivered by the source is calculated as

I .(co) =  2.334 7 -2 0 .6 °  A and 

V anM  =  100T o: V so F a =  ( l0 °H 2 -334) cos (2o.60) =  109.2 W

The power delivered to the load is calculated as

I a (art =  2.334 7 -2 0 .6 °  A and R A =  40 SI, so P A =  ^ ^ - 4 0  =  108.95 W

^ 5 7 0 ^ ------- T h r e e -P h a s e  C ircu its

The power lost in the line is calculated as

0 23342
La (co) =  0.2334 7 —20.6° A and R aA =  10 f l ,  so PA =  - 10 =  0.27 W

Now 98 percent o f  the power supplied by the source is delivered to the load. Only 2 percent is lost in the line.

EXERCISE 12.3-1 Determine com plex power delivered to the three-phase load o f  a four-wire 
Y-to-Y circuit such as the one shown in Figure 12.3-1. The phase voltages o f  the Y-connected  
source are Va =  1 2 0/o°V rms, Vb =  120 7 -1 2 0 °  V rms. and V c =  120 7 l2 0 ° V rms. The load 
impedances are ZA =  80 +  j5 0  f l ,  ZB =  8 0 -I- /80  f l ,  andZ c =  1 0 0 — y'25 fl.

A nsw er: S A =  129 +  y81 VA, SB =  90 +  >90 VA, Sc =  136 -y 3 4 V A ,a n d S  =  3 5 5 + /1 3 7 V A

EXERCISE 12.3-2 Determine com plex power delivered to the three-phase load o f  a four-wire 
Y-to-Y circuit such as the one shown in Figure 12.3-1. The phase voltages o f  the Y-connected  
source are Va =  1207Q1 V rms, Vb =  120 7 —120° V rms, and Vc =  120 /1 2 0 °  V rms. The load 
impedances are ZA =  Z b =  Zc =  40 +  y'30 fl.

A nsw er: SA =  SB =  Sc =  230 +  j  173 =  VA and S =  691 +  j 5 18 VA

EXERCISE 12.3-3 Determine complex power delivered to the three-phase load o f  a three- 
wire Y-to-Y circuit such as the one shown in Figure 12.3-2. The phase voltages o f  the Y-connected  
source are Va =  120/(T  V rms, Vb =  120 7 -1 2 0 °  V rms. and Vc =  120 / 1 20° V rms. The load 
impedances are Z A =  80 -I-y'50 f l, Zb =  80 +  y'80 f l ,  and Zc =  100 — y'25 SI.

In term ediate A nsw er: V nN =  2 8 .8 9 / —150.5 V rms

A nsw er: S =  392 +  y'142 VA

EXERCISE 12.3-4 Determine complex power delivered to the three-phase load o f  a three- 
wire Y-to-Y circuit such as the one shown in Figure 12.3-2. The phase voltages o f  the Y-connected 
source are Va =  120 /o°_ V rms, V b =  120 7 -1 2 0 °  V rms. and Vc =  120 7 l 20° V rms. The load
impedances are ZA =  Z B =  Zc =  40 +  /3 0  fl.

Answer: SA =  SB =  Sc =  230 + j  173 VA and S =  691 +  j 5 18 VA
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12.4 T H E  A - C O N N E C T E D  S O U R C E  A N D  L O A D

(12.4-2)

The A-connected source is shown in Figure 12.2-5b. This generator connection, however, is seldom 
used in practice because any slight imbalance in magnitude or phase of the three-phase voltages will 
not result in a zero sum. The result will be a large circulating current in the generator coils that will heat 
the generator and depreciate the efficiency of the generator. For example, consider the condition

Vab =  120 zV
Vk.  =  120.1 7-121° (124-1)

vca = 120.2 / 121°
If the total resistance around the loop is 1 O, we can calculate the circulating current as 

I =  (Vab + Vbc +  vca)/l 
=  120 + 120.1(—0.515 —y'0.857) +  120.2(—0.515 +  y'0.857)
^  120 -  1.03(120.15)
^  -3.75 A

which would be unacceptable.
Therefore, we will consider only a Y-connected source as practical at the source side and 

consider both the A-connected load and the Y-connected load at the load side.
The A-to-Y and Y-to-A transformations convert A-connected loads to equivalent Y-connected 

loads and vice versa. These transformations are summarized in Table 12.4-1. Given the impedances, 
Z,, Z2, Z3 of a A-connected load, Table 12.4-1 provides the formulas that are required to determine the 
impedances, ZA, ZB, Zc , of the equivalent Y-connected load. These three-phase loads are said to be 
equivalent because replacing the A-connected load by the Y-connected load will not change any of the 
voltages or currents of the three-phase source or three-phase line.

The A-to-Y and Y-to-A transformations are significantly simpler when the loads are balanced. 
Suppose the A-connected load is balanced, that is, Z\ = Z2 = Z$ = Z \. The equivalent Y-connected

T a b le  12 4-1 Y-to-A and A-to-Y Conversions

DESCRIPTION CIRCUIT
CONVERSION  

FORMULAS (UNBALANCED)
CONVERSION  

FORMULAS (BALANCED)

Y-connected load

A-connected load

ZiZ,

Z,= ZAZ B +  * 8 * 0  +  ZAZC

7 ZAZ B +  Z BZC +  ZAZC= --------------------

Zq = ZAZ B +  Z b2c +  ZAZc

When
■A ~ Zl + Z2 + Z3 IM II M ro II IM CO II

f - h h
■B ~

Z 1 + Z2 + Z3 then

Z1Z2
ZA = ZB =ZC= - f

f-c = Z1 + z2 + z3

When

ZA = z b = zc = Z Y

then
Z1 =Z2 = Z3 = 3ZY
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load will also be balanced, so Z A =  Z b =  Zc =  Zy. Then, we have

(12 .4 -3 )

Therefore, if  we have a Y-connected source and a balanced A-connected load with ZA> we convert the 
A load to a Y load with Z Y =  Z ^/3. Then the line current is

Va 3Va
Ia  =  ■ = —  — (12.4-4)

Thus, we will consider only the Y-to-Y configuration. If the Y-to-A configuration is encoun­
tered, the A-connected load is converted to a Y-connected load equivalent, and the resulting currents 
and voltages are calculated.

E x a m p l e  1 2 . 4 - 1  Y  a n d  A C o n n e c t e d  L o a d s

Figure 12.4-la  shows a three-phase load that consists o f  a parallel connection o f  a Y-connected and A-connected 
load. Convert this load to an equivalent Y-connected load.

FIGURE 12.4-1 Example of Y-A 
conversions, (a) Parallel Y-connected 
and A-connected loads. (b) The 
Y-connected load is converted to a 
A-connected load, (c) The parallel 
A-connected loads are replaced by a 
single equivalent A-connected load.
(d) The A-connected load is converted 
to a Y-connected load.
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Solution
First, convert the Y-connected load to a A-connected load as shown in Figure 12.4-1/?. Notice, for 
example, that both of the A-connected loads in Figure 12.4-1/? have an impedance connected 
between terminals A and B. These impedances are in parallel and can be replaced by a single 
equivalent impedance. Replace the parallel A-connected loads by a single equivalent A-connected load 
as shown in Figure 12.4-lc. Finally, convert the A-connected load to a Y-connected load as shown in Figure
12.4-U.

12.5 THE Y - T O - A C I R C U I T

Now, let us consider the Y-to-A circuit as shown in Figure 12.5-1. Applying KCL at the nodes of the 
A-connected load shows that the relation between the line currents and phase currents is

and

IaA — I ab  — I ca  

I bB =  I bc -  I ab

Ice =  I c a  — I bc (12.5-1!

The goal is to calculate the line and phase currents for the load.
The phase currents in the A-connected load can be calculated from the line-to-line voltages. 

These line-to-line voltages appear directly across the impedances of the A-connected load. For 
example, VAB appears across Z3, so

v ab

Z3

Similarly, Ica — and IBc —
V bc

Z,

(12.5-2)

(12.5-3)

When the load is balanced, the phase currents in the load have the same magnitude and have 
phase angles that differ by 120 . For example, if the three-phase source has the abc sequence and

FIGURE 12.5-1 A Y-to-A three-phase circuit.
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FIGURE 12.5-2 Phasor diagram for currents of a A load.

Iab =  / [ fa  then Ica =  /  /</> +  120 ° . The line current 1^  is calculated as

IaA =  Iab ~  Ica

=  /  cos 0  4- j l  sin 0  — I  cos (0  +  12 0 °) —j l  sin (0 +  12 0 °)

=  —2 1  sin (0 4- 60°) sin (—60°) 4- j 2 I  cos (0 4- 60°) sin (—60°) 

=  y/3 I  [sin (0 4- 60°) - j  cos (0 4- 60°)]

=  a/3 /  [cos (0  -  30°) - 7  sin (0 -  30°)]

=  \/3  /  / 0  -  30° A

(12.5-4)

Therefore, |IaA| =  >/3|I| (12.5-5)

or / l  -  v ^ / p

and the line current magnitude is \/3  times the phase current magnitude. This result can also be 
obtained from the phasor diagram shown in Figure 12.5-2. In a A connection, the line current is y/3 
times the phase current and is displaced —30° in phase. The line-to-line voltage is equal to the phase 
voltage.

E x a m p l e  1 2 . 5 - 1  B a la n c e d  Y -A  C ir c u it

Consider the three-phase circuit shown in Figure 12.5-1. The voltages o f  the Y-connected source are

Va = — 7 - 3 0 °  V rms, Vb = — = 7 -1 5 0 °  V rms, and Vc = —= /9T V rms 
v 3  v 3 v 3

The A-connected load is balanced. The impedance o f  each phase is Za =  10 /  —50° H. Determine the phase and 
line currents.

Solution
The line-to-line voltages are calculated from the phase voltages o f the source as

Vab =  Va -  Vb =  7 - 3 0 °  -  ~  7 -1 5 0 °  =  220 TO! V
V3 v 3

V BC =  Vb -  Vc =  - =  7 -1 5 0 °  -  —=  ^ 9 0 !  =  220 7 -1 2 0 °  V 
v 3  v  3

rms

rms

VrA =  V, -  V. =  —  /9 0 °  -  —  / —30° =  220 / - 2 4 0 °  V 
\/3

rms
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The phase voltages of a A-connected load are equal to the line-to-line voltages. The phase currents are

V « „  2 2 0 / o °  / — -  .

• a b

*bc

IcA =

z 10/-5 0 °

Vb c 220 / - 1 20°
Z 10/-5 0 °

V CA 220 / —240°
Z 10 7-50°

=  22 / - 1 90° Arms

The line currents are

Then

IaA =  I a r  -  Ir-A  = 22 A o °  -  22 7-190° =  22x73/20° A rms 

IbB =  22V3 7-100° A rms and IcC =  22\/3 7-220° A rms

The current and voltage relationships for a A load are summarized in Table 12.5-1.

Table 12 5 1 The Current and Voltage for a A Load

Phase voltages
V a b  =  >,a b z V

Line-to-line voltages Vab =  V l ( linear voltage =  phase voltage)

Phase currents . _ v a b _ V l , / „
I a b -  z T - z I - / p Z = e

with Zp =  Z / 0

Ibc =  Iar / - 1 20°

Ic a  =  I a b  / —240°
Line currents Ia =y/3IT/ - $ -  30° 

IB =  s / 3 / p / - e - l 5 0 c 

Ic =  v/3 / „ / - 0  +  9Oc 

/ l  =  %/3/p

N o t e :  L  =  l i n e ,  p  =  p h a s e .

EXERCISE 12.5- 1 Consider the three-phase circuit shown in Figure 12.5-1. The voltages of the 
Y-connected source are

Va = - 7 = 7 -30° V rms, Vh =  ^  7-150° V mis, and Vc =  360V5 “  V3

l a n c e  

3 6 0

Partial Answer: IAB =  2 /4 5 °  A rms and IaA =  3.46 / l 5 °  A rms

y /l
'90° V rms

T h e  A - c o n n e c t e d  l o a d  i s  b a l a n c e d .  T h e  i m p e d a n c e  o f  e a c h  p h a s e  i s  Z A  =  1 8 0  / 4 5 °  f t .  D e t e r m i n e  t h e  p h a s e  a n d  

l i n e  c u r r e n t s  w h e n  t h e  l i n e - t o - l i n e  v o l t a g e  i s  3 6 0  V  r m s .
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12.6 B A L A N C E D  T H R E E - P H A S E  C I R C U I T S

We have only two possible practical configurations for three-phase circuits, Y-to-Y and Y-to-A, and 
we can convert the latter to a Y-to-Y form. Thus, a practical three-phase circuit can always be 
converted to the Y-to-Y circuit.

Balanced circuits are easier to analyze than unbalanced circuits. Earlier, we saw that balanced 
three-phase Y-to-Y circuits can be analyzed using a per-phase equivalent circuit.

The circuit shown in Figure 12.6-1 a is a balanced Y-to-A circuit. Figure 12.6-16 shows the 
equivalent Y-to-Y circuit in which

This Y -to-Y  circu it can be analyzed  using the per-phase  equ iva len t c ircu it show n in Figure 
12 .6 -lc .

(a)

(b)  (c)

F I G I R E  1 2 . 6 - 1  ( a )  A  Y - t o - A  c i r c u i t ,  ( b ) t h e  e q u i v a l e n t  Y - t o - Y  c i r c u i t ,  a n d  ( c )  t h e  p e r - p h a s e  e q u i v a l e n t  c i r c u i t .
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E x a m p l e  12 . 6 - 1  Pe r - P h a s e  E q u i v a l e n t  C i r c u i t

Figure 12.6-1 a shows a balanced Y-to-A three-phase circuit. The phase voltages of the Y-connected source are 
v a =  11o/o° V rms, Vb =  1107-120° V rms, and Vc =  110/120° V rms. The line impedances are each 
Z L = 10 + y'5 ft. The impedances of the A-connected load are each Z A =  75 +j225 ft. Determine the phase 
currents in the A-connected load.

Solution
Convert the A-connected load to a Y-connected load using the A-to-Y transformation summarized in Table
12.4-1. The impedances of the balanced equivalent Y-connected load are

Zy =  75 =  25 +>75 ft

The per-phase equivalent circuit for the Y-to-Y circuit is shown in Figure 12.6-le. The line current is 
given by

_____ -  =  1 .2 6 /—66° A nns (12.6-1)
M Z l  +  Z y  (10 +  y'5) +  (25 +y'75) --------

The line current, IaA, calculated using the per-phase equivalent circuit, is also the line current, IaA, in the Y- 
to-Y circuit, as well as the line current, IaA, in the Y-to-A circuit. The other line currents in the balanced Y- 
to-Y circuit have the same magnitude but differ in phase angle by 120°. These line currents are

Ihr - 1.26/ - 1 86° Arms and Iw =  1.26/54° Arms

(To check the value of IbB, apply kVL to the loop in the Y-to-Y circuit that starts at node n, passes through nodes b, 
B, N, and returns to node n. The resulting KVL equation is

Vb =  ZlJbB +  ZylbB +  Vnh

Because the circuit is balanced, VNn =  0. Solving for IbB gives

■“  ( ,0 ^ ° )C ~ (2 5 0^-75) -  (> 2 -« )

Comparing Eqs. 12.6-1 and 12.6-2 shows that the line currents in the balanced Y-to-Y circuit have the same 
magnitude but differ in phase angle by 120°.

The line currents of the Y-to-A circuit in Figure 12.6-la are equal to the line currents of the Y-to-Y circuit in 
Figure 12.6-1 b because the Y-to-A and Y-to-Y circuits are equivalent.

The voltage VAN in the per-phase equivalent circuit is

VAn =  I3aZy =  (1.26/ —66°)(25 + /75) =  99.6 / V  V rms

The voltage VAN calculated using the per-phase equivalent circuit is also the phase voltage, VAN, of the Y-to-Y 
circuit. The other phase voltages of the balanced Y-to-Y circuit have the same magnitude but differ in phase angle 
by 120°. These phase voltages are

V BN =  99.6 / — 115° V rms and VCN =  9 9 .6 / l  25° V rms
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Vab =  VAN -  V BN =  99.5 I ?  -  99.5 7 -1 1 5 °  =  172 7 3 5 1 V rms 

V BC =  V bn -  V CN =  99.5 7 -1 1 5 °  -  99.5 7 l2 5 °  =  172 7 - 8 5 °  V rms 

VCA =  VCN -  Van =  99.5 7 l2 5 °  -  99.5 I ?  =  172 7 l5 5 °  V rms 

The phase voltages o f  a A-connected load are equal to the line-to-line voltages. The phase currents are

=  —  =  172^ _  =  0.727 / —36° A rms 
AB ZA 75 +  y'225 ---------

lBC =  ^  =  l | i | J  =  0 .727 Z ^ A r m s  
Za 75 -f j225

Za 75 +  J 225

The line-to-line voltages o f  the Y-to-Y circuit are calculated as

EXERCISE 12.6-1 Figure 12.6-la  shows a balanced Y-to-A three-phase circuit. The phase

voltages o f  the Y-connected source are Va = 11 0 / o °  V rms, Vb = 110 / —120° V rms, and Vc =
l i o / 120° V rms. The line impedances are each Z L =  1 0 +  y‘25 O. The impedances o f  the A- 
connected load are each Za =  150 +  y270 fl. Determine the phase currents in the A-connected load.

Answer: Iab =  0.49 7 -3 2 .5 °  A rms, IBC =  0.49 7 -1 5 2 .5 °  A  rms, ICA =  0.49 787.5° A rms

12.7 I N S T A N T A N E O U S  A N D  A V E R A G E  P O W E R  I N A 
B A L A N C E D  T H R E E - P H A S E  L O A D  -------------------------

One advantage o f  three-phase power is the smooth flow o f energy to the load. Consider a balanced load 
with resistance R. Then the instantaneous pow er  is

=  ( i r M )
where vab =  V coscot, and the other two-phase voltages have a phase o f  ± 120°, respectively.
Furthermore,

cos2 a t  =  (1 +  cos 2 a ) / 2

Therefore,

V2
p (t)  =  —  [1 +  cos 2cot +  1 +  cos 2 (cot -  120°) +  1 +  cos 2 (cot -  240°)]

o ,  (12.7-2)
3 V2 V2

=  -r-r- +  —  [cos 2cot +  cos (2cot — 240°) +  cos (2cot — 480°)]
2 a  2 a

The bracketed term is equal to zero for all time. Hence,
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T h e  i n s t a n t a n e o u s  p o w e r  d e l i v e r e d  t o  a  b a l a n c e d  t h r e e - p h a s e  l o a d  i s  a  c o n s t a n t .

The total power delivered to a balanced three-phase load can be calculated using the per-phase 
equivalent circuit. For example, we multiply the complex power delivered to a load in the per-phase 
equivalent circuit by 3 to obtain the total complex power delivered to the corresponding balanced 
three-phase load.

Consider, again, Figure 12.6-1. Figure 12.6-1 a shows a balanced Y-to-A circuit. Figure 12.6-
1 b shows the equivalent Y-to-Y circuit, obtained using the A-to-Y transformation summarized in 
Table 12.4-1. Figure 12.6-lc shows the per-phase equivalent circuit corresponding to the Y-to-Y 
circuit. The voltage Van =  V? /p AW and the current IaA =  h  /Om are obtained using per-phase 
equivalent circuit. The voltage VAN and the current 1 ^  are the phase voltage and line current of the 
Y-connected load in Figure 12.6-16. The total average power delivered to the balanced Y- 
connected load is given by

Py = 3P a = 3 VpI l cos (<9av -  0M) =  3 VPI L cos (0) (12.7-3)

where 0 is the angle between the phase voltage and the line current, cos 6 is the power factor, and VP 
and Ip are effective values of the phase voltage and line current.

It is easier to measure the line-to-line voltage and the line current of a circuit. Also recall that the 
line current equals the phase current and that the phase voltage is V? = for the Y-load
configuration. Therefore,

P =  cos# =  >/3 VL/ L cos0 (12.7-4)

The total average power delivered to the A-connected load in Figure 12.6-1 a is

P — 3Pab — 3FAb/ab c o s  6 =  3(\/3Vp) ——: cos 0 =  3 FP/ L cos 0 (12.7-5)
v3

In summary, the total average power delivered to the A-connected load in Figure 12.6-la is equal to 
the total average power delivered to the balanced Y-connected load in Figure 12.6-16. That’s 
appropriate because the two circuits are equivalent. Notice that the information required to 
calculate the power delivered to a balanced load, Y or A, is obtained from the per-phase equivalent 
circuit.

E x a m p l e  12 . 7 - 1  P o w e r  D e l i v e r e d  to the  L o a d

Figure 12.6-1 a shows a balanced Y-to-A three-phase circuit. The phase voltages of the Y-connected source are
Va -  l l o / o_  V rms, \ \  =  110/ — 120° V rms, and Vc =  110/120° V rms. The line impedances are each 
Zl — 10 -fy'5 (1. The impedances of the A-connected load are each Z^ =  75 -j-y225 Cl. Determine the average 
power delivered to the load.

Solution
This circuit was analyzed in Example 12.6-1. That analysis showed that

IaA =  1 26 7 - 6 6 °  A rms
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The total average power delivered to the load is given by Eq. 12.7-3 as

P  =  3(99.6)(1.26) cos (5° -  ( - 6 6 ’ )) =  122.6 W

and V AN =  99.6 V rms

E x a m  p l e  1 2  . 7 - 2  T h r e e - P h a s e  L o a d

A balanced three-phase load receives 15 kW at a power factor o f  0.8 lagging when the line voltage is 480 V rms. 
Represent this load as a balanced Y-connected load.

Solution
We will represent the load as three Y-connected impedances. Each o f  these impedances will receive one third o f  
the power delivered to the three-phase load, 5 kW at 0.8 lagging. The complex power received by each impedance 
will be

S =  P + y '-^ s in  (cos~'(/> /)) =  5 + y :r^ sin  (cos~ '(0 .8 )) =  5 +y'3.75kV A  
p f  0.8

The voltage across each impedance o f the load will be phase voltage

V v =  ^ / ±  = ™ / ±  = 2 1 l / ±  V rms

The angle, 0, o f the phase voltage has not been specified. The voltages across each o f  the three impedances o f  the 
load have the same magnitude but different angles. The current in each o f  the load impedances is given by

Finally, the load impedance is given by

V P 277 U  /
Z  = —  = ----------7—^ -------- ---  12.28 /3 6 .9  «  9.82 +  #7.37 f l

1 2 2 .5 6 / ( 0 - 3 6 . 9 ° )  ---------

E x a m p l e  1 2 . 7 - 3  T h r e e - P h a s e  C ir c u it

A balanced three-phase circuit consists o f a Y-connected source connected to a balanced load. The line 
impedances are each Z l =  2 +  j0 .5  f l. The balanced three-phase load receives 15 kW at a power factor o f  
0.8 lagging, and the line voltage at the load is 480 V rms. Determine the required source voltage and the complex 
power supplied by the three-phase source.

Solution
The three-phase load in this example is the same load encountered in Example 12.7-2. Using the results o f  
Example 12.7-2, we can represent this three-phase circuit, using the per-phase equivalent circuit shown in Figure
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12,6-lc with ZL =  2 + j'0.5 fl and ZY =  9.82 + p . 31 fl. As in Example 12.7-2, the line current depends on the 
power received by the load and the line voltage at the load and is given by

IaA =  22.56 /(4> -  36.9°) A rms 

where <p has not been specified. Using KVL, the required source voltage can then be expressed as

Va =  (Zt + ZY)IaA =  (2 +  y'0.5 +  9.82 +  >7.37)22.56 / (»  -  36.9°) =  320.6 /(</> -  3.3°) V rms 

The complex power delivered by the three-phase source is

Source =  3Val.\ =  3(320-6 Ad> -  3.3°))(22.56 /(</> -  36.9°))* =  21.7/3 3 .6;
=  18.1+/12.0kVA

It’s worth noticing that the power supplied by the three-phase source does not depend on the unspecified angle <p. 
At this point, it may be convenient to specify that 0 =  3.3° so that the Y-connected voltage sources will have 
phase angles of 0°, 120°, and —120°.

EXERCISE 12.7-1 Figure 12.6-1 a shows a balanced Y-to-A three-phase circuit. The phase 
voltages of the Y-connected source are Va =  110 / o °  V rms, Vh — 110 / — 120° V rms, and 
Vc =  1 lo /l2Q° V rms. The line impedances are each Z l =  10+725 0 . The impedances of the 
A-connected load are each Z^ =  150 +y'270fl. Determine the average power delivered to the A- 
connected load.

Intermediate Answer: IaA =  0.848 / —62.5° A rms and Van — 87.3 / —1.5° V rms 

Answer: P = 107.9 W

12.8 T W O - W A T T M E T E R  P O W E R  M E A S U R E M E N T

For many load configurations, for example, a three-phase motor, the phase current or voltage is 
inaccessible. We may wish to measure power with a wattmeter connected to each phase. However, 
because the phases are not available, we measure the line currents and the line-to-line voltages. A
wattmeter provides a reading of VLIL cos 0 where VL and IL are the rms magnitudes and 0 is the angle
between the line voltage, V, and the current, I. We choose to measure VL and /l, the line voltage and 
current, respectively. We will show that two wattmeters are sufficient to read the power delivered to 
the three-phase load, as shown in Figure 12.8-1. We use cc to denote current coil and vc to denote 
voltage coil.

Wattmeter 1 reads

P\ =  JW aC O s0, (12.8-1)
and wattmeter 2 reads

P2 =  VqkIc cos 02 (12.8-2)
For the abc phase sequence for a balanced load,

0 , =  e +  30°
and

02 =  0 -  30° (12.8-3)
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Wattmeter 1

T h r e e -P h a s e  C ircu its

FIGURE 12.8-2 The two-wattmeter 
connection for Example 12.8-1.

FIGURE 12.8-1 Two-wattmeter connection for a three-phase 
Y-connected load.

where 9 is the angle between the phase current and the phase voltage for phase a o f  the three-phase 
source.

Therefore,

P  =  Pi 4- P i =  2 F l / l  c o s  9 cos 30° — \ / 3 F l / l  c o s  9 (12.8-4)

which is the total average power o f the three-phase circuit. The preceding derivation o f Eq. 12.8-4 is 
for a balanced circuit; the result is good for any three-phase, three-wire load, even unbalanced or 
nonsinusoidal voltages.

The power factor angle, 9 , o f  a balanced three-phase system may be determined from the reading 
o f the two wattmeters shown in Figure 12.8-2.

The total power is obtained from Eqs. 12.8-1 through 12.8-3 as

p  = p ] + p 2 =  v LI L[ cos {9 +  30°) +  cos {9 -  30°)] 

=  FL/ L 2 c o s 0 c o s  30°

Similarly, P\ — P i =  sin 9 sin 30°)

Dividing Eq. 12.8-5 by Eq. 12.8-6, we obtain

P\ + P2 2 cos 9 cos 30° — >/3
P\ — Pi —2 sin 9 sin 30° tan 9

(12.8-5)

(12.8-6)

Therefore, tan
Pi  + P\

(12.8-7)

where 6 =  power factor angle.
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E x a m p l e  12 . 8 - 1  T w o - w a t t m e t e r  Me t h o d

The two-wattmeter method is used, as shown in Figure 12.8-2, to measure the total power delivered to the 
Y-connected load when Z =  10 /45 I O and the supply line-to-line voltage is 220 V rms. Determine the reading of 
each wattmeter and the total power.

Solution
The phase voltage is

VA =  ??£ / —30° V rms 
V3 -------

Then we obtain the line current as

z  K h/3/45°

Then the second line current is

IB = 12.7/-1 9 5 °  Arms

The voltage VAB =  220/ ( f V  rms, VCa =  220 7+120° V rms, and VBc =  220 7-120° V rms. The first watt- 
meter reads

/>, =  l AVac cos 0\ =  12.7(220) cos 15° =  2698 W

Because VCa =  220 /+ 120°, VAc =  220 / - 6 0 ° . Therefore, the angle lies between VAc and IA and is equal to 
15°. The reading of the second wattmeter is

Pi = I b Vbc cos <92 =  12.7(220) cos 75° =  723 W

where 02 is the angle between IB and VBc- Therefore, the total power is

P = P ] +  P2 =  3421 W

We note that all of the preceding calculations assume that the wattmeter itself absorbs negligible power.

E x a m p l e  1 2 . 8 - 2  T w o - W a t t m e t e r  M e t h o d

The two wattmeters in Figure 12.8-2 read P\ — 60 kW and P2 = 180 W, respectively. Find the power factor of the 
circuit.

Solution
From Eq. 12.8-7, we have

Therefore, we have 0 =  40.9° and the power factor is

p f  = cos 0 =  0.756

/The positive angle, 6, indicates that the power factor is lagging. If 0 is negative, then the power factor is leading.
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EXERCISE 12.8-1 The line current to a balanced three-phase load is 24 A rms. The line-to- 
line voltage is 450 V rms, and the power factor o f  the load is 0.47 lagging. If two wattmeters are 
connected as shown in Figure 12.8-2, determine the reading o f  each meter and the total power to 
the load.

Answ ers: P x =  -  371 W, P2 =  9162 W. and P  =  8791 W

EXERCISE 12.8-2 The two wattmeters are connected as shown in Figure 12.8-2 with P\ =  
60 kW and P 2 — 40 kW, respectively. Determine (a) the total power and (b) the power factor.

A nsw ers: (a) 100 kW (b) 0.945 leading

12.9 H O W  C A N  WE  C H E C K  . . . ? --------------------------------------------------------

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f  the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness o f  their work. For example, 
occasionally just a little time remains at the end o f  an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions o f  the sort of 
problem discussed in this chapter.

E x a m p l e  1 2 . 9 - 1 H o w  C a n  W e C h e c k  A n a ly s i s  o f  

T h r e e - P h a s e  C ir c u it s ?

Figure 12.9-1 a shows a balanced three-phase circuit. Computer analysis o f  this circuit produced the 
element voltages and currents tabulated in Figure 12.9-16. How can we check that this computer analysis is
correct?

v x = 10 cos (3/) V = L1= 4H
E l e m e n t V o l t a g e C u r r e n t

V I  1  0  1 0 / 0  

V 2  2  0  1 0 / 1 2 0  

V 3  3  0  1 0 / - 1 2 0  

R l  1  4  9  

R 2  2  5  9  

R 3  3  6  9  

L I  4  7  4  

L 2  5  7  4  

L 3  6  7  4

1 0  [ 0  
1 0  / 1 2 0  

1 0  / - 1 2 0  

6  / - 5 3  

6  / 6 7  

6  / — I 7 3  

8  [ 3 7  
8  / 1 5 7  

8  / 8 3

0 . 6 7  / 1 2 7  

0 . 6 7  / 1 1 3  

0 . 6 7  [ J  

0 . 6 7  Z J t f  

0 . 6 7  [ 6 7  
0 . 6 7  / — 1 7 3  

0 . 6 7  3  

0 . 6 7  1 6 7  
0 . 6 7  / - 1 7 3

F IG U R h  12.9-1 (a) A three-phase circuit. (b ) The results o f  com puter analysis.
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Solution
Because the three-phase circuit is balanced, it can be analyzed by using a per-phase equivalent circuit. The 
appropriate per-phase equivalent circuit for this example is shown in Figure 12.9-2. This per-phase equivalent 
circuit can be analyzed by writing a single-mesh equation:

10 =  (9 -K/12)Il M

IL(<o) =  0.67e“y53°A

where IL(o>) is the phasor corresponding to the inductor current. The voltage across the inductor is given by

VL(w) =  J n  I l M  =  8e,37“V 

The voltage across the resistor is given by

VRM  =  9 Il M  =  6e-y53 V

These currents and voltages are the same as the values given in the computer analysis for the element currents and 
voltages of R\ and Lx. We conclude that the computer analysis of the three-phase circuit is correct.

9 Q
- JW \,-------

J 0.67 /-5 3 °  A

10 V0 j \ 2  a

FIG URE 12.9-2 The per-phase equivalent circuit.

E x a m p l e  1 2 . 9 - 2  H ow  C an  W e C h e c k  U n b a l a n c e d  
T h r e e - P h a s e  C i r c u i t s ?

Computer analysis of the circuit in Figure 12.9-3 shows that VNn(&0 — 12.67 /174.6° V. This computer analysis 
did not use rms values, so 12.67 is the magnitude of the sinusoidal voltage v^n(t) rather than the effective value. 
Verify that this voltage is correct.

100 cos

100 cos 
(377/ + 240)

Source Line Load

FIGURE 12.9-3 A three-phase circuit.
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This result could be checked by writing and solving a node equation to calculate V Nn(w), but it is easier to check  

this result by verifying that KCL is satisfied at node N.
First, calculate the three line currents as

■ / \ 100 — Vnii(w) _  i o t -> / _ J 3 °  a

=  60 +  y'(377)(0.035) —

| B(<w) =  10Q^ ^ ~  VJ ^ )  =  1 .7 6 6 /9 4 .9 °A 
’ 50 +  y(377)(0 .045)

f c (,„) =  100 / —-12Q1 -  y N n H  =  11 / _  140 5o A
l c ^  4 0 + 7 (3 7 7 )  (0.055) -------------

Next, apply KCL at node N to get

1.833 / - 1 3° +  1 .7 6 6 /9 5 .9 °  +  2.118 / - 1 4 0 .5 °  =  0A

Because KCL is satisfied at node N, the given node voltage is correct.
We can also check that average power is conserved. Recall that peak values, rather than effective values, are 

being used in this example. First, determine the power delivered by the (three-phase) source:

I a M =  1.833 / - 1 3° A and Vm(ft>) =  100 / ( £ V ,  so P a =  O 0 0 ^ 1-833) cos (0° -  ( - 1 3 ° ) )  =  89.3 W

I b M  =  1 .766/9 4 .9 °  A and Vb„ M  =  100 / l 2 0 °  V. so P b =  t 100^ 1-766) cos ( 12o° -  (94 .9°)) =  80 W

lr(a>) =  2 .1 1 8 / - 1 4 0 .5 °  A and V ^ M  =  1 0 0 /2 4 0 °  V . so P c =  i-1^ 2 ’118  ̂ cos (0° +  140.5°) =  99.2 W

The power delivered by the source is 89.3 +  80 +  99.2 =  268.5 W.
Next, determine the power delivered to the (three-phase) load as

/ 1
I a M  =  1 .833 / - 1 3° A  and R A =  50 ft, so P A =  - ^ p - 5 0  =  84.0 W

I b M  =  1 .766 /9 4 .9 °  A and R B — 40 ft , so P B =  —- ^ - 4 0  =  62.4 W

/ ? 11 R2
Ic(a>) =  2.118 / —140.5° A and Rc =  30 ft , so Pc =  ——— 30 =  67.3 W

The power delivered to the load is 84 +  62.4 +  67.3 =  213.7 W.
Determine the power lost in the (three-phase) line as

Ia M  =  1.833/ - 1 3° A and flaA =  1 0 ft , so PaA =  10 =  16.8 W

I b M  -  1.766/9 4 .9 °  A and flb B= 1 0 f t ,  so PbB =  —~662 [0 _ 15.6 W

I c M  — 2 .1 1 8 /__140.5 A and Rcc =  10 ft, so Pcc =  ~ ~  -  10 =  22 4 W

The power lost in the line is 16.8 +  15.6 +  22.4 =  54.8 W.

" h! r : : ^ el,Vered br the S,°urc.e is equal t0 the sum o f the P°wer los‘ in the line plus the pow er delivered------- J ------ --- W ju u i niw, a u n i  U l III

to the load. Again, we conclude that the given node voltage is correct.
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j 1 2 . 1 0  D E S I G N  E X A M P L E

POWER FACTOR CORRECTION

Figure 12.10-1 shows a three-phase circuit. The capacitors are added to improve the power
factor of the load. We need to determine the value of the capacitance, C, required to obtain a
power factor of 0.9 lagging.

Describe the Situation and the Assumptions
1. The circuit is excited by sinusoidal sources all having the same frequency, 60 Hz or 377 

rad/s. The circuit is at steady state. The circuit is a linear circuit. Phasors can be used to 
analyze this circuit.

2. The circuit is a balanced three-phase circuit. A per-phase equivalent circuit can be used to 
analyze this circuit.

3. The load consists of two parts. The part comprising resistors and inductors is connected as 
a Y. The part comprising capacitors is connected as a A. A A-to-Y transformation can be 
used to simplify the load.

The per-phase equivalent circuit is shown in Figure 12.10-2.

State the Goal
Determine the value of C required to correct the power factor to 0.9 lagging.

Generate a Plan
Power factor correction was considered in Chapter 11. A formula was provided for calculating 
the reactance, X h needed to correct the power factor of a load

R2 + X 2
X , =

R tan (cos-1 pfc) — X

vaU) = 100 cos (3771) V 

-----0------
R l = 4 Q L l = 4 mH

—V A -------rv^ ^ -

ub(/) = 100 cos (377/ + 120°) V /?L = 4 Q L l  = 4 mH

-P)------

FIGURE 12.10-1 A balanced three-phase circuit.

4 0  y1.508 ft 20 n

ioo io ° ( j :

R = 20 ft L = 0.2 H 
— W v ------- rv-v>r\_

R = 20Cl L = 0.2 H
AA/V

R = 20 ft L = 0.2 H

Load

>75.4 ft

Source Line Load
FIGURE 12.10-2 The per-phase
equivalent circuit.
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where R and A-are the real and imaginary pans o f  the load impedance before the power factor 
*  e j e c t e d  and pfc  is the corrected power factor. After this equation is used to calculate X ,,  
he eapa dance C. can be calculated from X t. Notice that X, will be the reactance o f  the 

equivalent Y-c«rnected capacitors. We will need to calculate the A-connected capactor  

equivalent o f  the Y-connected capacitor.

w V not/that Z =  R + j X  = 2 0 +  j l S A  ft . Therefore, the reactance, X u  needed to correct the 

power factor is

Xx =
202 +  75.4 2

20 tan (cos 1 0.9) — 75.4
=  - 9 2 .6

The Y-connected capacitor equivalent to the A-connected capacitor can be calculated from 
ZY =  z a /3. Therefore, the capacitance o f  the equivalent Y-connected capacitor is 3 C. 

Finally, because X \  =  1 /(3 Cco), we have

C =
c v  3 - X i  377 • 3 (—92.6)

=  9.548 n f

Verify the Proposed Solution
When C =  9 .5 4 8 /zF, the impedance o f  one phase o f  the equivalent Y-connected load will be

1 ; (2 0 + 7 7 5 .4 )
ZY =  7377 X 3 X C-------------------- =  246.45 +  j l  19.4

+  ( 2 0 + y 7 5 .4 )
f i l l  x 3 x C 

The value o f  the power factor is

p f  =  cos ( tan” 1 ( ) ) =  0.90

so the specifications have been satisfied.

12.11 S U M M A R Y
O The generation and transmission of electrical power are 

more efficient in three-phase systems employing three volt­
ages of the same magnitude and frequency and differing in 
phase by 120° from each other.

O The three-phase source consists of either three Y-connected 
sinusoidal voltage sources or three A-connected sinusoidal 
voltage sources. Similarly, the circuit elements that com­
prise the load are connected to form either a Y or a A. The 
transmission line connects the source to the load and con­
sists of either three or four wires.

O Analysis of three-phase circuits using phasors and imped­
ances will determine the steady-state response of the three-

phase circuit. We are particularly interested in the power the 
three-phase source delivers to the three-phase load. Table 
12.1-1 summarizes the formulas that are used to calculate 
the power delivered to an element when the element voltage 
and current adhere to the passive convention.

O The current in the neutral wire of a balanced Y-to-Y connection 
is zero; thus, the wire may be removed if desired. The key to the 
analysis of the Y-to-Y circuit is the calculation of the line 
currents. When the circuit is not balanced, the first step in 
the analysis of this circuit is to calculate the voltage at 
the neutral node of the three-phase load with respect to the 
voltage at the neutral node of the three-phase source. When the
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c i r c u i t  i s  b a l a n c e d ,  t h i s  s t e p  i s n ’ t  n e e d e d  b e c a u s e  V N n =  0 .  O n c e  

V N n  i s  k n o w n ,  t h e  l i n e  c u r r e n t s  c a n  b e  c a l c u l a t e d .  T h e  l i n e  

c u r r e n t  f o r  a  b a l a n c e d  Y - t o - Y  c o n n e c t i o n  i s  Y y Z  f o r  p h a s e  a ,  

a n d  t h e  o t h e r  t w o  c u r r e n t s  a r e  d i s p l a c e d  b y  ± 1 2 0 °  f r o m  IA.
O  F o r  a  A  l o a d ,  w e  c o n v e r t e d  t h e  A  l o a d  t o  a  Y - c o n n e c t e d  l o a d  

b y  u s i n g  t h e  r e l a t i o n  A - t o - Y  t r a n s f o r m a t i o n .  T h e n  w e  

p r o c e e d e d  w i t h  t h e  Y - t o - Y  a n a l y s i s .

O  T h e  l i n e  c u r r e n t  f o r  a  b a l a n c e d  A  l o a d  i s  \ / 3  t i m e s  t h e  p h a s e  

c u r r e n t  a n d  i s  d i s p l a c e d  - 3 0 c  i n  p h a s e .  T h e  l i n e - t o - l i n e  

v o l t a g e  o f  a  A  l o a d  i s  e q u a l  t o  t h e  p h a s e  v o l t a g e .

O  T h e  p o w e r  d e l i v e r e d  t o  a  b a l a n c e d  Y - c o n n e c t e d  l o a d  i s  

p Y  =  y / 3  V a b I a  c o s  0  w h e r e  V a b  i s  t h e  l i n e - t o - l i n e  v o l t a g e ,

I  a  i s  t h e  l i n e  c u r r e n t ,  a n d  0  i s  t h e  a n g l e  b e t w e e n  t h e  p h a s e  

v o l t a g e  a n d  t h e  p h a s e  c u r r e n t  ( Z Y  =  Z  / o ) .

O  T h e  t w o - w a t t m e t e r  m e t h o d  o f  m e a s u r i n g  t h r e e - p h a s e  

p o w e r  d e l i v e r e d  t o  a  l o a d  w a s  d e s c r i b e d .  A l s o ,  w e  

c o n s i d e r e d  t h e  u s e f u l n e s s  o f  t h e  t w o - w a t t m e t e r  m e t h o d  

f o r  d e t e r m i n i n g  t h e  p o w e r  f a c t o r  a n g l e  o f  a  t h r e e - p h a s e  

s y s t e m .

P R O B L E M S

Section 12.2 Three-Phase Voltages

P 12.2-1 A  b a l a n c e d  t h r e e - p h a s e  Y - c o n n e c t e d  l o a d  h a s  o n e  

p h a s e  v o l t a g e :

V .  =  2 7 7  / 4 5 °  V  r m s  

T h e  p h a s e  s e q u e n c e  i s  a b c .  F i n d  t h e  l i n e - t o - l i n e  v o l t ­

a g e s  V A B ,  V B o  a n d  V C A . D r a w '  a  p h a s o r  d i a g r a m  s h o w  i n g  t h e  

p h a s e  a n d  l i n e  v o l t a g e s .

P 12.2-2 A  t h r e e - p h a s e  s y s t e m  h a s  a  l i n e - t o - l i n e  v o l t a g e

V B A  =  1 2 . 4 7 0  7 - 3 5 °  V  r m s

w i t h  a  Y  l o a d .  F i n d  t h e  p h a s e  v o l t a g e s  w h e n  t h e  p h a s e  

s e q u e n c e  i s  a b c .

P 12.2-3 A  t h r e e - p h a s e  s y s t e m  h a s  a  l i n e - t o - l i n e  v o l t a g e

v ab =  1 5 0 0  7 3 0 °  V r m s  

w i t h  a  Y  l o a d .  D e t e r m i n e  t h e  p h a s e  v o l t a g e .

Section 12.3 The Y-to-Y Circuit

P 12.3-1 C o n s i d e r  a  t h r e e - w i r e  Y - t o - Y  c i r c u i t .  T h e  v o l t a g e s  

o f  t h e  Y - c o n n e c t e d  s o u r c e  a r e  V a  =  ( 2 0 8 / \ / 3 )  / ( £ .  V  r m s ,

V b  =  ( 2 0 8 / v / 3 )  7 - 1 2 0 °  V  r m s .  a n d  V c =  ( 2 0 8 / n/ 3 )  / l 2 0 °

V  r m s .  T h e  Y - c o n n e c t e d  l o a d  i s  b a l a n c e d .  T h e  i m p e d a n c e  o f  

e a c h  p h a s e  i s  Z  =  1 2  / 3 0 °  Q .

( a )  F i n d  t h e  p h a s e  v o l t a g e s .

( b )  F i n d  t h e  l i n e  c u r r e n t s  a n d  p h a s e  c u r r e n t s .

( c )  S h o w  t h e  l i n e  c u r r e n t s  a n d  p h a s e  c u r r e n t s  o n  a  p h a s o r  

d i a g r a m .

( d )  D e t e r m i n e  t h e  p o w e r  d i s s i p a t e d  i n  t h e  l o a d .

P 12.3-2 A  b a l a n c e d  t h r e e - p h a s e  Y - c o n n e c t e d  s u p p l y  d e l i v ­

e r s  p o w e r  t h r o u g h  a  t h r e e - w i r e  p l u s  n e u t r a l - w i r e  c i r c u i t  i n  

a  l a r g e  o f f i c e  b u i l d i n g  t o  a  t h r e e - p h a s e  Y - c o n n e c t e d  l o a d .  

T h e  c i r c u i t  o p e r a t e s  a t  6 0  H z .  T h e  p h a s e  v o l t a g e s  o f  t h e  

Y - c o n n e c t e d  s o u r c e  a r e  Va =  1 2 0 ^ 0 1  V  r m s ,  Vb =  1 2 0  

/ —  1 2 0 °  V  r m s ,  a n d  Vc =  1 2 0 / l 2 0 °  V  r m s .  E a c h  t r a n s m i s ­

s i o n  w i r e ,  i n c l u d i n g  t h e  n e u t r a l  w i r e ,  h a s  a  2 - H  r e s i s t a n c e ,  a n d  

t h e  b a l a n c e d  Y  l o a d  h a s  a  1 0 - H  r e s i s t a n c e  i n  s e r i e s  w i t h  1 0 0  

m H .  F i n d  t h e  l i n e  v o l t a g e  a n d  t h e  p h a s e  c u r r e n t  a t  t h e  l o a d .

P 12.3-3 A  Y - c o n n e c t e d  s o u r c e  a n d  l o a d  a r e  s h o w n  i n  F i g u r e  

P  1 2 . 3 - 3 .  ( a )  D e t e r m i n e  t h e  r m s  v a l u e  o f  t h e  c u r r e n t  / a ( r ) .

( b )  D e t e r m i n e  t h e  a v e r a g e  p o w e r  d e l i v e r e d  t o  t h e  l o a d .

Figure P 12.3-3
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An unbalanced Y -Y  circuit is shown in Figure P 12.3-7 A balanced Y -Y  circuit is shown in Figure P 12.3-7.P 12.3-4
P 12.3-4. Find the average power delivered to the load. 

Hint: V^ni0*) =  27.4 / —63.6 V 

Answer: 436.4 W

Find the average power delivered to the load.

Source 

Figure P 12.3-4

Line Load

P 12.3-5 A balanced Y-Y circuit is shown in Figure P 12.3-5. 
Find the average power delivered to the load.

(3771 + 240°) 
Source

Figure P 12.3-5

Line Load

10 cos 
(41 + 30°) 

Source

Figure P 12.3-6

Line Load

10 cos 
(4t + 30°)

Source 

Figure P 12.3-7

Line Load

P 12.3-6 An unbalanced Y-Y circuit is shown in Figure 
P 12.3-6. Find the average power delivered to the load.

Hint: V n„M  =  1.755 7 -29 .5  V

Answer: 436.4 W

Section 12.4 The A-Connected Source and Load
P 12.4-1 A balanced three-phase A-connected load has one 
line current:

IB =  50 7 -4 0 °  A rms

Find the phase currents IBc, Iab. and Ica- Draw the phasor 
diagram showing the line and phase currents. The source uses 
the abc phase sequence.

P 12.4-2 A three-phase circuit has two parallel balanced A 
loads, one of 5 -0  resistors and one of 20-0  resistors. Find the 
magnitude of the total line current when the line-to-line 
voltage is 480 V rms.

Section 12.5 The Y-to-A Circuit

P 12.5-1 Consider a three-wire Y-to-A circuit. The voltages

of the Y-connected source are Va =  (208/V 3) 7 -3 0 °  V rms,

Vb =  (208/^3) 7 -1 5 0 ° V rms, and Vc =  ( 2 0 8 / / w  V 
rms. The A-connected load is balanced. The impedance of

each phase is Z =  12 /30° O. Determine the line currents and 
calculate the power dissipated in the load.

Answer: P =  9360 W

P 12.5-2 A balanced A-connected load is connected by 
three wires, each with a 4 -0  resistance, to a Y source with

Va =  (480/y/3) 7 -3 0 °  V rms, Vb =  (4 8 0 /\/3 ) 7 -1 5 0 °  V 

rms, and Vc =  (4 8 0 /^3 ) V rms. Find the line current 
IA when ZA =  39 7 -4 0 °  (I 

Answer: IA =  17 / 0.9° A

P 12.5-3 The balanced circuit shown in Figure P 12.5-3 has 
v ab =  380 /30! v  rms. Determine the phase currents in the 
load when Z =  3 + j 4  ft. Sketch a phasor diagram.



P r o b l e m s --------( 591

a

P 12.5-4 T h e  b a l a n c e d  c i r c u i t  s h o w n  i n  F i g u r e  P  1 2 . 5 - 3  h a s  

Vab =  3 8 0 V  r m s .  D e t e r m i n e  t h e  l i n e  a n d  p h a s e  c u r r e n t s  

i n  t h e  l o a d  w h e n  Z  =  9  + y ' 1 2  A .

Section 12.6 Balanced Three-Phase Circuits

P 12.6-1 T h e  E n g l i s h  C h a n n e l  T u n n e l  r a i l  l i n k  i s  s u p p l i e d  

a t  2 5  k V  r m s  f r o m  t h e  U n i t e d  K i n g d o m  a n d  F r e n c h  g r i d  

s y s t e m s .  W h e n  t h e r e  i s  a  g r i d  s u p p l y  f a i l u r e ,  e a c h  e n d  i s  

c a p a b l e  o f  s u p p l y i n g  t h e  w h o l e  t u n n e l  b u t  i n  a  r e d u c e d  

o p e r a t i o n a l  m o d e .

T h e  t u n n e l  t r a c t i o n  s y s t e m  i s  a  c o n v e n t i o n a l  c a t e n a r y  

( o v e r h e a d  w i r e )  s y s t e m  s i m i l a r  t o  t h e  s u r f a c e  m a i n l i n e  

e l e c t r i c  r a i l w a y  s y s t e m  o f  t h e  U n i t e d  K i n g d o m  a n d  F r a n c e .  

W h a t  m a k e s  t h e  t u n n e l  t r a c t i o n  s y s t e m  d i f f e r e n t  a n d  u n i q u e  

i s  t h e  h i g h  d e n s i t y  o f  t r a c t i o n  l o a d  a n d  t h e  e n d - f e d  s u p p l y  

a r r a n g e m e n t .  T h e  t u n n e l  t r a c t i o n  l o a d  i s  c o n s i d e r a b l e .  F o r  

e a c h  h a l f  t u n n e l ,  t h e  l o a d  i s  1 8 0  M V A  ( B a r n e s  a n d  W o n g ,  

1 9 9 1 ) .

A s s u m e  t h a t  e a c h  l i n e - t o - l i n e  v o l t a g e  o f  t h e  Y -  

c o n n e c t e d  s o u r c e  i s  2 5  k V  r m s  a n d  t h e  t h r e e - p h a s e  s y s t e m  

i s  c o n n e c t e d  t o  t h e  t r a c t i o n  m o t o r  o f  a n  e l e c t r i c  l o c o m o t i v e .  

T h e  m o t o r  i s  a  Y - c o n n e c t e d  l o a d  w i t h  Z  =  1 5 0 / 2 5 °  O .  F i n d  

t h e  l i n e  c u r r e n t s  a n d  t h e  p o w e r  d e l i v e r e d  t o  t h e  t r a c t i o n  

m o t o r .

P 12.6-2 A  t h r e e - p h a s e  s o u r c e  w i t h  a  l i n e  v o l t a g e  o f  4 5  k V  

r m s  i s  c o n n e c t e d  t o  t w o  b a l a n c e d  l o a d s .  T h e  Y - c o n n e c t e d  

l o a d  h a s  Z  =  1 0  +  y ' 2 0  A ,  a n d  t h e  A  l o a d  h a s  a  b r a n c h  

i m p e d a n c e  o f  5 0  A .  T h e  c o n n e c t i n g  l i n e s  h a v e  a n  i m p e d a n c e  

o f  2  C l .  D e t e r m i n e  t h e  p o w e r  d e l i v e r e d  t o  t h e  l o a d s  a n d  t h e  

p o w e r  l o s t  i n  t h e  w i r e s .  W h a t  p e r c e n t a g e  o f  p o w e r  i s  l o s t  i n  

t h e  w i r e s ?

P 12.6-3 A  b a l a n c e d  t h r e e - p h a s e  s o u r c e  h a s  a  Y - c o n n e c t e d  

s o u r c e  w i t h  v a  =  5  c o s  ( 2 1  +  3 0 ° )  c o n n e c t e d  t o  a  t h r e e - p h a s e

Y  l o a d .  E a c h  p h a s e  o f  t h e  Y - c o n n e c t e d  l o a d  c o n s i s t s  o f  a  4 - H  

r e s i s t o r  a n d  a  4 - H  i n d u c t o r .  E a c h  c o n n e c t i n g  l i n e  h a s  a  

r e s i s t a n c e  o f  2  f l .  D e t e r m i n e  t h e  t o t a l  a v e r a g e  p o w e r  d e l i v e r e d  

t o  t h e  l o a d .

Section 12.7 Instantaneous and Average Power in a 
Balanced Three-Phase Load

P 12.7-1 F i n d  t h e  p o w e r  a b s o r b e d  b y  a  b a l a n c e d  t h r e e - p h a s e  

Y - c o n n e c t e d  l o a d  w h e n

V ™  =  2 0 8  / l S °  V  r m s  a n d  l «  =  3  [ \  1 0 °  A  r m s

T h e  s o u r c e  u s e s  t h e  a b c  p h a s e  s e q u e n c e .

A n s w e r :  P  =  6 2 0  W

P 12.7-2 A  t h r e e - p h a s e  m o t o r  d e l i v e r s  2 0  h p  o p e r a t i n g  f r o m  

a  4 8 0 - V  r m s  l i n e  v o l t a g e .  T h e  m o t o r  o p e r a t e s  a t  8 5  p e r c e n t  

e f f i c i e n c y  w i t h  a  p o w e r  f a c t o r  e q u a l  t o  0 . 8  l a g g i n g .  F i n d  t h e  

m a g n i t u d e  a n d  a n g l e  o f  t h e  l i n e  c u r r e n t  f o r  p h a s e  A .

H i n t :  1  h p  =  7 4 5 . 7  W

P 12.7-3 A  t h r e e - p h a s e  b a l a n c e d  l o a d  i s  f e d  b y  a  b a l a n c e d  

Y - c o n n e c t e d  s o u r c e  w i t h  a  l i n e - t o - l i n e  v o l t a g e  o f  2 2 0  V  r m s .  

I t  a b s o r b s  1 5 0 0  W  a t  0 . 8  p o w e r  f a c t o r  l a g g i n g .  C a l c u l a t e  t h e  

p h a s e  i m p e d a n c e  i f  i t  i s  ( a )  A - c o n n e c t e d  a n d  ( b )  Y -  

c o n n e c t e d .

P 12.7-4 A  6 0 0 - V  r m s  t h r e e - p h a s e  Y - c o n n e c t e d  s o u r c e  h a s  

t w o  b a l a n c e d  A  l o a d s  c o n n e c t e d  t o  t h e  l i n e s .  T h e  l o a d  i m p e d ­

a n c e s  a r e  4 0  / 3 0 °  f l  a n d  5 0  / - 6 0 °  f l ,  r e s p e c t i v e l y .  D e t e r ­

m i n e  t h e  l i n e  c u r r e n t  a n d  t h e  t o t a l  a v e r a g e  p o w e r .

P 12.7-5 A  t h r e e - p h a s e  Y - c o n n e c t e d  s o u r c e  s i m u l t a n e o u s l y  

s u p p l i e s  p o w e r  t o  t w o  s e p a r a t e  b a l a n c e d  t h r e e - p h a s e  l o a d s .  

T h e  f i r s t  t o t a l  l o a d  i s  A  c o n n e c t e d  a n d  r e q u i r e s  3 9  k V A  a t  0 . 7  

l a g g i n g .  T h e  s e c o n d  t o t a l  l o a d  i s  Y  c o n n e c t e d  a n d  r e q u i r e s  1 5  

k W r a t  0 . 2 1  l e a d i n g .  E a c h  l i n e  h a s  a n  i m p e d a n c e  

0 . 0 3 8  - I - y ' 0 . 0 7 2  A / p h a s e .  C a l c u l a t e  t h e  l i n e - t o - l i n e  s o u r c e  v o l t ­

a g e  m a g n i t u d e  r e q u i r e d  s o  t h a t  t h e  l o a d s  a r e  s u p p l i e d  w i t h  

2 0 8 - V  r m s  l i n e - t o - l i n e .

P 12.7-6 A  b u i l d i n g  i s  s u p p l i e d  b y  a  p u b l i c  u t i l i t y  a t  4 . 1 6  k V  

r m s .  T h e  b u i l d i n g  c o n t a i n s  t h r e e  b a l a n c e d  l o a d s  c o n n e c t e d  t o  

t h e  t h r e e - p h a s e  l i n e s :

(a) A - c o n n e c t e d ,  5 0 0  k V A  a t  0 . 8 5  l a g g i n g

(b) Y - c o n n e c t e d ,  7 5  k V A  a t  0 . 0  l e a d i n g

( c )  Y  c o n n e c t e d ;  e a c h  p h a s e  w i t h  a  1 5 0 - f l  r e s i s t o r  p a r a l l e l  t o  a  

2 2 5 - f l  i n d u c t i v e  r e a c t a n c e

T h e  u t i l i t y  f e e d e r  i s  f i v e  m i l e s  l o n g  w i t h  a n  i m p e d a n c e  p e r  

p h a s e  o f  1 . 6 9  4 - y ' 0 . 7 8  f t / m i l e .  A t  w h a t  v o l t a g e  m u s t  t h e  u t i l i t y  

s u p p l y  i t s  f e e d e r  s o  t h a t  t h e  b u i l d i n g  i s  o p e r a t i n g  a t  4 . 1 6  k V  

r m s ?

H i n t :  4 1 . 6  k V  i s  t h e  l i n e - t o - l i n e  v o l t a g e  o f  t h e  b a l a n c e d  

Y - c o n n e c t e d  s o u r c e .

P 12.7-7 T h e  d i a g r a m  s h o w n  i n  P  1 2 . 7 - 7  h a s  t w o  t h r e e -  

p h a s e  l o a d s  t h a t  f o r m  p a r t  o f  a  m a n u f a c t u r i n g  p l a n t .  T h e y  a r e  

c o n n e c t e d  i n  p a r a l l e l  a n d  r e q u i r e  4 . 1 6  k V  r m s .  L o a d  1  i s  1 . 5  

M V A ,  0 . 7 5  l a g  p f , \  A - c o n n e c t e d .  L o a d  2  i s  2  M W ,  0 . 8  l a g g i n g  

p j ,  Y - c o n n e c t e d .  T h e  f e e d e r  f r o m  t h e  p o w e r  u t i l i t y ’ s  s u b ­

s t a t i o n  t r a n s f o r m e r  h a s  a n  i m p e d a n c e  o f  0 . 4  + y ‘0 . 8  A / p h a s e .  

D e t e r m i n e  t h e  f o l l o w i n g .
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F i g u r e  P  1 2 . 7 - 7  A  t h r e e - p h a s e  c i r c u i t  w i t h  a  A  l o a d  a n d  a  Y  l o a d .

( a )  T h e  r e q u i r e d  m a g n i t u d e  o f  t h e  l i n e  v o l t a g e  a t  t h e  s u p p l y

( b )  T h e  r e a l  p o w e r  d r a w n  f r o m  t h e  s u p p l y

( c )  T h e  p e r c e n t a g e  o f  t h e  r e a l  p o w e r  d r a w n  f r o m  t h e  s u p p l y  

t h a t  i s  c o n s u m e d  b y  t h e  l o a d s

P 12.7-8 T h e  b a l a n c e d  t h r e e - p h a s e  l o a d  o f  a  l a r g e  c o m m e r c i a l  

b u i l d i n g  r e q u i r e s  4 8 0  k W  a t  a  l a g g i n g  p o w e r  f a c t o r  o f  0 . 8 .  T h e  

l o a d  i s  s u p p l i e d  b y  a  c o n n e c t i n g  l i n e  w i t h  a n  i m p e d a n c e  o f  5  +  

j 2 5  m H  f o r  e a c h  p h a s e .  E a c h  p h a s e  o f  t h e  l o a d  h a s  a  l i n e - t o - l i n e  

v o l t a g e  o f  6 0 0  V  r m s .  D e t e r m i n e  t h e  l i n e  c u r r e n t  a n d  t h e  l i n e  

v o l t a g e  a t  t h e  s o u r c e .  A l s o ,  d e t e r m i n e  t h e  p o w e r  f a c t o r  a t  t h e  

s o u r c e .  U s e  t h e  l i n e - t o - n e u t r a l  v o l t a g e  a s  t h e  r e f e r e n c e  w i t h  a n  

a n g l e  o f  0 ° .

Section 12.8 Two-Wattmeter Power Measurement
P 12.8-1 T h e  t w o - w a t t m e t e r  m e t h o d  i s  u s e d  t o  d e t e r m i n e  t h e  

p o w e r  d r a w n  b y  a  t h r e e - p h a s e  4 4 0 - V  r m s  m o t o r  t h a t  i s  a  Y -  

c o n n e c t e d  b a l a n c e d  l o a d .  T h e  m o t o r  o p e r a t e s  a t  2 0  h p  a t  7 4 . 6  

p e r c e n t  e f f i c i e n c y .  T h e  m a g n i t u d e  o f  t h e  l i n e  c u r r e n t  i s  5 2 . 5  A  r m s .  

T h e  w a t t m e t e r s  a r e  c o n n e c t e d  i n  t h e  A  a n d  C  l i n e s .  F i n d  t h e  r e a d i n g  

o f  e a c h  w a t t m e t e r .  T h e  m o t o r  h a s  a  l a g g i n g  p o w e r  f a c t o r .

H i n t :  1  h p  =  7 4 5 . 7  W

P 12.8-2 A  t h r e e - p h a s e  s y s t e m  h a s  a  l i n e - t o - l i n e  v o l t a g e  o f  

4 0 0 0  V  r m s  a n d  a  b a l a n c e d  A - c o n n e c t e d  l o a d  w i t h  

Z  =  4 0  + y ' 3 0  f t .  T h e  p h a s e  s e q u e n c e  i s  a b c .  U s e  t h e  t w o  

w a t t m e t e r s  c o n n e c t e d  t o  l i n e s  A  a n d  C ,  w i t h  l i n e  B  a s  t h e  

c o m m o n  l i n e  f o r  t h e  v o l t a g e  m e a s u r e m e n t .  D e t e r m i n e  t h e  t o t a l  

p o w e r  m e a s u r e m e n t  r e c o r d e d  b y  t h e  w a t t m e t e r s .

A n s w e r :  P  =  7 6 8  k W

P 12.8-3 A  t h r e e - p h a s e  s y s t e m  w i t h  a  s e q u e n c e  a b c  a n d  a  

l i n e - t o - l i n e  v o l t a g e  o f  2 0 0  V  r m s  f e e d s  a  Y - c o n n e c t e d  l o a d

w i t h  Z =  70.7 /45° f t .  F i n d  t h e  l i n e  c u r r e n t s .  F i n d  t h e  t o t a l  

p o w e r  b y  u s i n g  t w o  w a t t m e t e r s  c o n n e c t e d  t o  l i n e s  B  a n d  C .

A n s w e r :  P  =  400 W
P 12.8-4 A  t h r e e - p h a s e  s y s t e m  w i t h  a  l i n e - t o - l i n e  v o l t a g e  o f  

208 V  r m s  a n d  p h a s e  s e q u e n c e  a b c  i s  c o n n e c t e d  t o  a  Y -  

b a l a n c e d  l o a d  w i t h  i m p e d a n c e  10 / —30° f t  a n d  a  b a l a n c e d  A  

l o a d  w i t h  i m p e d a n c e  15/30° f t .  F i n d  t h e  l i n e  c u r r e n t s  a n d  t h e  

t o t a l  p o w e r  u s i n g  t w o  w a t t m e t e r s .

P 12.8-5 T h e  t w o - w a t t m e t e r  m e t h o d  i s  u s e d .  T h e  w a t t m e t e r  

i n  l i n e  A  r e a d s  920 W ,  a n d  t h e  w a t t m e t e r  i n  l i n e  C r e a d s  460 W. 
F i n d  t h e  i m p e d a n c e  o f  t h e  b a l a n c e d  A - c o n n e c t e d  l o a d .  T h e  

c i r c u i t  i s  a  t h r e e - p h a s e  1 2 0 - V  r m s  s y s t e m  w i t h  a n  a b c  

s e q u e n c e .

A n s w e r :  =  27.1 /  —30° f t

P 12.8-6 U s i n g  t h e  t w o - w a t t m e t e r  m e t h o d ,  d e t e r m i n e  t h e  

p o w e r  r e a d i n g  o f  e a c h  w a t t m e t e r  a n d  t h e  t o t a l  p o w e r  f o r  

P r o b l e m  12.5-1 w h e n  Z = 0.868 + y'4.924 f t .  P l a c e  t h e  c u r r e n t  

c o i l s  i n  t h e  A - t o - a  a n d  C - t o - c  l i n e s .

Section 12.9 How Can We Check . . . ?

P 12.9-1 A  Y - c o n n e c t e d  s o u r c e  i s  c o n n e c t e d  t o  a  Y -  

c o n n e c t e d  l o a d  ( F i g u r e  1 2 . 3 - 1 )  w i t h  Z = 1 0 + y 4 f t .  T h e  

l i n e  v o l t a g e  i s  V i  =  4 1 6  V  r m s .  A  s t u d e n t  r e p o r t  s t a t e s  t h a t  

t h e  l i n e  c u r r e n t  =  3 8 . 6 3  A  r m s  a n d  t h a t  t h e  p o w e r  d e l i v e r e d  

t o  t h e  l o a d  i s  1 6 . 1  k W .  V e r i f y  t h e s e  r e s u l t s .

P 12.9-2 A  A  l o a d  w i t h  Z  =  4 0  + y ’3 0 f t  h a s  a  t h r e e - p h a s e  

s o u r c e  w i t h  V L  =  2 4 0  V  r m s  ( F i g u r e  1 2 . 3 - 2 ) .  A  c o m p u t e r  

a n a l y s i s  p r o g r a m  s t a t e s  t h a t  o n e  p h a s e  c u r r e n t  i s

4 . 8  Z - 3 6 . 9 °  A .  V e r i f y  t h i s  r e s u l t .
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PSpice Problems
SP 12-1 Use PSpice to determine the power delivered to the 
load in the circuit shown in Figure SP 12-1.

(3771 + 240°)

Source Line Load

Figure SP 12-1

SP 12-2 Use PSpice to determine the power delivered to the 
load in the circuit shown in Figure SP 12-2.

(3771 + 240°)

Source Line Load

Figure SP 12-2

Design Problems
DP 12-1 A balanced three-phase Y source has a line voltage of 
208 V rms. The total power delivered to the balanced A load is 
1200 W with a power factor of 0.94 lagging. Determine the 
required load impedance for each phase of the A load. Calculate 
the resulting line current. The source is a 208-V rms ABC sequence.

DP 12-2 A three-phase 240-V rms circuit has a balanced Y- 
load impedance Z. Two wattmeters are connected with current 
coils in lines A and C. The wattmeter in line A reads 1440 W, 
and the wattmeter in line C reads zero. Determine the value of 
the impedance.

DP 12-3 A three-phase motor delivers 100 hp and operates at 
80 percent efficiency with a 0.75 lagging power factor. Deter­
mine the required A-connected balanced set of three capacitors 
that will improve the power factor to 0.90 lagging. The motor 
operates from 480-V rms lines.

DP 12-4 A three-phase system has balanced conditions so that 
the per-phase circuit representation can be used as shown in 
Figure DP 12-4. Select the turns ratio of the step-up and step- 
down transformers so that the system operates with an effi­
ciency greater than 99 percent. The load voltage is specified as 4 
kV rms, and the load impedance is 4/3 H.

20 kV

Figure DP 12-4

1
J +

I Vl
Load

1 -
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13.1 I N T R O D U C T I O N

Consider the experiment illustrated in Figure 13.1-1. Here a function generator provides the input to a 
linear circuit and the oscilloscope displays the output, or response, of the linear circuit. The linear 
circuit itself consists of resistors, capacitors, inductors, and perhaps dependent sources and/or op 
amps. The function generator allows us to choose from several types of input function.

Suppose we select a sinusoidal input. The function generator permits us to adjust the amplitude, 
phase angle, and frequency of the input. First, we notice that no matter what adjustments we make, the 
(steady-state) response is always a sine wave at the same frequency as the input. The amplitude and 
phase angle of the output differ from the input, but the frequency is always the same as the frequency 
of the input.

After a little more experimentation, we find that at any fixed frequency, the following are true:

• The ratio of the amplitude of the output sinusoid to the amplitude of the input sinusoid is a constant.

• The difference between the phase angle of the output sinusoid and the phase angle of the input 
sinusoid is also constant.

The situation is not as simple when we vary the frequency of the input. Now the amplitude and 
phase angle of the output change in a more complicated way.

In this chapter, we will develop analytical tools that enable us to predict how the amplitude and 
phase angle of the output sinusoid will change as we vary the frequency of the input sinusoid.

-0

13.2 G A I N ,  P H A S E  S H I F T ,  A N D  T H E  
N E T W O R K  F U N C T I O N  --------------

Gain, phase shift, and the network function are properties of linear circuits that describe the effect a 
circuit has on a sinusoidal input voltage or current. We expect that the behavior of circuits that contain 
reactive elements, that is, capacitors or inductors, will depend on the frequency of the input sinusoid



Gain, Phase Shift, and the Network Function

# -  □  □  

•  •  ! = □' i x i
O Function generator cp

Linear

circuit

FIGURE 13.1-1 Measuring the input and output of a linear circuit.

T h u s ,  w e  e x p e c t  t h a t  t h e  g a i n ,  p h a s e  s h i f t ,  a n d  n e t w o r k  f u n c t i o n  w i l l  a l l  b e  f u n c t i o n s  o f  f r e q u e n c y .  

I n d e e d ,  w e  w i l l  s e e  t h a t  t h i s  i s  t h e  c a s e .

W e  b e g i n  b y  c o n s i d e r i n g  t h e  c i r c u i t  s h o w n  i n  F i g u r e  1 3 . 2 - 1 .  T h e  i n p u t  t o  t h i s  c i r c u i t  i s  t h e  

v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  a n d  t h e  o u t p u t ,  o r  r e s p o n s e ,  o f  t h e  c i r c u i t  i s  t h e  v o l t a g e  a c r o s s  t h e  10-kfl 
r e s i s t o r .  W h e n  t h e  i n p u t  i s  a  s i n u s o i d a l  v o l t a g e ,  t h e  s t e a d y - s t a t e  r e s p o n s e  w i l l  a l s o  b e  s i n u s o i d a l  a n d  

w i l l  h a v e  t h e  s a m e  f r e q u e n c y  a s  t h e  i n p u t .

S u p p o s e  t h e  v o l t a g e s  v i n ( 0  a n d  v o u t ( f )  a r e  m e a s u r e d  u s i n g  a n  o s c i l l o s c o p e .  F i g u r e  1 3 . 2 - 2  s h o w s  

t h e  w a v e f o r m s  t h a t  w o u l d  b e  d i s p l a y e d  o n  t h e  s c r e e n  o f  t h e  o s c i l l o s c o p e .  N o t i c e  t h a t  t h e  s c a l e s  a r e  

s h o w n ,  b u t  t h e  a x e s  a r e  n o t .  I t  i s  c u s t o m a r y  t o  t a k e  t h e  a n g l e  o f  t h e  i n p u t  s i g n a l  t o  b e  0 ° ,  t h a t  i s ,

( 0  =  A  c o s  c o t

T h e n ,

v Ou t ( 0  =  B  c o s  ( c o t  4 -  0 )

T h e  gain o f  t h e  c i r c u i t  d e s c r i b e s  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  s i z e s  o f  t h e  i n p u t  a n d  o u t p u t  

s i n u s o i d s .  I n  p a r t i c u l a r ,  t h e  g a i n  i s  t h e  r a t i o  o f  t h e  a m p l i t u d e  o f  t h e  o u t p u t  s i n u s o i d  t o  t h e  

a m p l i t u d e  o f  t h e  i n p u t  s i n u s o i d .

2 nF

FIGURE 13.2-2 Input and output sinusoids for the op amp circuit o f
Figure 13.2-1.
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That is,

gain =
B

The phase shift of the circuit describes the relationship between the phase angles of the input 
and output sinusoids. In particular, the phase shift is the difference between the phase angle 
of the output sinusoid and the phase angle of the input sinusoid.

That is,
phase shift =  0 -  0° =  6

To be more specific, we need analytic representations of the sinusoids shown in Figure 13.2-2. The 
input voltage is the smaller of the two sinusoids and can be represented as

vin (0  — 1 cos 6283^ V

The steady-state response is the larger of the two sinusoids and can be represented as

vout(f) =  8.47 cos (62831 +  148°) V

The gain of this circuit at the frequency co =  6283 rad/s is

output amplitude 8.47 _
gam =  — - -v  . =  —— -  8.47

input amplitude 1

This gain is unitless because both amplitudes have units of volts. Because the gain is greater than 1, the 
output sinusoid is larger than the input sinusoid. This circuit is said to amplify its input. When the gain 
of a circuit is less than 1, the output sinusoid is smaller than the input sinusoid. This circuit is said to 
attenuate its input.

The phase shift of this circuit at the frequency co — 6283 rad/s is

phase shift — output phase angle — input phase angle =  148° — 0° =  148°

The phase shift determines the amount of time the output is advanced or delayed with respect to the 
input. Notice that

B cos (cot +  6 ) = B cos ^  ^ = B cos (co(t +  t0))

where 0 is the phase angle in radians and t0 = 0/co. The positive peaks of B cos (cot +  6 ) occur when

cot + 6 = n(2 n)
and, solving for t, we have

, _  n (2 n ) ,  Tt = ---- to = nT -  t0co
where n is any integer and T is the period of the sinusoid.

The positive peaks of A cos cot occur at / =  and the positive peaks of B cos(cot +  0) occur
_ n(2tt) . .

3t 1 ~  ~co to' A pliase shift of ® rad is seen to shift the output sinusoid by t0 seconds. When the 
frequency is 6283 rad/s, a phase shift of 148°or 2.58 rad causes a shift in time equal to

6  2.58 rad



I n  F i g u r e  1 3 . 2 - 2 ,  t h e  p o s i t i v e  p e a k s  o f  t h e  i n p u t  s i n u s o i d  o c c u r  a t  0  m s ,  1  m s ,  2  m s ,

3 m s ...................... P o s i t i v e  p e a k s  o f  t h e  o u t p u t  s i n u s o i d  o c c u r  a t  0 . 5 9  m s ,  1 . 5 9  m s ,  2 . 5 9  m s ,

3 . 5 9  m s ,  . . . .  P e a k s  o f  t h e  o u t p u t  s i n u s o i d  o c c u r  4 1 0  / x s  b e f o r e  t h e  n e x t  p e a k  o f  t h e  i n p u t  s i n u s o i d .  

T h e  o u t p u t  i s  advanced b y  4 1 0  fj.s  w i t h  r e s p e c t  t o  t h e  i n p u t .

N o t i c e  t h a t

v o u t ( 0  =  8 . 4 7  c o s  ( 6 2 8 3 1  - I -  1 4 8  )  =  8 . 4 7  c o s  ( 6 2 8 3 f  2 1 2  )

b e c a u s e  a  p h a s e  s h i f t  o f  3 6 0 °  d o e s  n o t  c h a n g e  t h e  s i n u s o i d .  A  p h a s e  s h i f t  o f - 2 1 2 °  o r  - 3 . 7 0  r a d  c a u s e s  

a  s h i f t  i n  t i m e  o f

- 3 . 7 0  r a d
t o  = ---------------------------=  - 5 9 0  u s

0 6 2 8 3  r a d / s

P e a k s  o f  t h e  o u t p u t  s i n u s o i d  o c c u r  5 9 0  fis after t h e  p r e v i o u s  o f  t h e  i n p u t  s i n u s o i d .  T h e  o u t p u t  i s  

delayed b y  5 9 0  fis w i t h  r e s p e c t  t o  t h e  i n p u t .

A  p h a s e  s h i f t  t h a t  a d v a n c e s  t h e  o u t p u t  i s  c a l l e d  a  p h a s e  l e a d .  A  p h a s e  s h i f t  t h a t  d e l a y s  t h e  

o u t p u t  i s  c a l l e d  a  p h a s e  l a g .

A t  t h e  f r e q u e n c y  c o  =  6 2 8 3  r a d / s ,  t h i s  c i r c u i t  a m p l i f i e s  i t s  i n p u t  b y  a  f a c t o r  o f  8 . 4 7  a n d  a d v a n c e s  

i t  b y  4 1 0  / i s  o r ,  e q u i v a l e n t l y ,  d e l a y s  i t  b y  5 9 0  / i s .  T h e  c i r c u i t  o f  F i g u r e  1 3 . 2 - 1  h a s  a  p h a s e  l e a d  o f  1 4 8 °  

o r ,  e q u i v a l e n t l y ,  a  p h a s e  l a g  o f  2 1 2 ° .

N o w  l e t  u s  c o n s i d e r  t h i s  c i r c u i t  w h e n  t h e  f r e q u e n c y  o f  t h e  i n p u t  i s  c h a n g e d .  W h e n  t h e  i n p u t  i s

V i n ( t )  =  1  c o s  3 1 4 1 . 6 t V

t h e  s t e a d y - s t a t e  r e s p o n s e  o f  t h i s  c i r c u i t  c a n  b e  f o u n d  t o  b e

V o u t W  =  9 . 5 4  c o s  ( 3 1 4 1 . 6 r  +  1 6 3 ° )  V

T h e  g a i n  a n d  p h a s e  s h i f t  o f  t h i s  c i r c u i t  a t  t h e  f r e q u e n c y  c o  =  3 1 4 1 . 6  r a d / s  a r e

o u t p u t  a m p l i t u d e  9 . 5 4
g a i n  =  ---------------------------- —— - —  =  — —  =  9 . 5 4

i n p u t  a m p l i t u d e  1

a n d  p h a s e  s h i f t  =  o u t p u t  p h a s e  a n g l e  -  i n p u t  p h a s e  a n g l e  =  1 6 3 °  -  0 °  = =  1 6 3 °

C h a n g i n g  t h e  f r e q u e n c y  o f  t h e  i n p u t  h a s  c h a n g e d  t h e  g a i n  a n d  p h a s e  s h i f t  o f  t h i s  c i r c u i t .  A p p a r e n t l y ,  

t h e  g a i n  a n d  t h e  p h a s e  s h i f t  o f  t h i s  c i r c u i t  a r e  f u n c t i o n s  o f  t h e  f r e q u e n c y  o f  t h e  i n p u t .  T a b l e  1 3 . 2 - 1

Gain, Phase Shift, and the Network Function - ©

Table 13.2-1 Frequency Response Data for a Circuit

f[ Hz) (o (rad/s) GAIN PHASE SHIFT

100 628.3 9.98 176°
500 3,141.6 9.54 163°

1,000 6,283 8.47 148"
5,000 31,416 3.03 108°

10,000 62,830 1.57 99°
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shows the values of the gain and phase shift corresponding to several choices of the input frequency. 
As expected, the gain and phase shift changed when the input frequency changed. The network 
function describes the way the behavior of the circuit depends on the frequency of the input. The 
network function is defined in the frequency domain. It is the ratio of the phasor corresponding to the 
response sinusoid to the phasor corresponding to the input. Let X(o>) be the phasor corresponding to 
the input to the circuit and Y(a>) be the phasor corresponding to the steady-state response of the 
network. Then,

F re q u e n c y  R esponse

H(o») = Y M
X(a>)

(13.2-1)

is the network function. Notice that both X(a>) and Y(<w) could correspond to either a current or a 
voltage. Both the gain and the phase shift can be expressed in terms of the network function. The 
gain is

gain =  |H(<w)| = | Y H I
|X M |

(13.2-2)

and the phase shift is

phase shift =  /H(eo) =  /Y(co) — /X(a>) (13.2-3)

Consider the problem of finding the network function of a given circuit. To solve such a 
problem, we do two things. First, we represent the circuit in the frequency domain using 
impedances and phasors. (We also represented the circuit in the frequency domain when we 
wanted to find the steady-state response to a sinusoidal input. In that case, the frequency was 
represented as the value of the frequency of the sinusoidal input, for example, 4 rad/s. When we find 
the network function, the frequency is represented by a variable, co). Second, we analyze the circuit 
to determine the ratio of the phasor corresponding to the circuit output to the phasor corresponding 
to the circuit input. This analysis might involve mesh equations or node equations or equivalent 
impedances and voltage or current division. In any case, the analysis is performed in the frequency 
domain.

Let’s find the network function for the circuit shown in Figure 13.2-1. 
The first step is to represent this circuit in the frequency domain using 
impedances and phasors. Figure 13.2-3 shows the frequency-domain circuit 
corresponding to the circuit in Figure 13.2-1. In this example, the phasor 
corresponding to the input is Vin(a>), and the phasor corresponding to the 
output is Vout(a>). We seek to find the network function H(ct>) =  Vout/V in. 
Write the node equation at the inverting input node of the op amp and 
assume an ideal op amp. Then we have

Yjn(&>) V ou,(cd) , . ,  v
F —p~—  +7^CVout(w) = 0

l
j(oC

FIGURE 13.2-3 The frequency-domain
representation of the op amp circuit of Figure
13.2-1.

This implies

H M  = V o u t M _

Vin(ty) R\ + j(oCR\R2

- R l
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The gain of this circuit is

T h e  p h a s e  s h i f t  o f  t h i s  c i r c u i t  i s

p h a s e  s h i f t  =  / H ( a > )  =  1 8 0 °  -  t a ir'(«C7J2) 
W h e n  f l ,  =  5  k f i ,  R 2  =  5 0  k f t ,  a n d  C  =  2  n F ,

g a i n  =  | H ( a i ) |  =|H H |  = — = = =  
v /i  +  H / 1 0 8)

p h a s e  s h i f t / H ( c o )  =  1 8 0 °  -  t a n " 1  ( a > / 1 0 , 0 0 0 )

N o t i c e  t h a t  t h e  f r e q u e n c y  o f  t h e  i n p u t  h a s  b e e n  r e p r e s e n t e d  b y  a  v a r i a b l e ,  c o ,  r a t h e r  t h a n  b y  

a n y  p a r t i c u l a r  v a l u e .  A s  a  r e s u l t ,  t h e  n e t w o r k  f u n c t i o n ,  g a i n ,  a n d  p h a s e  s h i f t  d e s c r i b e  t h e  w a y  i n  

w h i c h  t h e  b e h a v i o r  o f  t h e  c i r c u i t  d e p e n d s  o n  t h e  i n p u t  f r e q u e n c y .  E a r l i e r ,  w e  c o n s i d e r e d  t h e  c a s e  

w h e n  c o  =  6 2 8 3  r a d / s .  S u b s t i t u t i n g  t h i s  f r e q u e n c y  i n t o  t h e  e q u a t i o n s  f o r  t h e  g a i n  a n d  p h a s e  s h i f t  

g i v e s

T h e s e  a r e  t h e  s a m e  r e s u l t s  a s  w e r e  o b t a i n e d  e a r l i e r  b y  e x a m i n i n g  t h e  o s c i l l o s c o p e  t r a c e s  i n  F i g u r e

1 3 . 2 - 2 .  S i m i l a r l y ,  e a c h  l i n e  o f  T a b l e  1 3 . 2 - 1  c a n  b e  o b t a i n e d  b y  s u b s t i t u t i n g  t h e  a p p r o p r i a t e  f r e q u e n c y  

i n t o  t h e  e q u a t i o n s  f o r  t h e  g a i n  a n d  p h a s e  s h i f t .

E q u a t i o n s  t h a t  r e p r e s e n t  t h e  g a i n  a n d  p h a s e  s h i f t  a s  f u n c t i o n s  o f  f r e q u e n c y  a r e  c a l l e d  t h e  

f r e q u e n c y  r e s p o n s e  o f  t h e  c i r c u i t .  T h e  s a m e  i n f o r m a t i o n  c a n  b e  r e p r e s e n t e d  b y  a  t a b l e  o r  b y  g r a p h s  

i n s t e a d  o f  e q u a t i o n s .  T h e s e  t a b l e s  o r  g r a p h s  a r e  a l s o  c a l l e d  t h e  f r e q u e n c y  r e s p o n s e  o f  t h e  c i r c u i t .

T o  s e e  t h a t  t h e  n e t w o r k  f u n c t i o n  r e a l l y  d o e s  r e p r e s e n t  t h e  b e h a v i o r  o f  t h e  c i r c u i t ,  s u p p o s e  t h a t

T h e  f r e q u e n c y  o f  t h e  i n p u t  s i n u s o i d  i s  c o  =  5 0 0 0  r a d / s .  S u b s t i t u t i n g  t h i s  f r e q u e n c y  i n t o  t h e  n e t w o r k  

f u n c t i o n  g i v e s

B a c k  i n  t h e  t i m e  d o m a i n ,  t h e  s t e a d y - s t a t e  r e s p o n s e  i s

V o u t M  =  3 . 5 8  c o s  ( 5 0 0 0 /  4 -  1 9 8 ° )  V

N o t i c e  t h a t  t h e  n e t w o r k  f u n c t i o n  c o n t a i n e d  e n o u g h  i n f o r m a t i o n  t o  e n a b l e  u s  t o  c a l c u l a t e  t h e  s t e a d y -  

s t a t e  r e s p o n s e  f r o m  t h e  i n p u t  s i n u s o i d .  T h e  n e t w o r k  f u n c t i o n  d o e s  i n d e e d  d e s c r i b e  t h e  b e h a v i o r  o f  t h e  

c i r c u i t .

10
g a i n  =

a n d p h a s e  s h i f t  =  1 8 0 °  -  t a n " 1 ( 6 2 8 3 / 1 0 , 0 0 0 )  =  1 4 8 °

v i n ( f )  =  0 . 4  c o s  ( 5 0 0 0 /  +  4 5 ° )  V

N e x t , Vout(w) = H(w)Vjn(a>) = (8.94 / 153°)(0.4 /45°) = 3.58/l98°



Consider the circuit shown in Figure 13.2-4*. The input to the circuit is the voltage of the voltage source, v,(/). The 
output is the voltage, vo(0, across the series connection of the capacitor and the 16-kfl resistor. The network 
function that represents this circuit has the form

H(co) =
V0(<w)

.CO

1 + J J
00

(13.2-4)
V i( « )  1 + j ®

P

The network function depends on two parameters, z and p. The parameter z is called the zero of the circuit 
and the parameter p  is called the pole of the circuit. Determine the values o f z and o f p  for the circuit in
Figure 13.2-4a.

8  k Q  8  k Q

---------V A --------1

16 kQ <

>----------°
+

-------- VW  1

.  16 kQ <

f— O
+

1
0 .2 3  m F =|

T voM Vj(o>) r
■ J

> v0(a>)
j (0(0.23) “

> o

(a) (b)

F I G U R E  1 3 . 2 - 4  T h e  c i r c u i t  c o n s i d e r e d  i n  E x a m p l e  1 3 . 2 - 1  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n .

Solution
We will analyze the circuit to determine its network function and then put the network function into the form 
given in Eq. 13.2-4. A network function is the ratio of the output phasor to the input phasor. Phasors exist in the 
frequency domain. Consequently, our first step is to represent the circuit in the frequency domain, using phasors 
and impedances. Figure 13.2-46 shows the frequency-domain representation of the circuit from Figure 13.2-4a.

The impedances of the capacitor and the 16-kO resistor are connected in series in Figure 13.2-46. The 
equivalent impedance is

106
Z e{co) =  16,000 +

A  0 -2 3 )a ,

The equivalent impedance is connected in series with the 8-kH resistor. Vj(o>) is the voltage across the series
impedances, and V0(o>) is the voltage across the equivalent impedance, Ze(o>). Apply the voltage division 
principle to get

10
16,000 +

VoW  = --------:--------y . (m) =  lo ;+ > (Q .23M I6 ,000)
8000+16,000 +  t-!^ ___ 10 +,'(0.23)«,(24,000)

;(0.23)<u

106 +y(3680)q)
10* .v .H - l+ j(0 .00368 )m

> 1 j .  yen nrK ^o'v. .10 +y(5S20)a> ' 7~+ y(0.00552)o;
106

Divide both sides of this equation by V,(co) to obtain the network function of the circuit

H(o>) =  _  * +y(0-00368)o)
V iM  ~  1 +y(0.00552)w (13.2-5)
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Equating the network functions given by Eq. 13.2-4 and 13.2-5 gives

1 +y(0.00368)a) 1+ -/ 7
I + y(0.00552)w ~  ! +j(H

P

Comparing these network functions gives
1

z = 0.00368
= 271.74 rad/s and p —

1

0.00552
=  181.16 rad/s

E x a m p l e  13. 2-2  N etw o rk  F u n c tio n  
o f  a C irc u it

Consider the circuit shown in Figure 13.2-5fl. The input to the circuit is the voltage of the voltage source, Vj(r). The 
output is the voltage, vQ(r), across the series connection of the inductor and the 2-H resistor. The network function 
that represents this circuit is

1 + y ,a>
HM  =  VT^T =  0.2— ^  (13.2-6)

Vi(a>) 1 + /  —
7 25

Determine the value of the inductance, L.

8 Q  8 Q

FIG I RE 13.2-5 The circuit considered in Example 13.2-2 represented (a) in the time domain and (b) in the frequency domain.

Solution
The circuit has been represented twice, by a circuit diagram and by a network function. The unknown inductance, 
L, appears in the circuit diagram but not in the given network function. We can analyze the circuit to determine its 
network function. This second network function will depend on the unknown inductance. We will determine the 
value of the inductance by equating the two network functions.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency 
domain. Consequently, our first step is to represent the circuit in the frequency domain, using phasors 
and impedances. Figure 13.2-56 shows the frequency-domain representation of the circuit from Figure
13.2-5^.
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The impedances of the inductor and the 2-fl resistor are connected in series in Figure 13.2-56. The 
equivalent impedance is

Z e(a>) =  2 +  jcoL

The equivalent impedance is connected in series with the 8-H resistor. Vj(a>) is the voltage across the series 
impedances, and V0(a>) is the voltage across the equivalent impedance, Z e(co). Apply the voltage division 
principle to get

V 0(<y) =  2 + J (oL y  ( ) _  2 + j ° JL \ r  (aJ)
o W  8 +  2 +ja>L y ’ 10 +jcoL lV ’

Divide both sides of this equation by V;(<y) to obtain the network function of the circuit:

|_|/ \ V ° M  ..  2 + j ° jL
V i H  10 +jcoL

Next, we put the network function into the form specified by Eq. 13.2-6. Factoring 2 out of both terms in the 
numerator and factoring 10 out of both terms in the denominator, we get

2 ( 1 + > 4 )  1 + jo>\
H(a>) =  - A --------- V  =  0 .2 ----------j -  (13.2-7)

10 ( 1 + ya ,To) l+ j ( ° '

Equating the network functions given by Eqs. 13.2-6 and 13.2-7 gives

10

1 + j ( o -  1 + y T
0.2--------- f  =  0.2-L ~  (jo

1 + j a ) \ 0  + J 25

Comparing these network functions gives

L 1 L 1
2 =  5 a"d T o =  25

The values of L obtained from these equations must agree, and they do. (If they do not, we’ve made an error.) 
Solving each of these equations gives L — 0.4 H.

E x a m p l e  1 3 . 2 - 3  N e tw o r k  F u n c t io n  
o f  a C i r c u i t

I NT ERACT I VE EX AMP LE

Consider the circuit shown in Figure 13.2-6. The input to the circuit is the voltage of the voltage source, Vj(f). The 
output is the voltage across the capacitor, vQ(/). The network function that represents this circuit is

H M  =
v „ M

(13.2-8)
V i H  ( 1 + y 1 D ( 1 + y ? )

Determine the value of the inductance, L, and of the gain. A, of the voltage-controlled voltage source (VCVS).
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4 Q

J T L * J r
- w v — <

L

4 Q<> va(t) A vaU) ? 50 mF = = "c
FIG I! RE 13.2-6 The circuit considered in 
Example 13.2-3.

V,(o>) (* vato) A V »  <

4 ft
-AAAr

FIGURE 13.2-7 The circuit from Figure 13.2-6, 
represented in the frequency domain, using 
impedances and phasors.

Solution
The circuit has been represented twice, by a circuit diagram and by the given network function. The unknown 
parameters, L and^4, appear in the circuit diagram but not in the given network function. We can analyze the circuit to 
determine its network function. This version of the network function will depend on the unknown parameters. We 
will determine the value of these parameters by equating the two versions of the network function.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency 
domain. Consequently, our first step is to represent the circuit in the frequency domain, using phasors and 
impedances. Figure 13.2-7 shows the frequency-domain representation of the circuit from Figure 13.2-6.

The circuit in Figure 13.2-7 consists of two meshes. The mesh current of the left-hand mesh is labeled as 
h(co), and the mesh current of the right-hand mesh is labeled as l2(&>). Apply Kirchhoff s voltage law (KVL) to the 
left-hand mesh to get

jcoLh M  + 4Ij {co) -  Vj (co) = 0
Solve for Ii(a>) to get

T , , V ,H  0.25 „ ,  ,
1 ( }  = ~ ~ l  V i ( w )

1 + ^ 4

Next, use Ohm’s law to represent Va(co) as

V.(®) =  4 I i(® )= ----- —^Vj(a>) (13.2-9)

Apply KVL to the right-hand mesh to get 

Solve for 12(co) to get

, . L
l + J C O  -

20
412 (co) + — 12 (co) — AVa (co) — 0 

7 "

J— A
—__v  . >'"A V _  20

I l M  =  ^ T o  v -<“ > = ^ T 2 0 V - (“ > =  T ^ v - W
jo) 5

The output voltage is obtained by multiplying the mesh current I2(a>) by the impedance of the capacitor:
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v . H  =  — 1- I  >< 7 7 ^  V' H  =  7 --------- ZY7-------^  V|(" )
1 + jw -  +J 5  ^1 + > - j ( l  + y 'j )

Divide both sides of this equation by Vj(w) to obtain the network function of the circuit:

H(co) =  ^ -------------  (13.2-11)

( 1+ > 4 ) ( 1+>?)

Comparing the network functions given by Eqs. 13.2-8 and 13.2-11 gives A =  3 V/V and L =  2 H.

The circuit shown in Figure 13.2-1 is an example of a circuit called a first-order low-pass filter. 
First-order low-pass filters have network functions of the form

H M = - ^ V  (13.2-12)
1 + j —U)0

The gain and phase shift of the first-order low-pass filter are

gain =  —j ^ l  (13.2-13)
/ ,  0)2

V
and phase shift =  /H p  — tan-  1 (co/coo) (13.2-14)

The network function of the first-order low-pass filter has two parameters, H0 and o>0. At low 
frequencies, that is, co co0, the gain is |/ /0|, so |//0| is called the dc gain. (When co = 0, A cos cot =  A, 
a constant or dc voltage.)

The other parameter of the network function, coo, is called the half-power frequency. To explain 
this terminology, suppose that the input to the first-order filter in Figure 13.2-1 is

Vjn (0 = A COS (cot)
Suppose, for convenience, that H0 =  1. Then the output of the first-order filter in Figure 13.2-1 is

Substituting the expression for Va(a;) from Eq. 13.2-9 into Eq. 13.2-10 gives

v0 (t) — —  = =  cos (yOJot -  tan 1 ^
co

1 +  —  
" o

In Figure 13.2-1, the output voltage is the voltage across a 10-kH resistor. The average power 
delivered to this resistor is

A 2

2(10  x 103) ( l
V " 0 /

At low frequencies, that is, frequencies that satisfy co a>o, the average power is approximately

P ^  ^
1 2(10 x 103)(1 + 0 )  2(10 x lO 3)

At the frequency co =  a>o, the average power is

A 2 P \
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For this reason, coo is called the half-power frequency.
In words, suppose we hold the input amplitude constant while we vary the frequency, co, of the 

input. We find that the value of the output power when co = coo is one-half of the value of the output 
power when co co$.

Next, consider the problem of designing a first-order low-pass filter. Suppose we are given the 
following specifications:

Before designing a circuit to meet these specifications, we need to pay more attention to the phase 
shift. Consider Eq. 13.2-14. Both co and coo will be positive, so tan~1(qj/co0) will be between 0° and 
90°. Also, / h 0 will be 0° when H0 is positive and 180° when H0 is negative. As a result, only phase 
shifts between -90°and 0°or between 90°and 180°can be achieved using a first-order low-pass filter. 
(Phase shifts that cannot be obtained using a first-order low-pass filter can be obtained using other 
types of circuit. That's a story for another day.) Table 13.2-2 shows two first-order low-pass filters, one 
for obtaining phase shifts between 90° and 180° and the other for obtaining phase shifts between 
—90°and 0°. Based on the phase shift, we select the circuit in the first row of Table 13.2-2. The 
specification on the dc gain gives

dc gain = 2 
phase shift = 120° when co =  1000 rad/s

The specification on phase shift gives

120° =  180° -  tan_1(1000/?2C)

First-Order Low-Pass Filter Circuits

PHASE SHIFT FIRST ORDER LOW PASS FILTER CIRCUIT DESIGN EQUATIONS

90° < phase shift < 180c

i ■o

•o

1

-9 0 °  <  phase shift <  0C

o----- \

o
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This is a set of two equations in the three unknowns R u Rz, and C. The solution is not unique. We will 
have to pick a value for one of the unknowns and then solve for values of the other two unknowns. 
Let’s pick a convenient value for the capacitor, C =  0 .1/xF, and calculate the resistances.

tan (60°)
*2  =

and

1000 x 0.1 x 10

*2

,-6r =  17.32 kfl

R, =  -±  =  8.66 kfl

We conclude that the circuit shown in the first row of Table 13.2-2 will have a dc gain =  2 and a phase 
shift =  120° at co =  1000 rad/s when R\ =  8.66 kfl, Ri — 17.32 kfl, and C = 0.1/zF.

EXERCISE 13.2-1 The input to the circuit shown in Figure E 13.2-1 is the source 
voltage, vs, and the response is the capacitor voltage, v0. Suppose R =  10 k fl and C =  1/xF. 
What are the values of the gain and phase shift when the input frequency is co =  100 rad/s?

Answer: 0.707 and —45°
FIGURE E 13.2-1
A n  R C  c i r c u i t . EXERCISE 13.2-2 The input to the circuit shown in Figure E 13.2-2 is the source 

voltage, vs, and the response is the resistor voltage, vG. R = 30 O and L — 2 H. Suppose the 
input frequency is adjusted until the gain is equal to 0.6. What is the value of the frequency?

Answer: 20 rad/s

FIGURE E 13.2-2 The 
R L  c i r c u i t .

EXERCISE 13.2-3 The input to the circuit shown in Figure E 13.2-2 is the source 
voltage, vs, and the response is the mesh current, i. R = 30 f l  and L =  2 H. What are the 
values of the gain and phase shift when the input frequency is a> =  20 rad/s?

Answer: 0.02 A/V and —53.1°

EXERCISE 13.2-4 The input to the circuit shown in Figure E 13.2-1 is the source voltage, vs, 
and the response is the capacitor voltage, vQ. Suppose C =  1/xF. What value of R is required to cause a 
phase shift equal to —45° when the input frequency is co = 20 rad/s?

Answer: R = 50 kfl

EXERCISE 13.2-5 The input to the circuit shown in Figure E 13.2-1 is the source voltage, vs, 
and the response is the capacitor voltage, vD. Suppose C =  1 juF. What value of R is required to cause a 
gain equal to 1.5 when the input frequency is co = 20 rad/s?

Answer: No such value of R exists. The gain of this circuit will never be greater than 1.

13.3 B O D E  P L O T S  --------------------------------------------------------------------------------------

It is common to use logarithmic plots of the frequency response instead of linear plots. The logarithmic 
plots are called Bode plots in honor of H. W. Bode, who used them extensively in his work with 
amplifiers at Bell Telephone Laboratories in the 1930s and 1940s. A Bode plot is a plot of log-gain and 
phase angle values versus frequency, using a log-frequency horizontal axis. The use of logarithms 
expands the range of frequencies portrayed on the horizontal axis.
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MAGNITUDE, H 20 log H(dB)

0.1 -20.00

0.2 -13.98

0.4 -7.96

0.6 -4.44

1.0 0.0

1.2 1.58
1.4 2.92

1.6 4.08

2.0 6.02

3.0 9.54

4.0 12.04

5.0 13.98
6.0 15.56

7.0 16.90
10.0 20.00

100.0 40.00

The network function H can be written as

H =  H ^ g  =  H e* (13.3-1)

The logarithm of the magnitude is normally expressed in terms of the logarithm to the base 10, so we 
use

logarithmic gain =  20 log10 H (13.3-2)

and the unit is decibel (dB). The logarithmic gain is also called the gain in dB. A decibel conversion 
table is given in Table 13.3-1.

The unit decibel is derived from the unit bel. Suppose P x and P2 are two values of power. Both 
P\jP 2 and log (P\/P2) are measures of the relative sizes of Px and P2. The ratio P\/P 2 is unitless, 
whereas log(Px/P 2) has the bel as its unit. The name bel honors Alexander Graham Bell, the inventor 
of the telephone.

The Bode plot, is a chart of gain in decibels and phase in degrees versus the logarithm of 
frequency.

Let us obtain the Bode plots corresponding to the network function 

1 1H =
1 +  j ------  \ J  1 -1“ { ( o / ( 0 o )

(Oo

/ ta n  1 ( c o / c o q )  = H / c p (13.3-3)

The logarithmic gain is

20 logjo H =  20 lo g 10 yj 1 + (co/coo)2
= 20 log10 1 — 20 log10 ^  1 -f (co/coo)" =  —20 log,0 yj 1 + (co/coqY
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so the logarithmic gain is approximately

20 log10 H  =  - 2 0  log10 VT =  0 dB
This is the equation of a horizontal straight line. Because this straight line approximates the 
logarithmic gain for low frequencies, it is called the low-frequency asymptote of the Bode plot. 

For large frequencies, that is, co coo

1 +  (co/coq)2 =  (w/coo)2 
so the logarithmic gain is approximately

20 log10 H  =  - 2 0  log10 \ J (w/cKo)2

=  - 2 0  log |0 co/coo =  20 logl0 to0 -  20 log10 co

This equation shows one of the advantages of using logarithms. The plot of 20 logio// versus log|0a; is a
straight line. This straight line is called the high-frequency asymptote of the Bode plot. Figures 13.3-1 a,b

For small frequencies, that is, co <C a>o

1 +  (c-o/too) 2 =  1

X

(a)

CD■o

^  20 log10|H(coi)|

^  20 log10|H(<û )|

Slope =
20 log10|H((o2)| -  20 log10| H ( ) |  

,08lO£t)2 ~ l°gio°>l

|Q810®1 l°SioCt,2
lOgiQCO

(b)

GO"D

*  20 log10|H(Wl)| -

™ 20 log10|H(o>2)|

s|ope = 20 logi0|H(fl)2)l ~ 20 logiolHtco!)! 
*°Sl0<u2 “ I°gl0®l

u>\ 0)2
o) (logarithmic scale)(c)

FIGURE 13.3-1 (a) Plot o fy  versus 
x  for the straight line >> = mx + b.
(b) Plot o f 20 log|H(a>)| versus log 
co for the straight line 20 log|H  
(w)| =  20 log to0-20  log co. (c) Plot 
o f 20 log|H(a>)| versus co for the 
straight line 20 log|H(w)| =  20 log 
co0—20 log co.
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compare the equation of the high-frequency asymptote to the more familiar standard form of the 
equation of a straight line, v = mx + b. The slope of the high-frequency asymptote can be calculated 
from two points on the straight line. This slope is given using units of dB/decade. In Figure 13.3-16
the gain in dB is plotted versus log co, whereas in Figure 13.3-lc, the gain in dB is plotted versus co
using a log scale. It is more convenient to label the frequency axis when a log scale is used for co. 
The equation used to calculate the slope from two points on the line is the same in Figure 13.3-lc as 
it is in Figure 13.3-16.

Consider two frequencies, co\ and co2, with co2 = 10*a>i. We say that co2 is larger than co\ by x 
decades. Alternately, is larger than a)\ by x = logi0(^2/ ^ i ) decades. For example, 1 0 0 0  rad/s is 2 
decades larger than 1 0  rad/s, and 3 1 6  rad/s is 1 . 5  decades larger than 1 0  rad/s.

The slope of the high-frequency asymptote is

The units of this slope are dB/decade. The high-frequency asymptote is characterized by

The intersection of the low-frequency asymptote with the high-frequency asymptote occurs
when

The low- and high-frequency asymptotes form a comer where they intersect. Because the asymptotes 
intersect at the frequency co =  o>0, coo is sometimes called the corner frequency.

Figure 13.3-2 shows the magnitude and phase Bode plots for this network function. The 
asymptotic curve shown in Figure 13.3-2 is an approximation to the Bode plot. The asymptotic Bode 
plot consists of the low-frequency asymptote for co < a>o and the high-frequency asymptote for 
co > coq. The approximation used to obtain the asymptotic Bode plot is summarized by the following 
equations:

The asymptotic Bode plot is a good approximation to the Bode plot when coq. Near
co — o»0, the asymptotic Bode plot deviates from the exact Bode plot. At co =  a>o, the value of the

20 log1Q|H(a>2)| —20 log10|H(ct>1 )| _  20 log10lH(a>2)[ -  20 log1 0 )[
logl0^2 -  k>g10ft>i lo g io O W ^ i)

CO CO 

coo

The value of the slope of the high-frequency asymptote is

20 log10|H(cL>2)| — 20 log10|H(ct>i)| _  20 log 10(m/cp2) -  20 l o g ^ p /q j i )

H(<w)| =  — = — when co »  co0

^% xo(cu2/cox) \ogXo(co2 /a)\) 
-2 0  log10(a>2/ co\) =  _ 2 

logio(a>2/a>i)
= —20 dB/decade

0 = 20 log jo co -  20 log 10 coq

that is, when
co — COq

or

20 log|0|H(a»)| =  20 logl0
\ J  1 +  (w/fc*))2 20 log|0 wo — 20 log10 co co > coq

CO <  COq
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10

^  0o
DO - ~o -10
o
CN

-20

1 1
Asymptotic

E:x;acr :urve

curve

111
(a)

(b)
F I G U R E  1 3 . 3 - 2  B o d e  d i a g r a m  f o r  H =  ( 1  - f  } c o / c o 0 ) ~ \  T h e  d a s h e d  c u r v e  i s  t h e  e x a c t  c u r v e  f o r  t h e  m a g n i t u d e .  T h e  

s o l i d  c u r v e  f o r  t h e  m a g n i t u d e  i s  a n  a s y m p t o t i c  a p p r o x i m a t i o n .

asymptotic Bode plot is 0 dB, whereas the value of the exact Bode plot is

201og,0 |H(to0)| =  20 log 10 =  20 log10 -~= =  —3.01 dB 
2 V 2

\ J  1 +  ( ^ o /^ o )

The magnitude characteristic does not exhibit a sharp break. Nevertheless, we designate the 
frequency at which the magnitude is 1 /  \ /2  times the magnitude at co =  0 as a special frequency. 
On the Bode diagram, the magnitude drop of 1 / \ f l  results in a logarithmic drop of approximately 
—3 dB at a; =  coo. The frequency co = coo is often called the breakfrequency or cornerfrequency.

Of course, H may take on forms other than that of Eq. 13.3-3. For example, consider the 
circuit shown in Figure 13.3-3. The network function of this circuit is

Vn R +  j(oL

F I G U R E  1 3 . 3 - 3  S o u r c e  

v o l t a g e  d e l i v e r i n g  

p o w e r  t o  a  l o a d  

i m p e d a n c e  c o n s i s t i n g  

o f  L  a n d  R .

H Vs Rs
Let’s put this network function into the form

-b R jcoL

CO
1 + j —

1 + j
CO 2

This network function has three parameters: k, c o and co2. All three parameters have names. The 
frequencies u>\ and 002 are comer frequencies. Comer frequencies that appear in the numerator of a 
network function are called zeros, so a>\ is a zero of the network function. Comer frequencies that 
appear in the denominator of a network function are called poles, so a>2 is a pole of the network 
function. Because

k — lim H
a)—»0

the parameter k is called the low-frequency gain or the dc gain. The network function of this circuit can 
be expressed as

,coL
X + JT

+ j
coL 

R + R.
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*

so the dc gain is

R + Rs

and the zero and pole frequencies are related by

R R -f- RsCox=I<-ir  = co2
The gain corresponding to a network function of this form is

'1 +
H = k

To obtain the asymptotic Bode plot, we approximate y ^ +  by 1 when co < co\ and by co/co\

when co > co\. Similarly, we approximate y I  + (co/co2)2 by 1 when co < co2 and by co/co2 when 
co > co2. Thus,

H Z*

k co < co\ 
kco

co i < co < co2

co2 < co

co i 
kco2 

co\
Next, the logarithmic gain is approximated by

{20 log10 k co < co\
(20 log10 k -  20 log10 co\) +  20 log10 co co\ < co < co2

(20 logj0 k -  20 log10 cox) +  20 log10 co2 co2 < co

These are the equations of the asymptotes of the Bode plot. When co < co\ and when co > co2, the 
asymptotes are horizontal straight lines. The equations for these asymptotes don’t include a term 
involving log10<w, which means that the slope must be zero. When co\ < co < co2, the equation of the 
asymptote does include a term involving log10&>. The coefficient of log10<̂ is 20, indicating a slope of 
20 dB/decade.

The effect of the dc gain k is limited to the term 20 logio K which appears in the equation of each 
of the three asymptotes. Changing the value of k will shift the Bode plot up (increasing k) or down 
(decreasing k) but will not change the shape of the Bode plot. For this reason, we sometimes normalize 
the network function by dividing by the dc gain. The asymptotes of the Bode plot of the normalized 
network function are given by

r 0  0> <  o>,

20 log,0f —j =  < 20 log10 w -  20 log10 a>i a>i < a) < w2

[ 201og10&>2 -  2 0 ^ , 0  0^ (02 < co

0 - A +/(' +i£) -/('+̂ ) “0+“■■■ fe) - (S)
The phase angle of H is



612 )-------F re q u e n c y  R e spo nse

<t> (co)

F I G U R E  1 3 . 3 - 4  B o d e  

d i a g r a m  f o r  t h e  c i r c u i t  o f  

F i g u r e  1 3 . 3 - 3 .

The phase Bode plot and the asymptotic magnitude Bode plot are shown in Figure 13.3-4. 
Notice that the slope of the asymptotic magnitude Bode plot changes as the frequency increases 
past o>i and changes again as the frequency increases past 002- Zeros, like co\, cause the slope to 
increase by 20 dB/decade. Poles, like coi, cause the slope to decrease by 20 dB/decade. The slope 
of every asymptote will be an integer multiple o f 20 dB/decade.

E x a m p l e  1 3 . 3 - 1  B o d e  P lo t

Find the asymptotic magnitude Bode plot of

H(o>) =  K
jco

.(o

i + j p

Solution ,
I CD\ CO

Approximate ( 1 + j — J  by 1 when co < p  and by j — when co > p  to get

H(co)

The logarithmic gain is

r K(jco) (0 < p
\  Kp co > p

20 log]0 K  + 20 logl0w co < p
201ogIO|H(a>)| =  .

I 2 0  • o g i o ( ^ )  c o > p

The asymptotic magnitude Bode plot is shown in Figure 13.3-5. The jco factor in the numerator of H(o>) causes the 
low-frequency asymptote to have a slope of 20 dB/decade. The slope of the asymptotic magnitude Bode plot 
decreases by 20 dB/decade (from 20 dB/decade to zero) as the frequency increases past co =  p.

f  20 log10(irp)
X
o

DO

O
CM

a) (logarithmic scale)
FIGURE 13.3-5 Asymptotic magnitude Bode plot for Example 13.3-1.



Consider the circuit shown in Figure 13.3-6a. The input to the circuit is the voltage of the voltage source, v;(/). The 
output is the node voltage at the output terminal of the op amp, v0(t). The network function that represents this circuit is

=  (13.3-4)
Vj(w)

The corresponding magnitude Bode plot is shown in Figure 13.3-66. Determine the values of the capacitances, 
Ct and C2.

lOkil

(a)

FIGURE 13.3-6 The circuit and Bode plot considered in Example 13.3-2.

Solution
The network function provides a connection between the circuit and the Bode plot. We can determine the network 
function from the Bode plot, and we can also analyze the circuit to determine its network function. The values of 
the capacitances are determined by equating the coefficients of these two network functions.

Step 1: Let’s make some observations regarding the Bode plot shown in Figure 13.3-66:

1. There are two comer frequencies, at 80 and 500 rad/s. The comer frequency at 80 rad/s is a pole because the 
slope of the Bode plot decreases at 80 rad/s. The comer frequency at 500 rad/s is a zero because the slope 
increases at 500 rad/s.

2. The comer frequencies are separated by lo g jQ ^ ^ j  =  0.796 decades. The slope of the Bode plot is

— 15.9 — 15.9 
0.796 = —40 dB/decade between the comer frequencies.

3. At low frequencies—that is, at frequencies smaller than the smallest comer frequency—the slope is -1  x 20 
dB/decade, so the network function includes a factor (j(o)~]

Consequently, the network function corresponding to the Bode plot is

H (<w) = * ( > ) “ 1 

where A: is a constant that is yet to be determined.

/, • w \
+ J 5 00 1 _ . 1 +Jik

C0 I )<u \
(' o (13.3-5)
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Step 2: Next, we analyze the circuit shown in Figure l3.3-6a to determine its network function. A network 
function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency domain. Consequently, 
our first step is to represent the circuit in the frequency domain, using phasors and impedances. Figure 13.3-7 
shows the frequency-domain representation of the circuit from Figure 13.3-6a.

F I G U R E  1 3 . 3 - 7  T h e  c i r c u i t  f r o m  F i g u r e  1 3 . 3 - 6 a ,  

r e p r e s e n t e d  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  

i m p e d a n c e s  a n d  p h a s o r s .

To analyze the circuit in Figure 13.3-7, we first write a node equation at the node labeled as node a. (The 
current entering the noninverting input of the op amp is zero, so there are two currents in this node equation, the 
currents in the impedances corresponding to 125-kfl resistor and capacitor C\.)

V iH  -  v , M  ^  v aH
125 x 103 1

jcoC i
where Va(o>) is the node voltage at node a. Doing a little algebra gives

,  =  ( --------------- j  +  jcoC i \  V aH
125 x 103 \  125 x 103 7  V ’

Vl M  =  ( l + > C I ( l 2 5 x , 0 ’) ) V . H  -  V ,W  =  —

Next, we write a node equation at the node labeled as node b. (The current entering the inverting input of the op 
amp is zero, so there are two currents in this node equation, the currents in the impedances corresponding to 
10-kfl resistor and capacitor C2.)

v . M  +  v aH  -  v 0 H  =  Q

10 x 103
jcoC 2
Doing some algebra gives

v,(ft>) + > C 2(lO x 103)(Va(o>) -  V0(a>)) =  0 

(1 + j(o C 2 { 10 x 103))V aH  = > C 2(10 x 103)Vo(w)

(1 + > c ; ( i o  X i o ’ ) ) , +  j w C j i y i s  X 101)  = ^ ( 10 x

Finally, h(<w) =  =  ( _____ !_____ ^ ___ 1 +ja>C2(lO x 103)
v i H  \ C 2(10 x 103)y  + > C |( 1 2 5  x 103)) (13.3-6)

Step 3: The network functions given in Eqs. 13.3-5 and 13.3-6 must be equal. That is,

• ^
k + 7 500 _  H( x =  (  1 \  1 +ya>C2( 10 x 103)

> (  1 + j g )  ,J ~ VC2( '°  x 103)y (/<w)(l +ywCi(125 x 103))
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E q u a t i n g  c o e f f i c i e n t s  g i v e s

±  ,  c  (.25 ,  10’), ±  .  C O O  x ,0>), and* =  c A i 0 \  |0 l) = 500 

C| °  80(l25'x  10>) °  ° ‘ * F " dC i = 500(lo'x I0-) °  ° 1 0

E xample  1 3 . 3 - 3 B ode P lo t 
o f  a C irc u it

I NTERACTI VE EXAMPLE

Consider the circuit shown in Figure 13.3-8a. The input to the circuit is the voltage of the voltage source, v}(t). The 
output is the node voltage at the output terminal of the op amp, vQ(t). The network function that represents this 
circuit is

H(a>) =
V o M (13.3-7)
V i M

The corresponding magnitude Bode plot is also shown in Figure 13.3-86. Determine the values of the 
capacitances, C\ and C2.

26
|H(co)| ( d B )

40
H------> co, rad/sec
160 dog scale)

(a) (b)

FIGURE 13J-8 The circuit and Bode plot considered in Example 13.3-3.

Solution
The network function provides a connection between the circuit and the Bode plot. We can determine the network 
function from the Bode plot, and we can also analyze the circuit to determine its network function. The values of 
the capacitances are determined by equating the coefficients of these two network functions.

Step 1: First, we make some observations regarding the Bode plot shown in Figure 13.3-86.

1. There are two comer frequencies, at 40 and 160 rad/s. Both comer frequencies are poles because the slope of 
the Bode plot decreases at both the comer frequencies.

2. Between the comer frequencies, the gam is |H(a>)| =  26 dB = 102620 =  20 V/V.

3. At low frequencies—that is, at frequencies smaller than the smallest comer frequency—the slope is 1 x 20 
dB/decade, so the network function includes a factor ( jw )\
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jatCi
j<oC2

4 0 0  k i i

v0(oj)
F I G U R E  1 3 . 3 - 9  T h e  c i r c u i t  f r o m  F i g u r e  1 3 . 3 - 8 a ,  r e p r e s e n t e d  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  i m p e d a n c e s  a n d  p h a s o r s .

Consequently, the network function corresponding to the Bode plot is

Step 2: Next, we analyze the circuit shown in Figure 13.3-8a to determine its network function. A network 
function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency domain. Consequently, 
our first step is to represent the circuit in the frequency domain, using phasors and impedances. Figure 13.3-9 
shows the frequency-domain representation of the circuit from Figure 13.3-8a.

To analyze the circuit in Figure 13.3-9, we write a node equation at the node labeled as node a. In doing so,

we will treat the series impedances, 20 kfl and — as a single equivalent impedance equal to 20 x 103 + —-—.
jcoC i ja>C i

(The node voltage at node a is zero volts because the voltages at the input nodes of an ideal op amp are equal. The
current entering the inverting input of the op amp is zero, so there are three currents in this node equation.)

v , M  | V qM  | V qH  _  Q

20 x 103 +  1 400 x 103 1
ja>C i jcoC2

Doing some algebra gives

Q C Q V iM  (  1 \
1 +j(oCi (20 x 103) \400  x l 03 JC° 2)

(/wC!)(400 x 103)Vj(&>)
1 +  jcoC\ (20 x 103) = - 0  + > C2(40°  X 103) )V° H

Finally,

H M  =  = ____________ - > C ,  (400 x 103)____________
Vj(w) (1 +yo>C,(20 x 103) ) (1 + > C 2(400 x 103)) (13.3-9)

Step 3: The network functions given in Eqs. 13.3-8 and 13.3-9 must be equal. That is,

=  H( = ____________—jttiC i (400 x 103)____________

( 1+y3 ( 1+yilo) (1 +>C,(20 x 10J))(1 +j<oC2(400 x 103))
Equating coefficients gives

— =  Ci (20 x 103), =  C2(400 x 103), and* =  -C |(4 0 0  x 103)

c ' =  =  ' 25 and C; “  “  15 625 nF 

and k =  — C , (400 x 103) =  -(1 .2 5  x 10~6)(400 x 103) =  -0 .5 J
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E xample  1 3 . 3 - 4  N etw ork  F u nc t ion  with C om plex  Poles

The network function of a second-order low-pass filter has the form
k col

H(o») = ------ ,---------------------- T
(Jco) -I-j2(oj0a> + tug

This network function depends on three parameters: the dc gain, t, the comer frequency, oj0; and the damping ratio, (. 
For convenience, we consider the case where k = 1. Then, using j"  =  — 1, we can write the network function as

(OnH (co) =  -5-----------------
COq — <jl?- -{- j2£(0(y

Determine the asymptotic magnitude Bode plot of the second-order low-pass filter when the dc gain is 1.

Solution
The denominator of H(co) contains a new factor, one that involves or. The asymptotic Bode plot is based on the 
approximation

(a>l -  o r )  + j2 S (o 0o) “  |
CO <  COq 

CO >  COq

Using this approximation, we can express H(o>) as

H(o>) 5i

The logarithmic gain is

20 log,,JH to)

CO <  (Do 

CO >  (Do

0 CO <  COo 

CO >  (Do40 log10 coo -  40 log10 (
The asymptotic magnitude Bode plot is shown in Figure 13.3-10. The actual magnitude Bode plot and the actual 
phase Bode plot are shown in Figure 13.3-11. The asymptotic Bode plot is a good approximation to the actual 
Bode plot when co <C coo or co coo. Near co =  coq, the asymptotic Bode plot deviates from the actual Bode plot. 
At co =  o>o, the value of the asymptotic Bode plot is 0 dB whereas the value of the actual Bode plot is

As this equation and Figure 13.3-11 both show, the deviation between the actual and asymptotic Bode plot near 
co = coo depends on f. The frequency co o is called the corner frequency. The slope of the asymptotic Bode plot 
decreases by 40 dB/decade as the frequency increases past co = coo. In terms of the asymptotic Bode plot, the 
denominator of this network function acts like two poles at/? =  coq. If this factor were to appear in the numerator of 
a network function, it would act like two zeros at z — coo. The slope of the asymptotic Bode plot would increase by 
40 dB/decade as the frequency increased past co — coo.

o) (rad/s, logarithmic scale)
FIGURE 13.3-10 The asymptotic magnitude Bode plot 
of the second-order low-pass filter when the dc gain is 1.
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a>
DOa>

3

0

-20

- 4 0

- 6 0

- 8 0

-100

-120

- 1 4 0

- 1 6 0

- 1 8 0  l 

0.1

0 . 2  0 . 3  0 . 4  0 . 6  0 . 8  1 . 0  2

(o /o)q = frequency ratio 

(a)

4  5  6  8  1 0

n  o n

LO 
c 

O 
r

o
c

ii\

1 /I

___ - U .  1 U

___ - — 0 . 1 5

—  U . o — I 

0 . < r i
0 . 5 j

0

_____ - 0 . 2 0

_______ 0 . 2 5

. 6  1 ?  

0 . 8

l . l y

0 . 2  0 . 3  0 . 4  0 . 6  0 . 8  1 . 0  2

cu/coq = frequency ratio 
(b)

4  5  6  8  1 0

F I G U R E  1 3 . 3 - 1 1  B o d e  

d i a g r a m  o f  H ( j o ; )  =  [ 1  H -

( 2 < / & > 0 ) j a >  +  ( j w / c u o ) 2 ] ” 1 f o r  

t w o  d e c a d e s  o f  f r e q u e n c y .

E x a m p l e  1 3 . 3 - 5  M a g n i t u d e  B o d e  P l o t  f o r  a 
C o m p l i c a t e d  N e t w o r k  F u n c t i o n

Find the asymptotic magnitude Bode plot of

H(o>) = -------
5 ( l + 0 . l »

jo)( 1 +  0.5jco) 1 + 0 . 6
ja y \  ( i o \ 2 

50

Solution
The comer frequencies of H(a>) are z =  10, p  =  2, and coo =  50 rad/s. The smallest comer frequency is p  =  2. 
When co < 2 , H(o») can be approximated as

H M  =  -

J “>
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so the equation of the low-frequency asymptote is
20 logiofH| = 20 logiq 5 - 2 0  log,0 co

The slope of the low-frequency asymptote is -20  dB/decade. Let’s find a point on the low-frequency asymptote. 
When co =  1,

20 log10|H| =  20 log10 5 -  20 log10 1 =  14 dB

The low-frequency asymptote is a straight line with a slope of -20  dB/decade passing through the point 
o) =  1 rad/s, |H| =  14 dB.

The slope of the asymptotic Bode plot will change as co increases past each comer frequency. The slope 
decreases by 20 dB/decade at co = p = 2 rad/s, then increases by 20 dB/decade at co = 10 rad/s, and finally 
decreases by 40 dB/decade at a; =  50 rad/s. The asymptotic magnitude Bode plot is shown in Figure 13.3-12.

40

20

0

dB -20 

-40 

-60

0.1 1 2 10 50 100
co (rad/s)

FIHIIRF I W 1 2  Asvmntotic nlot for F.xamnle 1 W 5

r
Let’s design the circuit shown in Figure 13.3-3 to satisfy the following specifications.

1. The low-frequency gain is 0.1.

2. The high-frequency gain is 1.

3. The comer frequencies lie in the range of 100 hertz to 2000 hertz.

Solution
We’re confronted with two problems. First, can these specifications be satisfied using this circuit? Second, if they 
can, what values of R, Rs, and L are required?

Our earlier analysis of this circuit showed that the low-frequency gain is less than 1 and that the 
high-frequency gain is equal to 1. This circuit can be used only to satisfy specifications that are consistent 
with these facts. Fortunately, the given specifications are consistent with these facts. The first specification

E x a m p l e  1 3 . 3 - 6  D e s ig n in g  a C i r cu i t  to Have  
a Spec if ied  Bode  Plot
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requires
R

0 .1 =  low-frequency gain =  k — -  -
K ~T As

Because this circuit has a high-frequency gain equal to 1, the second specification is satisfied.
Now let’s turn our attention to the specifications on the comer frequencies. The specified frequency range is 

given using units of hertz, whereas the comer frequencies have units of radians/second. Because a)\ > w2, the 
third specification requires that

ft
(2^)100  <  — =  co\

Lt

and

(2tt)2000 > =  W2

Our job is to find values of /?, Rs, and L that satisfy these three requirements. We have no guarantee that 
appropriate values exist. If an appropriate set o f values does exist, it may well not be unique. Let’s try

R =  100 n

The specification on the low-frequency gain requires that
r s = 9R =  900 O 

The specification on the zero will be satisfied if

L = -  f -— =  0.159 H 
(2^)100

It remains to verify that these values of R, Rs, and L satisfy the specification on the pole frequency. Because

=  6289 <  12,566 =  (2tt)2000

the specification is satisfied.
In summary, when

R = 100 a  RS = 900CL, and L — 0.159 H

the circuit shown in Figure 13.3-3 satisfies the specifications given above.
This solution is not unique. Indeed, when R = 100 and Rs =  900, any inductance in the range 

0.0796 < L < 0.159 H can be used to satisfy these specifications.

E x a m p l e  1 3 . 3 - 7  D e s i g n i n g  a C i r c u i t  to  H a v e  
a S p e c i f i e d  B o d e  P l o t

Design a circuit that has the asymptotic magnitude Bode plot shown in Figure 13.3-13a.

Solution
The slope of this Bode plot is 20 dB/decade for low frequencies, that is, co < 500 rad/s, so H(a;) must have a 
jto factor in its numerator. The slope decreases by 20 dB/decade (from 20 dB/decade to zero) as co increases 
past co = 500 rad/s, so H(co) must have a pole at co =  500 rad/s. Based on these observations

H ( w )  =  ± k

1 + J ' l ™
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to (logarithmic scale) 

(a)

2 kQ 1/iF 100 kQ

+

(b)
FIGURE 13*3-13 (a) An asymptotic magnitude Bode plot and {b) a circuit that implements that Bode plot.

The gain of the asymptotic Bode plot is 34 dB = 50 when co > 500 rad/s, so

50 = ±*
JO )

to
' 5 0 0

=  ±k • 500

Thus, k =  ±0.1 and

H M  =  ±0.1
• w 

+ 7 500
We need a circuit that has a network function of this form. Table 13.3-2 contains a collection of circuits and 
corresponding network functions. Row 4 of Table 13.3-2 contains the circuit that we can use. The design 
equations provided in row 4 of the table indicate that

0.1 = R 2C 
1

500
CRi

Because there are more unknowns than equations, the solution of these design equations is not unique. Pick 
C =  \fi¥. Then

0.1

10"

= 100 kfi

1

500 10-6 = 2  kfi

The finished circuit is shown in Figure 13.3-136.

EXERCISE 13.3-1 (a) Convert the gain|V0/V s| =  2 to decibels, (b) Suppose |V0/V S| =  
-6.02 dB. What is the value of this gain "not in dB” ?

Answers: (a) 6.02 dB (b) 0.5

EXERCISE 13.3-2 In a certain frequency range, the magnitude of the network function can be 
approximated as H =  1/ar What is the slope of the Bode plot in this range, expressed in decibels 
per decade?

Answer: —40 dB/decade
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T ab le  13 .3-2  A Collection of Circuits and Corresponding Network Functions
CIRCUIT

R2

Ci

« L  <  l>0

*1
— w v -

Q v' +

N E TW O R K  F U N C TIO N

H ( c o )= -k
1 + 7

where

P =

C i* i

1

C 2 R 2

H (co) = -

where

, . co1 +y —

P =

*2

1
CRo

H(co) = - k  ( i  + ;  ® ) 

where
k =

R2_
Ri

l
C / ? 1

H(a>) = - k  - -y'<B 

l + > ?
where *  _ / f2c

= _ J _  
P _  C / ? ,

H(w) = - k(j(o)

where *  =

1
Pi = 

P2 =

Ci/?i

1
C2 /?2
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EXERCISE 13.3-3 Consider the network function
jcoA

H M B -I- jcoC
Find (a) the comer frequency, (b) the slope of the asymptotic magnitude Bode plot for co above the comer 
frequency in decibels per decade, (c) the slope o f the magnitude Bode plot below the comer frequency, and (d) the 
gain in decibels for co above the comer frequency.

Answers: (a) c o q  = B/C (b) zero (c) 20 dB/decade (d) 20 log,0 =  —

13.4 R E S O N A N T  C I R C U I T S  ---------------------------------------------------

In this section, we will study the behavior of some circuits called resonant circuits. We begin with an 
example.

Consider the situation shown in Figure 13.4-la. The input to this circuit is the current of the 
current source, and the response is the voltage across the current source. Because the input to the 
circuit is sinusoidal, we can use phasors to analyze this circuit. We know that the network function of 
the circuit is the ratio of the response phasor to the input phasor. In this case, that network function will 
be an impedance

7  =  V =
I b LQ!

Figure 13.4-16 shows some data that were obtained by applying an input with an amplitude of 2 mA 
and a frequency that was varied. Row 1 of this table describes the performance of this circuit when 
co = 200 rad/s. At this frequency, the impedance of the circuit is

Z  =  -  3 3 0 0  / 4 8 °  f i

0.002  
Let’s convert this impedance from polar to rectangular form:

Z =  2208 +  y'2452 fl
This looks like the equivalent impedance of a series resistor and inductor. The resistance would be 
2208 fl. Because the frequency is co = 200 rad/s, the inductance would be 12.26 H. Recall that in 
rectangular form impedances are represented as

Z = R + JX
where R is called the resistance and X  is called the reactance. When co =  200 rad/s, we say that the 
reactance of this circuit is inductive because the reactance is positive and therefore could have been 
caused by a single inductor.

Ht) = A cos (cot) I

+

^  vit) = B cos (cot +6) RLC
circuit

A, A co, rad/s B, V 0

0.002 200 6.6 48°
0.002 220 8.4 33°
0.002 250 10.0 0°
0.002 270 9.3 -21°
0.002 300 7.4 -43°

(a) (b)
FIGURE 13.4-1 (a) An RLC circuit with a sinusoidal input and (b) some frequency response data.
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The last row of the table describes the performance of this circuit when co =  300 rad/s. Now

=  7 -4 ^ y _  =  3 7 0 0  ^ _ 4 3 o =  2 7 0 6  _  • 2 5 2 3  n
0.002 ----

Because the reactance is negative, it couldn’t have been caused by a single inductor. This impedance 
looks like the equivalent impedance of a single resistor connected in series with a single capacitor:

R -  j —^  =  2706 —y'2523 ft
coC

Equating the real parts shows that the resistance is 2706 ft. Equating imaginary parts shows that the 
capacitance is 1.32 /zF.

The reactance of this circuit is inductive at some frequencies and capacitive at other frequencies. 
We can tell when the reactance will be inductive and when it will be capacitive by looking at the last 
column of the table. When 6  is positive, the reactance is inductive and when 9 is negative, the reactance 
is capacitive. The frequency co =  250 rad/s is special. When the input frequency is less than 250 rad/s, 
the reactance is inductive, but when the input frequency is greater than 250 rad/s, the reactance is 
capacitive. This special frequency is called the resonant frequency and is denoted as coo. From the 
third row of the table, we see that when co =  a>o = 250 rad/s

_  \ o J ^ _  =  5 0 0 0  ^  _  5 0 0 0 _ j0 C l
Z 0.002

The reactance is zero. At the resonant frequency, the impedance is purely resistive. Indeed, this fact 
can be used to identify the resonant frequency.

Another observation can be made from Figure 13.4-1. The magnitude of the impedance is 
maximum when co = coo = 250 rad/s. When the frequency is reduced from coo or increased from coo, 
the magnitude of the impedance is decreased.

Next, consider the circuit shown in Figure 13.4-2. This circuit is called the parallel resonant 
circuit. The equivalent impedance of the parallel resistor, inductor, and capacitor is

z = i . i =  i , . ' 2 !  <i 3 -4 - »

R + Jw C + M .

This circuit exhibits some familiar behavior. The reactance will be zero when

coC---- - - 0
COL

The frequency that satisfies this equation is the resonant frequency, co0. Solving this equation gives

“ 0 = 7 m

iit) = A cos (cot) 
u{t) = B cos (cot +0) FIGURE 13.4-2 The parallel resonant circuit.
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FIGURE 13.4-3 The effect of Q on the frequency response of a resonant circuit.

1 0 1

At co =  co0, Z = R- The magnitude of Z decreases as co is either increased or decreased from co0. The 
angle of Z is positive when co < coo and negative when co > coo, so the reactance is inductive when 
co < coo and capacitive when co > coo-

The impedance can be put in the form

The parameters k, Q, and coo characterize the resonant circuit. The resonant frequency, coo, is the 
frequency at which the reactance is zero and where the magnitude of the impedance is maximum. The 
parameter k is the value of the impedance when co = coo, so k is the maximum value of the impedance. 
Q is called the quality factor of the resonant circuit. The magnitude of the impedance will decrease as 
co is reduced from coo or increased from o>0- The quality factor controls how rapidly |Z| decreases. 
Figure 13.4-3 illustrates the importance of Q. Both k and coo have been set equal to 1 in Figure 13.4-3 to 
emphasize the relationship between Q and |Z|.

Figure 13.4-3 shows that the larger the value of Q, the more sharply peaked is the frequency 
response plot. We can quantify this observation by introducing the bandwidth of the resonant circuit. 
To that end, let co\ and co2 denote the frequencies where

There will be two such frequencies, one smaller than coo and the other larger than coo. Let co\ < coo and 
C02 > coq. The bandwidth, BW, of the resonant circuit is defined as

B W  — co2 — co\

The frequencies co\ and C02 are solutions of the equation

k (13.4-2)Z -

where (13.4-3)

* k
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or \ / 2  = \J\ + Q 2 {(o/a>o -  m / u ) 2

Squaring both sides, we get

1
=  Q 2 ^ _ ^ 0

\ o >0 co

Now, taking the square root of both sides,

± l s = e ( * _ £ *  
' COq CO

(The ±  sign is required because a2 =  b2 is satisfied if either a =  b or -a  = b.) This equation can be 
rearranged to get the following quadratic equation:

2 coqco 2
C O  T  - 7: -CO q  = 0

This equation has four solutions, but only two are positive. The positive solutions are

■ +co 1 =
c o o  . f t o o X  

2 Q \ \ 2 Q j
CO0

+  col and 0)2 = 2 Q +
co0

2 Q

+  a>l

Finally, we are ready to calculate the bandwidth

BW  = C02 — co\
co0

~Q (13.4-4)

This equation says that the bandwidth is smaller; that is, the frequency response plot is more sharply 
peaked; when the value of Q is larger.

E x a m p l e  1 3 . 4 - 1  S e r i e s  R e s o n a n t  C i r c u i t

Figure 13.4-4 shows a series resonant circuit. Determine the relationship between parameters k, Q, and coo and the 
element values R, L, and C for the series resonant circuit.

/(f) = B cos (co t +0) r  
.................  o -

t  )v{t) = A cos (cur)

F I G U R E  1 3 . 4 - 4  T h e  s e r i e s  r e s o n a n t  c i r c u i t .

Solution
The input to this circuit is the voltage source, and the response is the current in the mesh. The network function is 
the ratio of the response phasor to the input phasor. In this case, the network function is the equivalent admittance 
of the series resistor, capacitor, and inductor:

Y  =  — = ______ —v
R ~f~ jcoL +

(13.4-5)

jcoC
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To identify k, Q, and a>0, this network function must be rearranged so that it is in the form
k

Y =
i + y e

V ^ o  CD J
Rearranging Eq. 13.4-5,

1

R

Comparing this equation to Eq. 13.4-6 gives

f 1 \
CD s/LC
1 CD

KVl c )

i \ i i and
R \ C

i \

V v 'IC  /

(Dq ~
V l c

( 1 3 . 4 - 6 )

E x a m p l e  1 3 . 4 - 2  F r e q u e n c y  R es p o n s e  o f  
a R e s o n a n t  C i rcu i t

Figure 13.4-5 shows the magnitude frequency response plot of a resonant circuit. What are the values of the 
parameters k, Q, and a>o?

5.0 K

4.0 K

3.0 K

2.0 K

1.0 K 

0
2-0 Kh 3.0 Kh FIGURE 13.4-5 The magnitude frequency

Frequency response of a resonant circuit.

Solution
The first step is to find the peak of the frequency response and determine the values of the frequency and the 
impedance corresponding to that point. This frequency is the resonant frequency, cdo, and the impedance at this 
frequency is k. This point on the frequency response is labeled in Figure 13.4-5. The frequency is

a>o = (2tt)2249 =  14,130 rad/s

IZ(a>)l, ohms



628 )-------F re q u e n c y  R e spo nse

The impedance is

k =  4000 f l

Next, the frequencies a>\ and co2 are identified by finding the points on the frequency response where the value of 
the impedance is k/y /2  =  2828 fl. These points have been labeled in Figure 13.4-5. (The plot shown in Figure
13.4-5 was produced using PSpice and Probe. The cursor function in Probe was used to label points on the
frequency response. Each label gives the frequency first, then the impedance. It was not possible to move the
cursor to the points where the impedance was exactly 2828 H, so the points where the impedance was as close to 
2828 f l  as possible were labeled.)

co] =  (2jt)2 172 =  13,647 rad/s and a>2 =  (27r)2332 =  14,653 rad/s 

The quality factor, Q, is calculated as

O — —  — —  — 14,130 _  ^
^  ~  J W  ~  (o2 -  &>i ~~ 14,653 -  13,647 ~~

Now that the values of the parameters k, Q, and coq are known, the network function can be expressed as

4000
z m  =

1 + j  14
to 14,130

14,130 co

E x a m p l e  1 3 . 4 - 3  P a r a l l e l  R e s o n a n t  C i r c u i t

Design a parallel resonant circuit that has k = 4000 Cl, Q =  14, and coo =  14, 130 rad/s.

Solution
Table 13.4-1 summarizes the relationship between parameters k, Q, and co0 and the element values R, L, and C for 
the parallel resonant circuit. These relationships can be used to calculate R, L, and C from k, Q, and co0. First,

R = k = 4000 f t

Next, _ L  =  Wo =  14 i13o
yJLC

and r J v  = Q =  14

Rearranging these last two equations gives

l 4 ' / I = v / C =  1
4000 14 ,130y^

o~ , 4000 1
=  U  i w i ^  =  20 mH and C = ----------------------- 0.25 uF14,130(14) 14,130 (0.002) U
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Table 13.4- Series and Parallel Resonant Circuits

Circuit

Network function

Resonant frequency 

Maximum magnitude 

Quality factor

SERIES RESONANT CIRCUIT

1 + •  ̂/ ft) wo \
jQ [(O0 ft))

ft) 0 =
1

VZc

1

PARALLEL RESONANT CIRCUIT

ft)0

'o 

1
VZc

k = R

Q- RJ i
Bandwidth BW-- BW =

RC

E x a m p l e  1 3 . 4 - 4  D e s ig n in g  R e s o n a n t  C i r cu i t s

Figure 13.4-5 shows the magnitude frequency response plot of a resonant circuit. Design a circuit that has this 
frequency response.

Solution
We have already solved this problem. Three things must be done to design the required circuit. First, the 
parameters k, Q, and cdq must be determined from the frequency response. We did that in Example 13.4-2. Second, 
we notice that the given resonant frequency response is an impedance rather than an admittance, and we choose 
the parallel resonant circuit from Table 13.4-1. Third, the element values R, L, and C must be calculated from the 
values of &, Q, and <oq. We did that in Example 13.4-3.

EXERCISE 13.4-1 For the RLC parallel resonant circuit when R =  8 kfl, L = 40 mH, and 
C = 0.25/xF, find (a) Q and (b) bandwidth.

Answers: (a) Q =  20 (b) BW =  500 rad/s

EXERCISE 13.4-2 A high-frequency RLC parallel resonant circuit is required to operate at 
(Oo =  10 Mrad/s with a bandwidth of 200 krad/s. Determine the required Q and L when C =  10 pF.

Answers: Q =  50 and L =  l mH
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EXERCISE 13.4-3 A series resonant circuit has L = 1 mH and C =  10 n¥ . Find the required Q 
and R when it is desired that the bandwidth be 15.9 Hz.

Answers: Q =  100 and R =  0.1 ft

EXERCISE 13.4-4 A series resonant circuit has an inductor L = 10 mH. (a) Select C and R so 
that too = 106 rad/s and the bandwidth isB fV =  103 rad/s. (b) Find the admittance Y of this circuit for a 
signal at co = 1.05 x 106 rad/s.

Answers: (a) C = 100 pF, R =  10 f t

13.5 F R E Q U E N C Y  R E S P O N S E  O F  OP  A M P  C I R C U I T S

The gain of an op amp is not infinite; rather, it is finite and decreases with frequency. The gain A(&>) of 
the operational amplifier is a function of co given by

A ( x _  4 >
M 1 +jco/w\

where A0 is the dc gain, and co\ is the comer frequency. The dc gain is normally greater than 104 and co\ 
is less than 100 rad/s. A circuit model of a frequency-dependent nonideal op amp is shown in Figure
13.5-1. This model is more accurate, but also more complicated, than the ideal op amp model.

Let us consider an example of an op amp circuit incorporating a frequency-dependent 
op amp.

Vi (co)
V2(©) v0ta>>

T
(a )

\J (co) = -A (co) Vj(o>)

(b)

FIGURE 13.5-1 (a) An operational 
amplifier and (b) a frequency-dependent 
model o f an operational amplifier.

E x a m p l e  1 3 . 5 - 1  F r e q u e n c y  R e s p o n s e  o f  
a N o n i n v e r t i n g  A m p l i f i e r

Consider the noninverting amplifier in Figure 13.5-2a. Replacing the op amp with a frequency-dependent op amp 
gives the circuit shown in Figure 13.5-2*. Suppose that R2 =  90 kft and R { =  10 kft and that the parameters of 
the op amp are A0 — 105 and co\ = 10 rad/s. Determine the magnitude Bode plot for both the gain of the op amp, A  
(o>), and the network function of the noninverting amplifier, V0/V s.
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j — V A — J-
R  2

-W V —

V.(o»)

v > y ° =

-Atei) V,(o>)

(a ) (b)

FIGURE 13.5-2 (a) A noninverting amplifier and (b) an equivalent circuit incorporating the frequency-dependent model of the 
operational amplifier.

Solution
The Bode plot of 20 log|A(w)| is shown in Figure 13.5-3. Note that the magnitude is equal to 1 (0 dB) at 
to = 106 rad/s.

Writing a node equation in Figure 13.5-26 gives
v, +  Vs , V, +  Vs +  A(a>)Vj _

Ri R i
The frequency-dependent model of the op amp is described by

V0 =  —A(o>)Vj
Combining these equations gives

Vo _ A(a>)
Vs Y ( A M  

k
where k =  (Rx+R2)/R\ is the gain of the noninverting amplifier when the op amp is modeled as an ideal op amp. 
Substituting for A(o>), we get

V0 A0/{ \ +j(o/a)X) A0 Ac
Vs 1 + (A0/k)/(l + jco/coi) 1 +jw/a)\ + AQ/k  1 +jco/(Aii0 \)

20 log|y4(<o)| 
(dB)

and the noninverting op amp circuit (in color).
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4 A 0 A 0
where Ac is the dc gain of the noninverting amplifier defined as Ac = ---- and A2 =  1 +  - p  Usually, 1 <  — ,

A0 1 H—T-
so /lc — k and A2 =  — ■ Then £

a:
Vn
Vs (1 +j(o/ojo)

where co0 =  A0cox/k  is the comer frequency of the noninverting amplifier. Notice that the product of the dc gain 
and the comer frequency is

co0k k =  A 0co\
k

This product is called the gain-bandwidth product. Notice it depends only on the op amp, not on R\ and R2.
For this example, k  =  10 and^ 0 =  100 dB =  105, and, thus, we have Ac =  10, A 2 =  104, and co\ A 2 =  105. 

Therefore,
V0 10
Vs 1 -hy 10 5co

This circuit has a magnitude Bode plot as shown in color in Figure 13.5-3. Note that the noninverting op amp 
has a low-frequency gain of 20 dB and a break frequency o f 105 rad/s. The gain-bandwidth product remains
106 rad/s.

13.6 P L O T T I N G  B O D E  P L O T S  U S I N G  M A T L A B  ------------------------------

MATLAB can be used to display the Bode plot or frequency response plot corresponding to a network 
function. As an example, consider the network function

* ( l  + j ~ )
H M  =  V z )

' +jk) ( ‘ + y £ )

Figure 13.6-1 shows a MATLAB input file that can be used to obtain the Bode plot corresponding to 
this network function. This MATLAB file consists of four parts.

In the first part, the MATLAB command lo g  s p a c e  is used to specify the frequency range for 
the Bode plot. The command l o g  s p a c e  also provides a list of frequencies that are evenly spaced (on 
a log scale) over this frequency range.

The given network has four parameters—the gain, K\ the zero, z; and two poles, p x and p 2. The 
second part of the MATLAB input file specifies values for these four parameters.

The third part of the MATLAB input file is a “ for loop” that evaluates H(w), |H(&>)|,and / H  (co) 
at each frequency in the list of frequencies produced by the command l o g  s p a c e .

The fourth part of the MATLAB input file does the plotting. The command

s e m i lo g x  (w / (2 *pi),  2 0 * l o g l 0 (mag))

does several things. The command s e m ilo g x  indicates that the plot is to be made using a logarithmic 
scale for the first variable and a linear scale for the second variable. The first variable, frequency, is 
divided by 2n to convert to Hz. The second variable, jH(w)|, is converted to dB.

The Bode plots produced using this MATLAB input file are shown in Figure 13.6-2.
The second and third parts of the MATLAB input file can be modified to plot the Bode plots for a 

different network function.
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% n f . m  -  p l o t  t h e  B o d e  p l o t  o f  a  n e t w o r k  f u n c t i o n

%................................................................................................ ..........................................
% C r e a t e  a  l i s t  o f  l o g a r i t h m i c a l l y  s p a c e d  f r e q u e n c i e s .
%............................................... - ................................. .......................................................
w m i n = 1 0 ;  % s t a r t i n g  f r e q u e n c y ,  r a d / s
w m a x = 1 0 0 0 0 0 ;  % e n d i n g  f r e q u e n c y ,  r a d / s
w = l o g s p a c e ( l o g l O ( w m i n ) , l o g l O ( w m a x ) ) ;

%-................................ - ----------- ----------------------- -------- ----------- ---------------------
% E n t e r  v a l u e s  o f  t h e  p a r a m e t e r s  t h a t  d e s c r i b e  t h e
% n e t w o r k  f u n c t i o n .
%------- ------------ ---------------- ------------ - ------------- ---------------------------------------
K= 1 0 ;  % c o n s t a n t
z =  1 0 0 0 ;  % z e r o
p i  = 1 0 0 ;  p 2  = 1 0 0 0 0 ;  % p o l e s

%------------------------------- ----------- ---------------------------- -------- -------------------------
% C a l c u l a t e  t h e  v a l u e  o f  t h e  n e t w o r k  f u n c t i o n  a t  e a c h  f r e q u e n c y .  
% C a l c u l a t e  t h e  m a g n i t u d e  a n d  a n g l e  o f  t h e  n e t w o r k  f u n c t i o n .
%------------------------------------------------------------------------------------------------- --------
f o r  k = l : l e n g t h ( w )

H ( k )  = K * ( 1 + j * w ( k ) / z )  /  ( ( l + j * w ( k ) / p i )  * ( 1 + j * w ( k ) / p 2 ) ) ;
m a g ( k )  = a b s ( H ( k ) ) ;  
p h a s e ( k )  = a n g l e ( H ( k ) ) ;

e n d

%----------------------------------------------------------------------------------------------------------------------
% P l o t  t h e  B o d e  p l o t .
%-------------------------------------------------------------------------------
s u b p l o t ( 2 , 1 , 1 ) , s e m i l o g x ( w / ( 2 * p i ) , 2 0 * l o g l 0 ( m a g ) ) 
x l a b e l ( ' F r e q u e n c y ,  H z ' ) ,  y l a b e l ( ' G a i n ,  d B ' ) 
t i t l e ( ' B o d e  p l o t ' )
su b p lo t(2 ,1 ,2 ) ,  sem ilo g x ( w / ( 2*pi ) , phase)

^ ^ x l a b e l  ( ' F r e q u e n c y ,  H z ' ) , y l a b e l  ( ' P h a s e ,  d e g '  )

FIGURE 13.6-1 MATLAB input file used to plot the Bode plots corresponding to a network function.

Bode plot

Frequency, Hz

Frequency, Hz

FIGLRE 13.6-2 The Bode plots produced using the MATLAB input file given in Figure 13.6-1.
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13.7 U S I N G  P S P I C E  T O  P L O T  A F R E Q U E N C Y
R E S P O N S E  ---------------------------------- ------------------------------------------------------

To use PSpice to plot the frequency response of a circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify an AC Sweep\Noise simulation.

3. Run the simulation.

4. Plot the simulation results.

The frequency axis of a frequency response plot can be either a linear axis or a logarithmic axis. 
When a logarithmic axis is used for the frequency variable, the plots are referred to as Bode diagrams or 
Bode plots. We encounter the terms octave and decade when working with logarithmic scales. The 
frequency doubles in an octave and increases by a factor of ten in a decade. (The log of the frequency 
increases by 1 as the frequency increases by a decade.)

Let A / o  be the phasor of the node voltage at node 2 of a circuit. PSpice uses the notation:

V(2~) /V p (2) =  A j e

That is, V(2) denotes the magnitude of the phasor and Vp(2) denotes the angle of the phasor. PSpice 
gives the angle in degrees. Similarly, V(R2) represents the magnitude of the voltage across resistor R2, 
whereas Vp(R2) denotes the angle. PSpice indicates that the units are decibels by inserting “ dB”  into 
the name of a signal just before the parenthesis. For example, VdB(2) denotes the magnitude of the 
node voltage phasor in dB.

E x a m p l e  1 3 . 7 - 1  U s i n g  P S p i c e  to  P l o t
a F r e q u e n c y  R e s p o n s e

The input to the circuit shown in Figure 13.7-1 is the voltage source voltage vs(t). The response is the voltage, 
v0(/), across the 20-kfl resistor. Use PSpice to plot the frequency response of this circuit.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in Figure 13.7-2 (see Appendix A). Two 
nodes of this circuit have been named using a PSpice part called an off-page connector. The particular off-page 
connector used in Figure 13.7-1 is called an OFFPAGELEFT-R part and is found in the part library named

R\ = 10 kQ

-^ w v —

O v '-
.(f)

R2 = 40 kQ

C = 0.2 |iF

/?, = 20 kQ >  v 0U)

FIGURE 13.7-1 The circuit considered in Example 13.7-1.
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R2 40k

Vs « — W V ■»V0

FIGURE 13.7-2 The circuit of Figure 13.7-1 as drawn in 
the OrCAD workspace.

CAPSYM. To label a node, select Place/Off-Page Connector . . . from the OrCAD capture menus to pop up the 
Place Off-Page Connector dialog box. Select the library CAPSYM from the list of libraries and then choose 
OFFPAGELEFT-R. The new connector will be labeled OFFPAGELEFT-R. Use the property editor to change this 
name to something descriptive, such as Vo. Wire the connector to the appropriate node of the circuit to name that 
node Vo.

We will perform an AC SweepYNoise simulation. (Select PSpice\New Simulation Profile from the OrCAD 
Capture menu bar; then select AC Sweep\Noise from the Analysis Type drop-down list. Set the Start Frequency to
1 and End Frequency to 1000. Select a Logrithmic Sweep and set the Points/Decade to 100.) Select PSpiceYRun 
Simulation Profile from the OrCAD Capture menu bar to run the simulation.

After a successful ACSweepYNoise simulation, OrCAD Capture will automatically open a Schematics 
window. Select Plot/Add plot from the Schematics menus to add a second plot. Two empty plots will appear, one 
above the other. Select the top plot by clicking the top plot.

Select Trace/Add Trace from the Schematics menus to pop up the Add Traces dialog box. Select first 
V(Vo) and then V(Vs) from the list of Simulation Output Variables. The Trace Expression, near the bottom of the 
dialog box, will be V(Vo)V(Vs). Edit the trace expression to be Vdb(Vo) — Vdb(Vs). Vdb(Vo) — Vdb(Vs) is the 
gain in decibels. Close the Add Traces dialog box.

Select the bottom plot by clicking the bottom plot. Select Trace/Add Trace to pop up the Add Traces dialog 
box. Select first V(Vo) and then V(Vs) from the list of Simulation Output Variables. The Trace Expression, near 
the bottom of the dialog box, will be be V(Vo)V(Vs). Edit the trace expression to be Vp( Vo) — Vp(Vs). Vp(Vo) — 
Vp(Vs) is the phase shift in degrees. Close the Add Traces dialog box.

Figure 13.7-3 shows resulting plots after labeling some points.

(19 850,135 065)

^ ..
—  . . .

1 B M ?  1B8HZ 1 .  SKHz
\ □ Up(Uo) Up(Us)
V Frequency FIG U R E 13.7 -3 The gain and phase Bode plots
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13.8 H O W  C A N  W E  C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.

E x a m p l e  1 3 . 8 - 1  How Can We Check Bode Plots?

Figure 13.8.1a shows a laboratory setup for measuring the frequency response of a circuit. A sinusoidal input is 
connected to the input of a circuit having the network function H(a>). An oscilloscope is used to measure the input 
and output sinusoids. The input voltage is used to trigger the oscilloscope so the phase angle of the input is zero. 
Frequency response data are collected by varying the input frequency and measuring the amplitude of the input 
voltage and the amplitude and phase of the output voltage.

In this example, the desired frequency response is specified by the Bode plot shown in Figure 13.8.16. 
Figure 13.8.1c shows frequency response data from laboratory measurements. In this example, the amplitude, but 
not the phase angle, of the output voltage was measured. How can we check that the circuit does indeed have the 
specified Bode plot?

v X t )  =  A  c o s  c o t

(a )

B  c o s  ( c o t  +  6 )

1 4

oo-O

o
CM

_ L

200

c o  ( r a d / s )

(b)
I IGURE 13.8-1 (a) A  circuit, (b) Bode plot, and (c) frequency response data.

c o A B

2 0 1 5

5 0 1 4 . 9

1 0 0 1 4 . 5

2 0 0 1 3 . 5

5 0 0 1 1 . 8

1 , 0 0 0 1 0 . 5

2 , 0 0 0 1 0 . 2

1 0 , 0 0 0 1 0 . 0 5

(c)

- 2 0  d B / d e c a d e
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Solution
The Bode plot has three features that we can look for in the frequency response data.

1. The dc gain is 14 dB.

2. The slope of the Bode plot is —20 dB/decade when co »  200 rad/s.

3. The comer frequency is 200 rad/s.

The lowest frequency at which frequency response data was taken is 20 rad/sec. At this frequency, the gain 
was measured to be

|H(20)| = *  =  y = 1 4 d B

which is equal to the dc gain specified by the Bode plot.
To identify the comer frequency from the frequency response data, we look for the frequency at which the 

gain is

t f s  = 4 =  = 3.536
• J l  V 2

The frequency response data indicate that the gain is 3.5 at a frequency of 200 rad/s. That agrees with the comer 
frequency of 200 rad/s of the specified Bode plot.

The slope of the frequency response at high frequencies is given by

20 log10(0.05) — 20 log10(0.5)
log10(10.000) — loglo(1000)

= -2 0  dB/decade

which is the same as the slope of the Bode plot.
The frequency response data confirm that the circuit does indeed have the specified Bode plot.

E x a m p l e  1 3 . 8 - 2  How Can We C he c k  Gain  
and Phase  Sh if t ?

Your lab notes indicate that the circuit shown in Figure 13.8.2 was built using R\ =  10 kO, R2 =  50 kO, and 
C =  10 nF. The gain and phase shift of this circuit were measured to be 2.7 and 125°at 500 hertz. How can we 
check whether this information is consistent?

FIGURE 13.8-2 An op amp circuit.
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Solution
The network function of this circuit is

H ( » )  =  -
jcoC _  R

R\ 1 +  ja>R2 C 
50 • 103

=  -----------------------J0 ' 1Q\ ,  .------------^  =  2.685 / l2 2 .5 °
1 +  j(2 n  ■ 5 0 0 )(5 0  • 103) (10 IO"9)

The calculated gain and phase shift agree with the measured gain and phase shift. The lab notes are consistent.

E x a m p l e  1 3 . 8 - 3  H o w  Can We Check
Frequency Response?

An old lab report from a couple of years ago includes the following data about a particular circuit:

1. The magnitude and phase frequency responses are as shown in Figure 13.8-3.

2. When the input to the circuit was
vin =  4 cos (2jt1 200f) V

the steady-state response was

vout =  6.25 cos (27rl200r +  110°) V 

How can we check whether these data are consistent?

Solution
Three things need to be checked: the frequencies, the amplitudes, and the phase angles. The frequencies of both 
sinusoids are the same, which is good because the circuit must be linear if it is to be represented by a frequency 
response, and the steady-state response of a linear circuit to a sinusoidal input is a sinusoid at the same frequency 
as the input. The frequency of the input and output sinusoids is

co — 2  ■ n  ■ 1200 rad/s 
or / =  1200 Hz

Fortunately, the gain and phase shift at 1200 Hz have been labeled on the frequency response plots shown in 
Figure 13.8-3. The gain at 1200 Hz is labeled as 3.9 dB, which means that

=  3.9 dB =  1.57
I * in I

where Vin and Vout are the phasors corresponding to vm(t) and vout(/). Let us check this against the data about the 
input and output sinusoids. Because the magnitudes of the phasors are equal to the amplitudes of the 
corresponding sinusoids,

|v „ l 6.25 , „
l v j  =  — = 1 '5 6
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Frequency (Hz)

(a)

Frequency (Hz) FIGURE 13.8-3 The (a) magnitude and (b) phase
(b )  frequency response of the circuit.

This is very good agreement for experimental work.
Next, consider the phase shift. The frequency response indicates that the phase shift at 1200 Hz is -110°, 

which means

/Vout -  / v in =  - 1 1 0 °

Let us check this against the data about the input and output sinusoids. Because the angles of the phasors are equal 
to the phase angles of the corresponding sinusoids,

/Vout - /Vjj, =  110° - 0° =  110°

The signs of the phase angles do not match. At a frequency of 1200 Hz, a phase angle of 110° indicates that the 
peaks of the output sinusoid will follow the peaks of the input sinusoid by

110° 1 
~  5 5 F  T200 =  ms

whereas a phase angle of -110  indicates that the peaks of the output sinusoid will precede the peaks of the input 
sinusoid by 0.255 ms. It is likely that the angle of the output sinusoid was entered incorrectly in the lab data. 

We have found an error in the old lab report and proposed an explanation for the error.
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1 3 . 9  D E S I G N  E X A M P L E

R A D IO  T U N E R

Three radio stations broadcast at three different frequencies, 700 kHz, 1000 kHz, and 1400 
kHz. Figure 13.9-1 shows a simplified diagram of a radio receiver. The antenna receives 
signals from all three stations, so the input to the tuner will be a sum of these signals. Suppose 
this voltage is described by

v;(/) =  sin (2jt • 1 ■ 105r -I- 135°) +  sin (2n ■ 106f) +  sin (2n ■ 1.4- 106f +  300°) (13 .9-1)

F I G U R E  1 3 . 9 - 1  A  s i m p l i f i e d  d i a g r a m  o f  a  r a d i o  r e c e i v e r .

Consider the problem of tuning to the station that broadcasts at 1000 
kHz. The tuner must eliminate the first and third terms of v*(t) to 
produce the output signal

v0(f) =  sin (2jt ■ 106f +  6 )

Describe the Situation and the Assumptions
Let H(o>) be the network function of the tuner. The tuner must have a 
gain approximately equal to 1 at 1000 kHz (|H(2;r • 106)| =  l) and 
approximately equal to zero at 700 kHz and at 1400 kHz (|H(2u-
7 • 105)| =  0 and |H(27r • 1.4 • 106)| =  0). The tuner output will be

vo(0  =  |H(2 t t -7 -  105)| sin (27r • 7 • 105/ +  135° 

+  /H (2 tt  • 7 • 105) +  |H(2tt 106)j sin (2zr 106/ +  /H (2 ;r l0 6) 

+  |H(2tt- 1.4- 106) | sin { In-  1.4 • 106f +  300° 

+  / H ( 2 n -  1.4- 106)) 
(13.9-2)

or

where

v0(/) =* sin (27T ■ 106  ̂+  d) 

0 =  /H (2tt- 106)

(a )

L =

State the Goal
The goal is to design a circuit consisting of resistors, capacitors, and op 
amps that has a gain equal to 1 at 1000 kHz and equal to zero at 700 and 
1400 kHz.

Generate a Plan
The tuner will be based on a resonant circuit having a>o =  2jt106 =
6.283 • 10 rad/s and 0 = 1 5 .  Figure 13.9-2 shows an op amp circuit inductor

(b )

F I G U R E  1 3 . 9 - 2  ( a )  A n  

o p  a m p  c i r c u i t  c a l l e d  a  

s i m u l a t e d  i n d u c t o r  a n d  

(b) t h e  e q u i v a l e n t
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(C)

FIGURE 13.9-3 (a) A resonant circuit. (6) A band-pass filter, (c) An RC op amp band-pass filter.

called a simulated inductor. This circuit acts like a grounded inductor having an inductance 
equal to

L = C2R1M l  (13.9-3)
R4

Figure 13.9-3 shows how a parallel resonant circuit can be used to design the tuner. A parallel 
resonant circuit is shown in Figure 13.9-3a. The parallel resonant circuit must be modified if it 
is to be used for the tuner. The input to the tuner is a voltage, but the input to the parallel 
resonant circuit is a current. A source transformation is used to obtain a circuit that has a 
voltage input, shown in Figure 13.9-36. Next, the inductor is replaced by the simulated 
inductor to produce the circuit show in Figure 13.9-3c. This is the circuit that will be used as 
the tuner.

The design will be completed in two steps. First, values of L, R, and C will be calculated 
so that the parallel resonant circuit has coo =  6.283 • 106 rad/s and Q — 15. Next, the capacitor 
and resistors of the simulated inductor will be selected to satisfy Eq. 13.9-3.

Act on the Plan
First, design the resonant circuit to have coo =  6.283 • 106 rad/s and Q — 15. Pick a convenient 
value for the capacitance, C =  0.001/*F. Then,

L = - 4 -  = ---------------- --------=  25.33 /LiH
(6.283 • 106) • 10~9

and
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Time

F I G U R E  1 3 . 9 - 4  P S p i c e  s i m u l a t i o n  o f  t h e  r a d i o  t u n e r .

Next, design the simulated inductor to have an inductance of L =  25.33 /itH. There are 
many ways to do this. Let’s pick Cj — 0.001 /xF, R\ =  1.5 kfl, R} =  1.5 kfl, and R4 =  80 kfl. 
Then

Rs = R4L 80 103 25.33 10“ 6 

C2-Rii?3 ~~ 10~9 • 1.5 • 103 • 1.5- 103
=  900 0

Verify the Proposed Solution
Figure 13.9-4 shows the results of a PSpice simulation of the tuner. The input to the circuit is 
Vj(r) described by Eq. 13.9-1. This signal is not sinusoidal. The output of the filter is a sinusoid 
with an amplitude of approximately 1 and a frequency of 1000 kHz, as required by Eq. 13.9-2. 
Thus, the design specifications are satisfied.

13.10 S U M M A R Y
O  G a i n ,  p h a s e  s h i f t ,  a n d  t h e  n e t w o r k  f u n c t i o n  a r e  p r o p e r t i e s  o f  

l i n e a r  c i r c u i t s  t h a t  d e s c r i b e  t h e  e f f e c t  t h a t  a  c i r c u i t  h a s  o n  a  

s i n u s o i d a l  i n p u t  v o l t a g e  o r  c u r r e n t .

O  T h e  g a i n  o f  t h e  c i r c u i t  d e s c r i b e s  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  

s i z e s  o f  t h e  i n p u t  a n d  o u t p u t  s i n u s o i d s .  T h e  g a i n  i s  t h e  r a t i o  

o f  t h e  a m p l i t u d e  o f  t h e  o u t p u t  s i n u s o i d  t o  t h e  a m p l i t u d e  o f  

t h e  i n p u t  s i n u s o i d .

O  T h e  p h a s e  s h i f t  o f  t h e  c i r c u i t  d e s c r i b e s  t h e  r e l a t i o n s h i p  

b e t w e e n  t h e  p h a s e  a n g l e s  o f  t h e  i n p u t  a n d  o u t p u t  s i n u s o i d s .  

T h e  p h a s e  s h i f t  i s  t h e  d i f f e r e n c e  b e t w e e n  t h e  p h a s e  a n g l e  o f  

t h e  o u t p u t  s i n u s o i d  a n d  t h e  p h a s e  a n g l e  o f  t h e  i n p u t  s i n u s o i d .

O  T h e  n e t w o r k  f u n c t i o n  d e s c r i b e s  t h e  w a y  t h e  b e h a v i o r  o f  t h e  

c i r c u i t  d e p e n d s  o n  t h e  f r e q u e n c y  o f  t h e  i n p u t .  T h e  n e t w o r k  

f u n c t i o n  i s  d e f i n e d  i n  t h e  f r e q u e n c y  d o m a i n .  I t  i s  t h e  r a t i o  o f  

t h e  p h a s o r  c o r r e s p o n d i n g  t o  t h e  r e s p o n s e  s i n u s o i d  t o  t h e  

p h a s o r  c o r r e s p o n d i n g  t o  t h e  i n p u t .

O  T a b l e  1 3 . 3 - 2  t a b u l a t e s  t h e  n e t w o r k  f u n c t i o n s  o f  s e v e r a l  

c o m m o n  o p  a m p  c i r c u i t s .

O  T h e  f r e q u e n c y  r e s p o n s e  d e s c r i b e s  t h e  w a y  t h e  g a i n  a n d  

p h a s e  s h i f t  o f  a  c i r c u i t  d e p e n d  o n  f r e q u e n c y .  E q u a t i o n s ,  

t a b l e s ,  o r  p l o t s  a r e  e a c h  u s e d  t o  e x p r e s s  t h e  f r e q u e n c y  

r e s p o n s e .



P ro b le m s ------ ( 643

O  B o d e  p l o t s  r e p r e s e n t  t h e  f r e q u e n c y  r e s p o n s e  a s  p l o t s  o f  t h e  

g a i n  i n  d e c i b e l s  a n d  t h e  p h a s e  u s i n g  a  l o g a r i t h m i c  s c a l e  f o r  

f r e q u e n c y .  A s y m p t o t i c  m a g n i t u d e  B o d e  p l o t s  a r e  a p p r o x i ­

m a t e  B o d e  p l o t s  t h a t  a r e  e a s y  t o  d r a w .  T h e  t e r m s  c o r n e r  

f r e q u e n c y  a n d  b r e a k  f r e q u e n c y  a r e  r o u t i n e l y  u s e d  t o  d e s c r i b e  

l i n e a r  c i r c u i t s .  T h e s e  t e r m s  d e s c r i b e  f e a t u r e s  o f  t h e  a s y m p ­

t o t i c  B o d e  p l o t .

O  S o m e  l i n e a r  c i r c u i t s  e x h i b i t  a  p h e n o m e n o n  c a l l e d  r e s o n a n c e .  

T h e s e  c i r c u i t s  c o n t a i n  r e a c t i v e  e l e m e n t s  b u t  a c t  a s  i f  t h e y  

w e r e  p u r e l y  r e s i s t i v e  a t  a  p a r t i c u l a r  f r e q u e n c y ,  c a l l e d  t h e  

r e s o n a n t  f r e q u e n c y .  R e s o n a n t  c i r c u i t s  a r e  d e s c r i b e d  u s i n g  

t h e  r e s o n a n t  f r e q u e n c y ,  q u a l i t y  f a c t o r ,  a n d  b a n d w i d t h .  T a b l e

1 3 . 4 - 1  s u m m a r i z e s  t h e  p r o p e r t i e s  o f  s e r i e s  a n d  p a r a l l e l  

r e s o n a n t  c i r c u i t s .

O  T h e  g a i n  o f  o p e r a t i o n a l  a m p l i f i e r s  d e p e n d s  o n  t h e  f r e q u e n c y  

o f  t h e  i n p u t .  U s i n g  a n  o p  a m p  m o d e l  t h a t  i n c l u d e s  a  

f r e q u e n c y - d e p e n d e n t  g a i n  m a k e s  o u r  a n a l y s i s  m o r e  a c c u r a t e  

b u t  a l s o  m o r e  c o m p l i c a t e d .  W e  u s e  t h e  m o r e  c o m p l i c a t e d  

m o d e l  w h e n  w e  n e e d  t h e  a d d i t i o n a l  a c c u r a c y ,  a n d  w e  u s e  t h e  

s i m p l e r  m o d e l  w h e n  w e  d o n ’ t .

O  P S p i c e  c a n  b e  u s e d  t o  a n a l y z e  a  c i r c u i t  a n d  d i s p l a y  i t s  

f r e q u e n c y  r e s p o n s e .

O  M A T L A B  c a n  b e  u s e d  t o  d i s p l a y  t h e  f r e q u e n c y  r e s p o n s e  o f  

a  n e t w o r k  f u n c t i o n .

PROBL E MS

Section 13-2 Gain, Phase Shift, and the N etw o rk  
Function

P 13.2-1 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 1  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v x( t ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v 0 ( r ) ,  a c r o s s  t h e  p a r a l l e l  c o n n e c t i o n  o f  t h e  c a p a c i t o r  

a n d  1 0 - f i  r e s i s t o r .  D e t e r m i n e  t h e  n e t w o r k  f u n c t i o n ,  H(&>) =  

V 0 ( a > ) / V i ( c o ) y o f  t h i s  c i r c u i t .

Answer: H(a>) — —— —
1 +  j4co

40 Q

Figure P 13.2-1

P 13.2-2 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P 1 3 . 2 - 2  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j ( / ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v 0 ( t ) ,  a c r o s s  t h e  s e r i e s  c o n n e c t i o n  o f  t h e  c a p a c i t o r  a n d  

1 6 0 - k f l  r e s i s t o r .  D e t e r m i n e  t h e  n e t w o r k  f u n c t i o n ,  H ( a > )  =  

V 0 ( a > ) / V i ( < i > ) ,  o f  t h i s  c i r c u i t .

1 +  y‘(0.004)ct>
Answer: H(a>) =

1  + y ( 0 . 0 0 5 ) a >

40 k£> 
------ W \ r

©
160 kQ . 

0.025 :

v0U)

P 13.2-3 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 3  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v j ( f ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v Q( t ) ,  a c r o s s  t h e  6 - 0  r e s i s t o r .  D e t e r m i n e  t h e  n e t w o r k  

f u n c t i o n ,  H(o>) =  V 0 ( c t f ) / V j ( a > ) ,  o f  t h i s  c i r c u i t .

4Q

P 13.2-4 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 4  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v ; ( f ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v o ( 0 ,  a c r o s s  t h e  s e r i e s  c o n n e c t i o n  o f  t h e  i n d u c t o r  

a n d  6 0 - f l  r e s i s t o r .  T h e  n e t w o r k  f u n c t i o n  t h a t  r e p r e s e n t s  t h i s  

c i r c u i t  i s

( 0 . 6 ) ^ S
V ,(„ ) • w 

20
D e t e r m i n e  t h e  v a l u e s  o f  t h e  i n d u c t a n c e ,  L ,  a n d  o f  t h e  r e s i s t ­

a n c e ,  R.

Answers: L —  5  H  a n d  R —  4 0  H

Figure P 13.2-2 Figure P 13.2-4
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P 13.2-5 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  13.2-5 i s  t h e  

v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j ( / ) .  T h e  o u t p u t  i s  t h e  v o l t a g e ,  v o ( 0 ,  

a c r o s s  t h e  p a r a l l e d  c o n n e c t i o n  o f  t h e  c a p a c i t o r  a n d  2 - f l  r e s i s t o r .  

T h e  n e t w o r k  f u n c t i o n  t h a t  r e p r e s e n t s  t h i s  c i r c u i t  i s

x VoM _  0.2
Vj ( c o )  \ + j 4 c o

D e t e r m i n e  t h e  v a l u e s  o f  t h e  c a p a c i t a n c e ,  C ,  a n d  o f  t h e  

r e s i s t a n c e ,  R .

A n s w e r s :  C  =  2.5 F  a n d  R  =  8  f l  

R

2 » F

2 Q v M

F i g u r e  P  1 3 . 2 - 5

P 13.2-6 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 6  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v ^ r ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v 0 ( r ) ,  a c r o s s  t h e  c a p a c i t o r .  D e t e r m i n e  t h e  n e t w o r k  

f u n c t i o n ,  H ( c o )  =  \ 0 ( c o ) / \ i ( c o ) ,  o f  t h i s  c i r c u i t .

/ X 0 6
A n s w e r :  H ( o > )  =  . .  w , -----------r

(jco )(\+ j(0 .2 )co )

2 0  q

3 tit) 0.25 F ^=

+

v0(t)

P 13.2-7 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 7  i s  t h e  

v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v * ( / ) .  T h e  o u t p u t  i s  t h e  v o l t a g e ,  v Q( f ) ,  

a c r o s s  t h e  3 0 - k f l  r e s i s t o r .  T h e  n e t w o r k  f u n c t i o n  o f  t h i s  c i r c u i t  i s

H ( c o )
V o M
V iM

D e t e r m i n e  t h e  v a l u e  o f  t h e  c a p a c i t a n c e ,  C ,  a n d  t h e  v a l u e  o f  t h e  

g a i n ,  A ,  o f  t h e  V C V S .

A n s w e r s :  C  =  5 / x F  a n d  A  =  6  V / V

2 kQ 15 kQ

V
J

/-
1 <

* 
< 

II 
J

- C

•— W V  O' i

A vc(t) 30 kQ <

>—o------------------ L-----J
F i g u r e  P  1 3 . 2 - 7

P 13.2-8 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 8  i s  

t h e  s o u r c e  v o l t a g e ,  Vj(/), a n d  t h e  r e s p o n s e  i s  t h e  v o l t a g e  a c r o s s  

^ l »  v 0 ( f ) .  F i n d  t h e  n e t w o r k  f u n c t i o n .

A n s w e r :  H(co) =  - 5 / ( 1  +  jco /\0 )

F i g u r e  P  1 3 . 2 - 8

P 13.2-9 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 9  i s  

t h e  s o u r c e  v o l t a g e ,  v j ( r ) ,  a n d  t h e  r e s p o n s e  i s  t h e  v o l t a g e  a c r o s s  

R l ,  v 0 ( t ) .  E x p r e s s  t h e  g a i n  a n d  p h a s e  s h i f t  a s  f u n c t i o n s  o f  t h e  

r a d i a n  f r e q u e n c y ,  c o .

4  / u F 2/iF

F i g u r e  P  1 3 . 2 - 9

P 13.2-10 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 2 - 1 0  

i s  t h e  s o u r c e  v o l t a g e ,  v x( t ) ,  a n d  t h e  r e s p o n s e  i s  t h e  v o l t a g e  

a c r o s s  R L ,  v Q ( / ) .  T h e  r e s i s t a n c e ,  R h  i s  1 0  k f l .  D e s i g n  t h i s  

c i r c u i t  t o  s a t i s f y  t h e  f o l l o w i n g  t w o  s p e c i f i c a t i o n s :

( a )  T h e  g a i n  a t  l o w  f r e q u e n c i e s  i s  5 .

( b )  T h e  g a i n  a t  h i g h  f r e q u e n c i e s  i s  2 .

A n s w e r s :  R 2  =  2 0  k f l  a n d  R t, =  3 0  k f l

C  =  0 . 1 / i F
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P 13.2-11 The input to the circuit shown in Figure P 13.2-11 
is the source voltage, and the response is the voltage 
across Ru  vQ(t). Design this circuit to satisfy the following two 
specifications:

(a) The phase shift at co =  1000 rad/s is 135°.
(b) The gain at high frequencies is 10.

Answers: R\ =  1 k ll and Ri =  10 k ll

Figure P 13.2-11

P 13.2-12 The input to the circuit shown in Figure P 13.2-12 
is the source voltage, V j(f) , and the response is the voltage 
across RL, vQ(f). Design this circuit to satisfy the following two 
specifications:

(a) The phase shift at co = 1000 rad/s is 225°.
(b) The gain at high frequencies is 10.

Answers: R\ — lO k fla n d ^  =  100 kfi

/?! C = 0.1 juF R2

(a)
Figure P 13.2-14

Find the steady-state output voltage, vQ, for (a) C =  0.1 /xF and 
(b) C = 0.01/xF. Assume an ideal op amp.

P 13.2-13 The input to the circuit of Figure P 13.2-13 is

v, = 50 + 30 cos (500f + 115°) - 20 cos (2500/ + 30°) m V

C

Figure P 13.2-13

P 13.2-14 The source voltage, vs, shown in the circuit o f 
Figure P 13.2-\4a is a sinusoid having a frequency o f 500 Hz 
and an amplitude o f 8 V. The circuit is in steady state. The 
oscilloscope traces show the input and output waveforms as 
shown in Figure P 13.2-146.

(a) Determine the gain and phase shift o f the circuit at 500 Hz.
(b) Determine the value o f the capacitor.
(c) If the frequency o f the input is changed, then the gain and 

phase shift o f the circuit will change. What are the values 
o f the gain and phase shift at the frequency 200 Hz? At 
2000 Hz? At what frequency will the phase shift be -4 5 °?  
At what frequency will the phase shift be —135°?

(d) What value o f capacitance would be required to make the 
phase shift at 500 Hz be —60°? What value o f capacitance 
would be required to make the phase shift at 500 Hz be 
-300°?

(e) Suppose the phase shift had been -120°at 500 Hz. What 
would be the value o f the capacitor?

(b)
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A n s w e r s :  (b) C = 0.26juF (e) This circuit can’t be designed 
to produce a phase shift =  —120°.
P 13.2-15 The input to the circuit in Figure P 13.2-15 is the 
voltage of the voltage source, V j(r ). The output is the voltage 
v G ( r ) .  The network function of this circuit is

H(a>) =
v„M

V ,M  " ( > + ' ; ) ( , + ' i s )

Determine the values of the capacitance, C, and the pole, p .

C

V s M .CO
1 + 7  — 

P

<>sW (p vQ(t)

Figure P 13.2-16

v sM .co 
1 + J -  

p

Determine expressions that relate the network function pa­
rameters k  andp  to the circuit parameters R  j, /?2, A/, , and L 2 .

M
<-------- ►

r 2

+

Vn(t)

P 13.2-18 The input to the circuit in Figure P 13.2-18 is the 
voltage of the voltage source, Vj(f). The output is the voltage 
vG(/). The network function of this circuit is

JCO

Determine expressions that relate the network function pa­
rameters k , p \ ,  andp 2 to the circuit parameters R i ,  R 2 ,  R 3 ,  R 4 ,  

A , C, and L .

Figure P 13.2-15

P 13.2-16 The input to the circuit in Figure P 13.2-16 is the 
voltage of the voltage source, vs(/). The output is the voltage 
v c ( / ) .  The network function of this circuit is

1 ^

Determine expressions that relate the network function 
parameters k, z ,  andp to the circuit parameters R \ , R 2 , 1, Nu 
and N2.

R 1

P 13.2-19 The input to the circuit shown in Figure P 13.2-19 
is the voltage of the voltage source, vs. The output of the circuit 
is the capacitor voltage, vG. Determine the values of the 
resistances R \ ,  R 2 , /?3, and R 4 required to cause the network 
function of the circuit to be

HW =
v„M 21

P 13.2-17 The input to the circuit in Figure P 13.2-17 is the 
voltage of the voltage source, vs(/). The output is the voltage 
vo(0- The network function of this circuit is

H {a,) = ^ H  = k jW

P 13.2-20 The input to the circuit shown in Figure P 13.2-20 
is the voltage of the voltage source, vs. The output of the circuit 
is the voltage vQ. Determine the network function

v„MH(a,) = vs(w)
of the circuit.



H(«) = V s(co)

of the circuit.

H M  =
V oH  Ho 
Vs (») , + j i

Determine the values o f H„ and p.

8 Q  812

Iq(to) 
Is (to)

0.8

I + j 40
Determine the values of the resistances R| and R2.

Problems - ©
0.2V;,

Figure P 13.2-20

P 13.2-21 The input to the circuit shown in Figure P 13.2-21 
is the voltage of the voltage source, vs. The output o f the circuit 
is the capacitor voltage, vG. Determine the network function

V o M

Figure P 13.2-23

P 13.2-24 The input to the circuit shown in Figure P 1 3 . 2 - 2 4  

is the voltage of the voltage source, vs. The output o f the circuit 
is the resistor voltage, vG. Specify values for L\, L2, R , and K 
that cause the network function o f the circuit to be

v v „ m  _  i
v . H

0 ^ 5 ) (

r v w

: ^ § )

-N

; j - t :

p  <
v >

R >  w0
| Ja_ Y 1 -

.J_____

Figure P 13.2-21

P 13.2-22 The input to the circuit shown in Figure 
P 13.2-22 is the voltage o f the voltage source, vs. The output 
o f the circuit is the capacitor voltage, v0. The network 
function o f the circuit is

Figure P 13.2-24

P 13.2-25 The input to the circuit shown in Figure P 13.2-25 
is the voltage o f the voltage source, vs. The output o f the circuit 
is the resistor voltage, vQ. Specify values for R and C that cause 
the network function o f the circuit to be

H M  =
V o M  
V sM 1 + 7 250

Figure P 13.2-22

P 13.2-23 The input to the circuit shown in Figure P 13.2-23 
is the current o f the current source, is. The output o f the circuit 
is the resistor current, iQ. The network function o f the circuit is

Figure P 13.2-25

P 13.2-26 The network function o f a circuit is H M  =

= id f+JiWaj- when the inPut to this circuit is VsW =
5 cos (5/ -f 15°)V, the output is vG(/) =  A cos (5/ +  
65.194°) V. On the other hand, when the input to this circuit 
is vs(f) =  5 cos(8/ +  15°) V, the output is v0(f) =  8 cos 
(8/ +  0)V. Determine the values o f A and 0.

Answers: A =  6.4018 V and 0 =  51.87 °

P 13.2-27 The network function o f a circuit is H M  —

=  y fjm  w^ere k > 0 and p  > 0. When the input to
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this circuit is
vs(/) = 12 cos (120/ +  30°) V

the output is

v0(f) = 42.36 cos (120/ -  48.69°) V 

Determine the values of k and p 
Answers: k = 18 andp = 24 rad/s 
P 13.2-28 The network function of a circuit is H(ct>) =
When the input to this circuit is sinusoidal, the output is also 
sinusoidal. Let cox be the frequency at which the output 
sinusoid is twice as large as the input sinusoid and let co2 
be the frequency at which output sinusoid is delayed by one 
tenth period with respect to the input sinusoid. Determine the 
values of co\ and co2.
P 13.2-29 The input to the circuit in Figure P 1 3 . 2 - 2 9  is the 
voltage source voltage, vs(/). The output is the voltage vG(/). 
When the input is vs(/) =  8 cos (40/) V ,  the output is 
v 0 ( / )  = 2 . 5  cos(40/+ 14°) V .  Determine the values of the 
resistances R\ and R2.

v0(t)

Figure P 13.2-29

P 13.2-30 The input to the circuit shown in Figure P 13.2-30 
is the voltage source voltage, vs(r). The output is the voltage 
vD(/). The input vs(/) = 2.5 cos (1000/) V causes the output to 
be v0(f) =  8 cos (1000/-I- 104°) V. Determine the values of 
the resistances R{ and R2.
Answers: fl, = 1515 0  and R2 = 20 kft

C = 0.2 (iF

----V W
C h

R 3 >  Uo ( 0

Figure P 13.2-30 

Section 13.3 Bode Plots

P 13.3-1 Sketch the magnitude Bode plot of H(<u) =
4(5 + jco)
~  , a> •

+750

■1Q( 5 +> ) a n d  Ul(C0 )=mi±M
50 +ja> d R U  " 2 1 ^ ;  50 +j(o ’

P 13.3-3 The input to the circuit shown in Figure P 1 3 . 3 - 3  

is the source voltage, vin (/), and the response is the voltage 
across /?3, vout(r). The component values are R\ = 5 kQ, 
R2 =  1 0  kft, C j  = 0 . 1  /xF, and C2 =  0 . 1  /zF. Sketch the 
asymptotic magnitude Bode plot for the network function.

P 13.3-2 Compare the magnitude Bode plots of H,(a>) =

P 13.3-4 The input to the circuit shown in Figure P 13.3-4 
is the source voltage, vs(/), and the response is the voltage 
across R3, vG(/). Determine H(cd) and sketch the Bode 
diagram.

Ci

Figure P 13.3-4

P 13.3-5 The input to the circuit shown in Figure P 13.3-5a 
is the voltage, Vj(/), of the independent voltage source. The 
output is the voltage, vD(r), across the capacitor. Design this 
circuit to have the Bode plot shown in Figure P 13.3-5/?.
H i n t :  First, show that the network function of the circuit is

V o MH(co) =
V i H

)
\ R  i (R$ +  Ra)J
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*3

(b)

Figure P 13.3-5

P 13.3-6 The input to the circuit shown in Figure P 13.3-66 is 
the voltage o f the voltage source, V}(/). The output is the 
voltage vQ(/). The network function of this circuit is H(cd) =  
V0(o>)/V1(cl>). Determine the values o f R2,C U and C2 that are 
required to make this circuit have the magnitude Bode plot 
shown in Figure P 13.3-6^.

Answers: R2 = 400 kfl, C \— 25 nF, and C2 =  6.25 nF

P 13.3-7 The input to the circuit shown in Figure P 13.3-76 
is the voltage o f the voltage source, V j ( f ) .  The output is 
the voltage v0(/). The network function o f  this circuit is H 
(co) = VQ(a))/\i((o). The magnitude Bode plot is shown in 
Figure P 13.3-7a. Determine values o f the corner frequen­
cies, z and p. Determine the value o f  the low-frequency 
gain, k.

(a)
Ry = 10 kft R2

c  1

> ' i w Q

C2

10 kft <  V0(t)

(a)
8Q

Figure P 13.3-7

Figure P 13.3-6
(b) P 13.3-8 Determine H( jw) from the asymptotic Bode dia­

gram in Figure P 13.3-8.
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F i g u r e  P  1 3 . 3 - 8

P 13.3-9 A  c i r c u i t  h a s  a  n e t w o r k  f u n c t i o n

k {  1  + j ( o / z )

H(a>) =  ■
]<»

( a )  F i n d  t h e  h i g h -  a n d  l o w - f r e q u e n c y  a s y m p t o t e s  o f  t h e  

m a g n i t u d e  B o d e  p l o t .

( b )  T h e  h i g h -  a n d  l o w - f r e q u e n c y  a s y m p t o t e s  c o m p r i s e  t h e  

m a g n i t u d e  B o d e  p l o t .  O v e r  w h a t  r a n g e s  o f  f r e q u e n c i e s  i s  

t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t  o f  H(o;) w i t h i n  1 
p e r c e n t  o f  t h e  a c t u a l  v a l u e  o f  H(o>)?

P 13.3-10 P h y s i c i a n s  u s e  t i s s u e  e l e c t r o d e s  t o  f o r m  t h e  

i n t e r f a c e  t h a t  c o n d u c t s  c u r r e n t  t o  t h e  t a r g e t  t i s s u e  o f  

t h e  h u m a n  b o d y .  T h e  e l e c t r o d e  i n  t i s s u e  c a n  b e  m o d e l e d  

b y  t h e  R C  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 1 0 .  T h e  v a l u e  o f  

e a c h  e l e m e n t  d e p e n d s  o n  t h e  e l e c t r o d e  m a t e r i a l  a n d  

p h y s i c a l  c o n s t r u c t i o n  a s  w e l l  a s  t h e  c h a r a c t e r  o f  t h e  t i s s u e  

b e i n g  p r o b e d .  F i n d  t h e  B o d e  d i a g r a m  f o r  V G / V S = H(jco) 
w h e n  R \  =  1  k f l ,  C  =  1 / x F ,  a n d  t h e  t i s s u e  r e s i s t a n c e  i s  

R t =  5  k f t .

R^

O n .

F i g u r e  P  1 3 . 3 - 1 0

P 13.3-11 F i g u r e  P  1 3 . 3 - 1 1  s h o w s  a  c i r c u i t  a n d  c o r r e s p o n d i n g  

a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t .  T h e  i n p u t  t o  t h i s  c i r c u i t  s h o w n  

i s  t h e  s o u r c e  v o l t a g e  v i n ( f ) ,  a n d  t h e  r e s p o n s e  i s  t h e  v o l t a g e  v 0 ( / ) .  

T h e  c o m p o n e n t  v a l u e s  a r e  / ? ,  =  8 0  f t ,  R 2  =  2 0  f t ,  L x =  0 . 0 3  H ,  

L 2  =  0 . 0 7  H ,  a n d  M  =  0 . 0 1  H .  D e t e r m i n e  t h e  v a l u e s  o f  K u  K 2 ,  

p ,  a n d  z .

A n s w e r s :  1 C ,  =  0 . 7 5 ,  K 2  =  0 . 2 ,  z  =  3 3 3  r a d / s ,  a n d  p  =  

1 2 5 0  r a d / s

c a , r a d / s e c

F i g u r e  P 1 3 . 3 - 1 1

P 13.3-12 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 1 2  

i s  t h e  s o u r c e  v o l t a g e  V i n ( / ) ,  a n d  t h e  r e s p o n s e  i s  t h e  v o l t a g e  

a c r o s s  / ? 3 ,  v o u t ( f ) .  T h e  c o m p o n e n t  v a l u e s  a r e  R\ =  1 0  k f t ,  C \  =  

0 . 0 2 5  / z F ,  a n d  C 2  =  0 . 0 5  / z F .  S k e t c h  t h e  a s y m p t o t i c  m a g n i t u d e  

B o d e  p l o t  f o r  t h e  n e t w o r k  f u n c t i o n .

,t(')
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P 13.3-13 Design a circuit that has the asymptotic magnitude
Bode plot shown in Figure P 13.3-13.

(o (rad/s logarithmic scale)

Figure P 13.3-13

P 13.3-14 Design a circuit that has the asymptotic magnitude 
Bode plot shown in Figure P 13.3-14.

a  (rad/s logarithmic scale)

Figure P 13.3-14

P 13.3-15 Design a circuit that has the asymptotic magnitude 
Bode plot shown in Figure P 13.3-15.

(o (rad/s logarithmic scale)

Figure P 13.3-15

P 13.3-16 Design a circuit that has the asymptotic magnitude
Bode plot shown in Figure P 13.3-16.

co (rad/s logarithmic scale)

Figure P 13.3-16

P 13.3-17 The cochlear implant is intended for patients 
with deafness due to malfunction o f the sensory cells o f the 
cochlea in the inner ear (Loeb, 1985). These devices use a 
microphone for picking up sound and a processor for con­
verting it to electrical signals, and they transmit these signals 
to the nervous system. A cochlear implant relies on the fact 
that many o f the auditory nerve fibers remain intact in 
patients with this form of hearing loss. The overall trans­
mission from microphone to nerve cells is represented by the 
gain function

H, 10(/a»/50+l)
W (jco/2 +  1) (jco/20 +  1 )(/&>/80 +  1)

Plot the magnitude Bode diagram for H(jco) for 1 <  co <  100.

P 13.3-18 An operational amplifier circuit is shown in Figure 
P 13.3-18, where R2 = 5 k fi and C =  0.02 //F.

(a) Find the expression for the network function H =  V0/V s 
and sketch the asymptotic Bode diagram.

(b) What is the gain o f the circuit, |V0 /V S|, for oo — 0?
(c) At what frequency does |V0/V S| fall to l / \ / 2  o f its low- 

frequency value?

Answers: (b) 20 dB and (c) 10,000 rad/s

R2

Figure P 13.3-18

P 13.3-19 Determine the network function H(o>) for the op 
amp circuit shown in Figure P 13.3-19 and plot the Bode 
diagram. Assume ideal op amps.
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ljiF

Figure P 13.3-19

P 13.3-20 T h e  n e t w o r k  f u n c t i o n  o f  a  c i r c u i t  i s

, - 3 ( 5  +ja>)
H(o>) =  —— :-----—

j(o{2 +jco)

S k e t c h  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t  c o r r e s p o n d i n g  t o  H .  

P 13.3-21 T h e  n e t w o r k  f u n c t i o n  o f  a  c i r c u i t  i s

H M  = ■ ( H 3

H(o) =
v sM

T3

O
CM

c o  (rad/s logarithmic scale)

( b )

Figure P 13.3-24

( 4  + j2 u ))

S k e t c h  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t  c o r r e s p o n d i n g  t o  H .  

P 13.3-22 T h e  n e t w o r k  f u n c t i o n  o f  a  c i r c u i t  i s

H(  ̂ =  2(/2a> + 5)
W (4+ j/3o>)(/cl> + 2)

S k e t c h  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t  c o r r e s p o n d i n g  t o  H.
P 13.3-23 T h e  n e t w o r k  f u n c t i o n  o f  a  c i r c u i t  i s

(  4 ( 2 0  + » ( 2 0 , 0 0 0  + »

{(i)) (200 + » ( 2 0 0 0  +jco)

S k e t c h  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  p l o t  c o r r e s p o n d i n g  t o  H.
P 13.3-24 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 4 6 1  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  i s  t h e  

c a p a c i t o r  v o l t a g e ,  v 0 . T h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  i s

V o M

P 13.3-25 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  13.3-25a 
i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  

i s  t h e  v o l t a g e ,  v G . T h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  i s

i i / , V o M
H W  =  TT-T-TvsM

D e t e r m i n e  t h e  v a l u e s  o f  t h e  r e s i s t a n c e s  R \ , R 2, a n d  R3 r e q u i r e d  

t o  c a u s e  t h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  t o  c o r r e s p o n d  t o  t h e  

a s y m p t o t i c  B o d e  p l o t  s h o w n  i n  F i g u r e  P  13.3-256.

D e t e r m i n e  t h e  v a l u e s  o f  t h e  r e s i s t a n c e s  R \ , R 2 ,  R 3,  a n d  R 4  r e q u i r e d  

t o  c a u s e  t h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  t o  c o r r e s p o n d  t o  t h e  

a s y m p t o t i c  B o d e  p l o t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 4 6 .

CD
TD

O
CNJ

c o  (rad/s logarithmic scale)

( b )

Figure P 13.3-25

P 13.3-26 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  l 3 . 3 - 2 6 a  

i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  

i s  t h e  v o l t a g e ,  v Q . T h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  i s

(a) D e t e r m i n e  t h e  v a l u e s  o f  t h e  r e s i s t a n c e s ,  R \  a n d  R 2 ,  r e q u i r e d  t o  

c a u s e  t h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  t o  c o r r e s p o n d  t o  t h e  

a s y m p t o t i c  B o d e  p l o t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 6 6 .
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(b) Determine the values of the gains K\ and K2 in Figure
P 13.3-266.

a  (rad/s logarithmic scale) 

( b )

Figure P 13.3-26

H  ( c o )  =
V s M

a) (rad/s logarithmic scale)

( b )

P 13.3-28 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 8 a  

i s  t h e  c u r r e n t  o f  t h e  c u r r e n t  s o u r c e ,  i s . T h e  o u t p u t  o f  t h e  c i r c u i t  

i s  t h e  c u r r e n t  i Q . T h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  i s

l o M
H M

l s ( a > )

D e t e r m i n e  t h e  v a l u e s  o f  G ,  C ,  R \ ,  a n d  R 2  r e q u i r e d  t o  c a u s e  t h e  

n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  t o  c o r r e s p o n d  t o  t h e  a s y m p t o t i c  

B o d e  p l o t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 8 b .

o
C\J

co (rad/s logarithmic scale) 

( b )

Figure P 13.3-28
P 13.3-27 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 7 a  

i s  t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  

i s  t h e  v o l t a g e ,  v c . T h e  n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  i s

V 0  ( c o )

P 13.3-29 A  f i r s t - o r d e r  c i r c u i t  i s  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 9 .  

D e t e r m i n e  t h e  r a t i o  V G / V S a n d  s k e t c h  t h e  B o d e  d i a g r a m  w h e n  

R C =  0 . 1  a n d  R \ / R 2  =  3 .

1
A n s w e r :  H  =  1  - f -

D e t e r m i n e  t h e  v a l u e s  o f  R ,  C ,  R x ,  a n d  R 2  r e q u i r e d  t o  c a u s e  t h e  

n e t w o r k  f u n c t i o n  o f  t h e  c i r c u i t  t o  c o r r e s p o n d  t o  t h e  a s y m p t o t i c  

B o d e  p l o t  s h o w n  i n  F i g u r e  P  1 3 . 3 - 2 7 6 .

1  +  j c o  R C

Figure P 13.3-29

P 13.3-30 ( a )  D r a w  t h e  B o d e  d i a g r a m  o f  t h e  n e t w o r k  f u n c ­

t i o n  V 0 / V s  f o r  t h e  c i r c u i t  o f  F i g u r e  P  1 3 . 3 - 3 0 .  ( b )  D e t e r m i n e  

v o ( 0  w h e n  v s  =  1 0  c o s  2 0 /  V .

A n s w e r :  ( b )  v G =  4 . 1 8  c o s  ( 2 0 r  -  2 4 . 3 ° )  V

Figure P 13.3-27 Figure P 13.3-30
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P 13.3-31 D r a w  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  d i a g r a m  f o r

H f  , ________________________________1 ° ( 1  ± M ________________________________

> ( 1  +  J 0 . 5 ® ) ( 1  +  7 ' 0 . 6 ( w / 5 0 )  +  ( f w / S O ) 2 )

H i n t :  A t c o  =  0 . \  r a d / s ,  t h e  v a l u e  o f  t h e  g a i n  i s  4 0  d B  a n d  t h e  

s l o p e  o f  t h e  a s y m p t o t i c  B o d e  p l o t  i s  - 2 0  d B / d e c a d e .  T h e r e  i s  a  

z e r o  a t  1  r a d / s ,  a  p o l e  a t  2  r a d / s ,  a n d  a  s e c o n d - o r d e r  p o l e  a t  5 0  

r a d / s .  T h e  s l o p e  o f  t h e  a s y m p t o t i c  m a g n i t u d e  B o d e  d i a g r a m  

i n c r e a s e s  b y  2 0  d B / d e c a d e  a s  t h e  f r e q u e n c y  i n c r e a s e s  p a s t  t h e  

z e r o ,  d e c r e a s e s  b y  2 0  d B / d e c a d e  a s  t h e  f r e q u e n c y  i n c r e a s e s  p a s t  

t h e  p o l e ,  a n d ,  f i n a l  l y ,  d e c r e a s e s  b y  4 0  d B / d e c a d e  a s  t h e  f r e q u e n c y  

i n c r e a s e s  p a s t  t h e  s e c o n d - o r d e r  p o l e .

Section 13.4 Resonant Circuits

P 13.4-1 F o r  a  p a r a l l e l  R L C  c i r c u i t  w i t h  R  =  1 0  k f l ,  Z ,  =  1 / 1 2 0

H ,  a n d  C  =  1 / 3 0  / z F ,  f i n d  c o G ,  Q ,  c o \ ,  o > 2 ,  a n d  t h e  b a n d w i d t h  B W .

A n s w e r s :  c o 0  =  6 0  k r a d / s ,  Q  =  2 0 ,  c o \  =  5 8 . 5 1 9  k r a d / s ,  c o 2  —  

6 1 . 5 1 9  k r a d / s ,  a n d  B W  =  3  k r a d / s

P 13.4-2 A  p a r a l l e l  r e s o n a n t  R L C  c i r c u i t  i s  d r i v e n  b y  a  c u r r e n t  

s o u r c e  i s  =  2 0  c o s  c o t  m A  a n d  s h o w s  a  m a x i m u m  r e s p o n s e  o f  8  V  

a t  c o  =  1 0 0 0  r a d / s  a n d  4  V  a t  8 9 7 . 6  r a d / s .  F i n d  R ,  L ,  a n d  C .

A n s w e r s :  R  =  4 0 0  A ,  L  =  5 0  m H ,  a n d  C  =  2 0  / i F

P 13.4-3 A  s e r i e s  r e s o n a n t  R L C  c i r c u i t  h a s  L =  1 0  m H ,  

C  =  0 . 0 1 / z F ,  a n d  R  =  1 0 0  A .  D e t e r m i n e  c o o ,  Q ,  a n d  B W .

A n s w e r s :  c o 0  =  1 0 5 ,  Q  =  1 0 ,  a n d  =  1 0 4

P 13.4-4 A  q u a r t z  c r y s t a l  e x h i b i t s  t h e  p r o p e r t y  t h a t  w h e n  

m e c h a n i c a l  s t r e s s  i s  a p p l i e d  a c r o s s  i t s  f a c e s ,  a  p o t e n t i a l  d i f f e r e n c e  

d e v e l o p s  a c r o s s  o p p o s i t e  f a c e s .  W h e n  a n  a l t e r n a t i n g  v o l t a g e  i s  

a p p l i e d ,  m e c h a n i c a l  v i b r a t i o n s  o c c u r  a n d  e l e c t r o m e c h a n i c a l  r e s ­

o n a n c e  i s  e x h i b i t e d .  A  c r y s t a l  c a n  b e  r e p r e s e n t e d  b y  a  s e r i e s  R L C  

c i r c u i t .  A  s p e c i f i c  c r y s t a l  h a s  a  m o d e l  w i t h  L  =  1  m H ,  C  =  

1 0 / i F ,  a n d  R  =  1 H .  F i n d  c o o ,  Q ,  a n d  t h e  b a n d w i d t h .

A n s w e r s :  c o 0 =  1 0 4  r a d / s ,  Q  =  1 0 ,  a n d  B W =  1 0 3  r a d / s

P 13.4-5 D e s i g n  a  p a r a l l e l  r e s o n a n t  c i r c u i t  t o  h a v e  c o o  =  

2 5 0 0 r a d / s ,  Z ( c o 0 )  =  1 0 0  f l ,  a n d  B W  =  5 0 0  r a d / s .

A n s w e r s :  R  =  1 0 0  A ,  L  =  8  m H ,  a n d  C  =  2 0  / z F

P 13.4-6 D e s i g n  a  s e r i e s  r e s o n a n t  c i r c u i t  t o  h a v e  c o 0 =  

2 5 0 0  r a d / s ,  Y ( c o 0 )  =  1 / 1 0 0  f l ,  a n d  B W  =  5 0 0  r a d / s .

/ * / i s w r s :  R  =  1 0 0  f l ,  L  =  0 . 2  H ,  a n d  C  =  0 . 8  / x F

P 13.4-7 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 4 - 7  r e p r e s e n t s  a  

c a p a c i t o r ,  c o i l ,  a n d  r e s i s t o r  i n  p a r a l l e l .  C a l c u l a t e  t h e  r e s o n a n t  

f r e q u e n c y ,  b a n d w i d t h ,  a n d  Q  f o r  t h e  c i r c u i t .

a o

6 0 0  pF

b o

2 2  kQ

P 13.4-8 C o n s i d e r  t h e  s i m p l e  m o d e l  o f  a n  e l e c t r i c  p o w e r  

s y s t e m  a s  s h o w n  i n  F i g u r e  P  1 3 . 4 - 8 .  T h e  i n d u c t a n c e ,  

L  =  0 . 2 5  H ,  r e p r e s e n t s  t h e  p o w e r  l i n e  a n d  t r a n s f o r m e r .  T h e  

c u s t o m e r ’ s  l o a d  i s  R L  =  1 0 0  ( 1 ,  a n d  t h e  c u s t o m e r  a d d s  C  =  

2 5  / z F  t o  i n c r e a s e  t h e  m a g n i t u d e  o f  V G. T h e  s o u r c e  i s  v s  =  1 0 0 0  

c o s  4 0 0 /  V ,  a n d  i t  i s  d e s i r e d  t h a t  |V 0| a l s o  b e  1 0 0 0  V .

( a )  F i n d  |V0| f o r  R L  =  1 0 0  f l .

( b )  W h e n  t h e  c u s t o m e r  l e a v e s  f o r  t h e  n i g h t ,  h e  t u r n s  o f f  m u c h  

o f  h i s  l o a d ,  m a k i n g  R L  =  1  k f i ,  a t  w h i c h  p o i n t ,  s p a r k s  a n d  

s m o k e  b e g i n  t o  a p p e a r  i n  t h e  e q u i p m e n t  s t i l l  c o n n e c t e d  t o  

t h e  p o w e r  l i n e .  T h e  c u s t o m e r  c a l l s  y o u  i n  a s  a  c o n s u l t a n t .  

W h y  d i d  t h e  s p a r k s  a p p e a r  w h e n  R L  =  1  k f i ?

L

Power
plant

Customer
load

Figure P 13.4-8 M o d e l  o f  a n  e l e c t r i c  p o w e r  s y s t e m .

P 13.4-9 C o n s i d e r  t h e  c i r c u i t  i n  F i g u r e  P  1 3 . 4 - 9 .  R \  =  R 2  =

1  f l .  S e l e c t  C  a n d  L  t o  o b t a i n  a  r e s o n a n t  f r e q u e n c y  o f  

c o o  =  1 0 0  r a d / s .

a L

b  * 1  
°—vw-

Figure P 13.4-9

P 13.4-10 F o r  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 4 - 1 0 ,  ( a )  

d e r i v e  a n  e x p r e s s i o n  f o r  t h e  m a g n i t u d e  r e s p o n s e  |Z in| v e r s u s  c o ,

( b )  s k e t c h  |Z in| v e r s u s  c o ,  a n d  ( c )  f i n d  |Z in| a t  c o  =  \ j \ f l C .

Figure P 13.4-7

Figure P 13.4-10

P 13.4-11 T h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 4 - 1 1  s h o w s  a n  

e x p e r i m e n t a l  s e t u p  t h a t  c o u l d  b e  u s e d  t o  m e a s u r e  t h e  p a r a m e ­

t e r s  k ,  Q ,  a n d  coq o f  t h i s  s e r i e s  r e s o n a n t  c i r c u i t .  T h e s e  p a r a m e ­

t e r s  c a n  b e  d e t e r m i n e d  f r o m  a  m a g n i t u d e  f r e q u e n c y  r e s p o n s e  

p l o t  f o r  Y =  I / V .  I t  i s  m o r e  c o n v e n i e n t  t o  m e a s u r e  n o d e  

v o l t a g e s  t h a n  c u r r e n t s ,  s o  t h e  n o d e  v o l t a g e s  V  a n d  V 2  h a v e  

b e e n  m e a s u r e d .  E x p r e s s  |Y| a s  a  f u n c t i o n  o f  V a n d  V2.

H i n t :  L e t  V  =  A  a n d  V 2 =  B  / o .

T h e n  I  =  ^  ~  B c o s 9 ^ ~  ^ s i  

R
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\ / ( A  —  B  c o s  0 ) 2  +  ( f l  s i n  t f ) 2  

| Y J  =  - i -----------------------------— ---------------------------------

40 £i

Figure P 13.6-2

P 13.6-3 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 6 - 3  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  i s  

t h e  v o l t a g e ,  v Q. U s e  M A T L A B  t o  p l o t  t h e  g a i n  a n d  p h a s e  s h i f t  

o f  t h i s  c i r c u i t  a s  a  f u n c t i o n  o f  f r e q u e n c y  f o r  f r e q u e n c i e s  i n  t h e  

r a n g e  o f  I <  c o  <  1 0 0 0  r a d / s .

Q >

r ^ A A q  20 ft

2 5  mF 2 5  f t

0 .2  H

Figure P 13.6-3

Section 13.9 How Can We Check . . . ?

P 13.9-1 C i r c u i t  a n a l y s i s  c o n t a i n e d  i n  a  l a b  r e p o r t  i n d i c a t e s  

t h a t  t h e  n e t w o r k  f u n c t i o n  o f  a  c i r c u i t  i s

H M  =

1  + j
6 3 0

10( '  +j&k)

Figure P 13.4-11

Section 13.6 Plotting Bode Plots Using MATLAB

P 13.6-1 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 6 - 1  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  i s  

t h e  v o l t a g e ,  v G . U s e  M A T L A B  t o  p l o t  t h e  g a i n  a n d  p h a s e  s h i f t  

o f  t h i s  c i r c u i t  a s  a  f u n c t i o n  o f  f r e q u e n c y  f o r  f r e q u e n c i e s  i n  t h e  

r a n g e  o f  1  <  c o  <  1 0 0 0  r a d / s .

T h i s  l a b  r e p o r t  c o n t a i n s  t h e  f o l l o w i n g  f r e q u e n c y  r e s p o n s e  

d a t a  f r o m  m e a s u r e m e n t s  m a d e  o n  t h e  c i r c u i t .  D o  t h e s e  d a t a  

s e e m  r e a s o n a b l e ?

c o ,  r a d / s 2 0 0 4 0 0 7 9 5 1 5 8 5 3 1 6 2

0 . 1 0 5 0 . 1 2 0 . 1 6 0 . 2 6 0 . 4 6 0

c o ,  r a d / s 6 3 1 0 1 2 , 6 0 0 2 5 , 1 0 0 5 0 , 0 0 0 1 0 0 , 0 0 0

|H(o>)| 0 . 7 1 1 . 0 1 . 0 1 . 0 1 . 0

Figure P 13.6-1

P 13.6-2 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  P  1 3 . 6 - 2  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  v s . T h e  o u t p u t  o f  t h e  c i r c u i t  i s  

t h e  v o l t a g e ,  v D . U s e  M A T L A B  t o  p l o t  t h e  g a i n  a n d  p h a s e  s h i f t  

o f  t h i s  c i r c u i t  a s  a  f u n c t i o n  o f  f r e q u e n c y  f o r  f r e q u e n c i e s  i n  t h e  

r a n g e  o f  1  <  c o  <  1 0 0 0  r a d / s .

P 13.9-2 A  p a r a l l e l  r e s o n a n t  c i r c u i t  ( s e e  F i g u r e  1 3 . 4 - 2 )  h a s  

Q  =  1 0  a n d  a  r e s o n a n t  f r e q u e n c y  c o q  =  1 0 , 0 0 0  r a d / s .  A  r e p o r t  

s t a t e s  t h a t  t h e  b a n d w i d t h  o f  t h i s  c i r c u i t  i s  7 1 . 4 3  r a d / s .  V e r i f y  

t h i s  r e s u l t .

P 13.9-3 A  s e r i e s  r e s o n a n t  c i r c u i t  ( s e e  F i g u r e  P  1 3 . 4 - 4 )  h a s  

L  —  1  m H ,  C  =  1 0  / i F ,  a n d  R  —  0 . 5  f l .  A  s o f t w a r e  p r o g r a m  

r e p o r t  s t a t e s  t h a t  t h e  r e s o n a n t  f r e q u e n c y  \ s f 0  =  \  . 5 9  k H z  a n d  

t h e  b a n d w i d t h  i s  B W  =  7 9 . 6  H z .  A r e  t h e s e  r e s u l t s  c o r r e c t ?

P 13.9-4 A n  o l d  l a b  r e p o r t  c o n t a i n s  t h e  a p p r o x i m a t e  B o d e  

p l o t  s h o w n  i n  F i g u r e  P  1 3 . 8 - 4  a n d  c o n c l u d e s  t h a t  t h e  n e t w o r k  

f u n c t i o n  i s

H(a>) =
4 0 ( l  + j

200j

D o  y o u  a g r e e ?

CD
X3

c o ,  r a d / s e c  

l o g  s c a l e

Figure P 13.8-4
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PSpice Problems
SP 13-1 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 3 - 1  i s  t h e  

v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j(/). T h e  o u t p u t  i s  t h e  v o l t a g e ,  v o ( 0 ,  

a c r o s s  t h e  p a r a l l e l  c o n n e c t i o n  o f  t h e  c a p a c i t o r  a n d  1 - k O  r e s i s t o r .  

T h e  n e t w o r k  f u n c t i o n  t h a t  r e p r e s e n t s  t h i s  c i r c u i t  i s

V0(a») k
H M  =

V i M
CO

' + J r

U s e  P S p i c e  t o  p l o t  t h e  f r e q u e n c y  r e s p o n s e  o f  t h i s  c i r c u i t .  

D e t e r m i n e  t h e  v a l u e s  o f  t h e  p o l e ,  / ? ,  a n d  o f  t h e  d c  g a i n ,  k .

A n s w e r s :  p  =  2 5 0  r a d / s  a n d  k  =  0 . 2  V / V  

4  k Q

F i g u r e  S P  1 3 - 1

SP 13-2 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  13 - 2  i s  t h e  

v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j(/) . T h e  o u t p u t  i s  t h e  v o l t a g e ,  

v Q( f ) ,  a c r o s s  t h e  s e r i e s  c o n n e c t i o n  o f  t h e  i n d u c t o r  a n d  6 0 - f l  

r e s i s t o r .  T h e  n e t w o r k  f u n c t i o n  t h a t  r e p r e s e n t s  t h i s  c i r c u i t  i s

i  ^

V o M  1  + J ~

H M
V i M

=  k .CO
1 + 7 -

P

U s e  P S p i c e  t o  p l o t  t h e  f r e q u e n c y  r e s p o n s e  o f  t h i s  c i r c u i t .  D e t e r ­

m i n e  t h e  v a l u e s  o f  t h e  p o l e , / ? ,  o f  t h e  z e r o ,  z ,  a n d  o f  t h e  d c  g a i n ,  k

A n s w e r s :  p  =  2 0  r a d / s ,  z  =  1 2  r a d / s ,  a n d  k  =  0 . 6  V / V  

4 0  Q

H M  = v „ M
V i M

.CO
1  + 7 -  

P

Use PSpice to plot the frequency response of this circuit.
Determine the values of the pole, p, and of the dc gain, k.

A n s w e r s :  p  =  1 0 0  r a d / s  a n d  k  =  4 V / V

2 k Q  15 kft

SP 13-4 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 3 - 4  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j ( / ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v c ( / ) ,  a c r o s s  2 0 - k f l  r e s i s t o r .  T h e  n e t w o r k  f u n c t i o n  

t h a t  r e p r e s e n t s  t h i s  c i r c u i t  i s

I * /  v V „ M  kH M  =
V i M

i  + j -

CO

U s e  P S p i c e  t o  p l o t  t h e  f r e q u e n c y  r e s p o n s e  o f  t h i s  c i r c u i t .  

D e t e r m i n e  t h e  v a l u e s  o f  t h e  p o l e ,  p ,  a n d  o f  t h e  d c  g a i n ,  k .

A n s w e r s :  p  =  1 0  r a d / s  a n d  k  =  5  V / V

50 kQ

v 0 ( t )

SP 13-3 T h e  i n p u t  t o  t h e  c i r c u i t  s h o w n  i n  F i g u r e  S P  1 3 - 3  i s  

t h e  v o l t a g e  o f  t h e  v o l t a g e  s o u r c e ,  V j ( f ) .  T h e  o u t p u t  i s  t h e  

v o l t a g e ,  v Q ( r ) ,  a c r o s s  3 0 - k H  r e s i s t o r .  T h e  n e t w o r k  f u n c t i o n  

t h a t  r e p r e s e n t s  t h i s  c i r c u i t  i s

F i g u r e  S P  1 3 - 4

SP 13-5 F i g u r e  S P  1 3 - 5  s h o w s  a  c i r c u i t  a n d  a  f r e q u e n c y  

r e s p o n s e .  T h e  f r e q u e n c y  r e s p o n s e  p l o t s  w e r e  m a d e  u s i n g  

P S p i c e  a n d  P r o b e .  V ( R 3 : 2 )  a n d  V p ( R 3 : 2 )  d e n o t e  t h e  m a g n i ­

t u d e  a n d  a n g l e  o f  t h e  p h a s o r  c o r r e s p o n d i n g  t o  v 0 ( f ) .  V ( V 1 : + )  

a n d  V p ( V l : + )  d e n o t e  t h e  m a g n i t u d e  a n d  a n g l e  o f  t h e  p h a s o r  

c o r r e s p o n d i n g  t o  v ^ / ) .  H e n c e ,  V ( R 3 : 2 ) / V ( V 1 : + )  i s  t h e  g a i n  o f  

t h e  c i r c u i t  a n d  V p ( R 3 : 2 )  -  V p ( V l : + )  i s  t h e  p h a s e  s h i f t  o f  t h e  

c i r c u i t .

D e t e r m i n e  v a l u e s  f o r  R  a n d  C  r e q u i r e d  t o  m a k e  t h e  

c i r c u i t  c o r r e s p o n d  t o  t h e  f r e q u e n c y  r e s p o n s e .

H i n t :  P S p i c e  a n d  P r o b e  u s e  m  f o r  m i l l i  o r  1 0 ~ 3 . H e n c e ,  t h e  l a b e l  

( 1 5 9 . 5 1 3 ,  8 9 2 . 8 2 7  m )  i n d i c a t e s  t h a t  t h e  g a i n  o f  t h e  c i r c u i t  i s  

8 9 2 . 8 2 7 * 1 0  3  =  0 . 8 9 2 8 2 7  a t  a  f r e q u e n c y  o f  1 5 9 . 5 1 3  H z  ~  

1 0 0 0  r a d / s e c .

Answers: R =  5 kO and C =  0.2 /iF
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F i g u r e  S P  1 3 - 5  ( a )  A  c i r c u i t  a n d  ( b )  t h e  c o r r e s p o n d i n g  f r e q u e n c y  r e s p o n s e .

SP 13-6 F i g u r e  S P  1 3 - 6  s h o w s  a  c i r c u i t  a n d  a  f r e q u e n c y  a n d  V p ( V l : + )  d e n o t e  t h e  m a g n i t u d e  a n d  a n g l e  o f  t h e  p h a s o r

r e s p o n s e .  T h e  f r e q u e n c y  r e s p o n s e  p l o t s  w e r e  m a d e  u s i n g  c o r r e s p o n d i n g  t o  Vj(r). H e n c e  V ( R 2 : 2 ) / V ( V 1 : + )  i s  t h e  g a i n  o f

P S p i c e  a n d  P r o b e .  V ( R 2 : 2 )  a n d  V p ( R 2 : 2 )  d e n o t e  t h e  m a g n i -  t h e  c i r c u i t ,  a n d  V p ( R 2 : 2 )  -  V p ( V l : + )  i s  t h e  p h a s e  s h i f t  o f  t h e

t u d e  a n d  a n g l e  o f  t h e  p h a s o r  c o r r e s p o n d i n g  t o  v 0 ( f ) .  V ( V 1 : + )  c i r c u i t .

(a) (b)
F i g u r e  S P  1 3 - 6  ( a )  A  c i r c u i t  a n d  ( b ) t h e  c o r r e s p o n d i n g  f r e q u e n c y  r e s p o n s e .
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D e t e r m i n e  v a l u e s  f o r  R  a n d  C  r e q u i r e d  t o  m a k e  t h e  

c i r c u i t  c o r r e s p o n d  t o  t h e  f r e q u e n c y  r e s p o n s e .

H i n t :  P S p i c e  a n d  P r o b e  u s e  m  f o r  m i l l i  o r  1 0 - 3 . H e n c e ,  t h e  l a b e l  

( 1 5 9 . 2 6 8 ,  1 7 1 . 4 0 8  m )  i n d i c a t e s  t h a t  t h e  g a i n  o f  t h e  c i r c u i t  i s

1 7 1 . 4 0 8 *  1 0 _ 3  =  0 . 1 7 1 4 0 8  a t a  f r e q u e n c y  o f  1 5 9 . 2 6 8  H z  «  1 0 0 0  

r a d / s e c .

A n s w e r s :  R  =  2 0  k f l  a n d  C  =  0 . 2 5  f i F

Design Problems
DP 13-1 D e s i g n  a  c i r c u i t  t h a t  h a s  a  l o w - f r e q u e n c y  g a i n  o f  2 ,  a  

h i g h - f r e q u e n c y  g a i n  o f  5 ,  a n d  m a k e s  t h e  t r a n s i t i o n  o f  H  =  2  t o  

H  =  5  b e t w e e n  t h e  f r e q u e n c i e s  o f  1  k H z  a n d  1 0  k H z .

DP 13-2 D e t e r m i n e  L  a n d  C  f o r  t h e  c i r c u i t  o f  F i g u r e  D P  1 3 - 2  t o  

o b t a i n  a  l o w - p a s s  f i l t e r  w i t h  a  g a i n  o f  - 3  d B  a t  1 0 0  k H z .

L

( 1  k Q

0 . 4 7  j iF

F i g u r e  D P  1 3 - 2

DP 13-3 B r i t i s h  R a i l  h a s  c o n s t r u c t e d  a n  i n s t r u m e n t e d  r a i l c a r  

t h a t  c a n  b e  p u l l e d  o v e r  i t s  t r a c k s  a t  s p e e d s  u p  t o  1 8 0  k m / h r  a n d  

w i l l  m e a s u r e  t h e  t r a c k - g r a d e  g e o m e t r y .  U s i n g  s u c h  a  r a i l c a r ,  

B r i t i s h  R a i l  c a n  m o n i t o r  a n d  t r a c k  g r a d u a l  d e g r a d a t i o n  o f  t h e  

r a i l  g r a d e ,  e s p e c i a l l y  t h e  b a n k i n g  o f  c u r v e s ,  a n d  p e r m i t  p r e v e n ­

t i v e  m a i n t e n a n c e  t o  b e  s c h e d u l e d  a s  n e e d e d  w e l l  i n  a d v a n c e  o f  

t r a c k - g r a d e  f a i l u r e .

T h e  i n s t r u m e n t e d  r a i l c a r  h a s  n u m e r o u s  s e n s o r s ,  s u c h  a s  

a n g u l a r - r a t e  s e n s o r s  ( d e v i c e s  t h a t  o u t p u t  a  s i g n a l  p r o p o r t i o n a l  t o  

r a t e  o f  r o t a t i o n )  a n d  a c c e l e r o m e t e r s  ( d e v i c e s  t h a t  o u t p u t  a  s i g n a l  

p r o p o r t i o n a l  t o  a c c e l e r a t i o n ) ,  w h o s e  s i g n a l s  a r e  f i l t e r e d  a n d  

c o m b i n e d  i n  a  f a s h i o n  t o  c r e a t e  a  c o m p o s i t e  s e n s o r  c a l l e d  a  

c o m p e n s a t e d  a c c e l e r o m e t e r  ( L e w i s ,  1 9 8 8 ) .  A  c o m p o n e n t  o f  t h i s  

c o m p o s i t e  s e n s o r  s i g n a l  i s  o b t a i n e d  b y  i n t e g r a t i n g  a n d  h i g h - p a s s  

f i l t e r i n g  a n  a c c e l e r o m e t e r  s i g n a l .  A  f i r s t - o r d e r  l o w - p a s s  f i l t e r  

w i l l  a p p r o x i m a t e  a n  i n t e g r a t o r  a t  f r e q u e n c i e s  w e l l  a b o v e  t h e  

b r e a k  f r e q u e n c y .  T h i s  c a n  b e  s e e n  b y  c o m p u t i n g  t h e  p h a s e  s h i f t  

o f  t h e  f i l t e r - t r a n s f e r  f u n c t i o n  a t  v a r i o u s  f r e q u e n c i e s .  A t  s u f f i ­

c i e n t l y  h i g h  f r e q u e n c i e s ,  t h e  p h a s e  s h i f t  w i l l  a p p r o a c h  9 0 ° ,  t h e  

p h a s e  c h a r a c t e r i s t i c  o f  a n  i n t e g r a t o r .

A  c i r c u i t  h a s  b e e n  p r o p o s e d  t o  f i l t e r  t h e  a c c e l e r o m e t e r  

s i g n a l ,  a s  s h o w n  i n  F i g u r e  D P  1 3 - 3 .  T h e  c i r c u i t  i s  c o m p o s e d  o f  

t h r e e  s e c t i o n s ,  l a b e l e d  A ,  B ,  a n d  C .  F o r  e a c h  s e c t i o n ,  f i n d  a n  

e x p r e s s i o n  f o r  a n d  n a m e  t h e  f u n c t i o n  p e r f o r m e d  b y  t h a t  s e c t i o n .  

T h e n  f i n d  a n  e x p r e s s i o n  f o r  t h e  g a i n  f u n c t i o n  o f  t h e  e n t i r e  

c i r c u i t ,  V 0 / V s . F o r  t h e  c o m p o n e n t  v a l u e s ,  e v a l u a t e  t h e  m a g n i ­

t u d e  a n d  p h a s e  o f  t h e  c i r c u i t  r e s p o n s e  a t  0 . 0 1 ,  0 . 0 2 ,  0 . 0 5 ,  0 . 1 ,

0 . 2 ,  0 . 5 ,  1 . 0 ,  2 . 0 ,  5 . 0 ,  a n d  1 0 . 0  H z .  D r a w  a  B o d e  d i a g r a m .  A t  

w h a t  f r e q u e n c y  i s  t h e  p h a s e  r e s p o n s e  a p p r o x i m a t e l y  e q u a l  t o  

0 ° ?  W h a t  i s  t h e  s i g n i f i c a n c e  o f  t h i s  f r e q u e n c y ?

F i g u r e  DP 1 3 - 3

DP 13-4 D e s i g n  a  c i r c u i t  t h a t  h a s  t h e  n e t w o r k  f u n c t i o n

j<*>H  H  =  10

( 1 + y 2^ ) (
co

1  + '/ 5 0 o )

H i n t :  U s e  t w o  c i r c u i t s  f r o m  T a b l e  1 3 . 4 - 1 .  C o n n e c t  t h e  c i r c u i t s  i n  

c a s c a d e .  T h a t  m e a n s  t h a t  t h e  o u t p u t  o f  o n e  c i r c u i t  i s  u s e d  a s  t h e  

i n p u t  t o  t h e  n e x t  c i r c u i t .  H(o;) w i l l  b e  t h e  p r o d u c t  o f  t h e  n e t w o r k  

f u n c t i o n s  o f  t h e  t w o  c i r c u i t s  f r o m  T a b l e  1 3 . 3 - 2 .

DP 13-5 S t r a i n - s e n s i n g  i n s t r u m e n t s  c a n  b e  u s e d  t o  m e a s u r e  o r i e n ­

t a t i o n  a n d  m a g n i t u d e  o f  s t r a i n s  r u n n i n g  i n  m o r e  t h a n  o n e  d i r e c t i o n .  

T h e  s e a r c h  f o r  a  w a y  t o  p r e d i c t  e a r t h q u a k e s  f o c u s e s  o n  i d e n t i f y i n g  

p r e c u r s o r s ,  o r  c h a n g e s ,  i n  t h e  g r o u n d  t h a t  r e l i a b l y  w a r n  o f  a n  

i m p e n d i n g  e v e n t .  B e c a u s e  s o  f e w  e a r t h q u a k e s  h a v e  o c c u r r e d  p r e ­

c i s e l y  a t  i n s t r u m e n t e d  l o c a t i o n s ,  i t  h a s  b e e n  a  s l o w  a n d  f r u s t r a t i n g  

q u e s t .  L a b o r a t o r y  s t u d i e s  s h o w  t h a t  b e f o r e  r o c k  a c t u a l l y  r u p t u r e s —  

p r e c i p i t a t i n g  a n  e a r t h q u a k e — i t s  r a t e  o f  i n t e r n a l  s t r a i n  i n c r e a s e s .  T h e  

m a t e r i a l  s t a r t s  t o  f a i l  b e f o r e  i t  a c t u a l l y  b r e a k s .  T h i s  p r e l u d e  t o  o u t r i g h t  

f r a c t u r e  i s  c a l l e d  “ t e r t i a r y  c r e e p ”  ( B r o w n ,  1 9 8 9 ) .

T h e  f r e q u e n c y  o f  s t r a i n  s i g n a l s  v a r i e s  f r o m  0 . 1  t o  1 0 0  

r a d / s .  A  c i r c u i t  c a l l e d  a  b a n d - p a s s  f i l t e r  i s  u s e d  t o  p a s s  t h e s e  

f r e q u e n c i e s .  T h e  n e t w o r k  f u n c t i o n  o f  t h e  b a n d - p a s s  f i l t e r  i s

H H  = Kjco

( I + ' S ) ( I + ' S )

Specify u>\% a>2, and K  so that the following are the case:
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1 .  T h e  g a i n  i s  a t  l e a s t  1 7  d B  o v e r  t h e  r a n g e  0 . 1  t o  1 0 0  r a d / s .

2 .  T h e  g a i n  i s  l e s s  t h a n  1 7  d B  o u t s i d e  t h e  r a n g e  0 . 1  t o  1 0 0  r a d / s .

3 .  T h e  m a x i m u m  g a i n  i s  2 0  d B .

DP 13-6 I s  i t  p o s s i b l e  t o  d e s i g n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  

1 3 - 6  t o  h a v e  a  p h a s e  s h i f t  o f  — 4 5 ° a n d  a  g a i n  o f  2  V / V  b o t h  a t  a  

f r e q u e n c y  o f  1 0 0 0  r a d i a n s / s e c o n d  u s i n g  a  0 . 1  m i c r o f a r a d  c a ­

p a c i t o r  a n d  r e s i s t o r s  f r o m  t h e  r a n g e  o f  1  k  o h m  t o  2 0 0  k  o h m ?

F i g u r e  D P  1 3 - 6

DP 13-7 D e s i g n  t h e  c i r c u i t  s h o w n  i n  F i g u r e  D P  1 3 - 7 a  t o  h a v e  

t h e  a s y m p t o t i c  B o d e  p l o t  s h o w n  i n  F i g u r e  D P  1 3 - 7 6 .

R l  R 2

o), rad/sec 
log scale

(b)
F i g u r e  D P  1 3 - 7

DP 13-8 F o r  t h e  c i r c u i t  o f  F i g u r e  D P  1 3 - 8 ,  s e l e c t  R  j a n d  R 2  

s o  t h a t  t h e  g a i n  a t  h i g h  f r e q u e n c i e s  i s  1 0  V / V  a n d  t h e  p h a s e  

s h i f t  i s  1 9 5 °  a t  c o  =  1 0 0 0  r a d / s .  D e t e r m i n e  t h e  g a i n  a t  

c o  —  1 0  r a d / s .

F i g u r e  D P  1 3 - 8

( a )
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14.1 I N T R O D U C T I O N

Circuits that have no capacitors or inductors can be represented by algebraic equations.

• Chapters 1-6 described circuits without capacitors or inductors. We learned many things about 
such circuits, including how to represent them by mesh current equations or node voltage equations.

• Capacitors and inductors are described in Chapter 7.

Circuits that contain capacitors and/or inductors are represented by differential equations. In general, 
the order of the differential equation is equal to the number of capacitors plus the number of inductors 
in the circuit. Writing and solving these differential equations can be challenging.

• In Chapter 8, we analyzed first-order circuits.

• In Chapter 9, we analyzed second-order circuits.

The response of a circuit containing capacitors and/or inductors can be separated into two parts: the
steady-state response and the transient part of the response.

• In Chapters 10-13, we studied the steady-state response of circuits with sinusoidal inputs. We 
found that we could analyze such circuits by representing them in the frequency domain. We did not

' \  restrict our attention to first- or second-order circuits.
660 )
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• In this chapter, we find the complete response, transient part plus steady-state part, of circuits with 
capacitors and/or inductors. We will not restrict our attention to first- or second-order circuits or to 
circuits with sinusoidal inputs.

In this chapter, we introduce a very powerful tool for the analysis of circuits. The Laplace 
transform enables the circuit analyst to transform the set of differential equations describing a 
circuit to the complex frequency domain, where they become a set of linear algebraic equations. 
Then, using straightforward algebraic manipulation, we solve for the variables of interest. Finally, 
we use the inverse Laplace transform to go back to the time domain and express the desired 
response in terms of time. This is a powerful tool indeed!

Next, we learn how to represent the circuit itself in the complex frequency domain. After doing 
so, we can analyze the circuit by writing and solving a set of algebraic equations, for example, mesh 
current equations or node voltage equations. In other words, using the complex frequency domain 
eliminates the need to write the differential equation that represents the circuit.

Finally, we learn how to represent a linear circuit by its transfer function, step response, or 
impulse response.

14.2 LAPLACE T R A N S F O R M

As we have seen in earlier chapters, it is useful to transform the equations describing a circuit from the 
time domain into the frequency domain, then perform an analysis and, finally, transform the problem’s 
solution back to the time domain. You will recall that in Chapter 10 we defined the phasor as a 
mathematical transformation to simplify finding the steady-state response of a circuit to a sinusoidal 
input. Using the phasor transformation, we solved algebraic equations having complex coefficients 
instead of solving differential equations, albeit with real coefficients. The transform method is 
summarized in Figure 14.2-1.

In this chapter, we will use the Laplace transform, rather than the phasor transformation, to 
transform differential equations to algebraic equations. This will enable us to determine the 
complete response to a variety of input functions instead of the steady-state response to sinusoidal 
inputs. (The complete response consists of the steady-state response together with the transient

FIGURE 14.2-1 The transform method.
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part of the response. We will have more to say about this later.) Pierre-Simon Laplace, who 
is shown in Figure 14.2-2, is credited with the transform that bears his name.

The (one-sided or unilateral) Laplace transform  is defined as
r  OO

F(s)  =  Se\f{ t)  ] =  /  f { t ) e - « d t  (14.2-1)Jo
where 5 is a complex variable given by

s = a  +ja> (14.2-2)

The exponent st of e in Eq. 14.2-1 must be dimensionless. Consequently, s has units of 
frequency. It is customary to refer to s as complex frequency. The lower limit of the integral in 
Eq. 14.2-1 is 0 - ,  a time just before / =  0. As a result, the Laplace transform includes the 
effects of any discontinuity in /( f)  occurring at time t =  0. In contrast, the Laplace transform
does not include the effect of that part o f f ( t )  occurring for time t < 0.

The notation &\f ( t ) ]  indicates taking the Laplace transform off ( t ) .  The result, F(s)  is 
called the Laplace transform o f f ( t ) .  The function f { t )  is said to exist in the time domain 
whereas the function F(s) is said to exist in the complex-frequency domain or the 5-domain. 
(Occasionally, the complex-frequency domain is referred to casually as the frequency domain 
when the context makes it clear that frequency domain is short for complex-frequency domain.) 

The inverse Laplace transform is defined by the complex inversion integral
i ra+joo

f ( t )  = Se~l [F(s)] = —  /  F(s )es,ds  (14.2-3)
J a —j o o

The integral in Eq. 14.2-3 is a contour integration in the complex plane. Evaluation of this integral 
requires complex analysis and is beyond the scope of this book. Instead of evaluating the integral in 
Eq. 14.2-3, we rely on the fact that the inverse Laplace transform is indeed the inverse of the Laplace 
transform. That is, i f F(s) = ££\f{t)\, then alsof ( t )  = [F(s)]. We say th a t/(f) andF(s) comprise
a Laplace transform pair and denote this fact as

f (t )<-+F(s)  (14.2-4)

Recalling that the part off ( t )  occurring for time t < 0 had no effect on F(s), we see that J ? -1 [F(s)] 
provides/ ( / )  only for t > 0. (Sometimes the uncertainty about f ( t )  for / <  0 is resolved by requiring 
that f ( t )  =  0 for t < 0 for all time domain functions.)

F I G U R E  1 4 . 2 - 2  P i e r r e -  

S i m o n  L a p l a c e  ( 1 7 4 9 —

1 8 2 7 )  i s  c r e d i t e d  w i t h  

t h e  t r a n s f o r m  t h a t  b e a r s  

h i s  n a m e .  C o u r t e s y  o f  

B u m d y  L i b r a r y .

E x a m p l e  1 4 . 2 - 1  L a p la c e  T r a n s f o r m  P a i r s

(a) Find the Laplace transform o f f ( t )  =  e at, where a > 0.

(b) Find the Laplace transform of g(t) =  e~a'u(t), where a > 0 and u{t) is the unit step function.

Solution
(a) Using Eq. 14.2-1, we have

poo
F{s) =  &\T{t)\ = =  /  e - ate~stdt  =

J  o -

(b) Again using Eq. 14.2-1, we have

1

s + a

r o o  r o o  0 0

G{s) = se\g(t)\ =  [e~a,u(t)] =  /  e~a,u{t)e~s,dt  -  /  e~a,e~s,dt  = 6
Jo- ./o- 5 +  a

1

s a
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I n  t h i s  e x a m p l e , / ( / )  i=- g(t) when t < 0, but f ( t )  =  g(/) when t > 0. Consequently, F(s) =  G(s). The inverse 
L a p l a c e  t r a n s f o r m  o f  F(s) =  G(s) only provides / ( / )  or g(t) for t > 0. We can summarize the results of this 
e x a m p l e  b y  t h e  L a p l a c e  transform pair:

e~at for / > 0 —-—s + a

We should stop and ask under what conditions the integral of Eq. 14.2-1 converges to a finite 
value. It can be shown that the integral converges when

fJ o-
\f(t)\e °xtdt < oo

/ o -

for some real positive o\ If the magnitude of/( / )  is \f(t) | < Meat for all positive /, the integral will 
converge for o\ > a. The region of convergence is therefore given by oo > o\ > a, and o\ is known as 
the abscissa of absolute convergence. Functions of time,/(f), that are physically possible always have 
a Laplace transform.

Linearity is an important property of the Laplace transform. Consider

f i t )  =<*\f\ M + 02/ 2W
for arbitrary constants ax and a2. Using Eq. 14.2-1, we have

roc
F(s) = Sr\f{t)\ =  ^ [ 01/ iW  +  02/ 2W] =  /  (01/ 1W + a2f 2(t))e~s‘dt

J 0-
r 00 roc

= 01 /  f i (t)e~s'dt + a2 /  f 2{t)e~s,dt 
J o~

=  a i^ i (5) + a2F2(s)
where F\(s) and F2(s) are the Laplace transforms of the time functions/ ,  (t) and f 2{t), respectively. 
We can summarize linearity as

01/ 1(0 +  02/ 2(0 a\Fi(s) + a2F2(s) (14.2-5)

E x a m p l e  1 4 . 2 - 2  L in e a r ity

Find the Laplace transform of sin cut.

Solution
Use Euler’s identity to write

From Example 14.2-1, we have

so e~Jwl for < > 0

and eJ** fo r , >  o

s 4- a 

1

5 4- j(o 

1
► ------------------

s — j  co
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Using superposition, we then have

J^[sina x \= ^ - .S e [e ja* -  e~iw'] =  ^  ( — —  -  ~ ~ ~ )  =  ^1 2y L 2j \ s  — cot s + cotj 2j(s —
(s -I-jco) -  (5 - jco)  _  to

w)(s +  jco) S2 + CO2

We can summarize the results of this example by the Laplace transform pair
( I )

sin cot for t >  0 <-► -r------ -
5 2  + O J 2

Let us obtain the transform of the first derivative o f/ ( / ) .  We have

se d f
di - I

d f  
r  d t '

'dt

In anticipation of integrating by parts, take u = e sl and dv =  ( ^  ) dt = d f .  Then du =  — se st and 
v = / .  Now integrating by parts gives

d f

' d f

- s !

d t ~  J o

i f

We can summarize differentiation in the time domain as

df

= s f ( s ) - n  0 - )

dt
sF(s) - / ( 0  ) (14.2-6)

Thus, the Laplace transform of the derivative of a function is s times the Laplace transform of the 
function minus the initial condition.

E x a m p l e  1 4 . 2 - 3  D i f f e r e n t i a t i o n  in  th e  T im e  D o m a in

Find the Laplace transform of cos cot.

Solution
The cosine is proportional to the derivative of the sine

1 d  . 
cos cot — — -  sin cot 

coat

JS? [cos cot\ =  — — sin cot
c o

Using linearity

Using Eq 14.2-6,

From Example 14.2-2, 

Combining these results gives

dt

&

d .
— sin cot 
dt

=  s i f  [sin cot] — sin 0 =  s ^ [s in  cot] — 0

J^[sin cot] —
c o

S 2 +  CO2

CO S2 + CO2 S2 +  OJ2

Thus, we use the definition of the Laplace transform given in Eq. 14.2-1 to obtain both Laplace 
transform pairs and properties of the Laplace transform. Table 14.2-1 provides a collection of 
important Laplace transform pairs. Table 14.2-2 lists important properties of the Laplace transform.



Table 14 2 Laplace Transform Pairs

f ( t )  for / >  0

m

u(t)

F(s) =  J?[f(  /)»(/)]

I

s +  a

Lap lace  T ra n s fo rm ---^665^

s R + \

e t (s + a)n

s i n  ( a t f )  

c o s  (cot) 

e~at s i n  (cot)

e a t  c o s  (cot)

s2 +  c

S2 +  CO2

(s +  a)2 -\-0) 2 

s +  a 
(s +  a)2 +  co2

Laplace Transform Properties

PROPERTY / ( » ) , » >  0 F(s) =  se\f(t)u(t)\

L i n e a r i t y « l / l W + « 2/ j W
a , F , ( s )  + a 2F 2( s )

T i m e  s c a l i n g f ( a t ) ,  w h e r e  a >  0 1 f ( i )
a \ a )

T i m e  i n t e g r a t i o n f f W d T

J o

T i m e  d i f f e r e n t i a t i o n
d f ( l )

d t
sF(s) — / ( O ' )

d 2m

d t 2

s > F ( , ) - ( s f (  0 - ) + & l )

d " f ( l )

d t "
? F ( s ) - i ^ d  d ' V

T i m e  s h i f t / ( '  -  a ) u ( l  -  a) e~asF(s)

F r e q u e n c y  s h i f t F(s 4 -  f l )

T i m e  c o n v o l u t i o n / l ( » ) Y 2 (  ‘ )  =  J j , m i - T ) d T F i ( j ) F 2 ( j )

F r e q u e n c y  i n t e g r a t i o n m

t
J  F(X)dX

F r e q u e n c y  d i f f e r e n t i a t i o n m

dF(s)
ds

I n i t i a l  v a l u e / ( 0+ ) l i m  sF(s)
s -* oc

F i n a l  v a l u e / ( 00) l i m  s F ( s )
-T —♦ 0
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E x a m p l e  1 4 . 2 - 4  L a p la c e  T r a n s f o r m  P a i r s  a n d  P r o p e r t i e s  J -

Find the Laplace transform of 5 -  5e~2l(\ +2t) .

Solution
From linearity, J?[5 — 5e~~'(l +  2/)] =  5 £f[ 1] — 5 Z£\e 2'(1 +  2?)]

Using frequency shift from Table 14.2-2 with / ( / )  = 1 + 2 /  gives

J?[e-2,(l +  20] =  ^ [ e - 2,f ( t )}  =  F(s  +  2)

where F(s)  =  Se\f{t)\  = 2 \ \  +  2/] =  JS?[1] +  2 &[t} =  I  +  2

Next, F(s  +  2) =  F( s )\s^ s+2

That is, we must replace each s in F(s) by s + 2 to obtain F(s  +  2):

f ( s  +  2 ) = ( i  +  2 ( I ) )

Putting it all together gives

1  /  1  -V  ,  +  2  +  2 ( l ) + . ,  +  4

,w+2 s + 2 \ ( s  + 2)2 (s +  2)2 52 +  45 +  4

& [5 -  5e~2‘(l +  2/)] =  5 ( j )  -  5 ^
5 +  4 \  _  5(52 +  45 +  4) — 55(5 +  4) _  20

52 +  45 +  4 /  s(s2 + 4 5  +  4) 5(52 +  45 +  4)

r
Find the Laplace transform of 10 e~4‘ cos(20/ +  36.9°).

Solution
Table 14.2-1 has entries for cos (cot) and sin(<y/) but not for cos(&>/ +  9). We can use the trigonometric 

identity A cos (cot +  0) =  (A cos 6) cos (cot) — (A sin 6) sin (cot)

to write 10 cos (201 +  36.9°) =  8 cos (20/) -  6 sin (20/)

Now use linearity to write

if[1 0 e-4'cos (20/ +  36.9°)] =  &[e-4,(S cos (20/) -  6 sin (20/))]
=  8 JS?[,eT 4' cos (20/)] -  6 ^ [< r4' sin (20/)]

Using frequency shifts from Table 14.2-2 w ith /(/)  =  cos (20/) gives

cos (20/)] =  £f[e~4,f ( t )]  =  F(s  +  4)

E x a m p l e  1 4 . 2 - 5  L a p la c e  T r a n s f o r m  P a i r s  a n d  P r o p e r t i e s
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s

Next, F(s + 4) = F ( s ) U +4

That is, we must replace each 5 in F(s) by s + 4 to obtain F(s + 4):
s -f 4 s + 4

where F(s) = =  i f  [ cos (2 0 / ) ]  =  ^  +  2()2 =  j 2 ~  40Q

i f  [e~4' cos (20/)] =  F(s + 4) =  ^2 ^ 4 0 0
_J+4 (s +  4 )2 + 400 52 +  8s + 416

20
Similarly i f  [e~4' sin (20/)] =  +  ̂

Putting it all together gives

20 20

s + - s + 4  ( s  +  4 ) 2 + 4 0 0  s 2  +  85  4 -  4 1 6

J^flO*?-4' cos (20/ +  36.9°)] = s f  , SQ+ 4 7:7 )  - 6 ^ — 02° ■■■■— )  =1 v n \ s 2 + 8s + 4 l6 j  \ s2 +  85 + 416/
8 5 -8 8

E x a m p l e  1 4 . 2 - 5  L a p lac e  T ra n sfo rm  P a irs  and  P ro p e r tie s

Find the Laplace transform of 2S(t) +  3 +  4«(/).

Solution

From linearity, i f  [2<$(/) + 3 +  4w(/)] =  2 i f  [5(/)] +  3 ¥  [1] +  4i^ [«(/)]

Because 1 =  u(t) for / > 0, if[l] =  i f  [«(/)]. Using Table 14.2-1 gives

i f  [25(f) +  3 + 4m(/)] = 2 i f  [S(/)] +  3 i f  [1] + 4i* [«(/)] =  2(1) +  3 ( j )  +  4 ( j )  =  2 +  J

14.3 PULSE I N P U T S

The step function, shown in Figure 14.3-la and represented as

,  x  f 0  *  < 0

» « ) = { ,  ( > 0  (14 3-1)

makes an abrupt transition from 0 to 1 at time / = 0. Define the impulse function, <5(/), to be

0  /  <  0

undefined t =  0
0  /  >  0

(14.3-2)
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( a ) (b)

SAD

0  e  t -

( c )

SU)

0

(d)

F I G U R E  1 4 . 3 - 1  ( a )  A  s t e p  f u n c t i o n ,  ( b )  a n  a p p r o x i m a t i o n  t o  t h e  s t e p  f u n c t i o n ,  ( c )  a  p u l s e  f u n c t i o n  a n d ,  (d) t h e  i m p u l s e  

f u n c t i o n .

Because S(t) is undefined at time 0, we consider the function ue(t) shown in Figure 14.3-
1 b. This function makes the transition from 0 to 1 over the time interval from 0 to e. Notice 
that

lim ue(t) = u(t)
£ — ► 0

Let
M O  = J t u ^  =  <

0 t < 0
1— 0 < t < £
£

,0 t > £

We see that SE(t) is the pulse function shown in Figure 14.3-lc. Notice that for any value o f e, the area 
under the pulse is given by

/+oc re i
St ( t )d t=  /  - d t =  1

■OO JO £

Now, let S(t) =  lim<$£(f)
e — » 0

This definition of S(t) is consistent with the definition given in Eq. 14.3-2. We see that S(t) is a 
pulse having infinite magnitude, infinitesimal duration, and area equal to 1. We can’t readily 
draw such a pulse, so we represent S(t) by an arrow as shown in Figure 14.3-lt/, The height of the 
arrow is equal to the area of the impulse function. (The area of the impulse function is sometimes 
called the strength of the impulse. Also, the impulse function is sometimes called the delta 
function.)

An important property of the impulse function is

/ + O C

J
- o o

f (t )S( t )dt  = / (  0) (14.3-3)

Letting/(r) =  1 gives / + O C

'

•OO

8(t)dt = 1

showing once again that the area under the impulse function is 1. More interesting, Eq. 14.3-3 can be 
used to determine the Laplace transform of the impulse function

■ W O  1=  f ° °  e~s,s(t)dt = e° = 1
Jo-



m  +  b

1  t -

( c )

F I G U R E  1 4 . 3 - 2  ( a )  A  f u n c t i o n ,  ( b ) 

a  d e l a y e d  c o p y  o f  t h e  f u n c t i o n ,  ( c )  a  n e w  f u n c t i o n  

f o r m e d  b y  m u l t i p l y i n g / ( r )  b y  a  s t e p  f u n c t i o n ,  a n d  

( d )  a  d e l a y e d  c o p y  o f  t h e  n e w  f u n c t i o n .

Next, we consider some techniques that are useful for finding Laplace transforms of other pulse 
functions. We can delay a function /(f )  by time r by replacing each occurrence of t by t — r.

Consider the function /(f )  = mt + b

shown in Figure 14.3-2a. Suppose we wish to shift (delay) it to r seconds later. This function has a 
single occurrence of f, so we replace it by f -  r  to obtain

f ( t  — r) =  m(t — t) + b = mt + (b — mi)

shown in Figure 14.3-26. Next, consider the function

g(0  = / ( 0 « W  =  (mt + b)u(t)

This function, shown in Figure 14.3-2c, is identical/(/) when t > 0 but g(t) = 0 when t < 0. Suppose 
we wish to delay g(t) by r seconds. The function g(t) contains two occurrences of f, and we must 
replace each occurrence of t by t -  t.

g(t  - t) = (m(t - r )  +  b)u(t -  r)

Shown in Figure 14.3-2d, g{t — r) is indeed a delayed copy of g(t). Notice that f ( t  — r) u(t — r) is 
different than both/(/ -  r )u(t) and f(t)u(t  -  r).

Figure 14.3-3 shows how these techniques can be used to represent pulse functions. Starting with 
f ( t )  = 1.5 r, a straight line that passes through the origin in Figure 14.3-3a, we multiply by a step 
function so that the product is 0 for time t < 0. The function f(t)u(t) together with a delayed copy, 
/ ( / — \0)u(t — 10), are shown in Figure 14.3-36. Subtracting the delayed copy gives

g ( t ) ^ f ( t ) u ( t ) - f ( t -  10) u(t — 10) =  1 . 5 / « ( / ) -  1 . 5 ( f -  10) w ( r -  10) (14.3-4)

f i t )  u ( t )
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F I G U R E  1 4 . 3 - 3  ( a )  A  f u n c t i o n ,  ( b )  a  r a m p  f u n c t i o n  a n d  a  d e l a y e d  c o p y  o f  t h e  r a m p  f u n c t i o n ,

(c) a  n e w  f u n c t i o n  f o r m e d  b y  s u b t r a c t i n g  t h e  d e l a y e d  r a m p  f r o m  t h e  r a m p ,  ( d )  a  t r i a n g u l a r  p u l s e ,  a n d  

( e )  a  t r a p e z o i d a l  p u l s e .

shown in Figure 14.3-3c. Subtracting an appropriately scaled and delayed step function yields the 
pulse shown in Figure 14.3-3d \

h(t) =  g(t) — 15 u(t — 10) =  1.5 t u(t) — 1.5(f — 10)u(t — 10) — 15w(/ — 10) (14.3-5)

Alternately, starting with g(t)  and then subtracting and adding appropriately scaled and delayed copies 
of tu(t) yields the pulse shown in Figure 14.3-3e:

k(t) =  g(t)  -  3.0(f -  15) u(t -  15) -f 3.0(/ -  20) u(t -  20) (14.3-6)

(Subtracting 3.0(f -  15)w(/ -  15) causes k(t) to begin to decrease at / =  15 s. Adding
3.0(t -  20) u (t -  20) causes k(t) to level off at t =  20 s. Without this last term, k(t)  would continue
to decrease.)

To obtain the transform of the time-shifted function, we use the definition of the transform to 
obtain

r  oo poct)] = J  f { t  -  r)u(l -  z)e~s'dt = J  f { t - x ) e ~ s,dt



p o o  p o o&[f{t — t)u(i — r)] = J f(x)e-s(T+x)dx = e-ST J f(x)e~adx = e~srF(s)
This result is summarized as

f ( t  -  r ) u ( t  -  r ) « - »  e ~ " F ( s )  ( 1 4 . 3 - 7 )

In ve rse  Lap lace  T ra n s fo rm

Now let t — r =  x to obtain

- ©

/ ■  —

E x a m p l e  14 . 3 - 1  L ap lace  T ra n sfo rm s  o f  P u lse  F u n c tio n s

Find the Laplace transforms of g(t), h(t) and k(t) shown in Figure 14.3-3.

Solution
After obtaining Eqs. 14.3-4, 14.3-5, and 14.3-6, the required Laplace transforms are easily determined using 
Eq. 14.3-7:

G(s) = <£[g{t)) =  SP[\.5tu(t)\ — i?[1.5(f -  10) u(t — 10)]

S 2 )  V  \S2

H(s) = <£[*(/)] =  <?\g(t)\ -  J?[15 u(t -  10)] =  1-5 (1 52g"'°f) -  e - I0,( y )

K(s) = &[k{t)\ = ^\g(t)] -  J?[3.0(/ -  15) u(t -  15)] + i f [3.0(t -  20) u(t -  20)]

1.5(1 — e-ias) _i5j /3 .0 \  - 20s {3 1.5(1 -  e - '0s -  2e~15i +  2e~2to)
- < - 1 7  +  e  { ^ ]  =

14.4 I N V E R S E  L APLACE T R A N S F O R M

We will frequently want to find the inverse Laplace transform of a function represented as a ratio of 
polynomials in s. Consider:

w  X _  N ( s )  _  b m s m  - f  H---------------- 1 -  b \ s  4 -  b p  a  a  \ \

( } D(s) 5- + a n_1̂ " 1 + . - .+ a ,5  +  a0 1 j

where the coefficients of the polynomials are real numbers. The function F(s) is said to be a rational 
function of s because it is the ratio of two polynomials in s. Usually, we have n > m, in which case, 
F(s) is called a proper rational function.

The roots of the denominator polynomial D(s) are the roots of the equation D(.s) = 0 and are 
called the p o l e s  of F(s). Factoring £>($), we obtain

D(s) -  sn + a„_i,sn~I H------ htf|s4-ao =  {s -P\){s  ~ P i ) ' ' '  is ~  Pn)
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The poles, /?,, may be either real or complex. Complex poles appear in complex conjugate pairs, 
that is, if /?, =  a + j b  is a pole of F(s), then F(s) will also have a pole,/?, =  p\  =  a -  jb.  A pole/?, of 
F(s) is said to be a simple poleofF (s) if none o f the other poles o fF (s) are equal to/?,. In contrast,/?, is 
a repeated pole of F(s ) if at least one of the other poles of F(s)  is equal to /?,. The multiplicity of a 
repeated pole /?, is the number of equal poles, including /?, itself. The roots of the numerator 
polynomial N(s)  are called the zeros of F(s).

We will find the inverse Laplace transform of a proper rational function F(s) in three steps. First, 
we perform a partial fraction expansion to express F(s) as a sum of simpler functions, F,(s).

F(s) =  F i(s) +  F 2{s ) 4------- f  Fi(s) 4-------1- F„(s)

Next, we use the transform pairs in Table 14.2-1 and properties in Table 14.2-2 to find the inverse 
Laplace transform of each F,(s). Finally, using linearity, we sum the inverse transforms of the F,(s) to 
obtain the inverse Laplace transform of F(s).

When all of the poles of a proper rational function, F(s),  are simple poles, the partial fraction 
expansion of F(s) is

f ( s ) — — +  • • • +  b\S +  bo
D(s) s" + an- \ s n~l -\--------- h a is  +  ao

(14.4-2)
R\ R2 Ri Rn

=  ----------- - 4 - — —  + • • •  + ----------------- + • • •  + ----------------------

s-p 1 s-p2 s-Pi s-p„

The partial fraction expansion has one term corresponding to each simple pole of F(s).  The 
coefficients, R , are called residues. Each residue, K,, corresponds to the pole, /?,, in the same term 
of Eq. 14.4-2. The residue corresponding to a real pole is a real number. The residues corresponding to 
complex conjugate poles are themselves complex conjugates. The values of the residues of simple 
poles are calulated as

Ri = ( s ~  Pi)F{s)\s=p. (14.4-3)

E x a m p l e  1 4 . 4 - 1  I n v e r s e  L a p la c e  T r a n s f o r m :  S im p le ,  R e a l P o le s

5  +  3
Find the inverse Laplace transform of F(s) = -=-------------- .

w  52 +  75+  10

Solution
The given F(s) is indeed a proper rational function. Factor the denominator and perform a partial fraction 
expansion.

5  +  3 5  +  3
F(s) =  —

w  52 +  7 5 +  10 (5 +  2 ) ( 5  +  5) 5 +  2 '  5 +  5
R 1  . +  . * 2

where

and

Ri =  (5 +  2 ) |  

^2 =  (5 +  5)

f  5 + 3
s -1- 3 - 2  +  3 1

\ ( 5  +  2 )  (5  +  5 ) /  

5  +  3 \

s=-2 5 +  5 

5  +  3

J=_ 2 —2 +  5 3 

_ —5 +  3 2
(5  +  2) (5  +  5)y *=—5 * +  2 .s=-5 —5 +  2 3
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Then F(s) =

U s i n g  l i n e a r i t y  a n d  t a k i n g  t h e  inverse Laplace transform of each term gives
1  2

3 , 3  1  — > r  1

S -b 2 S 4 “ 5

F(t) =  £ T X [/=»] = JST1 +  ■s ~b 2 s 4* 5 =  3 ^ '

+ ! * - ■

Suppose F(^) has a pair of simple complex conjugate poles p { = —a + jb and p2 =  —a —jb. 
; corresponding residues in the partial fraction expansion will also be complex conjugates, say 
= c +jd  and R2 = c — id. The partial fraction expansion of F(s) is

The corresponding residues in tfte partial traction expansion win also d 
R} =  c +jd  and R2 = c — jd. The partial fraction expansion of F(s) is

F(s) =  - A _  +  _?L _  +  F i (,) =  C- ^ ~ -  + ° ~ jd -  + F3(s) (14.4-4)
s - p x s - p 2 s -  ( - a  +jb) s - ( - a  - j b )

where F$(s) is the sum of the terms of the partial fraction expansion due to other poles of F(s). Next, 
combine the first two terms, using a common denominator, to get

x c + j d  c -  jd
F(s) =  ------ 4--------------*—?  + F3(s)s + a - j b  s + a+ jb

= (c+jd)(s + a - j b )  + ( c - jd ) ( s -h a j - jb )
(s + a - jb ) (s  + a +  jb)

_  2cs + 2 \ a c - b d )
s2 + 2 as  + a 2 + b 2 3 5
2c(s + a ) - 2 b d  

=  + F j ( s )

=  2 c - -=----- r — 2d----------------- -̂---------  + F$(s)
(5 +  fl) +  b2 (s 4- a)“ +  b2

Notice that the partial fraction expansion of F(s) can be expressed as

( K\S 4- K2
F ( s )  -  - t — z — — r m  +  F i W

s 1  +  2 a s  +  +  b

(14.4-5)

where K\ = 2c  and K2 = 2( a c -  bd).
Taking the inverse Laplace transform of the first two terms of the partial fraction expansion

gives

y - 1

and

< T X

2 c -
s + a

(s + a f  + b1

2 d-

■ 2  c < £ -

=  2  d ! T x

s 4- a
(s + a)2 + b2

(s 4- ay  4- b~

■ 2ce~at <£~
s2 4- b2_

= 2 c e at cos (bt)

s2 4- b2(s 4- a)2 4- b2 

Using linearity, we have

S F [F(j)] =  2 ce~°'cos (bt) -  2 d e~fl'sin (bt) +  i f -1 [F3(s)]

= 2 d e "'sin (bt)

(14.4-6)
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E x a m p l e  1 4 . 4 - 2  I n v e r s e  L a p la c e  T r a n s f o r m :
S im p le  C o m p le x  P o le s

Find the inverse Laplace transform of F(s)
10

(s2 +  6s +  10)(s +  2)’

Solution
The roots of the quadratic (s2 +  6s +  10) are complex, and we may write F(s) as

F(s) =

Using a partial fraction expansion, we have

10

10

(5 +  3 —j){s  +  3 + j) ( s  +  2)

F(s) =
R  j  R 2  R i

+ ------------- 7 4  ~  +
(5 +  3 - j ) ( s  + 3 + j ) (s  + 2) s - ( - 3 + j )  s - ( 3 - j )  5 +  2

Using Eq. 14.4-3,

R\ — (5  +  3 — j)

10

10

(5 +  3 — j ){s  +  3 +j)( s  +  2) s = - 3 + j

(s + 3 + j )( s  + 2)
10 5 5

- * + j *s=-3 +j  (—3 + j  +  3 + 7) (—3 + j  +  2) 2 2

Comparing to Eq. 14.4-4, we see that a =  3, b =  1, c =  —2.5, and J  =  2.5. Next,

10
R i  — (5  +  3 + j )

10

(5 +  3 — j ) (s  +  3 + j) ( s  +  2) s = —3—j

and

Finally, using Eq. 14.4-6,

fit) = se~x

(5 +  3 —j)(s +  2) 

* 3  =  ( s  +  2 )

10
-  -  -  - j -=-3-y (—3 — j  +  3 —y)(—3 — j  +  2) 2 2

10
(5 +  3 —j){s  +  3 + j)( s  +  2)

10

s = - 2
S2 +  65 +  10

=  5
s—- 2

10

> 2 +  6 5 +  10)(j +  2).

Alternate Solution
Using Eq. 14.4-5, we can express F(s) as

10

5 +  2

F{s) =
(s2 +  6 5 +  10)(5 +  2) 52+ 6 5 + IO

Using Eq. 14.4-3, we calulate

R i  =  ( 5  +  2 )

=  2 c  e cos (bt) — 2 d  e “'s in  (bt) +  <£ 1

=  2 (-2 .5 )e -3' cos (1/) -  2(2.5)e~3' sin (1/) +  5<r2' 
= -5 e ~ 3' cos (/) -  5e-3' sin (t) +  5 e~2' for t > 0

K\ s + K 2 . K\s  +  R3
+ F ) ( s ) = —  —  + .

5 2 +  6 5  +  1 0  5  +  2

(  10 "l
10

\ ( s 2 +  6 5 +  10)(5 +  2)7 J=_2 +  65 +  10 =  5
i=-2
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Then
10 K {s +  K 2 5 (14.4-7)

(s1 + 6 s +  10)(s + 2) s2 + 6s + 10 s + 2

Multiplying both sides of this equation by the denominator of F(s) gives
10 = (K, + 5)s2 + (2*! + K 2 + 30)s + 2 K2 +  50

The coefficients of s2, s \  and s° on the right side of this equation must each be equal to the corresponding 
coefficients on the left side. (The coefficients of s2 and on the left side are zero.) Equating corresponding 
coefficients gives

0 =  K x +  5, 0 =  2KX +  K2 +  30 and 10 =  2K2 +  50
Solving these equations gives K\ = — 5 and K2 =  —20. Substituting into Eq 14.4-7 gives

10

Next,

- 5 5  -  2 0 - 5 ^  -  2 0

- 5 5 - 2 0  5
(52 +  65 +  10) (5 +  2) 52 + 65 +  10 ^  5 + 2

-55 -  20 -5(5 4 - 3 ) - 5
52 4-65-hlO (52 +  65 4-9) 4- 1 (5 4- 3)2 4- 1 (5 4-3)2 4-1

=  — 5

5 + 3

Then
se- 1 -55 -  20

Using superposition,

m  =  ^

as before.

52 +  65 + 10

10

= -5JST 5 + 3

(̂5 +  3 )  +  ly  

l

- 5

1

, (5 + 3) + 1

5 j & r

{s + 3)2 + 1 
=  —5e~3t cos (t) — 5e~3t sin (t)

(5 +  3) +  1

(52 + 6 5 +  10)(5 +  2)
=  — 5e cos (t) — 5e sin (t) +  5e for / > 0

Next, suppose F(s) has repeated poles, that is,

F(s) N(s) _  bmsm +  bm-\sm 1 + • • • + b\s +  bo _  bmsm + bm-\sm 1 +  • • • + b\S + bo

where the integer q is called the multiplicity of the repeated pole,/?!. In this case, the partial fraction 
expansion of F(s) that includes all powers of the term (5 — /?,) up to the multiplicity.

F(s) ■ +  - R  2
s - p i  ( s - p , r

. + . . . + +  _ V L _ + ,

( s - P l ) q  s - P q + i

R n

Pn
The residues corresponding to the repeated poles are given by

j j { s - P l y F ( s ) fork = q -  1, q - 2 , . . . , 2 ,  1 ,0

(14.4-8)

(14.4-9)

That is,

Ri =

1

( < 7 - 1 ) 1  

1

dq - i

d s « - 1
(s ~ P\ )qF(s)

(q -  2)!
d*

d s i ~ 2

- P i ) 9F(s)
S = p  j

R ,  =  f r - P l m s ) ] L
* = p \
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E x a m p l e  1 4 . 4 - 3  I n v e r s e  L a p la c e  T r a n s f o r m :  
R e p e a te d  P o le s

Find the inverse Laplace transform of F(s) = -------- -y--------
( s + l ) 2(s +  2 )

Solution
Using Eq. 14.4-8, we can express F{s) as

F(s) =
R\ R2 Ri

+ ------------- ^  +  -

(s +  1) (s +  2 ) s +  1 (5 +  1) s +  2

Using Eq. 14.4-3,

*3 =  (s +  2)
( s  +  1 ) 2 ( 5  +  2 ) s—- 2

Using Eq. 14.4-9,

R\ =  — ( (s + l ) 2
ds (s +  1) (s +  2)

( s + \ y

d  4

s = - 2

s = — 1
dss  + 2

( - 2  +  1 Y

- 4

= 4

and

Then,

/ ? 2  —  ( s  +  1 ) ~  ---------------- — 2

F(s) =

(s +  1) (s +  2) 

4

s= - 1 (s +  2) 

4

=  - 4
i = —1

i = - i

s +  2 +

- 1 + 2
=  4

- 4
■ +  ■ • +  ■

( s + l ) 2 (s +  2) s + l  (5 + l ) 2 s +  2 

Next, using the frequency shift property from Table 14.2-2, we get

i f - l

( s + i r
= i f

t  c p - 1 = 4 t e~ l

Finally, using linearity,

Alternate Solution
Using Eq. 14.4-8,

As before,

and

so

f ( t )  =  - 4  e~‘ +  4 1 e~‘ +  4e~2' for t >  0

F(s) = R i

+  ■

R2 Rj
( s + i r ( s  +  2) S+1 ( s + l ) 2 S +  2

Ri = (s +  2)---------- j--------
(s +  1) (s +  2 )

R2 = ( s + l ) 2---------- j --------
(s +  1) (s +  2)

s——2

s—- 1

( s + \ y s—- 2 ( - 2 + l ) 2

=  4

s +  2

R i

+  •

- 1 + 2

4

=  4

• +  ■(s+ 1 )2(s + 2 ) s + l  ' (5 + l )2 ' s  +  2 

Multiplying both sides by (5 +  l)2(s +  2) gives

4 =  /?, (s +  l)(s +  2) +  4(5 +  2) +  4(s +  l ) 2 =  (Ri +  4)*2 +  (3fl, +  4 +  8)5 +  2RX +  8 +  4
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The coefficients of s2, s1, and s° on the right side of this equation must each be equal to the corresponding
coefficients on the left side. (The coefficients of s2 and 51 on the left side are zero) Equating corresponding
coefficients gives

0 = /?i 4-4, 0 =  3 /?i 4-44-8  and 4 = 2R\ + 8  + 4

Solving these equations gives R\ = —4. Substituting gives

F{s) =
-4

+  - - +  -

As before

(5 + 1 )2(s + 2) *s+l (5 + 1) 5 + 2

f{t)  = —4e~l + 41 e~‘ +  4 e ' 2* for t > 0

E x a m p l e  1 4 . 4 - 4  In v erse  L a p lace  T ran sfo rm : 
Im p ro p e r R a tio n a l F u n c tio n

v _

Find the inverse Laplace transform of F(s) =
4 s3 +  15 s2 + s +  30 

s2 +  5 s +  6

Solution
Compare this F(s) with F(s) in Eq. 1 4 . 4 - 1  to see that m  — 3 and n  =  2. Because m  is not less than n  we perform the

long division s2 +  5s +  6 ) 4 s 3  + 1 5 s 2  + 5 + 30 to obtain

F(s) =  4s -  5 +  - r — ^ ----- 7
w  s2 +  5s +  6

The last term on the right side is a proper rational function, so we perform partial fraction expansion to get
2s 2s 6 4

F(s) -  4s -  5 + - z----- ------- =  4 5  -  5 +  ------— -----— = 45  -  5 +  -------------- -
5 +  5 5 +  6 (5 +  3) (5 +  2) 5 +  3 5 +  2

Using the time differentiation property from Table 14.4-4 gives i f ~{[s\ =  -7- 5(f). Using linearity, we get

v .

JSf- 1 4si +  1552 +  5 + 30
s2 + 5s + 6

dt

— — 5S(t) +  6e~3' — 4e~2' for / > 0

14.5 I N I T I A L  A N D  F I N A L  V A L U E  T H E O R E M S

The initial value of a function/(f) is the value f =  0, provided that/(f) is continuous at f =  0. If/(f) is 
discontinuous at f =  0, the initial value is the limit as f —► 0+, where t approaches f =  0 from positive 
time.

A function’s initial value may be found using

/(0 + )  =  lim /(f )  =  lim sF(s) (14.5-1)
/—»0+ s—+oc

This equation is called the initial value theorem . To prove the initial value theorem, we start with the 
time differentiation property from Table 14.2-2:



Taking the limit as s —♦ oo, we get

lim [sF(s) —/ ( 0 —)] =  lim [  - j-e~s'd t +  lim [  -y-e~i'dt
s—*00 L v '  n  J-OC J0_ dt î OO J 0+ dt

The first integral on the right is equal to /(0 + )  —/ ( 0 —) because e~sl =  1 for t between 0— and 0+. The
second integral on the right vanishes because e~st —> 0 for s —► 00. On the left side, lim / ( 0 —) =
/ ( 0 —) because / ( 0 —) is independent of s. Thus,

lim sF(s) —/(O —) = / ( 0 + )  - / ( 0 - )
s—>00

A d d in g /(0 —) to each side confirms the initial value theorem given in Eq. 14.5-1.
The final va lue  of a function/ ( / )  is lim / ( / )  where
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/(o o )  =  lim f ( t )  =  lim sF(s) (14.5-2)
f — * 0 0  5 — * 0 0

This equation is called the final v a lue  th e o re m . To prove the final value theorem, we again start 
with the time differentiation property from Table 14.2-2:

dl
d t - m ~ "

sF(s)  —/ ( 0 —) =  <£ 

and we take the limit as s —* 0 for both sides to obtain

S j k F M - / « > —)] =  Mm j£  ( f  )» -*< *  = / M  - / ( 0 - )

On the left side, lim /(O —) =  /(O —) because/(O —) is independent of s. Thus,

lim sF(s) - / ( 0 - )  = / ( o o )  - / ( 0 - )

A dd in g /(0 —) to each side confirms the final value theorem given in Eq. 14.5-2.

E x a m p l e  1 4 . 5 - 1  I n i t i a l  a n d  F in a l  V a lu e  T h e o r e m s

Consider the situation in which we build a circuit in the laboratory and analyze the same circuit, using Laplace
transfoms. Figure 14.5-1 shows a plot of the circuit output, v(f), obtained by laboratory measurement. Suppose
our circuit analysis gives

tr( \ I W +  305 +  136
V{S) =  =  s(s2 +  9s +  34) <I4 -5-3>

Does the circuit analysis agree with the laboratory measurement?

Solution
Determining the inverse Laplace transform of V (s) requires a partial fraction expansion. Before we do that work, 
let’s use the initial- and final value theorems to see whether it is possible that F(s), given in Eq. 14.5-3, can be the 
Laplace transform v(t) shown in Figure 14.5-1.

From Figure 14.5-1, we see that the initial and final values are

v(0+) -  lim v(f) =  2 V and v(oo) =  lim v(/) =  4 V (14 5-4)
t—»0+ /—♦ oo v ’ 7
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, , s  F I G U R E  1 4 . 5 - 1

Next, we calculate

,„N ,• /2s2 +  30s + 136\ 2s2 +  30s+136 7^v(0) = lim si —^—  -----—— = lim — r—  ---- —— = lim
5-̂ 00 \ s ( s2 4-95-1- 34) J s-*oo s2 4- 9s 4- 34 s-*oo s

2s2 30s 136
— T "  H  T "  +

9s 34
c2 2
—  =  -  =  2 V

s2 + s2
a n d

v(oo) =  lim s (2s2 -f 30s +  136
=  lim

2s2 4- 30s 4- 136 136
s^o s2 +  9s 4- 34\s (s2 4- 9s 4- 34)

Because these initial and final values agree, it is possible that F(s), given in Eq. 14.5-3, can be the Laplace 
transform of v(t) shown in Figure 14.5-1. It is now appropriate to determine the inverse Laplace transform of
m .

We can express F(s) as

, 2s2 4- 30s 4- 136 K xs +  K 2 R3V(s) = --------------------= -----  --------  — 1— -
s(s2 4- 9s 4- 34) s2 4- 9s -f 34 s

where

Then

/ 2s2 4- 30s 4- 136\  
3 S \  s(s2 4- 9s -f 34) /

2s2 4- 30s +  136

5=0

V(s)
2s2 + 30s 4- 136

s2 +  9s + 34 

K i S  +  K 2

=  4
5=0

4
+  -s(s2 -f 9s 4- 34) s2 -f 9s 4- 34 s

Multiplying both sides s(s2 4- 9s 4- 34) gives

2s2 + 30s + 136 =  S{K]S +  K2) +  4(s2 +  9s + 34) =  (AT, + 4)s2 +  (K2 + 36)s + 136

Equating the coefficients of s2 and s1 gives K i = —2 and AS =  —6. Then,

2s2 + 30s+136 4 2 s+ 6 4 2(s + 3)
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Taking the inverse Laplace transform gives

=  4 -  2 e 3'cos (51) for >  0

y w h iwhich is indeed the equation representing the function shown in Figure 14.5-1. j
14.6 S O L U T I O N  OF  D I F F E R E N T I A L  E Q U A T I O N S

D E S C R I B I N G  A C I R C U I T

We can solve a set of differential equations describing an electric circuit, using the Laplace transform 
of a variable and its derivatives. Here’s the procedure:

1. Use Kirchhoff s laws and the element equations to represent the circuit by a differential equation or 
set of differential equations.

2. Transform each differential equation into an algebraic equation by taking the Laplace transform of 
both sides of the equation.

3. Solve the algebraic equations to obtain the Laplace transform of the output of the circuit.

4. Take the inverse Laplace transform to obtain the circuit output itself.

The following example illustrates this procedure.

Find vc(/) for the circuit shown in Figure 14.6-1 when i^(0—) =  0.5 A and vc (0—) =  2.5 V. 

R { =  1 5  Q  i h ( t )  L  =  2 . 5  H

E x a m p l e  1 4 . 6 - 1  L a p la c e  T r a n s f o r m s  o f
D i f f e r e n t i a l  E q u a t io n s

F I G U R E  1 4 . 6 - 1  T h e  c i r c u i t  c o n s i d e r e d  i n  E x a m p l e  1 4 . 6 - 1 .

Solution
Apply KCL at the top node of R2 to get

(14.6-1)

Apply KVL to the left mesh to get

V | ( f )  =  R\iL(t) + L ~ p - + vc (t)
a t (14.6-2)
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Recall this Laplace transform property from Table 14.2-2:

d f
dt

sF(s) - / ( 0-)

Take the Laplace transform of both sides of Eq. 14.6-1 to get

I L ( s )  =  +  C ( V c ( s )  -  VC ( 0 - ) )
R 2

Take the Laplace transform of both sides of Eq. 14.6-2 to get

Vx(s) =  R M s) + W l (s) -  / l ( 0 - ) )  4- Vc(s)

Substitute the expression for / l(s) from Eq. 14.6-3 into Eq. 14.6-4 and simplify to get

Vi(s) = ( l Cs2 +  ( J ^  + R iC js  +  1 + Vc^  ~ (LCs + R'C>c(0 - )  -  LiL(0~)
20

Noticing that Vj =  20 V for / > 0, we determine Fj(s) =  i f  [20] =  —. Then, using the given values of the initial 
conditions and of the circuit parameters, we obtain

7 0

—  = ( s2 + 26s + 160) Vc (s) ~ { s  + 6)(2.5) -  2.5(0.5)

(14.6-3)

(14.6-4)

(14.6-5)

Solving for Vc(s) gives

^ c ( s )

2.5i2 +  655 +  800 2.5s2 + 65 s + 800
s(s2 +  265 -I- 160) 5(5 + 10) (5 +  16)

Performing partial fraction expansion gives

T 2 . 5 s 2  + 6 5 ^  4 - 8 0 0  5  4 . 1 7  6 . 6 7

Vc (s) = , . _ w =  -  + ■s(s +  10) (s + 16) s 5 + 1 6  5+ 1 0

Taking the inverse Laplace transform gives

vc (/) =  5 + 4.17e— 16f — 6.61e~l0t V for t > 0

14.7 C I R C U I T  A N A L Y S I S  U S I N G  I M P E D A N C E  A N D  
I N I T I A L  C O N D I T I O N S  -----------------------------------------

We have seen that we can represent a circuit in the time domain by differential equations and 
then use the Laplace transform to transform the differential equations into algebraic equations. 
In this section, we will see that we can represent a circuit in the frequency domain, using the 
Laplace transform, and then analyze it using algebraic equations. This method will eliminate 
the need to write differential equations to represent the circuit.

The v-i relationship for the resistor is Ohm’s law:

v(t) -  i(t)R

Therefore, the Laplace transform relationship for a resistor R is

V(s) =  I(s)R

(14.7-1)

(14.7-2)

Figure 14.7.1 shows the representation of the resistor in (a) the time domain and (b) the 
frequency domain, using the Laplace transform. As the above equations suggest, the time- and 
frequency-domain representations of the resistor are very similar.

J/to + I J l i s )

v ( t )  ^  R  V i s )  ^  R

(a) (b)
F I G U R E  1 4 . 7 - 1  A  

r e s i s t o r  r e p r e s e n t e d  ( a )  

i n  t h e  t i m e  d o m a i n  a n d  

( b )  i n  t h e  f r e q u e n c y  

d o m a i n  u s i n g  t h e  

L a p l a c e  t r a n s f o r m .



The Laplace Transform

z < * >  =  7 i |  0 4

provided all initial conditions are zero. Notice that the impedance is defined in the frequency domain, 
not in the time domain.

In the case of the resistor, there is no initial condition to set to zero. Comparing Eqs. 14.7-1 and
14.7-2 shows that the impedance of the resistor is equal to the resistance.

A capacitor is represented by its time-domain equation

v(r) =  l | ' i ( #  +  v(0) (14.7-4)

The Laplace transform of Eq. 14.7-4 is

The impedance of an element is defined to be

(14.7-5)

To determine the impedance of the capacitor, set the initial condition, v(0), to zero. Then, using 
Eq. 14.7-3, we obtain

Z c (s) =
1

C s

as the impedance of the capacitor.
Equation 14.7-5 is used to represent the capacitor in the frequency domain, as shown in Figure

14.7-26. The series connection of elements in Figure 14.7-26 corresponds to the sum of voltages in Eq.
14.7-5. The current through the impedance in Figure 14.7-26 produces the first voltage on the right 
side of Eq. 14.7-5, whereas the voltage source in Figure 14.7-26 supplies the second voltage on the 
right side of Eq. 14.7-5.

Solving Eq. 14.7-5 for I(s) gives

l{s)  =  CsV(s)  -  Cv(0) (14.7-6)

Equation 14.7-6 represents the capacitor in the frequency domain, as shown in Figure 14.7-2c. 
The parallel connection of elements in Figure 14.7-2c corresponds to the sum o f currents in Eq.
14.7-6. The voltage across the impedance in Figure 14.7-26 produces the first current on the right

|  / ( r t

VU) (p C W O )

( a )

F I G U R E  1 4 . 7 - 2  A  c a p a c i t o r  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  t h e  L a p l a c e  

t r a n s f o r m .  ( c )  A n  a l t e r n a t e  f r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n .
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\i(t)

v i t ) L s

i i
U s )

V i s )  Q
i i0)

s

( a ) ( c )

F I G U R E  1 4 . 7 - 3  A n  i n d u c t o r  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  a n d  ib) i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  t h e  L a p l a c e  

t r a n s f o r m ,  ( c )  A n  a l t e r n a t e  f r e q u e n c y - d o m a i n  r e p r e s e n t a t i o n .

side of Eq. 14.7-6, whereas the current source in Figure 14.7-2/? supplies the current on the right 
side of Eq. 14.7-6. Notice that the reference direction for the current source in Figure 14.7-26 
was chosen to correspond to the minus sign in Eq. 14.7-6.

An inductor is represented by its time-domain equation,

v(t) (14.7-7)

The Laplace transform of Eq. 14.7-7 is

V ( s )  =  L s l ( s )  -  1/(0) (14.7-8)

To determine the impedance of the inductor, set the initial condition, j(0), to zero. Then, using 
Eq. 14.7-3, we obtain

ZL(s) =  Ls

as the impedance of the inductor.
Equation 14.7-8 represents the inductor in the frequency domain, as shown in Figure 14.7-36. 

The series connection of elements in Figure 14.7-36 corresponds to the sum of voltages in Eq. 14.7-8. 
Solving Eq. 14.7-8 for I(s) gives

+ (14.7-9)
L s  s

Equation 14.7-9 represents the inductor in the frequency domain, as shown in Figure 14.7-3c. 
The parallel connection of elements in Figure 14.7-3c corresponds to the sum of currents in Eq.
14.7-9.

Table 14.7-1 tabulates the time- and frequency-domain representation of circuit elements. In 
addition to resistors, capacitors, and inductors, Table 14.7-1 shows the frequency-domain represen­
tations of independent and dependent sources and of op amps. Independent sources are specified by 
functions of time, i ( t )  and v ( t ) ,  in the time domain and by the corresponding Laplace transforms, I(s) 
and V(s), in the frequency domain. Dependent sources and op amps operate the same way in the 
frequency domain as they do in the time domain.

To represent a circuit in the frequency domain, we replace the time-domain representation of 
each circuit element by its frequency-domain representation.

To find the complete response of a linear circuit, we first represent the circuit in the frequency 
domain, using the Laplace transform. Next, we analyze the circuit, perhaps by writing mesh or node 
equations. Finally, we use the inverse Laplace transform to represent the response in the time 
domain.
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Table 14 7 1 Time-Domain and Frequency-Domain Representations of Circuit Elements

NAME

C u r r e n t  s o u r c e

V o l t a g e  s o u r c e

R e s i s t o r

C a p a c i t o r

I n d u c t o r

Dependent source

TIME DOMAIN

« ( f )

v d )

{  / ( f )

o

Q

| / ( f )

FREQUENCY DOMIAN

V i s )

V i s )

+

V i s )

©
K s )

I i
/ ( * )

o Cp
J ) / w

J / C ( f )

A Y ......... .......... i .

| / c w

!>

W O  = K l c ( s )



Consider the circuit shown in Figure 14.7-4. The input to the circuit is the voltage of the voltage source, 24 V. The 
output of this circuit, the voltage across the capacitor, is given by

vo(0 =  1 6 -  I2e~06' V when / > 0 (14.7-10)

Determine the value of the capacitance, C.

F I G U R E  1 4 . 7 - 4  T h e  c i r c u i t  c o n s i d e r e d  i n  E x a m p l e  1 4 .7 -1 .

F I G U R E  1 4 . 7 - 5  T h e  c a p a c i t o r  v o l t a g e ,  v o ( 0 ,  f r o m  t h e  c i r c u i t  

s h o w n  i n  F i g u r e  1 4 .7 -4 .

Solution
Before the switch closes, the circuit will be at steady state. Because the only input to this circuit is the constant 
voltage of the voltage source, all of the element currents and voltages, including the capacitor voltage, will have 
constant values. Closing the switch disturbs the circuit by shorting out the 18-H resistor. Eventually, the 
disturbance dies out and the circuit is again at steady state. All the element currents and voltages will again have 
constant values but, probably, different constant values than they had before the switch closed.

During the disturbance, the element voltages and currents are not constant. For example, Eq. 14.7-10 
describes the capacitor voltage after the switch closes. Notice that there are two parts to the capacitor voltage. One 
part, 12 e~° 6', dies out as the value of / increases. That part is called the transient part of the response, or just the 
transient response. The other part, 16, does not die out and is the steady-state response. The sum of the transient 
response and the steady-state response is called the complete response. The output voltage described by Eq.
14.7-10 is a complete response of this circuit.

Figure 14.7-5 shows a plot of the capacitor voltage given by Eq. 14.7-10. Notice that the capacitor voltage is 
continuous. This is expected because, in the absence of unbounded currents, the voltage of a capacitor must be 
continuous. In particular, the value of the capacitor voltage immediately after the switch is closed is equal to the 
value immediately before the switch is closed. From Figure 14.7-5, we see that at time t — 0, when the switch 
closes, the value of the capacitor voltage is vo(0) =  4 V.

How does the value of the capacitance C affect the capacitor voltage? To answer this question, we must 
analyze the circuit. Because we want to determine the complete response, we will analyze the circuit using 
Laplace transforms. Figure 14.7-6 shows the frequency-domain representation of the circuit. The closed switch is 
represented by a short circuit. That short circuit is connected in parallel with the 18-0 resistor. A short circuit in 
parallel with a resistor is equivalent to a short circuit, so the closed switch and 18-ft resistor have been replaced by 
a single short circuit. The frequency-domain model of the capacitor consists of two parts, an impedance and a
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voltage source. The voltage of the voltage source depends on the 
initial condition of the capacitor, that is, vo(0) =  4 V.

We can analyze the circuit in Figure 14.7-6 by writing and 
solving two mesh equations.

Apply KVL to the left mesh to get

1  __

2 4  . . .

2  Q

■AAAr £ 1
Solving for /i(s) gives 

I ^ s

Apply KVL to the right mesh to get

FIGL'R E  14.7-6 T h e  c i r c u i t  r e p r e s e n t e d  i n  

t h e  f r e q u e n c y  d o m a i n ,  u s i n g  t h e  L a p l a c e  

t r a n s f o r m .

h ( s )  = ^ I 2( s ) + * (14.7-11)

± / 2(J) + l _ 4 ( / 1(5 )— / 2(s)) =  0

Collecting the terms involving I2(s) gives

±  +  4 ) / 2W  =  - 1  +  4 / iW

Substituting the expression for Ii(s) from Eq. 14.7-11 gives 

Collecting the terms involving I2(s) gives

( x  4 V  ^  1 2

3 /  ~

Multiply both sides of this equation by to get

Solving for l2(s) gives

f 2(s) = 3
5 +  4C

(14.7-12)

Referring to Figure 14.7-6, we see that the capacitor voltage is related to the mesh current of the right mesh by

W  =  ^ / 2(i) +  ^

Substituting the expression for /2(s) from Eq. 14.7-12 gives

9
Vo (s)

4

+  -  =

9
C

+  J c  ‘  ° { s  +  -4 | )

4
+  -  s
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Performing partial fraction expansion gives

12
s

12

s +

4 16
3  S  S

12

4 C

3
5  +  4 C

Recall that \’c(/) is given in Eq. 14.7-10. Taking the Laplace transform of vQ(/) gives
16

F0(s) = jy[v0(t)} = ^ [(1 6  -  12e-06,)u(t)} = - -
12

s +  0.6

(14.7-13)

(14.7-14)

Comparing Eqs. 14.7-13 and 14.7-14 shows that

06  =  4C
1.25 F

E x a m p l e  1 4 . 7 - 2 C irc u it  A n a ly s is  
U sing  the 
L a p lace  T ran sfo rm

£  INTERACTIVE EXAMPLE

Consider the circuit shown in Figure 14.7-7. The input to the circuit is 
the voltage of the voltage source, 24 V. The output of this circuit, the 
voltage across the 6-0 resistor, is given by

r ^ f o

t  =  0

*— W V
* 1

va(t) = 1 2 - 6  e~u 351 V when t > 0 (14.7-15)
2 4  V f .

-AAAr-
R 2

v 0 ( t )

L
_ r > r > r ^ r \ _

i { t )

Determine the value of the inductance, L, and of the resistances,
R\ and Ri- F I G U R E  1 4 . 7 - 7  T h e  c i r c u i t  c o n s i d e r e d  i n

E x a m p l e  1 4 . 7 - 2 .

Solution
Before the switch closes, the circuit will be at steady state. Because the only input to this circuit is the 
constant voltage of the voltage source, all of the element currents and voltages, including the inductor 
current, will have constant values. Closing the switch disturbs the circuit by shorting out the resistor R\. 
Eventually, the disturbance dies out and the circuit is again at steady state. All the element currents and 
voltages will again have constant values but, probably, different constant values than they had before the 
switch closed.

Equation 14.7-15 describes the output voltage after the switch closes. Notice that there are two parts to this 
voltage. One part, —6 e~° 35tf dies out as the value of t increases. That part is called the transient part of the 
response, or just the transient response. The other part, 12, does not die out and is the steady-state response. The 
sum of the transient response and the steady-state response is called the complete response. The output voltage 
described by Eq. 14.7-15 is the complete response of this circuit.

How do the values of the circuit parameters L, Rx, and R2 affect the output voltage? To answer this question, 
we must analyze the circuit. Because we want to determine the complete response, we will analyze using Laplace 
transforms. The frequency-domain model of the inductor consists of two parts, an impedance and a voltage or 
current source. The value of the voltage source voltage or current source current depends on the initial condition 
of the inductor, that is, the inductor current at time t  =  0 .  We need to find the initial inductor current before we can 
represent the circuit, using Laplace transforms.
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Referring to Figure 14.7-7, we see that the inductor current is equal to the current in the 6-SI resistor.
Consequently,

1(0 =
v(f) 12 — 6^ -0 .3 5 f

— 2 — e~0 35t A when t >  0 (14.7-16)

In the absence of unbounded voltages, the current in any inductor is continuous. Consequently, the value of the 
inductor current immediately before t = 0 is equal to the value immediately after t — 0. To find the initial inductor 
current, we set / =  0 in Eq. 14.7-16 to get /(0) =  1 A.

Figure 14.7-8 shows the frequency-domain representation of the 
circuit. We selected the model of the inductor that uses a voltage source to 
account for the initial condition in anticipation o f writing a mesh equation.
The voltage of this voltage source is

I i ( 0 )  =  ( I ) ( l ) = I

In Figure 14.7-8, the closed switch is represented by a short circuit. That 
short circuit is connected in parallel with resistor R x. A short circuit in 
parallel with a resistor is equivalent to a short circuit, so the closed switch 
and R\ have been replaced by a single short circuit.

To analyze the circuit in Figure 14.7-8, we write and solve a single 
mesh equation. Apply KVL to the mesh to get

F I G U R E  1 4 . 7 - 8  T h e  c i r c u i t  r e p r e s e n t e d  

i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  t h e  

L a p l a c e  t r a n s f o r m .

[R2 +  6 +  Ls)I{s) = L  +
24

Solving for I(s) gives

I(s) =
L  +  -

24

Ls +  R2 +  6

24
S + T

# 2 + 6

Using Ohm’s law gives

V0(s) =  6 / ( 5 )  =

6 5  +

(6)(24)

5 5  +

R 2 +  6

Partial fraction expansion gives

V 0 ( s )  =  * 1 ± ±  

s

(6)(24) 6 (18 - R 2)
R 2 ~t ~ 6  

R 2 6
(14.7-17)

Recall that v0(t) is given in Eq. 14.7-15. Taking the Laplace transform of v0(/) gives

V0{s) =  i?[vo(0J =  ^ [ ( 1 2  -  6 e - ° 35')u(t)] = ,Z 6Y2
5 5 +  0.35 (14.7-18)
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Comparing Eqs. 14.7-17 and 14.7-18 shows that

(6) (24)
R 2  +  6

=  12 r 2 = 6 n

and

0 . 3 5 = ^ ^  -

L Lj

12

035
=  34.29 H

How can we find R\1 Resistor R\ is removed from the circuit 
by closing the switch, but R\ was part of the circuit before the switch 
closed. The initial inductor current depends on the value of the 
resistance R j. The only input to the circuit in Figure 14.7-9 is a 
constant, 24 V. Consequently, when the circuit is at steady state, the 
inductor will act like a short circuit. Figure 14.7-9 shows the steady- 
state circuit when the switch is open. The open switch is modeled as 
an open circuit. The inductor is modeled as short circuit. Writing 
and solving a mesh equation gives

— VW-
* i

2 4  V  f  I

■ A ^ A r

6 Q

v0{t)
iit)

F I G U R E  1 4 . 7 - 9  T h e  c i r c u i t  a t  s t e a d y  s t a t e  

b e f o r e  t h e  s w i t c h  c l o s e s .

i(t) =
24

# i + 6  +  6

Letting t =  0 gives

24
R\ +  6 +  6

=  /(0) =  l Rx

^ ------------------ |  E x a m p l e  1 4 . 7 - 3  C irc u it  A n a ly s is  U sing  the  L a p lac e  T ra n sfo rm

Consider the circuit shown in Figure 14.7-10a. The input to the circuit is the voltage of the voltage source, 
12 V. The output of this circuit is the current in the inductor, iL(t). Determine the current in the inductor, iL(/), 
for t > 0.

Solution
Let’s write and solve mesh equations. The series circuits that represent the capacitor and inductor in the frequency 
domain contain voltage sources rather than current sources. It’s easier to account for voltage sources than current 
sources when writing mesh equations, so we choose the series representation for both the capacitor and inductor. 
From Figure 14.7-106, the initial conditions are vc(0) =  8 V and /L(0) =  4 A. Figure 14.7-116 shows the 
frequency-domain representation of the circuit.

The mesh current equations are

( l + - W * ) - - / 2 ( s ) = - - -V s )  s s s

and ~ - / |( s )  + f l  + 5  + -^  f 2(s) = 4  +  -
s \  s J s
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1 i i IQ  1 £2

F I G U R E  1 4 . 7 - 1 0  ( a )  T h e  c i r c u i t  c o n s i d e r e d  i n  E x a m p l e  1 4 . 7 - 3 .  ( b )  T h e  s t e a d y - s t a t e  c i r c u i t  b e f o r e  t h e  s w i t c h  c l o s e s .  

Solving f o r  Iz(s), we obtain

I 2(s) =
4(s2 +  3s +  3) 
s(s2 +  25 + 2)

The convenient partial fraction expansion is

l 2 {s) s2 +  3^ +  3 A Bs + D
4 s(s2 +  2 5  +  2 )  5  s2 +  2 5  +  2

Then, we determine that A =  1.5, B =  —0.5, andD  =  0. Then, we can state

/ 2 ( 5 ) _ L 5 +  - ° - 5s

4 5 ’ (s +  i y + 1

Using the Laplace transform Table 14.2-1, we obtain

k ( t )  = h( t)  =  {6 +  2\[2e~'  sin (/ -  45°)} A for / > 0

Checking the initial value of i2, we get /2(0) =  j'l(0) =  4 A, which verifies the correct initial value. The final value
is 12(00) =  6 A.

1 a

( a )

\^ M (jl.:RL 14.7-11 (a) Circuit with mesh currents, (b) Laplace transform model of circuit.
(b)

J
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E x a m p l e  1 4 . 7 - 4  Ci rcui t  Ana l ys i s  Us i ng  the Lapl ace  Tr ans f or m

The switch in the circuit shown in Figure 14.7-12a closes at time t =  0. Determine the voltage v(t) after the switch 
closes.

t  =  0

4 Q

" — W V — A - A A / V

2  Q

(a)
F I G U R E  1 4 . 7 - 1 2  T h e  c i r c u i t  o f  E x a m p l e  1 4 . 7 - 4  r e p r e s e n t e d  i n  t h e  ( a )  t i m e  d o m a i n  a n d  ( b )  f r e q u e n c y  d o m a i n ,  u s i n g  L a p l a c e  

t r a n s f o r m s .

Solution
Let’s write and solve node equations. In the frequency domain, we will use the parallel model for the capacitor and 
inductor because the parallel models contain current sources rather than voltage sources. The initial conditions are 
i(0) =  2 A and v(0) = 0 V. Because v(0) =  0, the current of the current source in the frequency-domain 
representation of the capacitor is zero. A zero current source is equivalent to an open circuit. Figure 14.7- 
12b shows the frequency-domain representation of the circuit after the switch has closed.

Apply KCL at the top node of the inductor to get the node equation

V ( s ) ~

12
T  F ( s )  2  y ( s )  „

- ^  +  - ^  +  -  +  - 7 ^  =  0

2 s  S  o

Solving for V(s) gives

V(s) =
32 32

s 2  +  4 5  +  4  ( s  +  2 ) 2  

Finally, take the inverse Laplace transform to obtain v(t )

32v{t) =  <£-
( s + 2 r

=  32te~2'u{t) V

EXERCISE 14.7-1 Determine the voltage v c ( / )  and the current ic(t) 
for / > 0 for the circuit of Figure E 14.7-1.
Hint: vc(0) =  4 V

A nsw er: vc ( t)  =  (6 -  2e~°AV)u ( t)  V and ic (r) -  ^ - ° 67'u(/) A
FIGURE E 14.7-1



14.8 T R A N S F E R  F U N C T I O N  A N D  I M P E D A N C E

The transfer function of a circuit is defined as the ratio of the Laplace transform of the 
response of the circuit to the Laplace transform of the input to the circuit when the initial 
conditions are zero.

For the circuit in Figure 14.8-la, the input is the voltage source voltage, v^f), and the response is the 
resistor voltage, vQ(r). The transfer function of this circuit, denoted by H(s), is then expressed as

( , 4 ' 8 - , )

provided all initial conditions are equal to zero. In this case, the only initial condition is the inductor 
current, so we require i'(0) =  0.
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F I G U R E  1 4 . 8 - 1  A  c i r c u i t  

r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n  

a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n ,  

u s i n g  t h e  L a p l a c e  t r a n s f o r m .( a ) (b)

We can write Eq. 14.8-1 as

V0(s) = f f ( s ) V l (s) (14.8-2)

which says that the Laplace transform of the response is equal to the transfer function times the 
Laplace transform of the input, provided all initial conditions are equal to zero. We are going to get 
tired of saying “ provided all initial conditions are equal to zero.”  A response subject to the 
requirement that all initial conditions be zero is called a zero-state response. With this terminology, 
we can read Eq. 14.8-1 as “ the transfer function is the ratio of the Laplace transform of the zero-state 
response to the Laplace transform of the input.”  Similarly, we can read Eq. 14.8-2 as “ the Laplace 
transform of the zero-state response is the product o f the transfer function and the Laplace transform of 
the input.”

Two special cases are very significant. When the input is a unit step function, then

V x{s) = 2>[u{t)]=-s

and Eq. 14.8-2 becomes

H{s)

s

In this case, the zero-state response is called the step response, that is,

Vois) = s
ep res|

H{s)
step response =  i f

When the input is an impulse function, then

v x{s)=<e[i>(t)\ =  1
and Eq. 14.8-2 becomes

(14.8-3)

M * ) =  H(s)
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In this case, the zero-state response is called the impulse response, that is,

impulse response =  J¥ ~ {[H[s)\ (14.8-4)

It is important to notice that both the step response and the impulse response are zero-state responses; 
that is, all initial conditions are set to zero.

Both the input to a circuit and the response of the circuit can be either a current or a voltage. 
When the input is a current and the response is a voltage, the transfer function is called an impedance. 
Similarly, when the input is a voltage and the response is a current, the transfer function is called an 
admittance. This terminology is consistent with our previous use of the term impedance. For example, 
consider the row of Table 14.7-1 corresponding to the capacitor. Consider the frequency-domain 
representation of the capacitor that contains a voltage source. The restriction that the initial condition 
be zero, v(0) =  0, causes the voltage source to be a zero voltage source, that is, a short circuit. The 
frequency-domain representation of the capacitor is reduced to a single element. When capacitor 
current is the input and the capacitor voltage is the response, then the impedance of the capacitor is

z^  = W ) = ^ i  ( l 4 -8 ' 5 )

Next, consider the frequency-domain representation of the capacitor that contains a current source. The 
restriction that the initial condition be zero, v(0) =  0, causes the current source to be a zero current source, that 
is, an open circuit. The frequency-domain representation of the capacitor is again reduced to a single element. 
Once again, the impedance of the capacitor is given by Eq. 14.8-5.

A similar argument shows that setting the initial conditions to zero simplifies the frequency- 
domain representation of the inductor to the single impedance,

Z l ( s ) = L s  (14.8-6)

N

E x a m p l e  14 . 8 - 1  T ra n sfe r  F u n c tio n

For the circuit in Figure 14.8-1 a, the input is the voltage source voltage, v^f), and the response is the resistor 
voltage, v0(t). Find the transfer function of the circuit.

Solution
Figure 14.8-1 b shows the frequency-domain representation of the circuit when all of the initial conditions are 
zero. In this case, the only initial condition is the inductor current, so we require j(0) =  0. The requirement that 
i(0) =  0 reduces the frequency-domain representation of the inductor to the impedance of the inductor. 

Applying KVL to the mesh of the circuit in Figure 14.8-1 b gives
F,(j) ~LsI(s)+RI{s)

Solving for I(s) gives

The Laplace transform of the response is

Vo ( s ) = R I ( s ) = I ^ V l(s)

This result could have been obtained using voltage division. Finally, the transfer function is
Vo(s) RH(s) =
Fl(s) Ls + R
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E x am  ple 1 4.  8 - 2  S te p  R e s p o n s e

Determine the step response of the circuit shown in Figure l4.8-2a.

0 . 5 s  f l
- v.

v0(t) V i s )

(a) (b)

F I G U R E  1 4 . 8 - 2  T h e  c i r c u i t  o f  E x a m p l e  1 4 . 8 - 2  r e p r e s e n t e d  ( a )  i n  t h e  t i m e  d o m a i n ,  a n d  ( b )  i n  t h e  f r e q u e n c y  d o m a i n ,  u s i n g  L a p l a c e

t r a n s f o r m s .

Solution
Figure 14.8-2b shows the frequency-domain representation of the circuit when all of the initial conditions are zero. 

Denote the node voltages at nodes a and b as Va and Vb. The node equations are
Va ~ V i  Vb -  Va

and

Solving for Vb gives

0.5 s
v b - v a

= 0 => (4 +  s )F a — sFb =  4Fj
Z ,

+  1.5(Fb — Va) + 2sVb = 0 => (1 + s ) V b = Va

Vb = V,
( s + 2  r

The response is V0 = Vb, so the transfer function is
F0(s) r b(s) 4

H(s) =
V, (s) Vt (s) (s + 2)2

The step response is

H(s)
=

s(s + 2Y
=  ( ! - ( ! + 2  t )e -2‘) u(t)

E x a m p l e  1 4 . 8 - 3  Impulse Response

Design the circuit of Figure l4.8-3a to have an impulse response equal to

h(t) = 2(e~' -  e~2r) t >  0

Solution
From the given impulse response, we have

H(s) = J?- '[2(e- '  - e - 2,)\ = 2 ( — -— )  = 2 ( £ ± 2 ) j ^  +  2) _ _ 2 _ _
\ s + \  s + 2 )  (S + l ) ( s  +  2) 52 +  35 +  2 (14.8-7)
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Ls

F I G U R E  1 4 . 8 - 3  T h e  c i r c u i t  o f  

E x a m p l e  1 4 . 8 - 3  r e p r e s e n t e d  ( a )  i n  

t h e  t i m e  d o m a i n  a n d  ( b ) i n  t h e  

f r e q u e n c y  d o m a i n ,  u s i n g  t h e  

L a p l a c e  t r a n s f o r m .

Figure 14.8-36 shows the circuit represented in the frequency domain, using the Laplace transform. Using the 
voltage divider principle, we determine the transfer function of this circuit to be

1

R Cs

H(s) =
R +Vo (s) _____

r . M  R l _

Cs

Cs LC

-f- Ls
' »  1  1s2 H----- s H-----

RC LC

( 1 4 . 8 - 8 )

R + Cs
Comparing Eqs. 14.8-7 and 14.8-8 gives \ /LC  =  2 and 1 /RC = 3. These equations don't have a single 

unique solution. To obtain one solution, choose C =  1/12 F. Then L = 6 H and R = 4 fl are the required values. 
Other solutions can be obtained by changing the value of C and then recalculating L and R.

EXERCISE 14.8-1 The transfer function of a circuit is H(s) = 
impulse response and step response of this circuit.

5 10

- 5 s

Answers: (a) impulse response =  $£ 1 

(b) step response =  S£~x

5 +  5 5 + 10
1

5 2  +  1 5 5  +  5 0  

(5e~St — 10 e~l0t)u(t)

Determine the

5+ 1 0  5 +  5
=  (e 10/ — e 5t)u(t)

EXERCISE 14.8-2 The impulse response of a circuit is h(t) =  5e 2t sin(4r)w(/). Determine the 
step response of this circuit.

Hint: H(s) =  JZ’[5e“2' sin (4/)«(/)] =  5(4) -  20
(s + I)2 -I- 42 s2 +  4s +  20

Answer: step response =  i f H(s)
=  j s r

=  ( i

5 +  4
5 52 +  45 + 20

1

cos4f + -  sin 4/ J )w(r)

14.9 C O N V O L U T I O N

In this section, we consider the problem of determining the response of a linear, time- 
invariant circuit to an arbitrary input, x(/). This situation is illustrated in Figure 14.9-1, in 
which x(t) is the input to the circuit, y(t) is the output of the circuit, and h(t) is the impulse 
response of the circuit. We will assume that x(t) =  0 when t < 0 because t = 0 is the time at

4 0 - h(t) >y(t)

F I G U R E  1 4 . 9 - 1

A  l i n e a r ,  t i m e - i n v a r i a n t  

c i r c u i t .
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(a) (b)
F I G U R E  1 4 . 9 - 2  T h e  a r b i t r a r y  i n p u t  w a v e f o r m  s h o w n  i n  ( a )  c a n  b e  a p p r o x i m a t e d ,  a  s e q u e n c e  o f  p u l s e s  a s  

s h o w n  i n  ( 6 ) .

which the input is first applied to the circuit and that h(t) = 0 when / <  0 because the impulse response 
cannot precede the impulse that caused it.

It’s important to us that the circuit is both linear and time-invariant. To see why, let’s use the 
notation

x(t) — y(t)

to indicate that the input x(t) causes the outputy(t).  Let k be any constant. Because the circuit is linear,

kx( t )  — ky( t )

(Suppose k =  2. The input 2x(t) is twice as large as the input x(t), and it causes an output twice as large as 
the output caused by x(t).) Next, let r  any constant. Because the circuit is time-invariant,

x(t  -  r) — y( t  -  r)

(Suppose r  =  4 s. The input ;c(r — 4) is delayed by 4 s with respect to x(t) and causes an output that is 
delayed by 4 s with respect to y{t).) Because the circuit is both linear and time-invariant, we have

k x ( t  — r) —» k y ( t  — r)

Next, we use the fact that h(t) is the impulse response of the circuit. Consequently, when the input to 
the circuit is x(t) == 8(t), the out put is y(t) = h(t). That is,

« ( / )  - A ( 0

Finally, k 8(t — r) — k h(t — r) (14.9-1)

Consider the arbitrary input waveform x(t) shown in Figure 14.9-2(a). This waveform can be 
approximated by a series of pulses as shown in Figure 14.9-2(6). The times, r i, r 2, r 3, . . .  are 
uniformly spaced, that is,

Tj+i =  r j +  Ar for i =  1, 2, 3 , . . .

where the increment Ar is independent of the index The error in the approximation is small when the 
increment Ar is chosen to be small.

Figure 14.9-3(a) shows one of the pulses from the approximation of the input waveform. Notice 
that the area of the pulse is x(r,)Ar. When the time increment Ar is chosen to be small, this pulse can 
be approximated by the impulse function having the same area, jc(T,)Ar<5 (/ -  r,). That impulse 
function is illustrated in Figure 14.9-3(6).

The input waveform is represented by the sum of the impulse functions approximating the pulses 
in Figure 14.9-2(6),

OO

x(t) = ]Px(Xi)AzS(t  -  r ,) (14.9-2)
1 = 0
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*(X,)

x { t ) x ( t )

A x j t i x , )

t

/

t

I ,  X, +  A x  

( t f ) (b)

F I G U R E  1 4 . 9 - 3  ( a )  A  p u l s e  f r o m  

t h e  a p p r o x i m a t i o n  o f  a n  i n p u t  

w a v e f o r m  a n d  ( b )  t h e  

c o r r e s p o n d i n g  i m p u l s e .

Because the circuit is linear, the response to this sum of impulse inputs is equal to the sum of the 
responses to the responses to the individual impulse inputs. From Eq. 4.9-1, the responses to the 
individual impulses inputs are given by

(x(r,)Ar)<5(/ -  r,) -> (x(r,)Ar)A(/ -  r,) for i = 0, 1, 2, 3 ,.. .

The response of the circuit is

y(‘) = ]T /( r ,)A t h(t -  r.) =  t)h{t -  r,)Ar
1 = 0  i = 0  

In the limit as Ar goes to zero, the summation becomes an integral, and we have
p o o

y(t) = / x{z)h(t -  x)dz 
Jo

(14.9-3)

(14.9-4)

The integral on the right side of Equation 14.9-4 is called the convolution integral and is denoted as 
x(t)*h(t). That is,

y(t) = x{t)*h{t) (14.9-5)

Equation 14.9-5 indicates that the output of the linear circuit in Figure 14.9-1 can be obtained as the 
convolution of the input and the impulse response.

MATLAB provides a function called conv that performs convolution. The next example uses 
this MATLAB function to obtain a plot of the output of a linear, time-invariant circuit.

E x a m p l e  14 . 9 - 1  C o n v o lu ti on

Plot the output y(t) for the circuit shown in Figure 14.9-1 when the input x(t) 
is the triangular waveform shown in Figure 14.9-4 and the impulse response 
of the circuit is

Solution
Figure 14-9.5 shows a MATLAB script that produces the required plot.

FIGURE 14.9-4 The input for
Example 14.9-1.



The comments included in the MATLAB script indicate that the problem is solved in four steps:

1. Obtain a list o f equally spaced instants of time.

2. Obtain the input x(t) and the impulse response h(t).

The Laplace T ran sfo rm

% convolution.m - plots the output for Example 14.9-1
%  ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

% Obtain a list of equally spaced instants of time
% --------------------------------------------------------------------------------------------------
tO = 0; % begin 
tf =12; % end
N = 5000; % number of points plotted
dt = (tf-tO)/N; % increment 
t = 10:dt rtf; % time in seconds

% Obtain the input x(t) and the impulse response h(t)
% -----------------------------------------------------------------------------------------------------

k = 1 : length(t)
if t(k) < 2

x(k) = 0;
elseif t (k) < 5

x(k) = -8 + 4 * t (k) ; %
elseif t(k) < 7

x(k) = 42 - 6*t(k); %
else

x(k) = 0;
end

end
x=x*dt;
h=l.25*exp(-t)-1.25*exp(-5*t);

%

%
%

Perform the convolution

y=conv(x,h);

%

%
%

Plot the output y(t)

plot(t,y (1:length(t))) 
axis([to, tf, 0, 9]) 
xlabel('t') 
ylabel('y(t)') J

FIG I! RE 14.9-5 The MATLAB script for Example 14.9-1.



3 .  P e r f o r m  t h e  c o n v o l u t i o n .

4. P l o t  t h e  o u t p u t  y ( t ) .

A  c o u p l e  o f  r e m a r k s  a r e  h e l p f u l  f o r  u n d e r s t a n d i n g  t h e  M A T L A B  s c r i p t .  F i r s t ,  u s i n g  t h e  e q u a t i o n s  o f  t h e  s t r a i g h t  

l i n e s  t h a t  c o m p r i s e  t h e  t r i a n g u l a r  i n p u t  w a v e f o r m ,  w e  c a n  w r i t e

T h i s  e q u a t i o n  i s  i m p l e m e n t e d  b y  a n  fcfci f - t h e n - e l s e ”  b l o c k  i n  t h e  M A T L A B  s c r i p t .  F o r  a n y  t i m e ,  r „  t h i s  e q u a t i o n  

p r o d u c e s  t h e  c o r r e s p o n d i n g  v a l u e  x ( r , ) .  F r o m  E q .  1 4 . 9 - 2 ,  w e  s e e  t h a t  t h e  s t r e n g t h s  o f  t h e  i m p u l s e  i n p u t s  a r e  

j c ( r , ) A r  r a t h e r  t h a n  j c ( r , ) .  I t  i s  n e c e s s a r y  t o  m u l t i p l y  t h e  v a l u e s  x ( r , )  b y  t h e  t i m e  i n c r e m e n t ,  a n d  t h a t  i s

a c c o m p l i s h e d  b y  t h e  l i n e ,  “ x  =  x * d t ' ’  i n  t h e  M A T L A B  s c r i p t .

N e x t ,  t h e  M A T L A B  p l o t  f u n c t i o n  r e q u i r e s  t w o  l i s t s  o f  v a l u e s ,  t  a n d  y ,  i n  o u r  c a s e .  T h e s e  l i s t s  a r e  r e q u i r e d  t o  

h a v e  t h e  s a m e  n u m b e r  o f  v a l u e s ,  b u t  i n  o u r  c a s e ,  y  i s  l o n g e r  t h a n  t .  T h e  M A T L A B  e x p r e s s i o n  “ ( 1  : l e n g t h ( t ) ) ”

t r u n c a t e s  t h e  l i s t  y ,  s o  t h a t  t r u n c a t e d  l i s t  i s  t h e  s a m e  l e n g t h  a s  t .

F i n a l l y ,  t h e  p l o t  p r o d u c e d  b y  t h e  M A T L A B  s c r i p t  i s  s h o w n  i n  F i g u r e  1 4 . 9 - 6 .

0  w h e n  t  <  2

A t  —  8  w h e n  2  <  t  <  5

X '  ̂ — 4 1  +  4 2  w h e n  5  <  t  <  7

0  w h e n  t  >  7

9

0
o 2 4 6 8 10 12

F I G U R E  1 4 . 9 - 6  T h e  o u t p u t  f o r  E x a m p l e  1 4 . 9 - 1 .

14.10 S T A B I L I T Y

A  c i r c u i t  i s  s a i d  t o  b e  s t a b l e  w h e n  t h e  r e s p o n s e  t o  a  b o u n d e d  i n p u t  s i g n a l  i s  a  b o u n d e d  o u t p u t  

s i g n a l .  A  c i r c u i t  t h a t  i s  n o t  s t a b l e  i s  s a i d  t o  b e  u n s t a b l e .

P r o d u c i n g  a  b o u n d e d  r e s p o n s e  t o  a  b o u n d e d  i n p u t  i s  p r e t t y  r e a s o n a b l e  b e h a v i o r .  A s  a  g e n e r a l  r u l e  o f  

t h u m b ,  s t a b l e  c i r c u i t s  a r e  p o t e n t i a l l y  u s e f u l ,  a n d  u n s t a b l e  c i r c u i t s  a r e  p o t e n t i a l l y  d a n g e r o u s .  W h e n  w e  

a n a l y z e  a  c i r c u i t  t o  s e e  w h e t h e r  i t  i s  s t a b l e ,  w e  a r e  p r o b a b l y  t r y i n g  t o  d o  o n e  o f  t w o  t h i n g s .  F i r s t ,  w e
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may be checking a circuit to see whether it is useful. We will reject the circuit if it is unstable. Second, 
we may be trying to specify values o f the circuit parameters in such a way as to make the circuit stable.

Consider a circuit represented by the transfer function, H(s). Factoring the denominator of the 
transfer function gives

H ( S )  =  -- --------------------  ,  ^ ----------- T --------------------- T

(s - p , ) ( s  - P 2 ) • ■ - (s - p / r )
The p, are the poles of the transfer function, also called the poles of the circuit. The poles may have real 
values or complex values. Complex poles appear in complex conjugate pairs; for example, if —2 + j 3 
is a pole, then - 2  — f l  must also be a pole.

A circuit is stab le  if, and only if, all o f its poles have negative real parts.

(Real poles must have negative values.) Another way of saying the same thing is that a circuit is stable
if, and only if, all of its poles lie in the left half of the s-plane.

We can also use the impulse response, h(t), to determine whether a circuit is stable. A circuit is
stable if, and only if, its impulse response satisfies

lim |A(/)| = 0
t —>00

Let’s check that our two tests for stability, one in terms of H(s) and the other in terms of h(t), are 
equivalent. For convenience, suppose that all of the poles of H(s) have real values. The corresponding 
impulse response is given by

r  1 *h{t) =  i r '[//(*)] =  JST
Xs - P i ) ( s - P i ) P n ).

If the circuit is unstable, then at least one of the poles has a positive value, for example, p 4 = 6. 
Consequently, the impulse response includes the term A4e6' and |/l4e6'| —> oo as t —► oo, so
lim |A(f)| =  oo. On the other hand, if the circuit is stable, all of the poles have negative values.

t — > 0 0

Each \AjePl,\ —* 0 as t —» oo, so lim |A(/)| =  0.
t —>00

The network function, H(<y), of a stable circuit can be obtained from its transfer function, H(s), 
by letting s = jco.

H M  =  | / / ( 5 ) | f = >

(This is true only for stable circuits. In general, unstable circuits don’t reach a steady state, so they 
don’t have steady-state responses or network functions.)

E x a m p l e  1 4 . 1  0 - 1  S t a b i l i t y

The input to the circuit shown in Figure 14.10 -1 is the voltage, v;(0, of the independent voltage source. The output 
is the voltage, vQ(/), of the dependent voltage source. The transfer function of this circuit is
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R = 100 k i l

F I G U R E  1 4 . 1 0 - 1  T h e  c i r c u i t  c o n s i d e r e d  i n  

E x a m p l e  1 4 . 1 0 - 1 .

Determine the following:

(a) The steady-state response when v,-(f) = 5 cos2f V and the gain of the VCVS is k  =  3 V/V

(b) The impulse response when k  = 4 — 2\/2 =1.17 V/V

(c) The impulse response when A: =  4 + 2\f l  =  6.83 V/V

Solution - (4  -  Jt) ±  ^/(4 -  Jt)2 -  8
The poles of the transfer function are p X 2  — ------------------------------------- ^ -----------------------------------------------------------------------------------------------------------------------------------------------------

(a) When k  = 3VfV,  the poles are p l 2  = — — ~ y ——  =  — - , so the circuit is stable. The transfer 
function is

3 5

The circuit is stable when k  = 3 V/V, so we can determine the network function from the transfer function by 
letting s  =  j c o .

V o M

V i M
=  H M  =

3s
y < o S2 +  5 + 2

3/<y
S—JW (2 -I- Cl*2 ) -f j c o

The input is vj(f) =  5 cos 2/ V. The phasor of the steady-state response is determined by multiplying the 
network function evaluated at co =  2 rad/s by the phasor of the input:

V .M  =  H ( „ ) U  X V ,H  -  J ( 5 z V )  =  ( ^ ) i s / S O  =  10.61 Z = 4 £

The steady-state response is vQ(/) =  10.61 cos ( I t  -  45°) V.
_2^  -j- ̂ /q

(b) When k — 4 — 2\/2, the poles are p^ 2 — —---- r -------=  —V2, —\f l ,  so the circuit is stable. The transfer
function is

H{s) = 1.175 1.17 1 . 1 7  % / 2

( S + V ^ ) 2 " H v ^ ” ( s + v ^ ) 2

The impulse response is

h(t) =  S T x\H(s)\ = 1.17e"v5'( l  -  

We see that when k = 4 -  2\/2, the circuit is stable, and lim h\(t)\ =  0.



2  y / 2  i  y / 0

(c) When k =  4 +  2 \/2, the poles are /?, 2 = ------ -------=  V2, \ f l , so the circuit is not stable. The transfer
function is

6.835 6.83 6.83v/2

" ( s ) _ ( 7 w 5 j T ' F r ^ j + ( » - V 2 ) !

The impulse response is

h{t) = & - l [H{s)} = 6.83ev/I,( l  +  y/2 t )u(t)

We see that when k =  4 +  2y/2, the circuit is unstable, and lim |A(/)| =  oo.
V _________________________________________________________________________________________________________________ ^ ° ° _________________________________________________________________________________

The Laplace T ran sfo rm

EXERCISE 14.10-1 The input to a circuit is the voltage vj(/). The output is the voltage v0(f). 
The transfer function of this circuit is

' ’ V, (s) +  (3 -  k)s  +  2

D e t e r m i n e  t h e  f o l l o w i n g :

(a) The steady-state response when v;(/) =  5 cos 21 V and the gain of the VCVS is k = 2 V/V

(b) The impulse response when k =  3 — 2y/2 =  0.17 V/V
(c) The impulse response when k =  3 +  2y/2 =  5.83 V/V

Answers: (a) v0(t) =  7.07 cos (21 — 45°) V
(b) A(/) =  0.17 e-v^ '( l  -  v/2/)w(r)

(c) A(/) =  5.83 £>^'(1 +  y/2t)u(t)

14.11 P A R T I A L  F R A C T I O N  E X P A N S I O N  
U S I N G  M A T L A B  --------------------------------

MATLAB provides a function called residue that performs the partial fraction expansion o f a transfer 
function. Consider a transfer function

bjs3 +  6252 +  &is' +  605°
(^) 3 _L 2 _L 1 I 0 (14.11-1)

a 3 5 3  - I -  0 2 ^  +  f l l S 1 +  ^ 0 5 °

In Eq. 14.11-1, the transfer function is represented as a ratio of two polynomials in 5. In MATLAB, the 
transfer function given in Eq. 14.11 -1 can be represented by two lists. One list specifies the coefficients 
of the numerator polynomial, and the other list specifies the coefficients of the denominator 
polynomial. For example,

num =  [63 bi b\ />0] 
ar|d den =  [03 a2 a\ ao]

(In this case, both polynomials are third-order polynomials, but the order of these polynomials could 
be changed.)

Partial fraction expansion can represent H(s) as

T T /  \  ^ 2  # 3
H(s) = ----------1----------- 1------------\-k(s) (14.11-2)

5 - / 7 ,  S ~ p 2 5 - p 3 W
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/ ? , ,  R 2 ,  a n d  /?3 a r e  c a l l e d  r e s i d u e s ,  a n d  p \ , p 2 ,  a n d  p 3  a r e  t h e  p o l e s .  I n  g e n e r a l ,  b o t h  t h e  r e s i d u e s  a n d  

p o l e s  c a n  b e  c o m p l e x  n u m b e r s .  T h e  t e r m  k ( s )  w i l l ,  i n  g e n e r a l ,  b e  a  p o l y n o m i a l  i n  . s .  M A T L A B  

r e p r e s e n t s  t h i s  f o r m  o f  t h e  t r a n s f e r  f u n c t i o n  b y  t h r e e  l i s t s :

* = [*, R2 *3]
i s  a  l i s t  o f  t h e  r e s i d u e s ,

P  =  [ P \  P i  P i ]

i s  a  l i s t  o f  t h e  p o l e s ,  a n d

k  =  [ c 2  c i  c 0 ]

i s  a  l i s t  o f  t h e  c o e f f i c i e n t s  o f  t h e  p o l y n o m i a l  k ( s ) .

T h e  M A T L A B  c o m m a n d

[R, p, k] =  residue (num, den)
p e r f o r m s  t h e  p a r t i a l  f r a c t i o n  e x p a n s i o n ,  c a l c u l a t i n g  t h e  p o l e s  a n d  r e s i d u e s  f r o m  t h e  c o e f f i c i e n t s  o f  t h e  

n u m e r a t o r  a n d  d e n o m i n a t o r  p o l y n o m i a l s .  T h e  M A T L A B  c o m m a n d

[n, d] =  residue (R, p, k)
p e r f o r m s  t h e  r e v e r s e  o p e r a t i o n ,  c a l c u l a t i n g  t h e  c o e f f i c i e n t s  o f  t h e  n u m e r a t o r  a n d  d e n o m i n a t o r  

p o l y n o m i a l s  f r o m  t h e  p o l e s  a n d  r e s i d u e s .

F i g u r e  1 4 . 1 1 - 1  s h o w s  a  M A T L A B  s c r e e n  i l l u s t r a t i n g  t h i s  p r o c e d u r e .  I n  t h i s  e x a m p l e ,

(  _  s 3  +  2 s 1  +  3 s  +  4

( 5 j ~ s 3 +  6s2 +  11^ +  6

F I G U R E  1 4 . 1 1 - 1  U s i n g  M A T L A B  

t o  p e r f o r m  p a r t i a l  f r a c t i o n  e x p a n s i o n .
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is represented as

- 7  2 1
H ( s ) = ----- -  + ------  + ----- -  +  1

s +  3 s + 2  s + l

by performing the partial fraction expansion.
The following examples illustrate the use o f MATLAB for finding the inverse Laplace transform 

of functions having complex or repeated poles.

E x a m p l e  1 4 . 1  1 -1 R ep eated  Real P o le s

Find the inverse Laplace transform of

F(s) =
12

s(s2 +  8s +  16)

Solution
First, we will do this problem without using MATLAB. Noticing that s2 +  8s +  16 =  (s +  4)2, we begin the 
partial fraction expansion:

3

F(s) =
12 12

+

s(s2 +  8 s + 1 6 )  s (s +  4)2 s +  4 (s +  4)2 s 

Next, the constant k is evaluated by multiplying both sides of the last equation by s(s +  4)2.

12 =  £s(s +  4) — 3s +  ^ (s  +  4)2 =  0  +  A^s2 +  (3 + 4 & )s+  12 k = —

Finally

v(/) =  ST +

- 3 ))*
Next, we perform the partial fraction expansion, using the MATLAB function residue:

» n u m  = [ 12 ] ;
» d e n  = [1 8 16 0] ;
> > t r » P i = r e s i d u e ( n u m ,  d e n )

MATLAB responds

r  =
- 0 . 7 5 0 0
- 3 . 0 0 0 0

0 . 7 5 0 0
P =

- 4
- 4

0



P art ia l  F ra c t io n  E x p a n s io n  U s in g  M A T L A B -------( 705

A repeated pole of multiplicity m is listed m times corresponding to the m terms
r i r2 rm

S - p '  (s - p )2 ’"” [ s - p ) m

listed in order of increasing powers oi s  -  p. The constants, r \ , r2 . . . ,  rm are the corresponding residues, again 
listed in order of increasing powers o i s — p. In our present case, the pole p — - 4  has multiplicity 2, and the first 
two terms of the partial fraction expansion are

-0.75 -3 -0.75 -3
5 -  (-4 ) ' (s -  ( - 4 ))2 s + 4 ' (s + 4)2 

The entire partial fraction expansion is 
-0.75
-  (-4 ) + (s -  (—4))2 ^   ̂-  (0) s +  4 T" (s +  4)2 ' s

3 0.75 -0.75 -3  0.75
H------ 777T —  -— T  +   ---------- ~  “I" '

Finally, as before,

v(t) = -0.75 -3  0.75
• + +  ■

s + 4 (s + 4)2 5
=  (0.75 -  e~4l(0.75 +  3t))u{t) V

E xample  1 4.1 1-2 C om plex  P o les  V

Find the inverse Laplace transform of

V(s) =
12s-h78 

52 + 85 +  52

Solution
First, we will do this problem without using MATLAB. Notice that the denominator does not factor any further in 
the real numbers. Let’s complete the square in the denominator

125 + 78v , v _  T /o _  125 + 78 \AS~t- /O 1ZJ5 -+- <+) -f-
5 ~  52 +  85 +  52 ~  (s1 +  85 +  16) + 36 ~  (s +  4)2 + 36 ”  (5 +  4)2 +  36 ~  (5 +  4)2 +  62 +  (5 +  4)2 +  62

Now, use the property e~atf ( t )  F(s +  a) and the Laplace transform pairs

125 + 78 12(5 + 4) +  30 12(5 +  4) 5(6)

sin cot for / > 0 <

to find the inverse Laplace transform:

125v(t) - A t
+

S 2 +  CiP"

5(6) 1

and cos cot for t > 0
+  O J 2

52 +  6 2 52 +  6 2
= e '[12 cos(6r) +  5 sin (6/)] for / > 0

Next, we will use MATLAB to do the partial fraction expansion. First, enter the numerator and denominator 
polynomials as vectors listing the coefficients in order of decreasing power of s:

» n u m  = [ 12 78] ;
» d e n  * [1 8 52 J ;
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Now the command
»[r, Pi = residue(num, den)

tells MATLAB to do the partial fraction expansion return p, a list o f the poles of K(s), and r, a list o f the 
corresponding residues. In the present case, MATLAB returns

r  =
6 .0 0 0 0  -  2 . 5 0 0 0 i
6 .0 0 0 0  +  2 . 5 0 0 0 i

P =
- 4 .0 0 0 0  +  6 . OOOOi 
- 4 .0 0 0 0  -  6 . 5 0 0 0 i

indicating

r w -  6 r f 5 , ' +  6 + ' 2 ' 55 -  ( - 4  +j6)  s -  ( - 4  - j 6 )

Notice that the first residue corresponds to the first pole and the second residue corresponds to the second pole. 
(Also, we expect complex poles to occur in pairs of complex conjugates and for the residues corresponding to 
complex conjugate poles to themselves be complex conjugates.) Taking the inverse Laplace transform, we get

v(t) =  (6 - j 2 . 5 ) e - {- 4+J6)‘ + (6 + y2 .5 )e~ (- 4“' 6)'

This expression, containing as it does complex numbers, isn’t very convenient. Fortunately, we can use Euler’s 
identity to obtain an equivalent expression that does not contain complex numbers. Because complex poles occur 
quite frequently, it’s worthwhile to consider the general case:

I  ( 5 ) ..................... " ,  •  ,  a ~ jb
s - ( c  + j d ) s -  (c -  j d )

The inverse Laplace transform is
v(t) = (a + jb )e (c +  (a —jb)e^c~ ^ ‘

T ( e>dt +  e~J d,\  f e jdt — e~Jd,\
= e c‘ [(a + jb)  ejd ‘ +  (a +jb)e  jdt] = ect 2a ( ------- --------J  -  2b ( -------—-------J

Euler’s identity says
e j  d t  ^  e - j  d t  gj  d t  _  e - j  d t

------- -------- =  cos (dt) and --------—------=  sin(^/)

Consequently,
v(/) =  ec,[2a cos (dt) — 2b sin (dt)]

Thus, we have the following Laplace transform pair

ec,[2a cos (dt) -  2b sin (dt)] ~  . „ +  — -  ■ ^
5 -  (c + jd )  s (c - j d )

In the present case, a =  6, b = —2.5, c -  —4, andd = 6, so we have

v(t) — t>_4'[12 cos(6f) +  5 sin(6/)] for / >  0

It’s sometimes convenient to express this answer in a different form. First, express the sine term as an equivalent
cosine:

v(r) =  e_4'[12cos(6/) +  5 cos(6r -  90°)] for? >  0 
Next, use phasors to combine the cosine terms

V(<u) =  12 /p °  +  5 / —90° =  12 - j 5  =  13 / —22.62°
Now v(t) is expressed as

v(t) =  13e“4,cos(6/ -  22.62°) for / > 0 J
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E x a m p l e  1 4.1 1-3 B oth  R eal and C om plex  P o les j -

Find the inverse Laplace transform of
105s+840

V(s)=-(s2 + 9.5s + 17.5)(s2 +  8s + 80)

Solution
Using MATLAB,

»  num=[105 840];
»  den=conv([1 9.5 17.5],[1 8 80]); 
»  [r,p] = residue (num, den) 
r =

- 0.8087 + 0 . 2415i 
- 0.8087 - 0 .2415i 
- 0.3196
1.9371

P =

- 4 . 0 0 0 0  +  8 . OOOOi 
- 4 . 0 0 0 0  -  8 . OOOOi 
- 7 . 0 0 0 0  
- 2 . 5 0 0 0

Consequently,
/ x -0.8087 + /0.2415 -0.8087 -y0.2415 -0.3196 1.9371

n * ) =  :  ,  / ,  ,.Q ,  +  .  ,  /  + r - r ^  +  ;s — (—4 +j&) s — (—4 —jS) s — (—7) s — (—2.5)
Using the Laplace transform pair,

ecl[2acos(dt) — 2i>sin(<ft)] *-* — ^5 -  (c +jd)  s -  (c - j d )  
with a = —0.8087, b = 0.2415, c =  —4, and d = 8, we have

C f -
-0.8087 H-yO.2415 -0.8087 -y'0.2415

=  e_4,[—1.6174 cos (St) + 0.483 sin (80]
s -  ( -4  +jS) s -  ( -4  - j 8 )

Taking the inverse Laplace transform of the remaining terms of V(s), we get
v(0 =  e_4,[—1.6174cos (80 + 0.483 sin (80] -  0.3196e-7' +  1.9371e“25' fort > 0

14.12 H O W  CAN WE CHECK . . .  T R A N S F E R  
F U N C T I O N S ?  ------------------------------------------

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.
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E x a m p l e  1 4 . 1 2 - 1  H o w  Can We C heck
Transfer F u n ct ion s?

25
A circuit is specified to have a transfer function of

m  ) _  Vo{s) - _____________
( )  F ,(s) s2 +  1 Os +  125

and a step response of
v0(r) =  0.1 (2 — e~s,(3 cos 10/ +  2 sin 10/))w(/) 

How can we check that these specifications are consistent?

(14.12-1)

(14.12-2)

Solution
If the specifications are consistent, then the unit step response and the transfer function will be related by

(14.12-3)

where Ft(s) =  1/s.
This equation can be verified either by calculating the Laplace transform of vQ(/) or by calculating the 

inverse Laplace transform of H(s)/s. Both of these calculations involve a bit o f algebra. The final and initial value 
theorems provide a quicker, though less conclusive, check. (If either the final or initial value theorem is not 
satisfied, then we know that the step response is not consistent with the transfer function. The step response could 
be inconsistent with the transfer function even if both the final and initial value theorems are satisfied.) Let us see 
what the final and initial value theorems tell us.

The final value theorem requires that

v0(oo) =  lims
s—>0

H (s )~
s

lim s
s—► 0

=  lim
s —+ 0

25
s2 +  10s +  125

25
125

=  0.2

From Eq. 14.12-1, we substitute H(s), obtaining
25 1

s2 +  10s +  125 s 

From Eq. 14.12-2, we evaluate at / =  oo, obtaining

v0(oo) =  0.1(2 -  e~°°(2 cos oo +  sin oo)) =  0.1(2 — 0) =  0.2

so the final value theorem is satisfied.
Next, the initial value theorem requires that

vo(0) =  lim s H(s)~
s

From Eq. 14.12-1, we substitute H(s), obtaining

25 1
lim s

s — >OG s2 +  10s +  125 s
=  lim

25/s2
s—oo 1 +  10/s +  125/s2 1-?-o

From Eq. 14.12-1, we evaluate at / =  0 to obtain

vo(0) =  0.1 (2 — e~°(3 cosO +  2 sin 0)) 
=  0 .1 (2 -  1(3 +  0))
=  - 0.1

(14.12-4)

(14.12-5)

(14.12-6)

(14.12-7)

(14.12-8)

(14.12-9)

\yThe initial value theorem is not satisfied, so the step response is not consistent with the transfer function.
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E x a m p l e  1 4 . 1 2 - 2  How Can We C heck
T ra n sfe r  F u n c tio n s?

A circuit is specified to have a transfer function of

Vo (s)H(s) =
25

V{(s) s2 + \0s+  125

and a unit step response of

'0(t) =  0.1(2 -  e 5t(2 cos 1 Or + 3 sin 10/))w(/)

(14.12-10)

(14.12-11)

How can we check that these specifications are consistent? (This step response is a slightly modified version of 
the step response considered in Example 14.12-1.)

Solution
The reader is invited to verify that both the final and initial value theorems are satisfied. This suggests, but does not 
guarantee, that the transfer function and step response are consistent. To guarantee consistency, it is necessary to 
verify that

(14.12-12)

either by calculating the Laplace transform of v0(/) or by calculating the inverse Laplace transform of H(s)/s. 
Recall the input is a unit step, so Fj (s) =  1/s. We will calculate the Laplace transform of v0(t) as follows:

<¥[0.1(2 — e 5t(2 cos 10/ + 3 sin 10/))w(/)] =  0.1

=  0.1

2 (s -f- 5)
— 3-

10
S (s +  5)2 + 102 (s +  5)2 + 1 0 2

2 2s + 40
s s2 +  10s +  125 
-2s  +  25

s(s2 -f 105 + 125)

Because this is not equal to H(s)/s, Eq. 14.12-12 is not satisfied. The step response is not consistent with the 
transfer function even though the initial and final values of vQ(t) are consistent.

EXERCISE U.12-1 A circuit is specified to have a transfer function of

H ^  =  s2 +  10.5+125

and a unit step response of

v0(/) = 0.1 (2 -  e~5t(2 cos 10/ -1- sin 10t))u(t)

Verify that these specifications are consistent.
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1 4 . 1 3  D E S I G N  E X A M P L E  -------------- -------------------------------------------

SPACE SHUTTLE CARGO DOOR

The U.S. space shuttle docked with Russia’s Mir  space station several times. The electro­
magnet for opening a cargo door on the NASA space shuttle requires 0.1 A before activating. 
The electromagnetic coil is represented by L , as shown in Figure 14.13-1. The activating 
current is designated /',(/). The time period required for i t to reach 0.1 A is specified as less 
than 3 s. Select a suitable value of L.

F I G U R E  1 4 . 1 3 - 1  T h e  c o n t r o l  c i r c u i t  f o r  a  c a r g o  d o o r  o n  t h e  N A S A  s p a c e  s h u t t l e .

Describe the Situation and the Assumptions
1. The two switches are thrown at t =  0, and the movement o f the second switch from terminal a 

to terminal b occurs instantaneously.

2. The switches prior to t =  0 were in position for a long time.

State the Goal
Determine a value of L so that the time period for the current /j(f) to attain a value of 0.1 A is 
less than 3 s.

Generate a Plan

1. Determine the initial conditions for the two inductor currents and the capacitor voltage.

2. Designate two mesh currents and write the two mesh KVL equations, using the Laplace 
transform of the variables and the impedance of each element.

3. Select a trial value of L and solve for I\(s).

4. Determine ij(/).

5. Sketch i,(t) and determine the time instant t\ when z‘i(>i) =  0.1 A.

6. Check whether tx <  3 s, and, if not, return to step 3 and select another value of L.

G0AL EQUATION NEED INFORMATION

Determine the initial j(0) =  i(0~) Prepare a sketch of the
conditions at / = 0 vc(0) =  vc(0“) circuit at t — 0“ .

Find /|(0 - ),
*2(0“ ), vc(0“).

Designate two mesh /,(*), /2(s); the initial
currents and write the conditions /,(0),
mesh KVL equations. m  (continued)
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GOAL EQUATION NEED INFORMATION

S o l v e  f o r  I \ ( s )  a n d C r a m e r ’ s  r u l e

s e l e c t  L .

D e t e r m i n e II

I

U s e  a  p a r t i a l  f r a c t i o n

e x p a n s i o n .

S k e t c h  / , ( / )  a n d  f i n d  t x . i l U i )  =  0 . 1  A

Act on the Plan
First, the circuit with the switches in position at t =  0“ is shown in Figure 14.13-2. Clearly,
the inductor currents are /i(0~) =  0 and *2(0~) =  0. Furthermore, we have

vc(0) =  1 V

Second, redraw the circuit for t > 0 as shown in Figure 14.13-3 and designate the two mesh 
currents i\ and i2 as shown.

Recall that the impedance is Ls for an inductor and 1 /Cs for a capacitor. We must 
account for the initial condition for the capacitor. Recall that the capacitor voltage may be 
written as

vc(/) =  vc( 0 ) + ^ /  ic(r)dT 

The Laplace transform of this equation is

Fc(5) = ^  +  i - / £(,)

where Ic(s) = I\(s) — I2(s) in this case. We now may write the two KVL equations for the two 
meshes for t > 0 with vc(0) =  1 V as

mesh 1: -  V\ (s) +  (4 +  Ls)I\(s) +  Fc(s) = 0
mesh 2: (4 +  1j)/2(j) -  Fc(s) = 0

4 Q

[  4  C l

h \  2-+ Y <r- JL <

5---------------------- -
- ( p i v  ^

F I G U R E  1 4 . 1 3 - 2  T h e  c i r c u i t  o f  F i g u r e  1 4 . 1 3 - 1  a t  /  =  0

FIGURE 14.13-3 The circuit of Figure 14.13-1 for t > 0.
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The Laplace transform of the input voltage is

Kl W - I

Also, note that for the capacitor we have

r c(*) =  j  +  ^ ( / i ( s ) - / 2(s))

Substituting V, and Vc into the mesh equations, we have (when C =  1/2 F)

4 + Ls + - ) I \ ( s )  -  ( — ) / 2(-y) =  0

11 (5 ) +  ( 4  +  5 +  -  ) / 2 (5) — —

and

The third step requires the selection of the value of L and then solving for I\(s). Examine 
Figure 14.13-3; the two meshes are symmetric when L =  1 H. Then, trying this value and 
using Cramer’s rule, we solve for I\{s), obtaining

7 7

4 + 5 + -  -  -
s(s3 +  8s2 +  205 +  16)

Fourth, to determine i'i(t), we will use a partial fraction expansion. Rearranging and factoring 
the denominator of I\(s), we determine that

5 (5  +  4)(5 +  2)2 

Hence, we have the partial fraction expansion

w t\ A  BIi(s) = -  +  — —  + C D
+  •

5 5 +  4 (5  +  2)2 s + 2

Then, we readily determine that A =  1 /8 , B = - 1  /8 , and C =  - 1  /2 . To find D, we use Eq. 
14.4-9 to obtain

D =
1

( 2 - 1 ) !

-2 (25  +  4)
“  5 4  +  8 5 3  +  I 6 5 2

=  0

^ ( 5  +  2)2/,(5)
s = - 2

s = - 2

Therefore, using the inverse Laplace transform for each term, we obtain

/1(0 =  1/8 -  ( l /8 )e -4' -  ( l /2 ) t e~2' A t > 0



Verify the Proposed Solution
The sketch of i t(t) is shown in Figure 14.13-4. It is clear that i t(t) has essentially reached a 
steady-state value of 0.125 A by t = 4 seconds.

To find when

/,(<,) =0.1 A

we estimate that tx is approximately 2 seconds. After evaluating i,(t) for a few selected values 
of / near 2 seconds, we find that =  1.8 seconds. Therefore, the design requirements are 
satisfied for L  —  1 H. Of course, other suitable values of L  can be determined that will satisfy 
the design requirements.

<!</)

0  1  t x 2  3  4  i  ( s )  F I G U R E  1 4 . 1 3 - 4  T h e  r e s p o n s e  o f  / , ( » ) .

14.14 S U M M A R Y
O  P i e r r e - S i m o n  L a p l a c e  i s  c r e d i t e d  w i t h  a  t r a n s f o r m  t h a t  b e a r s  

h i s  n a m e .  T h e  L a p l a c e  t r a n s f o r m  i s  d e f i n e d  a s

* [ /« ] /  f ( t ) e ~ «  

J  0 -

d t

O  T h e  L a p l a c e  t r a n s f o r m  t r a n s f o r m s  t h e  d i f f e r e n t i a l  e q u a t i o n  

d e s c r i b i n g  a  c i r c u i t  i n  t h e  t i m e  d o m a i n  i n t o  a n  a l g e b r a i c  

e q u a t i o n  i n  t h e  c o m p l e x  f r e q u e n c y  d o m a i n .  A f t e r  s o l v i n g  

t h e  a l g e b r a i c  e q u a t i o n ,  w e  u s e  t h e  i n v e r s e  L a p l a c e  t r a n s ­

f o r m  t o  o b t a i n  t h e  c i r c u i t  r e s p o n s e  i n  t h e  t i m e  d o m a i n .  

F i g u r e  1 4 . 2 - 1  i l l u s t r a t e s  t h i s  p r o c e s s .

O  T a b l e s  1 4 . 2 - 1  t a b u l a t e s  f r e q u e n t l y  u s e d  L a p l a c e  t r a n s f o r m  

p a i r s .  T a b l e  1 4 . 2 - 2  t a b u l a t e s  s o m e  p r o p e r t i e s  o f  t h e  L a p l a c e  

t r a n s f o r m .

O  T h e  i n v e r s e  L a p l a c e  t r a n s f o r m  i s  o b t a i n e d  u s i n g  p a r t i a l  

f r a c t i o n  e x p a n s i o n .

O  T a b l e  1 4 . 7 - 1  s h o w s  t h a t  c i r c u i t s  c a n  b e  r e p r e s e n t e d  i n  t h e  

f r e q u e n c y  d o m a i n  i n  a  m a n n e r  t h a t  a c c o u n t s  f o r  t h e  i n i t i a l  

c o n d i t i o n s  o f  c a p a c i t o r s  a n d  i n d u c t o r s .

O  T o  f i n d  t h e  c o m p l e t e  r e s p o n s e  o f  a  l i n e a r  c i r c u i t ,  w e  f i r s t  

r e p r e s e n t  t h e  c i r c u i t  i n  t h e  f r e q u e n c y  d o m a i n  u s i n g  t h e  L a p l a c e  

t r a n s f o r m .  N e x t ,  w e  a n a l y z e  t h e  c i r c u i t ,  p e r h a p s  b y  w r i t i n g  

m e s h  o r  n o d e  e q u a t i o n s .  F i n a l l y ,  w e  u s e  t h e  i n v e r s e  L a p l a c e  

t r a n s f o r m  t o  r e p r e s e n t  t h e  r e s p o n s e  i n  t h e  t i m e  d o m a i n .

O  T h e  t r a n s f e r  f u n c t i o n ,  H ( s ) ,  o f  a  c i r c u i t  i s  d e f i n e d  a s  t h e  r a t i o  

o f  t h e  r e s p o n s e  y ( £ )  o f  t h e  c i r c u i t  t o  a n  e x c i t a t i o n  ^ ( 5 )  

e x p r e s s e d  i n  t h e  c o m p l e x  f r e q u e n c y  d o m a i n .

T h i s  r a t i o  i s  o b t a i n e d  a s s u m i n g  a l l  i n i t i a l  c o n d i t i o n s  a r e  

e q u a l  t o  z e r o .

O  T h e  s t e p  r e s p o n s e  i s  t h e  r e s p o n s e  o f  a  c i r c u i t  t o  a  s t e p  i n p u t  

w h e n  a l l  i n i t i a l  c o n d i t i o n s  a r e  z e r o .  T h e n  s t e p  r e s p o n s e  i s  

r e l a t e d  t o  t h e  t r a n s f e r  f u n c t i o n  b y

-1 H ( s )

s t e p  r e s p o n s e  =  J ?

O  T h e  i m p u l s e  r e s p o n s e  i s  t h e  r e s p o n s e  o f  a  c i r c u i t  t o  a n  

i m p u l s e  i n p u t  w h e n  a l l  i n i t i a l  c o n d i t i o n s  a r e  z e r o .  T h e  

i m p u l s e  r e s p o n s e  i s  r e l a t e d  t o  t h e  t r a n s f e r  f u n c t i o n  b y

i m p u l s e  r e s p o n s e  =  JS £ ~ x \ H ( s ) \

O  A  c i r c u i t  i s  s a i d  t o  b e  s t a b l e  w h e n  t h e  r e s p o n s e  t o  a  b o u n d e d  

i n p u t  s i g n a l  i s  a  b o u n d e d  o u t p u t  s i g n a l .  A l l  t h e  p o l e s  o f  t h e  

t r a n s f e r  f u n c t i o n  o f  a  s t a b l e  c i r c u i t  l i e  i n  t h e  l e f t - h a l f  s - p l a n e .

O  M A T L A B  p e r f o r m s  p a r t i a l  f r a c t i o n  e x p a n s i o n .
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P R O B L E M S

Section 14.2 Laplace Transform

P 14.2-1 Find the Laplace transform, F (s\  w h en /f)  =  A cos
cot, t > 0.

Answer: f ( s )  =  •
As

A( 1 - e ~ sT)

P 14.3-2 Consider the pulse shown in Figure P 14.3-2, where 
the time function follows eat for 0 < t < T. Find F(s) for the pulse.

1 — e~(s~a T̂
Answer: F(s) = ----------------

s — a

Figure P 14.3-2

P 14.3-3 Find the Laplace transform F(s) for
(a) f( t )  =  r V 3', t > 0
(b) /(f)  =  8(t—T), t > 0
(c) / ( 0  =  e~At sin 5f, t > 0

P 14.3-4 Find the Laplace transform for g(t) = e~lu(t — 0.5). 

P 14.3-5 Find the Laplace transform for

/(0 = ~ ~  — u ( t - T )

Answer: F(s) = - \ e ~ sT
Ts2

/«> = (5 - 5') "«>+f (' - y) “ - y)

P 14.3-6 Determine the Laplace transform o f / / )  shown in
Figure P 14.3-6.

S 2 +  CO2

P 14.2-2 Find the Laplace transform, F(s), whenJ{t) = t , t>  0.

P 14.2-3 Using the linearity property, find the Laplace
transform o f/ (f) =  e -3/ +  f, f >  0.

P 14.2-4 Using the linearity property, find the Laplace
transform o f/(f)  =  /*(1 —e~bt)u(t).

AbAnswer: F(s) =  —----- —
w  s(s -f b)

Section 14.3 Pulse Inputs

P 14.3-1 Consider a pulse J[t) defined by 

/ ( f )  =  A 0 < t < T  
=  0 all other t

Find F(s).

Answer: F(s)

Answer: F(s) =
5e~A2s +  15s — 5 

3s2

Figure P 14.3-6

P 14.3-7 Use the Laplace transform to obtain the transform of 
the signal J(t) shown in Figure P 14.3-7.

3(1 — e_2y)
Answer: F(s) = —----------- -

Figure P 14.3-7

P 14.3-8 Determine the Laplace transform ofy(f) shown in 
Figure P 14.3-8.

Answer: F(s) = ^  ( l -  e ' 2* -  2s e ' 25)

Figure P 14.3-8

Section  14.4 Inverse Laplace Transfo rm  

P 14.4-1 F in d /f )  when

zr ( \ -j- 3F(s) = —------- ------------- -
s3 -f 3s2 -f 6s +  4

A nsw er:f( t)  = - e-  - \ e ~ ' c o s s / l t  +  ~ e ~‘ x  sin V It ,  
t >  0 V3

P 14.4-2 Findy(/) when

F(s) = s 2 ~ 2 s + ]
s3 +  3s2 +  4s +  2
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F(s) = -

P 1 4 .4 -3  Findyfr) when

5 5 - 1 
- 3 5 - 2

Answer:f ( t )  =  - e~' + 2te ' +  e2', r > 0 
p 14.4-4 Find the inverse transform of

1
s3 +  3s2 +45 + 2 

Answer: v(t) =  <T'(1 -  cos/), f > 0 

P 14.4-5 Find the inverse transform of

25 +  6
( 5 + l ) ( 5 2 +  25 + 5) 

P 14.4-6 Find the inverse transform of

r M  25 +  6
W 5(52 +  35 +  2)

Answer: f ( t )  =  [3 — 4e~' +  2/]w(/)

P 14.4-7 Prove that

& -l cs +  (ca — cod)
(s +  a) +  co1

(a) F{s) =
8 5 -3

52 +  45 +  13
(b) F(s) =

3e
52 +25 + 17

Answers: (a) /( f )  =  10.2e 2t cos (3/ +  38.4°), t > 0 

(b) / ( / )  =  sin [4(/ -  1)], / > 1

P 14.4-9 Find the inverse transform of F(s).

(a) F(s) =
52 -  5

5(5 + l)2
(b) F(s) =

452

(5 + 3)J

/I/ishws; (a) / ( / )  =  — 5 + 6e ' + 4te r, f > 0
(b) / ( r )  = 4e"3/ -  24te~3t +  I 8 r e " 3r, t > 0

Section 14.5 Initial and Final Value Theorems

P 14.5-1 A function of time is represented by

2s2 — 3s + 4
F(s) =

53 +  352 +  25

(a) Find the initial value of fit) at t = 0.
(b) Find the value of fit) as t approaches infinity.

K(5)= (* +16)
W  s2 +  4s +  12 

Answer: v(0) = 1, v(oo) = 0 V
P 14.5-3 Find the initial and final values of v(f) when

r (j) =  „ .. .......................
w  (3 s3 +  2s2 +  ls )

Answers: v(0) =  0, v(oo) =  10 V 

P 14.5-4 Find the initial and final values of fit) when 

f (5 )=
W  s2 — 2s +  10 

Answer: initial value = — 2; final value does not exist

P 14.5-5 Given that «S?[v(/)l =  Q~S ^ where v(t) is the vol- 
1 v /J 5 +  85 

tage shown in Figure P 14.5-5, determine the values of a and b.

P 1 4 .5 -2  Find the initial and final values o f  v(f) when

is f ( t )  = me at cos (cot +  0) where m =  yjc2 + d2 and 
0 — tan ~l (d/c).

P 14.4-8 Find the inverse transform of F(s), expressing fit) in 
cosine and angle forms. Figure P 14.5-5

P 14.5-6 Given that JfMt)] =  where v(f) is the
1 v /J 252 + 4 0 5

voltage shown in Figure P 14.5-6, determine the values of a 

and b.

Figure P 14.5-6

Section 14.6 Solution of Differential Equations 
Describing a Circuit

P 14.6-1 Find i(t) for the circuit of Figure P 14.6-1 when
i(0) =  1 A. v(0) = 8 V, and v\ =  2e~atu(t) where a — 2 x 104.

Answers: i(t) =  (~\0e~bt +  3e~2bt +  22e~Abt)A, t > 0,
b =  104
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Figure P 14.6-1

P 14.6-2 All new homes are required to install a device 
called a ground fault circuit interrupter (GFCI) that will 
provide protection from shock. By monitoring the current 
going to and returning from a receptacle, a GFCI senses when 
normal flow is interrupted and switches off the power in 1/40 
second. This is particularly important if you are holding an 
appliance shorted through your body to ground. A circuit 
model of the GFCI acting to interrupt a short is shown in 
Figure P 14.6-2. Find the current flowing through the person 
and the appliance, /(/), for t > 0 when the short is initiated at 
/ =  0. Assume v =  160 cos 400/ and the capacitor is intially 
uncharged.

1 u(t) A

Figure P 14.6-4

P 14.6-5 Find /(/) for the circuit o f Figure P 14.6-5. Assume 
the switch has been open for a long time.

Answer: i =  -0 .0 2 5 ?"200' sin 4 0 0 /A, / >  0

40 0  f t 4 0 0  f t 1 H

P 14.6-6 Determine the inductor current, /(/), in the circuit 
shown in Figure P 14.6-6.

the person and 
the appliance

Figure P 14.6-2 Circuit model of person and appliance shorted to
ground.

P 14.6-3 Using the Laplace transform, find vc(/) for / >  0 for
the circuit shown in Figure P 14.6-3. The initial conditions Figure P 14.6-6
are zero.

Hint: Use a source transformation to obtain a single mesh ^  for the c r̂cu*t of Figure P 14.6-7 when
circuit. *i W =  l e  A for / >  0 and /(0) =  0.

Answer: vc =  -5 e ~ 2t +  5 (cos 2/ +  sin 2/) V

10 k ft 
-A A A t -

(2 cos 21) u{t) mA ©  5 k f t ^  VaomF ^

Figure P 14.6-3

P 14.6-4 Using Laplace transforms, find vc(/) for / >  0 for 
the circuit of Figure P 14.6-4 when (a) C =  1/18 F and 
(b) C =  1/10 F.

Answers: (a) vc(f) =  - 8  +  8e"3' +  24/<r3' V
(b) vc(/) =  - 8  +  10*r' -  2e~5t V

Answer: /(/) — ------e 6t H------

'i<'> ©

Figure P 14.6-7

P 14.6-8 Find v2(/) for the circuit of Figure P 14.6-8 for / >  0.

Hint: Write the node equations at a and b in terms o f v, and v2. 
The initial conditions are v, (0) =  10 V and v2(0) =  25 V. The 
source is vs =  50 cos 21 u(t) V.

Answer: v2(t) = f e- ' + i£ e -«  +  , 2 cos 2t +  12 sin I t  V 
t > 0
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P 14.7-3 Using Laplace transforms, find the response vc( 0  for 
t > 0 for the circuit of Figure P 14.7-3.

Figure P 14.7-3

P 14.6-9 Using Laplace transforms, find v(t) for / > 0 for the p U  J  A Us|ng Lap,ace transforms find the response ^  {or 
circuit shown in Figure P 14.6-9. / > 0 for the circuit of Figure P 14.7-4.

2 kft6 H i(t)

j +

vs(t) = 2 -  4 u(t) Q p  Vso F ^  ̂ v(t) t > 5 f t 6w(-f) + 6 V

Figure P 14.6-9

P 14.6-10 Using Laplace transforms, find v0(/) for / > 0 for 
the circuit shown in Figure P 14.6-10.

10 ft 4 H
il(t)

Figure P 14.7-4

P 14.7-5 Using Laplace transforms, find the response v(t) for 
t > 0 for the circuit of Figure P 14.7-5 when vs =  6e~3tu(t) V.

44 1
Answer: v =  — e~2t +  - e -5' -  9e~3t V

t = 0 4ft

Section 14.7 Circuit Analysis Using Impedance and 
Initial Conditions

P 14.7-1 Using Laplace transforms, find the response iL(t) for 
t > 0 for the circuit of Figure P 14.7-1.

2  kft

Figure P 14.7-5

P 14.7-6 Determine vQ(t) when the capacitance has an initial 
voltage v(0_) =  5 V, as shown in Figure P 14.7-6.

10w(r)

|- - - - - W V - - - - - 1

- 4 v Q )  5 h K |fL(')

Figure P 14.7-1

P 14.7-2 Using Laplace transforms, find the response iL(t) for 
t > 0 for the circuit of Figure P 14.7-2.

2  kft
Figure P 14.7-6

P 14.7-7 The motor circuit for driving the snorkel shown in 
Figure P l4.7-7ar is shown in Figure P 14.7-76. Find the motor 
current I2(s) when the initial conditions are ij(0“) = 2 A and 
*2(0 ) = 3 A. Determine i2(t) and sketch it for 10 s. Does the 
motor current smoothly drive the snorkel?
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(a)

2 Q 2 H

1 Q

Figure P 14.7-7 Motor drive circuit for snorkel device.

P 14.7-8 The input to the circuit shown in Figure P 14.7-8 is the 
voltage of the voltage source, 12 V. The output of this circuit is the 
voltage, vQ(f), across the capacitor. Determine vG(r) for t >  0.

Answer: v0(f) =  — (4 +  2e~t/2) V for t >  0

12 V

Figure P 14.7-8

P 14.7-10 The input to the circuit shown in Figure P 14.7-10 
is the voltage of the voltage source, 18 V. The output of this 
circuit, the voltage across the capacitor, is given by

v0(r) =  6 +  \2e~2t V when t >  0

Determine the value of the capacitance, C, and the value of the 
resistance, R.

Figure P 14.7-10

P 14.7-11 The input to the circuit shown in Figure P 14.7-11 
is the voltage source voltage

v*(f) =  3 — u(t) V

The output is the voltage

vo(0 =  10 +  5e~l00t V for / > 0

Determine the values of R\ and R2.

P 14.7-9 The input to the circuit shown in Figure P 14.7-9 is the 
voltage of the voltage source, 12 V. The output of this circuit is 
the current, i(t), in the inductor. Determine i(t) for t >  0.

Answer: i(t) = -3 (1  +  e~° 8t) A  for t > 0

Figure P 14.7-11

P 14.7-12 Determine the inductor current, /L(f), in the circuit 
shown in Figure P 14.7-12 for each of the following cases:

(a) R =  2 a  L = 4.5 H, C =  1/9 F, A =  5 mA, B =  - 2  mA
(b ) R =  1 a ,  1 =  0.4 H, C =  0.1 F, A =  1 mA, B =  - 2  mA
(c) R  = l f l ,  L =  0.08 H, C =  0.1F, A =  0.2 mA, B =

—2 mA

Figure P 14.7-9 Figure P 14.7-12
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(a)/? =  3 0 ,  I  =  2 H . C = 1 /2 4 F, A = 12V
(b) /? =  2 H , £ =  2 H, C — 1 /8 F, A = 12 V
(c) R  =  i o n .  L =  2H,  C =  1 / 4 0 F, A =  12 V

r = 0

P 14.7-13 Determ ine the capacitor current, i'c(0< in the circuit
shown in Figure P 14 .7-13 for each o f  the fo llow in g  cases:

vc(t)

Figure P 14.7-13

P 14.7-14 The voltage source voltage in the circuit shown in 
Figure P 14.7-14 is

vs(t) = 12 — 6u(t) V  

Determine v(t) for t > 0.

0.75i»a

Figure P 14.7-16

P 14.7-17 Determine the voltage vQ(r) for t >  0 for the circuit 
o f Figure P 14.7-17.

Hint: vc(0) =  4 V

Answer: v0(t) =  24^°75/ u(t) V  (This circuit is unstable.)

3 £2

Figure P 14.7-17

P 14.7-18 Determine the current iL(t) for / >  0 for the circuit 
o f Figure P 1 4 .7 -1 8 .

Hint: vc(0) =  8 V  and / l (0 )  =  1 A

Answer: /‘l ( 0  =  ^e~1 cos It  -f  ^e~ r sin 2t ĵ u(t) A

t = 0

Figure P 14.7-14

P 14.7-15 Determine the output voltage, vQ(f), in the circuit 
shown in Figure P 14.7-15.

Figure P 14.7-18

P 14.7-19 Figure P 14.7-19a shows a circuit represented in 
the time domain. Figure P 14.7-196 shows the same circuit, 
now represented in the complex frequency domain. Figure 
P 14.7-19c shows a plot o f the inductor current.

P 1 4 .7 -1 6  Determ ine the capacitor voltage, \ it),  in the circuit
show n in Figure P 14 .7-16 .
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(b)

Determine the values of D and E , used to represent the circuit 
in the complex frequency domain. Determine the values of the 
resistance R\ and the capacitance C.

P 14.7-21 Figure P 14.7-21a shows a circuit represented in 
the time domain. Figure P 14.7-216 shows the same circuit, 
now represented in the complex frequency domain. Determine 
the values of a, b , and d , used to represent the circuit in the 
complex frequency domain.

i(t)

(c )

Figure P 14.7-19

Determine the values of D and £, used to represent the circuit 
in the complex frequency domain. Determine the values of the 
resistance R2 and the inductance L.

P 14.7-20 Figure P 14.7-20a shows a circuit represented in 
the time domain. Figure P 14.7-206 shows the same circuit, 
now represented in the complex frequency domain. Figure 
P 14.7-20c shows a plot of the inductor current.

(a)

Figure P 14.7-20
(c)

(a)

(b)
Figure P 14.7-21

P 14.7-22 The circuit shown in Figure P 14.7-22 is at steady 
state before the switch opens at time t =  0. Determine the 
inductor voltage v(t) for t >  0.

p T c

Q 3 v

- A A A r
r 40 Q

5H ^ v(t) 3.846 mF i

I0 Q
■ A A A r

Figure P 14.7-22

P 14.7-23 The circuit shown in Figure P 14.7-23 is at steady 
state before the switch opens at time t = 0. Determine the 
voltage v(f) for t > 0.

+ u(t) - t = 0
1------------------f ----------- w v ----------< ° - i

:  < U = o  1 2 a J
'  2.4 H - V  8.59 mF ^ ^ 12 \ ( +

1__________I 1
Figure P 14.7-23
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P 14.7-24 The circuit shown in Figure P 14.7-24 is at steady 
state before the switch opens at time / =  0. Determine the 
voltage v(/) for / >  0.

15 V  when t >  0

v.(t) -

---------- W----------- 1
8 mF +

p  5 Q <I  2mF - -  y0(')

L J -

i(t) =  25 -  15w(f) mA
25 mA  

10 mA

when t <  0 

when t > 0

Figure P 14.7-27

Determine the response, i2(t). Assume that the circuit is at 
steady state when t <  0. Sketch i2(l) as a function o f t.

P 14.8-1 Consider the circuit of Figure P 14.8-1, where the 
combination of R2 and C2 represents the input of an oscilloscope. 
The combination of R\ and C\ is added to the probe of the 
oscilloscope to shape the response vQ(/) so that it will equal v,(/) 
as closely as possible. Find the necessary relationship for the 
resistors and capacitors so that vG =  avx where a is a constant.

Hint: Find the transfer function V0(s)/  V\(s). Choose R\ and 
Ci so that the transfer function does not depend on s.

Section 14.8 Transfer Function and Impedance

Figure P 14.7-24

P 14.7-25 The circuit shown in Figure P 14.7-25 is at 
steady state before time t = 0. Determine the voltage v(f) 
for t > 0.

5Q

10-10«(0 V (  +

Figure P 14.7-25

P 14.7-26 The input to the circuit shown in Figure P 14.7-26 
is the voltage source voltage

f 10 V  when t < 0
V i ( 0 =  10 +  5 k ( / ) V =  i

Figure P 14.8-1 Circuit for oscilloscope probe.

P 14.8-2 Consider the circuit shown in Figure P 14.8-2. Show 
that by proper choice o f L, the input impedance Z  =  V\(s)jIj(s) 
can be made independent o f 5. What value o f L satisfies this 
condition? What is the value o f Z  when it is independent o f s?

Figure P 14.7-26

Determine the response, v0(f). Assume that the circuit is at 
steady state when t < 0. Sketch v0(f) as a function o f t.

P 14.7-27 The input to the circuit shown in Figure P 14.7-27 
is the current source current

Figure P 14.8-2

P 14.8-3 The input to the circuit shown in Figure P 14.8-3 is 
the voltage, vx(t), o f the independent voltage source. The output 
is the voltage, v0(f), across the capacitor. Determine the transfer 
function, impulse response, and step response o f this circuit.

Figure P 14.8-3

P 14.8-4 The input to a linear circuit is the voltage Vj(f) and 
the response is the voltage v0(/). The impulse response, h(t), o f  
this circuit is:

h(t) = l2te~A'u(t) V  

Determine the step response o f the circuit.

Answer: ^  -  e~4‘ ^31 + ^  ̂  u(t) V
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2 H 6  il

4 i l > i » aW vb(t) = 5va(t)<^+_ y  V 12 F i  v0(t)

P 14.8-5 The input to the circuit shown in Figure P 14.8-5 is 
the voltage, V|(/), of the independent voltage source. The output 
is the voltage, vD(r), across the 5-kil resistor. Specify values of 
the resistance, R, the capacitance, C, and the inductance, L, 
such that the transfer function of this circuit is given by

*(,) = *&> =___ i l i i * ___
1 ' Vj(s) (s +  2000) (5 +  5000)

Answers: R =  5k 0 ,  C =  0.5 /zF, and I  =  1 H (one possible 
solution)

P 14.8-7 The input to the circuit shown in Figure P 14.8-7 is 
the voltage, V j ( / ) ,  of the independent voltage source. The 
output is the voltage, vo(0, across the capacitor. Determine 
the step response of this circuit.

Answer: vQ(t) =  [5 — 5e~2t( \ +  2t)]u(t) V

P 14.8-8 The input to the circuit shown in Figure P 14.8-8 is 
the voltage, V j( r ) ,  of the independent voltage source. The

6 il

+
v b{t) = k v a(t)<

|------ V A ------ - ------- o

- /  1
=  V0(i

r ...................... -------- o

Figure P 14.8-5

P 14.8-6 The input to the circuit shown in Figure P 14.8-6 is 
the voltage, Vj(f), of the independent voltage source. The 
output is the voltage, v0(/), across the 10-kQ resistor. Specify 
values of the resistances, R } and R2, such that the step response 
of this circuit is given by

v0(/) =  -4 (1  - e ~ 250t)u(t) V 

Answers: fl, =  10 kfi and R2 = 40 kfi

*1 
— V W -

®ito (b

output is the voltage, vQ(r), across the capacitor. The step 
response of this circuit is

vo(0  =  (2 +  4e~3t -  6e~2t)u(t)  V

Determine the values of the inductance, L, the capacitance, C, 
and the gain of the VC VS, k.

Answers: L = 2 H, C =  1/18 F, and k = 2 V/V (one possible 
solution)

P 14.8-9 The input to the circuit shown in Figure P 14.8-9 is 
the voltage, V j ( / ) ,  of the independent voltage source. The 
output is the voltage, vG(/). The step response of this circuit is

vo(0  =  0.5(1 +e~*‘)u ( t )V

Determine the values o f the inductance, I ,  and the resist­
ance, R.

Answers: L =  6 H and R =  12 II

12Q

0.1 jiF

10 kQ >  vM )

10 kQ

Figure P 14.8-6 Figure P 14.8-9
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P 14.8-10 An electric microphone and its associated circuit 
can be represented by the circuit shown in Figure P 14.8-10. 
Determine the transfer function H(s) = Vq(s)/V(s).

Answer. M f l  =  _________
' ' ‘ V(s) (R]Cs +  2)(2RCs +  1) — 1

« i

Answer:
Vi (s) RLCs2 +  (L +  RxRC)s + RX + R

12Q 0.11 H

+ R L
t------ 0I +

Loading coil > R
t>l C -

Leakage
> v 2

0---------------------- - path ------- O
Figure P 14.8-11 Telephone and load coil circuit.

P 14.8-12 An op amp circuit for a band-pass filter is shown in 
Figure P 14.8-12. Determine VQ(s)/V(s). Assume ideal op amps.

1

Answer: 1 =  —
V(s) s2 +

1
R\CX

Ri

R2C2

-s  +  -
1

R\Ri C\C2

P 14.8-13 A digital-to-analog converter (D A C ) uses an 
op amp filter circuit shown in Figure P 14.8-13 (Garnett, 
1992). The filter receives the pulse output from the DAC  
and produces the analog voltage, vG. Determine the transfer 
function o f the filter, VQ(s)/V(s). Assume an ideal op amp.

Figure P 14.8-10 Microphone circuit.

P 14.8-11 Engineers had avoided inductance in long­
distance circuits because it slows transmission. Oliver Heavi­
side proved that the addition o f inductance to a circuit could 
enable it to transmit without distortion. George A. Campbell o f  
the Bell Telephone Company designed the first practical 
inductance loading coils, in which the induced field o f each 
winding o f wire reinforced that o f its neighbors so that the coil 
supplied proportionally more inductance than resistance. Each 
one o f Campbell’s 300 test coils added 0.11 H and 12 f t  at 
regular intervals along 35 miles o f telephone wire (Nahin, 
1990). The loading coil balanced the effect o f the leakage 
between the telephone wires represented by R and C in Figure 
P 14.8-11. Determine the transfer function V2(s)/V\(s).

V2 (s) R

Figure P 14.8-13 Digital-to-analog converter filter.

P 14.8-14 A  series RLC circuit is shown in Figure P 14.8-14. 
Determine (a) the transfer function H(s), (b) the impulse 
response, and (c) the step response for each set o f parameter 
values given in the table below.

C ^ z v  0

Figure P 14.8-14

L C R

a 2 H 0.025 F 18 f t
b 2 H 0.025 F 8 f t
c 1 H 0.391 F 4 f t
d 2 H 0.125 F 8 f t

P 14.8-15 A  circuit is described by the transfer function

Vo = H i , 95+18
V\ [S) 3s2 +  18s2 +  395

Find the step response and impulse response o f the circuit.

P 14.8-16 The input to the circuit shown in Figure P 14.8-16 
is the voltage o f the voltage source, v*(/), and the output is the 
voltage, vD(f), across the 15 -k ft resistor.

(a) Determine the steady-state response, vG(/), o f this circuit 
when the input is v*(0 =  1.5 V .

(b) Determine the steady-state response, vG(/), o f this circuit 
when the input is vj(/) =  4 cos (100/ +  30°) V.

(c) Determine the step response, vQ(/), o f this circuit.
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Figure P 14.8-16

P 14.8-17 The input to the circuit shown in Figure P 14.8-17 
is the voltage of the voltage source, Vj(f), and the output is the 
capacitor voltage, vc(/). Determine the step response of this 
circuit.

Figure P 14.8-19

P 14.8-20 The input to the circuit shown in Figure P 14.8-20 
is the voltage of the voltage source, vj(/), and the output is the 
inductor current, iQ(t). Specify values for L, C, and K that cause 
the step response of the circuit to be

v0(f) =  (3.2 -  (3.2<T5' 4- 16te~5‘))u(t) V 
C

Figure P 14.8-17

P 14.8-18 The input to the circuit shown in Figure P 14.8-18 
is the voltage of the voltage source, vx(t), and the output is the 
resistor voltage, vQ(t). Specify values for L\, L2, R , and K  that 
cause the step response of the circuit to be

vo(0 =  (1 +  0.667<T50' -  \.667e~20') u ( t )  V

Figure P 14.8-20

P 14.8-21 The input to a circuit is the voltage Vj(f) and the 
output is the voltage vQ(/). The impulse response of the circuit is

Vo(f) =  6.5e~2'cos (2t  +  2 2 .6 > ( f )  V

Determine the step response of this circuit.

P 14.8-22 The input to a circuit is the voltage Vj(/) and the 
output is the voltage vG(r). The step response of the circuit is

vo(*) =  [1 -  e~'(\ +  3 t) ]u ( t)  V

Determine the impulse response of this circuit.

P 14.8-23 The input to the circuit shown in Figure P 14.8-23 
is the voltage of the voltage source, Vj(f), and the output is the 
voltage, vQ(/). Determine the step response of the circuit.

Figure P 14.8-18

P 14.8-19 The input to the circuit shown in Figure P 14.8-19 
is the voltage of the voltage source, Vj(r), and the output is the 
capacitor voltage, vQ(r). Determine the step response of this 
circuit.

Figure P 14.8-23

P 14.8-24 The transfer function of a circuit is H(s)=  
12

+  16~ Determ n̂e the step response of this circuit.

P 14.8-25 The transfer function of a circuit is H(s)=

Determine the step response of this circuit.
805

s2 -f- 85 H- 25 

Section 14.9 Convolution

P 14.9-1 Let f[t) denote the l-s pulse given b y /(/)  =  u(t)—u 
( t - 1). Determine the convolution flfYfif),  which is the con­
volution of the pulse with itself

Answer: f ( t )  * /( /)  =  tU(t) -  2 (t -  1 )u(t -  1) +  (/ -  2)
«i(f- 2)
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P 14.9-2 Consider a pulse of amplitude 2 and a duration of 2 s 
with its starting point at t =  0. Find the convolution of this 
pulse with itself.
P 14.9-3 A circuit is shown in Figure P 14.9-3. Determine (a) 
the transfer function V2(s)/Vi(s) and (b) the response v2(t) 
when vi = tu(t).
Answer: v2 =  / -  (1 -  e~"RC)/RC, t > 0

R

Figure P 14.9-3

P 14.9-4 Find the convolution of h(t) = t u(t) and fit) =  e~at 
u(t) for t > 0 using the convolution integral and the inverse 
transform of H(s)F(s).

a/ — 1 +  e~atAnswer:--------r------ , t > 0
a2

Section 14.10 Stability

P 14.10-1 The input to the circuit shown in Figure P 14.10-1 
is the voltage, Vj(/), of the independent voltage source. The 
output is the voltage, v0(r), across the resistor labeled R. The 
step response of this circuit is

vo(0 =  (3/4)(1 — e~m ')u(t) V

(a) Determine the value of the inductance, L, and the value of 
the resistance, R.

(b) Determine the impulse response of this circuit.
(c) Determine the steady-state response of the circuit when 

the input is vy(t) =  5 cos 100 t V.

5Q

v-Xt)

Figure P 14.10-1

+
v0M

P 14.10-2 The input to the circuit shown in Figure P 14.10-2 
is the voltage, Vj(/), of the independent voltage source. The

output is the voltage, vQ(/), across the capacitor. The step 
response of this circuit is

v0(/) =  [5 -  5e- a (l +  2/)]i/(0 V
Determine the steady-state response of this circuit when the 
input is

Vi(0 = 5 cos (2t -f 45°) V

Answer: v0(t) =  12.5 cos (21 — 45°) V
P 14.10-3 The input to a linear circuit is the voltage Vj(/) and 
the response is the voltage vG(/). The impulse response, h(t), of 
this circuit is

h(t)  =  30 te~5'u ( t)V

Determine the steady-state response of this circuit when the 
input is

v,*(f) =  10 cos (31) V 

Answer: vQ(t) =  8.82 cos (31 — 62°) V

P 14.10-4 The input to a circuit is the voltage vs. The output 
is the voltage vQ. The step response of the circuit is

V0 ( t )  =  (40 +  1.03e“8' -  4 \ e - ™ ' ) u ( t )

Determine the network function

V„(o>)
H(®) =

V,(®)
of the circuit and sketch the asymptotic magnitude Bode plot.

P 14.10-5 The input to a circuit is the voltage vs. The output 
is the voltage vc. The step response of the circuit is

v0(f) =  60(e-2' -  e~b')u(t)

Determine the network function

VoM
H H  = vsM

of the circuit and sketch the asymptotic magnitude Bode plot.

P 14.10-6 The input to a circuit is the voltage vs. The output 
is the voltage v„. The step response of the circuit is

v„(f) =  (4 +  32e-90')u(t)

Determine the network function

VoMH(«>) vs(a>)
of the circuit and sketch the asymptotic magnitude Bode plot.

6 Q

4Q c  i’a (t) vb(t) = k vaU) \

I— ------<-------°

r  c=
= v0 0

L --------o
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P 14.10-7 The input to a circuit is the voltage vs. The output 
is the voltage vQ. The step response of the circuit is

vo( t ) = l ( e - 5 ,- e - 20')u ( t )V

Determine the steady-state response of the circuit when the 
input is

vs(/) =  12 cos (30/) V

P 14.10-8 The input to a circuit is the voltage vs. The output 
is the voltage vG. The impluse response of the circuit is

v0(/) = e~5t(\0  -  50t)u(t) V

Determine the steady-state response of the circuit when the 
input is

vs(/) =  12 cos (10/) V

P 14.10-9 The input to a circuit is the voltage vs. The output 
is the voltage vG. The step response of the circuit is

v0(/) =  (1 -  e“20'(cos (4/) +  0.5 sin (4/)))w(/)V

Determine the steady-state response of the circuit when the 
input is

v8(/) =  12 cos (4/)V

P 14.10-10 The transfer function of a circuit is if H(s) = 
20

-----When the input to this circuit is sinusoidal, the output is
s +  8
also sinusoidal. Let co\ be the frequency at which the output 
sinusoid is twice as large as the input sinusoid and let (02 be the 
frequency at which output sinusoid is delayed by one 
tenth period with respect to the input sinusoid. Determine
the values of co\ and (02.

P 14.10-11 The input to a linear circuit is the voltage, v*. The 
output is the voltage, v0. The transfer function of the circuit is

H(s) Vq M  
Vi(s)

The poles and zeros of H(s) are shown on the pole-zero 
diagram in Figure P 14.10-11. (There are no zeros.) The dc 
gain of the circuit is

H(0) =  5

Figure P 14.10-11

Determine the step response of the circuit.

P 14.10-12 The input to a linear circuit is the voltage, vj. The 
output is the voltage, vQ. The transfer function of the circuit is

Vo(s)
H(s) =

Vi (s)

The poles and zeros of H(s) are shown on the pole-zero 
diagram in Figure P 14.10-12. At co =  5 rad/s, the gain of the 
circuit is

H(5) =  10

Figure P 14.10-12

Determine the step response of the circuit.

P 14.10-13 The input to a linear circuit is the voltage, v;. The 
output is the voltage, v0. The transfer function o f the circuit is

r 0(s)H(s) =
V i  ( s )

The poles and zeros of H(s) are shown on the pole-zero 
diagram in Figure P 14.10-13. (There is a double pole at 
s =  —4.) The dc gain of the circuit is

H(0) =  5

Figure P 14.10-13

Determine the step response of the circuit.

P 14.10-14 The input to a circuit is the voltage, v*. The step 
response of the circuit is

v0 =  5e-4,sin(2/)w(/) V

Sketch the pole-zero diagram for this circuit.

P 14.10-15 The input to a circuit is the voltage, Vj. The step 
response of the circuit is

Vo =  5te~4‘u{t) V 

Sketch the pole-zero diagram for this circuit.
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Section 14.11 Partial Fraction Expansion Using 
MATLAB

P 14.11-1 Find the inverse Laplace transform of V(s) = 
11.6s2 +  9 1 .8 3 5 +  186.525  

s 3 +  10.95s2 +  35.5255 +  29.25

P 14.11-2 Find the inverse Laplace transform of V(s) = 
8 s 3 +  139s2 +  774s +  1471 

s4 +  12s3 +  77s2 +  29 6 s +  464

P 14.11-3 Find the inverse Laplace transform of V(s) =
s2 +  6s +  11 s2 +  6s +  11

s 3 +  12s2 +  48 s +  64 (5 _j-4 )3

P 14.11-4 Find the inverse Laplace transform of V(s) = 
- 6 0  

s2 +  5s +  48 .5  

P 14.11-5 Find

V(s)=  " 3°

the inverse Laplace transform of

s2 + 25

Section 14.12 How Can We Check . . . ?

P 14.12-1 Computer analysis of the circuit of Figure P 14.12-1 
indicates that

and vc (r) =  6 + 3.3e“2 *' +  2.7e"15 9' V 
iL(t) = 2 + 0.96<T21' +  0.04e~15'9' A

■ J'R3M

after the switch opens at time t =  0. Verify that this analysis is 
correct by checking that (a) KVL is satisfied for the mesh 
consisting of the voltage source, inductor, and 12-0 resistor 
and (b) KCL is satisfied at node b.
Hint: Use the given expressions for iL(t) and vc(t) to deter­
mine expressions for vL(/), /c(f)» vR1(/), /r2(0 * and iRjit).
P 14.12-2 Analysis of the circuit of Figure P 14.12-2 when 
vc(0) =  —12 V indicates that

i\ (/) =  18e0 75' A and «2 (?) =  20e° 7S' A

after t = 0. Verify that this analysis is correct by representing 
this circuit, including i{(t) and i2(t), in the frequency domain, 
using Laplace transforms. Use 7i(s) and /2(s) to calculate the 
element voltages and verify that these voltages satisfy KVL for 
both meshes.

3  Q

4 / i  (r)

P 14.12-3 Figure P 14.12-3 shows a circuit represented in 
(a) the time domain and (b) the frequency domain, using 
Laplace transforms. An incorrect analysis of this circuit 
indicates that

h(s )  =
s +  2 

s2 + s + 5 and Pc(5) =
-20(s +  2) 

s(s2 +  s +  5)

(a) Use the initial and final value theorems to identify the error 
in the analysis, (b) Correct the error.

Hint: Apparently, the error occurred as Fc(s) was calculated 
from Ii{s).

Answer: Vc (s) =  -  - ( /  + 2 )  + -
w  s \ s 2 + s  + 5 j  s

(a) <b)
Figure P 14.12-3
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PSpice Problems
SP 14-1 The input to the circuit shown in Figure SP 14-1 is 
the voltage of the voltage source, Vi(/). The output is the 
voltage across the capacitor, vc(r). The input is the pulse signal 
specified graphically by the plot. Use PSpice to plot the 
output, vo(0, as a function of

Hint: Represent the voltage source using the PSpice part 
named VPULSE.

tfj(V)

4

-1 -
_L

SP 14-4 The input to the circuit shown in Figure SP 14-4 is 
the voltage of the voltage source, Vj(0- The output is the 
voltage across the capacitor, vQ(t). The input is the pulse signal 
specified graphically by the plot. Use PSpice to plot the 
output, vQ(/), as a function of t for each of the following cases:

(a) C =  1 F, L = 0.25 H, R x = R2 =  1.309ft
(b) C =  1 F, L =  1 H, =  3 f t, R2 =  1 f t
(c) C =  0.125 F, L =  0.5H , R\ =  1 ft, R2 = 4 f t

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

i>i(V)

5
4 20 24 f(ms)

Figure SP 14-1

SP 14-2 The circuit shown in Figure SP 14-2 is at steady 
state before the switch closes at time t =  0. The input to the 
circuit is the voltage of the voltage source, 12 V. The output of 
this circuit is the voltage across the capacitor, v(/). Use PSpice 
to plot the output, v(/), as a function of t. Use the plot to obtain 
an analytic representation of v(/), for t >  0.

Hint: We expect v(f) =  A -j- B e~t x for t >  0, where A , B, and 
r are constants to be determined.

15 t (s)

Figure SP 14-2

SP 14-3 The circuit shown in Figure SP 14-3 is at steady 
state before the switch closes at time t =  0. The input to the 
circuit is the current of the current source, 4 mA. The output of 
this circuit is the current in the inductor, i(t). Use PSpice to 
plot the output, i(t), as a function of t. Use the plot to obtain an 
analytic representation of i(t) for t > 0.

Hint: We expect i(t) =  A +  B e~t,x for t >  0, where A , B , and 
r are constants to be determined.

4 mA ( t

F igure SP 14-4

SP 14-5 The input to the circuit shown in Figure SP 14-5 is 
the voltage of the voltage source, v^f). The output is the 
voltage, v0(r), across resistor R2. The input is the pulse signal 
specified graphically by the plot. Use PSpice to plot the 
output, vG(r), as a function of t for each of the following cases:

(a) C =  IF , L = 0.25 H, R } = R2 =  1.309 ft
(b ) C  =  1 F, I  =  1 H, R x =  3 ft, R2 a  1 f t
(c) C  =  0.125 F, L = 0.5 H, R { =  1 ft, R2 = 4 f t

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part 
named VPULSE.

Ui(V)

_L
15 t (s)

Figure SP 14-3
Figure SP 14-5
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DP 14-1 Design the circuit in Figure DP 14-1 to have a step 
response equal to

vQ =  5te~4tu(t) V

Hint: Determine the transfer function of the circuit in Figure DP 
14-1 in terms of k, R, C, and L. Then determine the Laplace 
transform of the step response of the circuit in Figure DP 14-1. 
Next, determine the Laplace transform of the given step re­
sponse. Finally, determine values of k, /?, C, and L that cause the 
two step responses to be equal.

Answer: Pick L — 1 H, then k — 0.625 V/V, R — 8 ft, and 
C =  0.0625 F. (This answer is not unique.)

Design Problems
Hint: Determine the transfer function of the circuit in Figure 
DP 14-1 in terms of k, /?, C, and L. Then determine the Laplace 
transform of the step response of the circuit in Figure DP 14-1. 
Next, determine the Laplace transform of the given step response. 
Notice that these two functions have different forms and so cannot 
be made equal by any choice of values of k< R, C, and L.
DP 14-5 The circuit shown in Figure DP 14-5 represents an 
oscilloscope probe connected to an oscilloscope. Components 
C2 and R2 represent the input circuitry of the oscilloscope, and 
C1 and R[ represent the probe. Determine the transfer function 
H(s) = VQ(s)/V(s). Determine the required relationship so that 
the natural response of the probe is zero. Determine the required 
relationship so that the step response is equal to the step input to 
within a gain constant. Is this achievement physically possible?

Ci

F ig u re  DP 14-1

DP 14-2 Design the circuit in Figure DP 14-1 to have a step 
response equal to

v0 =  5e~4'sin(2/)w(f) V

Hint: Determine the transfer function of the circuit in Figure DP 
14-1 in terms of A:, R, C, and L. Then determine the Laplace 
transform of the step response of the circuit in Figure DP 14-1. 
Next, determine the Laplace transform of the given step re­
sponse. Finally, determine values of R, C, and L that cause the 
two step responses to be equal.

Answer: Pick I  =  1 H, then k =  1.25 V/V, R = 8 ft, and C =
0.05 F. (This answer is not unique.)

DP 14-3 Design the circuit in Figure DP 14-1 to have a step 
response equal to

v0 =  5 (e-2' — e~A,)u(t) V

Hint: Determine the transfer function of the circuit in Figure DP 
14-1 in terms of k, R, C, and L. Then determine the Laplace 
transform of the step response of the circuit in Figure DP 14-1. 
Next, determine the Laplace transform of the given step re­
sponse. Finally, determine values of k, R, C, and L that cause the 
two step responses to be equal.

Answer: Pick L =  1 H, then k =  1.667 V/VT R =  6 ft, and 
C = 0.125 F. (This answer is not unique.)

DP 14-4 Show that the circuit in Figure DP 14-1 cannot be 
designed to have a step response equal to

F ig u re  D P 14-5 Oscilloscope probe circuit.

DP 14-6 A bicycle light is a useful accessory if you do a lot of 
riding at night. By lighting up the road and making you more 
visible to cars, it reduces the chances of an accident. Although, 
generator-powered incandescent lights are the most common type 
used on bikes, there are a number of reasons fluorescent lights are 
more suitable. For one thing, fluorescent lights shine with a 
brighter light that fully covers the road, the rider, and the bike 
and really gets the attention of car drivers. Because they are 
shaped in narrow tubes that can mount alongside a bike’s frame, 
fluorescent lights offer less wind resistance than a comparable 
headlight with a flat face. When used with a generator, a 
fluorescent light offers additional advantages over a conventional 
incandescent light, first because it is more efficient—giving more 
light for the same pedaling effort—and, second, because it cannot 
be burned out by the overvoltage that a generator can produce 
when speeding down hills. Fluorescent lights also last longer than 
do incandescent bulbs, especially on a bicycle, on which vibra­
tions tend to weaken an incandescent bulb’s filament.

A model of a fluorescent light for a bike is shown in 
Figure DP 14-6. Select L so that the bulb current rapidly rises to 
its steady-state value and overshoots its final value only by less 
than 10 percent.

Transformer, 
bulb, and 
capacitor

W > . |  T '”

Generator

v0 =  5(e~2' +  e~4')u(t) V Figure DP 14-6 Fluorescent bicycle light circuit.
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15.1 I NTRODUCTI ON -------------------------------------------------------------------

This chapter introduces the Fourier series and the Fourier transform. The Fourier series represents a
nonsinusoidal periodic waveform as a sum o f  sinusoidal waveform s. The Fourier series is useful to
us in two ways:

• The Fourier series shows that a periodic waveform consists o f  sinusoidal components at different 
frequencies. That allows us to think about the way in which the waveform is distributed in 
frequency. For example, we can give meaning to such expressions as “ the high-frequency part o f  a 
square w ave.”

• We can use superposition to find the steady-state response o f  a circuit to an input represented by a 
Fourier series and, thus, determine the steady-state response o f  the circuit to the periodic waveform.

We obtain the Fourier transform as a generalization o f  the Fourier series, taking the limit as the period o f  a
periodic wave becomes infinite. The Fourier transform is useful to us in two ways:

• The Fourier transform represents an aperiodic waveform in the frequency domain. That allows us to 
think about the way in which the waveform is distributed in frequency. For exam ple, we can give  
meaning to such expressions as “ the high-frequency part o f  a pulse.”

• We can represent both the input to a circuit and the circuit itself in the frequency domain: the input 
represented by its Fourier transform and the circuit represented by its network function. The 
frequency-domain representation o f  circuit output is obtained as the product o f  the Fourier 
transform o f the input and the network function o f  the circuit.
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15.2 T H E  F O U R I E R  S E R I E S

Baron Jean-Baptiste-Joseph Fourier proposed in 1807 that any periodic function could be expressed 
as an infinite sum of simple sinusoids. This surprising claim predicts that even discontinuous 
periodic waveforms, such as square waves, can be represented using only sinusoids. In 1807, 
Fourier’s claim was controversial. Such famous mathematicians as Pierre Simon de Laplace and 
Joseph Louis Lagrange doubted the validity of Fourier’s representation of periodic functions. In 
1828, Johann Peter Gustav Lejeune Dirichlet presented a set of conditions sufficient to guarantee 
the convergence o f Fourier’s series. Today, the Fourier series is a standard tool for scientists and 
engineers.

Let’s consider periodic functions. The function f ( t )  is periodic if there exists a delay r 
such that

/ ( * ) = / ( * -  r) (15.2-1)

for every value o f t. This value of r  not unique. In particular, if  r  satisfies Eq. 15.2-1, then every 
integer multiple of r  also satisfies Eq. 15.2-1. In other words, if  r satisfies Eq 15.2-1 and k is any 
integer, then

f ( t )  = f ( t  -  k t )

for every value of t. To uniquely define the period, T, of the periodic function/( /) ,  we let T be the 
smallest positive value of r  that satisfies Eq. 15.2-1.

Next, we use the period T to define the fundamental frequency, cdq, of the periodic 
function /( /) ,

2n
a>o = (15.2-2)

The fundamental frequency has units o f rad/s. Integer multiples of the fundamental frequency are 
called harmonic frequencies.

A periodic function f ( t )  can be represented by an infinite series o f harmonically related 
sinusoids, called the (trigonometric) Fourier series, as follows:

(15.2-3)

where cd$ is the fundamental frequency and the (real) coefficients, and a0, an, and bn are called the Fourier 
trigonometric coefficients. The Fourier trigonometric coefficients can be calculated using

ao
j rT+to

f{ t)d t = the average value of/(f) (15.2-4)

— h

/»T -Mo
f ( t )  cos n CDptdt n > 0

to

rT+tQ
1 f{t) sin ncD[)tdt n>  0

115.2-5)

(15.2-6)
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The conditions presented by Dirichlet are sufficient to guarantee the convergence o f  the trigono­
metric Fourier series given in Eq. 15.2-3. The Dirichlet conditions require that the periodic function  
/'(/) satisfies the follow ing mathematical properties:

1. f ( t )  is a single-valued function except at possibly a finite number o f  points.
r t o + T

2. / ( / )  is absolutely integrable, that is, /  \ f ( t ) \ d t  <  oo for any/q-

3. f ( t )  has a finite number o f  discontinuities within the period T.

4. f ( t ) has a finite number o f  maxima and minima within the period T.

For our purposes, / ( / )  will represent a voltage or current waveform, and any voltage or current 
waveform that we can actually produce will certainly satisfy the Dirichlet conditions. W e shall assume 
that the Dirichlet conditions previously listed are always satisfied for periodic voltage or current
waveforms.

A Fourier series is an accurate representation o f  a periodic signal and consists o f  the sum o f  
sinusoids at the fundamental and harmonic frequencies.

Given a periodic voltage or current waveform, w e can obtain the Fourier representation o f  that 
voltage or current in four steps:

Step 1 Determine the period T  and the fundamental frequency coo-

Step 2 Represent the vo ltage or current w aveform  as a function  o f  t over one com p lete  
period.

Step 3 U se Eqs. 15.2-4, 5 and 6 to determine the Fourier trigonom etric coefficien ts a0, a n, 
and bn.

Step 4 Substitute the coefficients a0, a„, and b„ obtained in Step 3 into Eq. 15.2-3.

The following example illustrates this four-step procedure.

Figure 15.2-1 shows a full-wave rectifier having a cosine input. The output o f  a full-wave input is the absolute 
value o f its input, shown in Figure 15.2-2. A full-wave rectifier is an electronic circuit often used as a component 
o f such diverse products as power supplies and AM radio receivers. Determine the Fourier series o f  the periodic 
waveform shown in Figure 15.2-2.

E x a m p l e  1 5 . 2 - 1  Fourier Ser ies  o f  a F u l l -w a v e  
Rect if ied  C os in e

J

i<i (») = 5 cos 20t V --------- ► Full' Wave ---------► M ')  = IM')I
Rectifier

FIGURE 15.2-1 The circuit considered in Example 15.2-1.
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F IG U R E  15.2-2 A full-w ave rectified cosine.

Solution
Step 1: From Figure 15.2-2, we see that the period o f vc(r) is

3 n  7T _  71

=  40 40 =  20 S

The fundamental radian frequency is

rad/s

Step 2: Equations 15.2-4, 5, and 6 require integration over one full period of vQ(/). We are free to choose the 
starting point of that period, /G, to make the integration as easy as possible. Often, we choose to integrate either 
from 0 to T or from — T /2  to T/2.  In this example, the periodic waveform can be represented as

v0 ( f )  =  <

5 cos (20/) when — —z < t < 
y J 40 ”  “  40

—5 cos (20/) w hen^- <  / <  ^  
v ' 40 “  *  40

70 r7*/20 io  y*71'/40 z**/20
=  —  /  vQ{t)dt = —  5 cos (20t)dt + —  —5 (

X Jo X Jo X Jn/40

Consider the calculation of a0, using Eq. 15.2.4. If we choose to integrate form 0 to T, we have

! cos (20t)dt
o

On the other hand, if we choose to integrate from —T /2  to T /2 , we have

20 r T/40 20 r /40
a0 =  —  / vQ(t)dt =  — / 5 cos (20t)dt

71 J - r r / 4 0  71 J-n/40

The second equation is simpler, so we choose to integrate from —T /2  to -j-T/2 for convenience.

Step 3: Now we will use Eqs. 15.2-4, 5, and 6 to determine the Fourier trigonometric coefficients a0, an, and bn. First, 

20 [ 71 40 _ v . 100 /  I \  5 /  /7T\ /  7T \\ 10
^ | £ /<o5 c „ s ( 2 0 „ ^ ^ ( l S, n , 2 0 „ | -  )  - f  ( * ©  -  * ( - = ) )  - j !

Next,

40 r T/40 4 0  r /A0
an — —  /  5 cos (20/) cos (n coot)dt — — / 5 cos (20/) cos (40nt)dt

n  J - : t/40 X  J - n i 40
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Using a trigonometric identity.

cos (2 0 0  cos (40/i/) =  X-  ( cos (20 / +  4 0 « 0  +  cos (20r +  4 0 « /))

^ ( c o s ( ( l  +2n)20t) + c o s ( ( l  -  2n)20t))

Then,

—  f T 4° ( c o s ( ( l  + 2 n )2 0 t ) +  cos(( l  - 2 n )2 0 t ) )d t
n J-n/40

sin ((1 — 2 n )2 0 t) 71/40

100 fn/40 
- tt/4 0

1 0 0  (  s in((l -I-2 «)2 0 f) |T 40
+

n  I (1 +  2 n )2 0  I -tt/40 0  2 n )2 0 - jt/40,

/  sin |( 0 + 2 » > f ) | -  sin |( - ( l + 2 » ) f )

I (1 +  2/i)
+

sin | I -  sin |

( 1 - 2  n) /

2 0 (—1)"

n  V(1 +  2«) *r (1 -  2 n )J  7 r ( l - 4 « 2)
5 (  2 (—!)*_ _j_ 2 ( —1)"

Similarly,

40 r /40
—  / 5 cos (20/) sin (40 n t)d t
K  J -7 t/40

/7t/40
( sin ((2 n +  1)20/) +  sin ((2n — 1)20 t ) )d t

■7t/40

-  cos ((1 -  2«)20 0  ff/40

-n /4 0

ioo r /4°

H  J  —tc/ 40

1 0 0  ( — cos ( (1  +  2 /?)2 0 /)
7T (1 + 2 /1 )2 0

tt/4 0

- 7 t/4 0 (1 - 2 ^ ) 2 0
- 0

-7t/4 0  ,

In summary,

10 2 0 (—1)” 
a o =  — , an =  — ----- 7- ^  and bn =  0

7T
(15.2-7)

7r( 1 — 4/12)

Step 4: Substitute the coefficients a0, a„, and bn given in Eq. 15.2-7 into Eq. 15.2-3:

10 20 00 (— 1'I*
> '.« ) = -+ -E r r i? “ s<40"'> <l5-2-8>

n— 1

Equation 15.2-8 represents the rectified cosine by its Fourier series, but this equation is com plicated enough to 
make us wonder what we have accomplished. How can we be sure that Eq. 15.2-8 actually represents a rectified 
cosine? Figure 15.2-3 shows a M ATLAB script that plots the Fourier series given in Eq. 15.2-8. In particular, 
notice how the coefficients a0, a„, and bn determined in step 3 are used in the M ATLAB script. The plot produced 
by this MATLAB script is shown in Figure 15.2-4. The wave form in Figure 15.2-4 is indeed a rectified cosine  
having the correct amplitude, 5 volts, and correct period, ^  Si 0 .16 seconds. Thus, w e see that Eq. 15.2-8 does 
indeed represent the rectified cosine.



% Exl5_2_l.m - full-wave rectified cosine Fourier series
% -----------------------------------------------------------------------------------------------------
% Describe the periodic waveform, v(t)
% ------------------------------------------------------------------------------------------------------
T=pi/20; % period
a0=10/pi; % average value
% ------------------------------------------------------------------------------------------------------
% Obtain a list of equally spaced instants of time
% ------------------------------------------------------------------------------------------------------
wO=2*pi/T; % fundamental frequency, rad/s
tf=2*T ; % final time
dt=tf/200; % time increment
t=0:dt:tf; % time, s
% ------------------------------------------------------------------------------------------------------
% Approximate v(t) using the trig Fourier series.
% ------------------------------------------------------------------------------------------------------
v = aO*ones(size(t)); % initialize v(t) as vector
for n=l:100

an = 20*((-1)xn)/ (pi*(l-4*nx2)); 
bn = 0 ;
v = v + an*cos(n*w0*t) + bn*sin(n*w0*t);

end
% -------------------------------------------------------------------------------------------------------
% Plot the Fourier series
% -------------------------------------------------------------------------------------------------------
plot(t, v)
axis([0 tf 0 6] )
grid
xlabel(1 time, s *) 
ylabel('v(t) V')
title('Full-wave Rectified Cosine')

F IG l RE 15.2-3 
M A TLA B  script to 
plot the rectified 
cosine.

time, s
FIGURE 15.2-4 M A TLA B  plot o f the full-wave 
rectified cosine.



Next, we obtain an alternate representation o f  the trigonom etnc Fourier series. The Fourier 

series, given in Eq 15.2-3, can be written as.
oo

f [ t )  =  do +  ^ 2  (Qn cos n 0)01 + bn sin n (15.2-9)

^ 7 3 6 ^ ------- F o u r i e r  S e r i e s  a nd  F o u r i e r  T r a n s f o r m

n= 1

Using a trigonometric identity, the nth  term o f  this series can be written as

a„ cos nco0t +  bn sin nooot =  a„ cos n co0t +  b„ cos [n co0t -  90°) (15 .2-10)

Using phasors, we can represent the right-hand side o f  Eq 15.2-10 in the frequency domain. 
Performing a rectangular-to-polar conversion, w e obtain

& n l l 0  " I"  b n / — 9 0  =  0 „  j b n  —  C n / ® n_

where

cn — K  an<  ̂ — *

- ta n - i i f  a„ >  0

180° — tan 11 — | i f  a„ <  0

(15 .2-11)

and

a„ =  c„ cos 6n and b„ =  —c„ sin 9„

Back in the time domain, the corresponding sinusoid is

c„ cos (n coot +  9„)

After defining c0 to be

c0 =  cio =  average value o f / ( f )

The Fourier series is represented as

(15.2-12)

(15 .2-13)

To distinguish between the two forms o f  the trigonometric Fourier series, w e w ill refer to the series 
given in Eq. 15.2-3 as the sine-cosine Fourier series and to the series given in Eq. 15.2-13 as the 
amplitude-phase Fourier series.

In general, it is easier to calculate an and b„ than it is to calculate the coefficients c n and 9„. We 
will see in Section 15.3 that this is particularly true when f ( t )  is symmetric. On the other hand, the 
Fourier series involving c„ is more convenient for calculating the steady-state response o f  a linear 
circuit to a periodic input.

Determine the Fourier series o f  the pulse waveform shown in Figure 15.2-5.

Solution
Step 1: From Figure 15.2-5, we see that the period o f  vo(0  is

E x a m p l e  1 5 . 2 - 2  Fourier Ser ies  o f  a Pulse W aveform
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* « ,v

t, s

JL
40

_/r_ jr
10 8 FIG U R E 15.2-5 A pulse waveform.

The fundamental frequency is

ft>0 = Y  = 20 rad/s

Step 2: Over the period from 0 to 7r/10, the pulse waveform is given by

v(0 =
5 when 0 <  t <

~  ~  40
71 71

0 when — <  t < — 
40 -  “  10

Step 3: Next, we will determine the Fourier coefficients a0, an, and bn. First, we will calculate a0 as the average 
value of v(t):

a o
area under the curve for the one period \40 / 40

one period, T 71

T o

=  1.25 V

Next,

20 r*/40 20 f n/w 20 f n/4{)
an — —  / 5 cos (n coot)dt H-----/ 0 cos (n coot)dt =  — /  5 cos (20nt)dt

71 Jo X Jn/4o 71 Jo
20 /,,r/10 

/  7r/40

20 f 71/40

20(5) /  sin (20nt)
71 20 n

ji/ 40 > 

0 )
=  —  sin

Y17Z

. friTT'

i n ( y .

Similarly,

20 f n/M> e 20 [ n/40 r 20(5) ( — cos (20nt) */40\  5 /  /httnn
bn = - J o a)ot)dt ~ — J o (20nt)dt =  — ^  ^  J =-(l- cos ( y ) )

In summary,

a0 =  1.25, a" = ~  sin ( y )  and b» ~  ~  (* ~  cos ( t ) )  

Step 4: Substitute the coefficients a0. an, and b„ given in Eq. 15.2-7 into Eq. 15.2-3:

5 00
vQ(t) =  1.25 +  —  ^  ( sin cos (20wf) +  ^1 — cos si*1 (20«f)^

(15.2-14)

(15.2-15)
H=l

Figure 15.2-6 shows a MATLAB script that plots the Fourier series given in Eq. 15.2-15. In particular, notice how 
the coefficients a0, an, and bn given in Eq. 15.2-14 are used in the MATLAB script. The plot produced by this 
MATLAB script is shown in Figure 15.2-7. The waveform in Figure 15.2-7 is indeed a pulse waveform having the

correct amplitude, 5 volts, and correct period, ~  0.32 seconds.
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% Exl5 2 2.m - pulse waveform Fourier series
% ---------------------------------------------------------------------------------------------
% Describe the periodic waveform, v(t)

T=pi/10; 
aO=l.25;

% period 
% average value

% Obtain a list of equally spaced instants of time

% Approximate v(t) using the trig Fourier series.
% -----------------------------------------------------------------------------------------------------------

v = aO*ones(size(t)); % initialize v(t) as vector
for n=l:500

an = (5/n/pi)*sin(n*pi/2);
bn = (5/n/pi)*(1-cos(n*pi/2));
cn = abs(an - j*bn);
thetan = angle(an - j*bn);
v = v + cn*cos(n*w0*t + thetan);

end

Plot the Fourier series

plot(t, v)
axis([0 tf 0 6] )
grid
xlabel('time, s') 
ylabel('v(t) V ')  
title('Pulse Waveform'

\

w0=2 *pi/T; % fundamental frequency, rad/s
tf=2.5*T; % final time
dt=tf/200; % time increment
t = 0:d t :t f ; % time, s

FIGURE 15.2-6
MATLAB script to 
plot the pulse 
waveform.



E X E R C IS E  15.2-1  Suppose /,(/■) and f 2(t) are periodic functions having the same period, T. 
Then f x(t) and f 2(t) can be represented by the Fourier series

OC

/ 1 (0 = a\o + ^2 (a,n cos (WCt,°0 + *>" sin (na>oO)
n= l

and
oo

f 2(t) -  a20 +  ^ 2  (a2n cos (nwot) +  bln sin
n= 1

Determine the Fourier series o f the function

/ M  =  * 1 / 1 ( 0  +  * 2/ 2 ( 0
oc

> 4 « S H W ; / ( 0  =  ( * l f l 10 +  * 2^ 20) +  5 1  ( (* 1 0 1 *  +  * 2 « 2 n ) COS («aJoO
"=' + (* i6 i»  +  k2b2n) sin (nojot))

E X E R C IS E  15 .2 -2  Determine the Fourier series when f ( t )  = K, a constant.

Answer: ao = K  and an = bn =  0 for n >  1

E X E R C IS E  15 .2 -3  Determine the Fourier series when / ( f )  — A cosa>ot.

Answer: ao =  0, a\ — A, an — 0 for n >  1, and bn =  0

S ym m etry  of the Function f ( t )

15.3 S Y M M E T R Y  OF  T H E  F U N C T I O N  f ( f )  -----------------------------------------

Four types of symmetry can be readily recognized and then used to simplify the task o f calculating 
the Fourier coefficients. They are the following:

1. Even-function symmetry

2. Odd-function symmetry

3. Half-wave symmetry

4. Quarter-wave symmetry

A function is even w hen /(f) =  / ( —f), and a function is odd w hen /(f) =  - / ( - f ) .  The function 
shown in Figure 15.2-2 is an even function. For even functions, all bn =  0 and

4 r T/2
an =  j ,  J  f ( t )  cos na)0t dt

For odd functions, all an =  0 and

4 f T/1 ,
b n = f J  f W ™ ”° * ‘ dt

An example of an odd function is sina>of. Another odd function is shown in Figure 15.3-1. 
Half-wave symmetry for a function / ( f )  is obtained when

/ ( 0  =  - / ( ' - £ )  (15.3-1)

In these half-wave symmetric waveforms, the second half of each period looks like the first half turned 
upside down. The function shown in Figure 15.3-2 has half-wave symmetry. If a function has half-wave



-1  -
FIGURE 15.3-1 An odd function with 
quarter-wave symmetry.

symmetry, then both a„ and bn are zero for even values o f  n. We see that uq =  0 for half-wave symmetry 
because the average value o f  the function over one period is zero.

Quarter-wave sym m etry  describes a function that has half-wave symmetry and, in addition, has 
symmetry about the midpoint o f  the positive and negative half-cycles. An exam ple o f  an odd function 
with quarter-wave symmetry is shown in Figure 15.3-1. If a function is odd and has quarter-wave 
symmetry, then a0 =  0, a„ =  0 for all n ,b „  =  0 for even n. For odd n, bn is given by

If a function is even and has quarter-wave symmetry, then oq =  0, bn =  0 for all «, and a„ =  0 for 
even n. For odd «, a„ is given by

The calculation o f  the Fourier coefficients and the associated effects o f  symmetry o f  the 
waveform f ( t )  are summarized in Table 15.3-1. Often, the calculation o f  the Fourier series can be 
simplified by judicious selection o f  the origin (t =  0) because the analyst usually has the choice to 
select this point arbitrarily.

Table 15.3-1 Fourier Series and Sym m etry

SYMMETRY FOURIER COEFFICIENTS

1. Odd function = 0 for all n

T/ 4
bn =  - / ( / )  sin na>ot d t

8 r T/4
-  f ( t )  cos ncoot d t

2. Even function bn — 0 for all n
/ ( ')  = / H )

a,

3. Half-wave symmetry a 0 = 0
an — 0 for even n
bn = 0 for even n

T/2

an =  ■ f ( t )  cos ncoot dt for odd n

T/2

bn — • f ( t )  sin ncoot dt for odd n

4. Quarter-wave symmetry Half-wave 
symmetric and symmetric about the 
midpoints of the positive and negative 
half-cycles

A. Odd function: a0 =  0, a„ = 0 for all n
bn =  0 for even n

— ■ / ( / )  sin nio^t dt for odd n

B. Even function: a0 =  0, bn = 0 for all n

an =  0 for even n 
8 f T/ 4

an — j, J  /( / )  cos ncoi)t dt for odd n
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E x a m p l e  1 5 . 3 - 1  S y m m e tr y  and th e  F o u r ie r  S e r ie s

1

vit), V

3^r
8
I

\
3 n
8

/ r \  /  
4 N /- 4 -

1
n  n  
8 4

t, s

F IG U R E  15.3-2 An odd function with 
half-w ave sym m etry.

Determine the Fourier series for the triangular waveform v(/) shown 
in Figure 15.3-2.

Solution
Step 1: From Figure 15.3-2, we see that the period of vo(0 is

7T /  7t\ 71

4 ~  V 4 / ~ 2  S
The fundamental frequency is

2n
coo = —  — 4 rad/s

Step 2: If we don’t take advantage of the symmetry of the triangle waveform, determining the Fourier coefficients 
a0, an, and bn will require integration over a full period— either from 0 to Tor from - T / 2  to T/2. Accordingly, we 
can represent v(/) from time -  T /2  to T, that is, from —7r/8 to tz/2 seconds. By writing equations for the various 
straight-line segments that comprise the triangle waveform, we can represent v(t) as

v ( 0

If we take advantage o f symmetry, we will need to integrate only from 0 to T /2, that is, from 0 to 7t/ 8 seconds. If
we need to represent v(t) only from 0 to 7t/8 seconds, we don’t have to write equations for so many straight-line
segments. In this case, we need to write the equation only for one straight line to represent v(r) as

z . 32 71 71
v(t) — — t w h e n ---- <  t < —

Ti 8 8

Step 3: Next, we will determine the Fourier coefficients a0, an, and bn. First, the average value of the triangle
waveform is 0 volt

ao = the average value of v(t) =  0 
The triangle waveform has odd symmetry . From entry 1 of Table 15.3-1, an — 0 for all n and

r 32 3 tt 71
8 when — —  < / <  —

7r * 8 ~  “  8
32 71 7T
—  t when — — < / <  —
71 8 ~  ~  8
32 71 3 tt

------1 + 8 when — < / < ——
71 8 “  “  8
32 3tt 5tt
— t - 16 when —  < t < —

< 71

001100

4 rT/2 g rit/4
bn = — I v(r) sin na>ot dt =  — /  v ( t ) s m 4 n td t

* Jo 71 Jo
r w / S  / 3 2  \  r n / 4  /  n

/ —  t )  sin Ant dt  -f / ------
Jo \ X  J i n !  8 V 7T

/ -f 8 I sin Ant dt

Noticing that the triangle waveform has quarter-wave symmetry provides a simpler equation for determining bn. 
Using entry 4A of Table 15.3-1, we see that b„ — 0 for even n. For odd «,

* 8 f T/4 . 512 [ n/* 512
b n - -  v(f) sm ncootdt -  —— / r s in 4 « r ^  =  —r

* Jo Jo n2
sin Ant — Ant cos Ant

16 n2

n f  8 

0

b„ =
32

sm
K )

for odd n
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In summary,

a0 =  0, a„ =  0 for a l l«, and b,

Step 4: The Fourier series is

f -^ 7  sin ( n ^ )  for odd/? 
•„ = < j t  n  \  2 )

[ 0 for even n

v(?) =  p  ^ 2  ~ 2  sin (y )  sin (4/7/) (15.3-2)
odd n= \

Notice the notation used in Eq. 15.3-2 to indicate that the summation includes only terms corresponding to the odd

values o f  n.
Figure 15.3-3 shows a M ATLAB script that plots the Fourier series given in Eq. 15.3-2. The plot produced 

by this MATLAB script is shown in Figure 15.2-3. The waveform in Figure 15.2-4 is indeed a triangle having the

Exl5 3 l.m - triangle waveform Fourier series

T=pi/2; 
a0 = 0 ;

Describe the periodic waveform, v(t)

% period 
% average value

% Obtain a list of equally spaced instants of time

wO=2*pi/T; 
t f = 1 . 5 * T ; 
dt=tf/500; 
t = 0 : dt: t f ;

% fundamental frequency, rad/s 
% final time 
% time increment 
% time, s

% Approximate v(t) using the trig Fourier series.

j initialize v(t) as vectorv = a0*ones(size(t)); 
for n=l:2:200 

an = 0;
bn = (32/n/n/pi/pi)*sin(n*pi/2); 
v = v + bn*sin(n*w0*t);

end

Plot the Fourier series
plot(t , v)
axis( [0 tf - 5  5 ] )
grid
xlabel('time, s')
ylabel('v(t) V ')
t i t l e ( ' T r i a n g l e  W a v e f o r m ' )

J
FIGURE 15.3-3
M A T L A B  m-file.
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Triangle Waveform

time, s F IG U R E  15.3-4 M A TLA B output.

correct amplitude, 8 volts peak-to-peak, and correct period, — =  1.6 seconds. Thus, we see that Eq. 15.3-2 does 
indeed represent the triangle waveform.

E X E R C IS E  15 .3-1  Determine the Fourier series for the waveform f ( t )  shown in Figure 
E 15.3-1. Each increment of time on the horizontal axis is 7t / 8  s , and the maximum and minimum 
are +1 and — 1, respectively.

FIG U R E E 15.3-1 The period T =  ^  s.

E X E R C IS E  15 .3 -2  Determine the Fourier series for the waveform f ( t )  shown in Figure 
E 15.3-2. Each increment o f time on the horizontal grid is tt / 6  s ,  and the maximum and minimum 
values o f f ( t )  are 2 and —2, respectively.

FIGURE E 15.3-2 The period T — jts.
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E X E R C I S E  1 5 .3 -3  For the periodic signal f ( t )  shown in Figure E 15.3-3, determine whether the 
Fourier series contains (a) sine and cosine terms and (b) even harmonics and (c) calculate the dc value.

A nsw ers:  (a) Yes, both sine and cosine terms; (b )  no even harmonics; (c) a0 =  0

15.4 FOURIER SERIES OF SELECTED WAVEF ORMS ----------------

Table 15.4-1 provides the trigonometric Fourier series for several frequently encountered waveform s. 
Each o f  the waveforms in Table 15.4-1 is represented using two parameters: A is the amplitude o f  the 
waveform, and T  is the period o f  the waveform.

Figure 15.4-1 shows a voltage waveform that is similar to, but not exactly the same as, a 
waveform in Table 15.4-1. To obtain a Fourier series for the voltage waveform , we select the Fourier 
series o f  the similar waveform from Table 15.4-1 and then do four things:

1. Set the value o f  A equal to the amplitude o f  the voltage waveform.

2. Add a constant to the Fourier series o f  the voltage waveform to adjust its average value.

Table 15.4-1 The Fourier Series of Selected W aveform s

FUNCTION

n

/(')

d d
2 2

0 T T 
2

fit)

1 t

TRIGONOMETRIC FOURIER SERIES

Square wave : = ~

f(t)  =  -  -i. —  sin ((2n -  l ) o y )
2 it 2 /1-1

Pulse wave: om =  —
T

. ( n7rd\
f ( . Ad 2A ^  Sm I T )

/ ( 0  — H-----------T --------- cos (ncoot)
T 71 h  "

(continued)
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TRIGONOMETRIC FOURIER SERIES

Half-wave rectified sine w ave: a>o —
2n

. A A . 2A cos (2n (Dot)

Full-wave rectified sine w ave: a>o —
2n

r f ^ _ 2 A  4A cos (n coot) 
4n2 — 1«=i

2 7T
Sawtooth w ave: coo =  —  

_  A ^  A sin (n copt)
2 TZ nn= 1

Triangle wave: too — -
2 71

/ «
^  44 ^  cos ((2n — 1 )coot)

= 2 ( 2 » - i r

(Continued)

FUNCTION

/(')

1
2

/(r) = \A  sin (orI

3 T
2

3. Set the value of T equal to the period of the voltage waveform.

4. Replace t by / — tQ when the voltage waveform is delayed by time tQ with respect to the 
waveform in Table 15.4-1. After some algebra, the delay can be represented as a phase shift in 
the Fourier series o f the voltage waveform.

E x a m p l e  1 5 . 4 - 1

Determine the Fourier series of the voltage waveform shown in Figure 15.4-1.

F IG U R E  15.4-1 A voltage w aveform .

Solution
The voltage waveform is similar to the square wave in Table 15.4-1. The Fourier series o f the square is

sin ((In — l)o>o/)ri \ A 2A
7r n— 1 In -  1
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Step 1: The amplitude o f  the voltage waveform is 3 -  ( - 2 )  =  5 V. After setting A -  5, the Fourier series

becomes

10 ^  sin ((2 n — l)o>o0
2.5 +

I n  -  1
n — \

Step 2: The average value o f  the Fourier series is 2.5, the value o f  the constant term. The average value o f  the 
voltage waveform is (3 +  (—2 ) ) /2  =  0.5 V. We change the constant term o f  the Fourier series from 2.5 to 0.5 to 
adjust its average value. This is equivalent to subtracting 2 from the Fourier series, corresponding to shifting the 

waveform downward by 2 V:

0 5  +  1 0 V ^  sin ( ( 2 / i -  1 ]copt)

2n ~  1

Step 3: The period o f  the voltage waveform is T  =  6 -  ( - 2 )  =  8 ms. The corresponding fundamental frequency

is

&>o =  =  250 jt rad/s
0.008

After setting a>o =  250 n  rad/s, the Fourier series becom es

1 0 ^  sin ((2 n — 1)250 n t)
0 .5 +  —  V ------^ \ -----------

n  2 / 1 - 1
n =  1

Step 4: The square wave in Table 15 .4-1 has a rising edge at time 0. The corresponding rising edge o f  the voltage  
waveform occurs at —2 ms. The voltage waveform is advanced by 2 ms or, equivalently, delayed by —2 ms. 
Consequently, we replace t by t — ( —0.002) =  t +  0 .002 in the Fourier series. We notice that

sin ((2n — 1)250 n ( t  +  0 .002)) =  sin ( ( 2 n — 1) ^250 n t  +  =  sin ((2 n — 1 )(250  +  90°))

After replacing f by r -t- 0.002, the Fourier series becom es

10 ^  sin ( ( 2 / i -  l) (2 5 0  7rt +  90°))
Tt 2 n — 1n — \

15.5 EXPONENTIAL FORM OF THE FOURIER SERIES

Using Euler’s identity, we can derive the exponential form o f  the Fourier series from the trigonometric 
Fourier series. Recall from Eq. 15.2-13 that the amplitude-phase form o f  the Fourier series is given by

OO
f ( t )  =  c 0 +  '^ 2 c n cos (nco0t +  6n) (15 .5-1)

n— 1

Euler’s identity is

eie =  cos 6 + j  sin 9 (15.5-2)



Exponent ial  Form of the Fourier Series

cos0 =  ^(e>e + e-je) (15.5-3)

Using Euler’s identity, the nth term of the Fourier series is written as

c„ cos (ncoot + en) = c „  ( - ------------ ± £ ------------ J  =  |  ( e J ^ e . )  +  e -AnM ) ^ ( , 5 5.4)

Using Eq. 15.5-4 in Eq. 15.5-1 gives

, x 00

A consequence of Euler’s identity is

f ( t )  =  co +  +  ^ (',“0,+fl”))  = c 0 +  £  +  £  ( y e " A ) e
*=1 2 «=1 n=l

-jrnoot

115.5-5)

Define

C0 =  c0, C n = C-~ej6\  and C _ „ = y e A  (15.5-6)

Then / ( f )  can be expressed as

OC 00
/ ( f )  =  Co +  £  C neJnwo‘ + Y ,  C-„e~jnwo1 (15.5-7)

n=l n= 1

Introducing the notation

C0 =  Coe-'0 =  C0

we can write Eq 15.5-7 as

oo
/ ( f )  -  Q .e * - '  (15.5-8)

n=—oo

Equation 15.5-8 represents/(f) as an exponential Fourier series. The complex coefficients Cn of the 
exponential Fourier series can be calculated directly from f ( t )  using

i rto+T
Cn m r J t f{ t)e~ jn<O0td t  (15.5-9)

Referring to Eq. 15.5-6, we notice that C_„ is the complex conjugate of Cn, that is, C n =  C*_n. Using 
Eqs. 15.5-6 and 15.2-11, we see that the coefficients o f the exponential Fourier series are obtained 
from the coefficients of the sine-cosine Fourier series, using

C = £ = g ^ asg ; a n d  C = cj £ f l  = aJ L ± J ^  (15.5-10)
2 2 2 2

Equivalently, the coefficients of the sine-cosine Fourier series are obtained from the coefficients o f the 
exponential Fourier series, using

a„ =  C „ +  C_„ and bn = j ( C n -  C . n) (15.5-11)

The coefficients o f the exponential Fourier series of selected waveforms are given in Table 15.5-1.
Recall that bn — 0 when / ( f )  is an even function. Consequently, C_n =  C„ when /( f )  is an even
function. Similarly, C_„ =  — C„ w hen /(f) is an odd function.
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Complex Fourier Coefficients for Selected W aveform

WAVEFORM

NAME OF WAVEFORM  
AND EQUATION SYMMETRY C„

1
2

fit)

-A

1
2

Square wave

A,
/ «  =

- T  T
I T  <  1 <  7  4 4
t  3 r

- /J , T  <  t < —  
4 4

Even , sin mr/2 

— 0, n =  0 and n even

6 0 S  
~2 2

Rectangular pulse

/ ( ')  =A, ^  < / < Sz

& sin (nnS /T ) 
Even ~  T (mrS/D

Triangular wave Even = A
sin 2 (nn/2)

(nn/2) 
= 0, n =  0

4. Sawtooth wave

/ ( / )  =  2At/T  = f < t < T-

Odd =  i4 /(—1)"/imt, n ^ 0

=  0, /z =  0

5.

T
2

Half-wave rectified sinusoid
sin coot, 0 <  t < T/2 

- T /2  < t <  0

None : l /7 r ( l  — h2 ), n e v en  

: - j / 4, n =  ±1

: 0 . o th erw ise

Full-wave rectified sinusoid
/ ( / )  =  |sin o>0/|

Even : 2/7t(1 -  /?2), n even 

0, otherwise
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E x a m p l e  1 5 . 5 - 1  E x p o n e n tia l F o u r ier  S e r ie s  y

Determine the exponential Fourier series for the function v(t) shown in Figure 15.5-1.

F IG U R E  15.5-1 A square wave.

1 % Exl5_5_l.m - Exponential Fourier Series - square wave
% ------------------------------------------------------------------------------------------------------
% Describe the periodic waveform, v(t)
% --- 
A=6 ; 
T=10 ; 
C 0  = 0 ;

% period 
% average value

% Obtain a list of equally spaced instants of time
% ----------------------------------------------------------------------------------------------------
wO=2*pi/T; % fundamental frequency, rad/s
tO=-T; % initial time
tf=l.5*T; % final time
dt=tf/500; % time increment
t=-T:dt:tf; % time, s

% Approximate v(t) using the exp Fourier series.
% --------------------------------------------------------------------------------------------------

v = cO*ones(size(t)); % initialize v(t) as vector
for n=l:2:200

Cn = (2*A/pi/n)*sin(n*pi/2);
v = v + Cn*exp(j*n*w0*t) + Cn'*exp(-j*n*w0*t);

end

%

%
Plot the Fourier series

p l o t ( t ,  v)
axis( [ t O  t f  - ( A + l )  A + l ]  ) 
grid
x l a b e l ( ' t i m e ,  s 1 ) 
y l a b e l ( ' v ( t ) V 1 ) 

t i t l e ( ' S q u a r e  W a v e ’ )

F IG U R E  15.5-2 
M A TLA B m-file 
used in Exam ple 
15.5-1.
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“  value o f v(0 is zero, so Co -  0. Then, using Eq. 15.5-9, with =  - T / 2 ,  we obtain

■T/ 4
-A e - jnm'dt +

r/2 flT/ 4
A e - jnm'd t  +

T/4
1 f T / 2  -  

T  J - T / 4

J4e ~jnwo‘

jncooT
A

jnco0T

-jnuxjt I -  T/ A „ —jnwat Ir / 4 , -jnax,t Ir / 2 \
1—r / 2  — l - r / 4  ^ e  l r / 4 ;

{2e'nn^  — 2e~inn^  +  e_yn7r — e>nTr̂j

N f 0
) =  < 2A . ( ^) 1 —  sin I

I  YlH V 2 /

for even n

Notice that / ( f )  is an even function, so we expect C_„ — C„. In particular, we calculate

/ ls in jr /2  2A s in ^  r  A sin (37t/2) _  2A
C _i =  Ci = -7̂ -  =  — . C - 2 =  C 2 = A — —  =  0 and C _ 3 -  C 3 -

ff /2  ^  tt 3tt/ 2 3 ^

Figure 15.5-2 shows a M ATLAB script that plots v(f) using its the exponential Fourier series. The plot produced  
by this MATLAB script is shown in Figure 15.5-3. The waveform in Figure 15.5-3 is indeed a square having the 
correct amplitude and correct periods.

Square Wave

6

4
2

0

-2

-4
-6

-10 -5 0 5
time, s

10 15
FIGURE 15.5-3 MATLAB output.

MATLAB has a built-in function called FFT (Fast Fourier Transform) that can be used to 
calculate the coefficients o f  the exponential Fourier series. Figure 15.5-4 shows a M ATLAB function 
called EFS (for Exponential Fourier Series) that uses FFT to calculate the coefficients o f  the 
exponential Fourier series o f  a periodic function. (EFS follow s closely the discussion o f  Fourier 
series in Chapter 22 o f  Hanselman and Littlefield, 2005.) N otice that EFS does not include a 
description o f  the periodic function. Instead, EFS calls a M ATLAB function named m y_periodic_- 
function. We describe our periodic function,/ ( / ) ,  in the M ATLAB function m y_periodic_function. As 
a result, EFS can be used, unchanged, to find the Fourier series coefficients o f  a variety o f  periodic 
functions when we make appropriate changes to my_periodic_function.

The word/unction  is being used in two different ways. First, we have the mathematical function, 
for instance, f ( t )  as a function o f  t. Second, we have the M ATLAB function, a type o f  computer 
program. Although different, these two types o f  function can be related. In the present case, the 
MATLAB function my_periodic_function implements the mathematical function/ ( / )  by providing 
the value o f  /corresponding to any particular value o f  t.

The following examples show how to use the M ATLAB function EFS to find the exponential 
Fourier series o f  periodic functions.
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function [CO, Cn] = EFS(N, T)
%EFS Exponential Fourier Series
% returns the coefficients of the exponential Fourier 
% Series of a periofic function described in the 
% MATLAB function named my_periodic_function.m 
%
% N = the number of harmonic frequencies 
% T = the period of the periodic function 
%
% CO=average value
% Cn(1)=C1, Cn(2)=C2, . .., Cn(N)=CN

% --------------------------------------------------------------------------------------------------------
% Obtain a list of equally spaced instants of time
% --------------------------------------------------------------------------------------------------------
n=2*N;
t=linspace(0,T,n+l); 
t (end) = [] ;
% ---------------------------------------------------------------------------------------------------------
% Obtain values of f(t) at those instants of time
% ---------------------------------------------------------------------------------------------------------
f=my_periodic_function(t,T);
% ---------------------------------------------------------------------------------------------------------
% Obtain the Fourier coef and do required bookkeeping
% ---------------------------------------------------------------------------------------------------------
Cn=fft(f);
Cn=[conj(Cn(N+l)) Cn(N+2:end) Cn(l:N+l)];
Cn=Cn/n;
C0=Cn(N+l);
Cn= [Cn(N+2:end) ] ;

F IG U R E  15.5-4 M A TLA B function to calculate the coefficients o f  the exponential Fourier series.

E x a m p l e  1 5 . 5 - 2  E x p o n e n t ia l  F o u r ie r  S e r ie s  
U s in g  M A T L A B

Determine the exponential Fourier series for the function f ( t )  shown in Figure 15.5-h using MATLAB.

Solution
We need to write the MATLAB function, my_periodic_function, shown in Figure 15.5-5. The inputs to this 
function are /, a list o f times distributed evenly over one period, and T, the period. Let t(k) denote the kth time in 
the list t and let j[k) denote the value o f the periodic function at time f(&). The output o f my_periodic_function is a 
l i s t / o f  the k values f{k). The for-loop in Figure 15.5-5 indexes through the k times, t ( k \  and the if-block 
determines the value of J[k) corresponding to each t(k).
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function f = my_periodic_function(t f T)
% squarewave with amplitude A and period T

A=6 ;
for k=l:length(t)

if (t(k)<T/4 | t(k)>3*T/4) f(k)=A; 
elseif (t(k)>T/4 & t(k)<3*T/4) f(k)=-A; 
else f(k)= 0; 
end

end

FIGURE 15.5-5 my_periodic_fiinction for Example 15.5-2.

^  % testEFS.m
% ------------------------------------------------------------------------------------------------------------
% Obtain a list of equally spaced instants of time
o.
o

T=10 ; o
“o period

wO=2*pi/T; o
o fundamental frequency, rad/s

rr 0 ii 1 o,
o initial time

tf=1 . 5*T; o
o final time

dt=tf/512; o
*o time increment

t=-T:dt: tf; % time, s
o

% Call EFS to get exponential Fourier coefficients
% -----------------------------------------------------------------------------------------------------------------

N=256; %Number of harmonic frequencies 
[CO, Cn] = EFS (N, T) ;

oo ------------------------------------------------------------------------------------------------------------------------------------------------

% Approximate the function by its Fourier series
% ----------------------------------------------------------------------------------------------------------------

v = C0*ones(size(t)); % initialize v(t) as vector
for n=l:N

v = v + Cn(n)*exp(j *n*wO*t) + Cn(n) '*exp(-j*n*wO*t)
end

% Plot the Fourier series
% --------------------------------------------------------------------------------------------------

plot(t, v)
axis( [tO tf -8 8])
grid
xlabel('time, s') 
ylabel('v(t) V')

^title('Square Wave')

h IGLRE ,5 '5*6 MATLAB ^ript to plot/(/), using the coefficients of the exponential Fourier series.
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The values o f/ ( / )  at times T/4  and 3T/4  aren’t obvious becausef ( t )  is discontinuous at these times. In 
general, when/(f) is discontinuous at time r, we will ta k e /( r )  to be the average of the limits o f f(t)  as t approaches 
r  from above and from below. In the present case,

lim / ( / )  +  lim / ( f )  .
r f  x T + t *T — S*

f ( V  = -------------~-------------
A „ T 3T

------=  0 when r  =  — or —
2 4 4

Then, from Figure 15.5-1,

A when / <  T /4  or t > 3T /4  

—A when t >  T /4  and t <  3 T /4

0 otherwise

This equation is implemented by the MATLAB function, my_periodic_function, shown in Figure 15.5-5.
Figure 15.5-6 shows a MATLAB script that p lo ts/(f), using the coefficients of the exponential Fourier 

series. Placing EFS.m, my_periodic_function.m, and testEFS.m in the MATLAB working directory and running 
testEFS.m produces the same plot obtained in Example 15.5-1 and shown in Figure 15.5-3.

E x a m p l e  1 5 . 5 - 3 E x p o n e n t ia l  F o u r ie r  S e r ie s  
U s in g  M A T L A B

Determine the exponential Fourier series for the half-wave rectified sine shown in Figure 15.5-7, using MATLAB.

FIGURE 15.5-7 The periodic function for Exam ple 15.5-3.

Solution
We need to do only a couple of things: rewrite the MATLAB function my_periodic_function shown in Figure
15.5-8, change the value of the period T in testEFS.m, and then run testEFS.m to get the plot shown in Figure 15.5-9.

function f = my_periodic_function(t, T)
% half-wave rectified sine with amplitude A 
% and period T

w=2 *pi/T;
A=8 ;
for k=l:length(t)

if (t(k)<T/2) f(k)=A*sin(w*t(k));
else f(k)=0;
end

end FIG U R E 15.5-8 my_periodic_fiinction
for Example 15.5-3.
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Half-Wave Rectified Sine

time, s

FIGURE 15.5-9 MATLAB output for Example 15.5-3.

E X E R C I S E  1 5 .5 -1  Find the exponential Fourier coefficients for the function show n in Figure 
E 15.5-1.

FIGURE E 15.5-1

jnTT

E X E R C I S E  1 5 .5 -2  Determine the com plex Fourier coefficients for the waveform  shown in 
Figure E 15.5-2.

- T I
4

0 T 
4 FIGURE E 15.5-2

15.6 THE FOURIER SPECTRUM

If we plot the complex Fourier coefficients C„ as a function o f  angular frequency, co =  no>0. w e obtain 
a Fourier spectrum. Because C n may be com plex, we have

C . =  |C „ |A i  (15.6-1)

and we plot |C„| and [fK  as the am pli tude  spec trum  and the p h a s e  sp e c tru m , respectively. The 
ourier spectrum exists only at the fundamental and harmonic frequencies and, therefore, is called
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a discrete or line spectrum. The amplitude spectrum appears on a graph as a series of equally spaced 
vertical lines with heights proportional to the amplitudes of the respective frequency components. 
Similarly, the phase spectrum appears as a series o f equally spaced lines with heights proportional 
to the value of the phase at the appropriate frequency. The word spectrum was introduced into 
physics by Isaac Newton (1664) to describe the analysis of light by a prism into its different color 
components or frequency components.

The Fourier spectrum  is a graphical display of the amplitude and phase of the complex 
Fourier coefficients at the fundamental and harmonic frequencies.

E x a m p l e  1 5 . 6 - 1  F o u r ie r  S p ec tru m

Determine the Fourier spectrum for the pulse waveform v(/) shown in Figure 15.6-1.

F IG U R E  15.6-1 A pulse waveform.

Solution
The Fourier coefficients are

1 [ T>2
' / )e-Jn<°*tdt

1 f 1/z 
' n = ~  V(0

1 J - T / 2

For n ^  0, we have

A r d/2 - A  /  xc„ = — / e~JnaJotdt = _____ ( e ~jncood/2 _ ̂ natod/2 A
T J_in  jnoM)T \ )-d/2 j n m T

2A ( ncood\ AS . fn<vod/2\ Ad  sin*
~  m>of Sm V ~ 2 ~ )  = Y  Sm {ncood/2)  = Y T

where x  =  (ncood/2) and n ^  0. When n ~ 0, we have

_ 1 f J/2 . , Ad
Co -  -=. /  A dt = —

1 J-d/2 T

One may show that ( s in*)/*  =  1 for x  = 0 by using L’Hopital’s rule. In summary,

Ad  sin (najod/2)
—  for all a? 

T ncDodjl

(15.6-2)

(15.6-3)
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The coefficients C„ correspond to the discrete frequencies nco0 where co0 is the fundamental frequency, 
determined from the period T  o f  the periodic function. The amplitude spectrum appears on a graph as a series 
o f  equally spaced vertical lines corresponding to the equally spaced frequencies no*.  The height o f  each line

represents the amplitude

|C„| =
A d  sin (niood/2)

T  ncood/2

The amplitude spectrum, a plot |C„| versus co =  nco0, is shown in Figure 15.6-2a for n up to ± 1 5 . A lso ,
| ( s in x ) /x \  is shown in Figure 15.6-2a  in color. N otice that (sin x ) / x  is zero w henever x is an integer m ultiple o f

n,  that is,

sin (tin)
n n

=  0 n =  1, 2, 3 , . . .

The phase spectrum, a plot o f  9n =  / C i  versus co =  ncoo, is shown in Figure 15.6-26. The phase spectrum appears 
on a graph as a series o f  equally spaced vertical lines corresponding to the nco0. The height o f  each line represents 
the angle 9n. In general, the C„ coefficients have com plex values, but we see in Eq. 15.6-3 that, in this case, the C„ 
coefficients have real values. Consequently 9„ =  0 when C„ is positive and 9„ =  n  radians =  180° when C„ is
negative.

d  d  d  d  d  d

(a)

t IGURE 15.6-2 The (a) amplitude and (b) phase Fourier spectra of the waveform.
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% Spectrum.m 
T=20; % period
N=64; % Number of harmonic frequencies
% --------------------------------------------------------------------------------------------------------
% Obtain a list of equally spaced instants of time
% --------------------------------------------------------------------------------------------------------
n=2 *N;
t=linspace(0,T,n+l); 
t (end) = [] ;
% --------------------------------------------------------------------------------------------------------
% Obtain values of f(t) at those instants of time
% --------------------------------------------------------------------------------------------------------
f=my_periodic_function(t,T);
% --------------------------------------------------------------------------------------------------------
% Obtain the Fourier coef and do required bookkeeping
% --------------------------------------------------------------------------------------------------------
Cn=fft(f);
Cn=[conj(Cn(N+l)) Cn(N+2:end) Cn(1:N+1)];
Cn=Cn/n;

% ------------------------------------------------------------------------------------------------------
% Plot the Fourier spectrum
% ------------------------------------------------------------------------------------------------------
stem(-N:N,abs(Cn)) 
xlabel('n ') 
ylabel('|Cn|')
title('Magnitude Spectrum of a Pulse Train') 
axis tight

F IG U R E  15.6-3 M A TLA B program  to the Fourier spectrum .

Figure 15.6-3 shows a MATLAB program using FFT to plot the Fourier spectrum of a periodic 
function (Hanselman and Littlefield, 2005).

r  — ------------------------------------------------------------------------------------------------------------
E x a m p l e  1 5 . 6 - 2  U s in g  M A T L A B  to  P lo t  th e  F o u r ie r  S p e c tr u m

Use MATLAB to plot the amplitude spectrum for the pulse waveform v(f) in Figure 15.6-1 when A =  8 V, T =  20 
seconds, and d =  F/10.

Solution
We can use the MATLAB program shown in Figure 15.6-3 to plot the spectrum after doing the following three things:

1. Specify the values of T and N in the second and third lines. T is the period in seconds and N determines 
the number o f harmonic frequencies used when plotting the spectrum. The n in ncoo varies from —N to N. 
The values given in Figure 15.6-3 do not need to be changed.
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function 
d=T/10; 
A=8 ;

f  = m y _ p e r i o d i c _ f u n c t i o n ( t , T)
~ \

for k=l:length(t)
if (t(k)<d/2 | t(k)>T-d/2) f(k)=A; 
elseif (t(k)>d/2 & t(k)<T-d/2) f(k)=0;
else f(k)= A/2; 
end

end FIGURE 15.6-4 my_periodic_ 
function for Example 15.6-2.

2. Provide a M ATLAB function nam ed m y_periodic_function that describes the pulse train shown in Figure 
15.6-1. Figure 15.6-4 provides the required M ATLAB function. The inputs to this function are t, a list o f  time 
distributed evenly over one period, and T, the period. Let t(k) denote the £th time in the list t and l e t / k) denote the 
value o f  the periodic function at time t(k). The output o f  m y_periodic_function is a list / o f  the k  v a lu e s /  k). The 
for-loop indexes through the k  times t(k), and the if-block determines the value o ff(k )  corresponding to each t(k). 
(W h en /(0  is discontinuous at time r, we will take/ ( r ) to be the average o f  the limits o f / ( / )  as t approaches r from 
above and from below.)

3. M ake any desired changes to the plotting statem ents at the end o f  the program. The statement

s t e m  ( —N : N. a b s (C n ))

plots the amplitude spectrum. Change a b s  ( C n ) to a n g l e  ( C n ) to plot the angle spectrum. A lso, the plot 
labels can be changed as desired. In this case, no changes are required.

Figure 15.6-5 shows the amplitude spectrum plotted using M ATLAB.

Magnitude Spectrum of a Pulse Train

FIGURE 15.6-5 MATLAB output for Example 15.6-2.

15.7 CIRCUITS AND FOURIER SERIES --------------------------------------

It is often desired to determine the response o f  a circuit excited by a periodic input signal vs(f). We can 
represent vs(0  by a Fourier series and then find the response o f  the circuit to the fundamental and each 
harmonic. Assuming the circuit is linear and the principle o f  superposition holds, w e can consider that 
the total response is the sum o f  the response to the dc term, the fundamental, and each harmonic.



Circuits and Fourier S e r ie s -------( 759

E x a m p l e  1 5 . 7 - 1  Steady-Sta te  Response to a Per io d ic  Input

Find the steady-state response, vo(0, o f the RC  circuit shown in Figure 15.7-16. The input, vs(f), is the square wave 
shown in Figure 15.7-\a.

vs(f)
1

___1_____ 1 -L____  .

/?= l a  
W V —

+
C = 2 F 4= v0<'>

_ E _ £  0 n k 3n n “p
2 4 4 4 4

(a)

FIG UR E 15.7-1 The (a) square wave and (b) circuit considered in Example 15.7-1.

(b)

Solution
Using Table 15.4-1 and proceeding as in Example 15.4-1, we represent vs(t) by the Fourier series

_  1 2 sin ((2« -  l)(2f +  90°))
sU  2 Tr i' 2 n - \n= 1

In this example, we will represent this square wave by the first four terms of its Fourier series

1 2  2 2
vJ t)  =  -  +  — cos 21 — —  cos 6H ----- cos lOf

2 ;r 37r 57t

We will find the steady-state response, vQ(/), using superposition. It is helpful to let vsn(f) denote the term of vs(f) 
corresponding to n. In this example, vs(t) has four terms, corresponding to n = 0, 1 ,3 , and 5. Then,

vs(0 =  Vs 0 (< )  +  vsl(0 -I- vs3(f) -I- vs5 (f)

where
1 2

Vso(0 = r , v si (t) = -  co s21,
L 7T

2 2
Vs3(0 =  — t -  cos6r, and vs5(/) =  —  cos 10/

37r 5tt

Figure 15.7-2 illustrates the way superposition is used in this example. First, because the series connection 
of the voltage sources with voltages vs0(Y), vsl(0, vs3(0, and vs5(/) is equivalent to a single voltage source having 
voltage vs(/) =  vsO(0  4- vsl(f) -f vs3(f) -f vs5(f), the circuit shown in Figure 15.7-26 is equivalent to the circuit 
shown in Figure 15.7-2<z.

Next, the principle o f superposition is invoked to break the problem up into four sim pler problem s, as 
shown in Figure 15.7-2c. Each circuit in Figure 15.7-2c is used to calculate the steady-state response to a 
single one o f the voltage sources from Figure 15.7-26. (W hen calculating the response to one voltage 
source, the other voltage sources are set to zero; that is, they are replaced by short circuits.) For example, 
the voltage vo3(/) is the steady-state response to vs3(f) alone. Superposition tells us that the response to all 
four voltage sources working together is the sum o f the responses to the four voltage sources working 
separately, that is,

vQ(t)  — Voo(f) -f v0i ( t)  +  vo3(/) 4- V05( t)
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*o0

=fcv,o l

=±= Vo3

FIGl RE 15.7-2 (a) An RC circuit excited by a periodic voltage vs(f). (b) An equivalent circuit. Each voltage source is a term of 
the Fourier series of vs(r). (c) Using superposition. Each input is a sinusoid. (d) Using phasors to find steady-state responses to the
sinusoids.

The advantage o f  breaking the problem up into four simpler problems is that the input to each o f  the four 
circuits in Figure 15.7-2c is a sinusoid. The problem o f  finding the steady-state response to a periodic input has 
been reduced to the simpler problem o f  finding the steady-state response to a sinusoidal input. The steady-state 
response o f  a linear circuit to a sinusoidal input can be found using phasors. In Figure 15.7-2*/, the four circuits 
from Figure 15.7-2c have been redrawn using phasors and impedances. The impedance o f  the capacitor is

Z c = — !—  for w =  0 ,1 ,3 ,5
jna>oC

Each o f the four circuits corresponds to a different value o f  n , so the impedance o f  the capacitor is different in each 
o f the circuits. (The frequency o f  the input sinusoid is na)0, so each o f  the circuits corresponds to a different 
frequency.) Notice that when n — 0, Z c =  oo and, therefore, the capacitor acts like an open circuit. The four 
circuits shown in Figure \5 .1-2d  are very similar. In each case, voltage division can be used to write

1/C/mwoC)
V sn for n =  0, 1 ,3 ,5

R +  \ /( jncooC )

where Vsn is the phasor corresponding to vsn(f) and Von is the phasor corresponding to von(/). So,
V<„

for n — 0, 1 ,3 ,5V  —’ on —

In this example, co0CR — 4, so

Vn„ =
1 +./4/;

for n =  0 ,1 ,3 ,5
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Next, the steady-state response can be written as

VonM =  |V 0n| COS (nco^t +  / V o
|VSI cos [moot +  / y sn -  tan 1 4n)

In this example,

\ / l  -f \6n2

lv so| =  2

|Vsn| =  —  for n =  1 ,3 ,5  
nn  

/ v sn =  0 for n =  0 ,1 ,5  and /V sn =  180° for« =  3

1
Therefore, v0o(/) =  2

„(/) = .......  ...: cos (n i t  4- /Ysn -  tan 1 4«) for n =  1,3,5
W7T v 1 -f 16 n2

Doing the arithmetic yields

vol(r) =  0.154 cos [ I t - 1 6 ° )  

vo3(/) =  0.018 cos (6r +  95°) 

vo5(t) = 0.006 cos (10/ -  87°)

Finally, the steady-state response o f the original circuit, v0(f), is found by adding up the partial responses,

Vo( / ) = i  +  0.154cos (2/ — 76°) +  0 .018cos(6 / 4- 95°) 4- 0 .006cos (1 Or -  87°)

It is important to notice that superposition justifies adding the functions o f time, Voo(0, vol(/), vo3(f), and vo5(t) to 
get v0(/). The phasors Vo0, Vr0i? Vo3, and Vo5 each correspond to a different frequency. A sum of these phasors has 
no meaning.

E X E R C IS E  15.7-1  Find the response of the circuit o f Figure 15.7-2 when R =  10 kO, 
C =  0.4 mF, and vs is the triangular wave considered in Example 15.3-1 (Figure 15.3-3). Include 
all terms that exceed 2 percent o f the fundamental term.

Answer: v0(f) «  0.20 sin (41 -  86°) -  0.008 sin (12/ -  89°) V

15.8 U S I N G  P S P I C E  T O  D E T E R M I N E
T H E  F O U R I E R  S E R I E S  --------------------------------------------------------------------

The circuit simulation program PSpice (Perry, 1998) provides built-in procedures that make it easy to 
find the Fourier series of any periodic voltage or current in a simulated circuit. To find a Fourier series 
using PSpice, we will need to do five things:



Step 1 Represent the circuit and its input in the PSpice workspace.

Step 2 Specify a time domain sim ulation having a duration that is long enough to include one
full period after all transients have died out.

Step 3 Request that the Fourier series coefficients be calculated and printed in the PSpice 
output file.

Step 4 Simulate the circuit.

Step 5 Interpret the PSpice output.

The following example illustrates this procedure.

7 6 2 ^ ------- F o u r i e r  S e r i e s  a n d  F o u r i e r  T r a n s f o r m

E x a m p l e  1 5 . 8 - 1  Fourier Ser ies  U s in g  P S p ic e

Consider the circuit shown in Figure 15 .8-la . The input to this circuit is the voltage o f  the voltage source, Vj(/). 
The output o f  the circuit is the voltage, vQ(/), across the 10-kfl resistor. The input, v,(f), is the periodic voltage  
shown in Figure 15.8-16. The output, vo(0 , will also be a periodic voltage. U se PSpice to represent both Vj(f) and 
v0(/) by Fourier series.

R2 = 26.67 kQ

+
v0{t)

Solution
Step 1: Represent the circuit and its input in the PSpice workspace.

PSpice refers to circuit elements as parts. Open a new project in PSpice. Place the parts in the PSpice 
wor space, adjust the resistance and capacitance values, and wire the parts together (Svoboda 2007) The 
resulting PSp.ce circuit is shown in Figure 15.8-2. The voltage source in Figure 15 .8-la , corresponds to a PSpice
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u*  O rC AD C a p tu re  CIS D em o E d it io n 0 ® ®
1 File Ed* View Place Macro PSpice Accessories Options Window Help

I Q  Of H  #  s *  -  ~  OFFPAGEUEFT R v  a a a s .

I S C H E M A TIC 1 founei v  Q  Q  ► ^  f f  I

S  /  (SC H EM A TIC  1 : P A G E 1)

I f x >

C1 100n

V1 = 2 
V2 = -6 
TD = 2ms 
TR -  8ms 
TF = 8ms 
PW = 1ns 
PER = 16ms

X>output

0 items selected Scaie-200% X-3.50 Y-1.60

“L
Ml

1

H
PUR<?
&ND

□
OP

«c
F*
\
V

, □
o

F IG U R E  15.8-2 The circuit as described in the PSpice w orkspace.

part called VPULSE. Figure 15.8-3 shows the symbol for this part together with the voltage waveform that it 
produces. A VPULSE part is specified by providing values for the parameters v l, v2, td, tr, tf] pw\ and per. The 
meaning of each parameter is seen by examining Figure 15.8-36. The pulse waveform will simulate the triangle 
wave when pw  is specified to make the time that voltage remains equal to v2 negligibly small, and per  is specified 
to make the time that voltage remains equal to vl negligibly small. An appropriate set o f parameter values to 
simulate the input voltage, Vj(f), is

vl =  2 V, v2 =  - 6  V, td  =  2 ms, tr =  8 ms, t f  — 8 ms, p w  =  1 ns, and per  =  16 ms.

(PSpice requires pw  >  0 so we cannot use p w  = 0. Instead, a value much smaller than both tr and t f  is used. )

V l = 
V 2 =  
TD  =  
TR =  
TF =  
PW =  
PER =

(a) (b)

FEGl*RE 15.8-3 The (a) symbol and (b) voltage waveform o f  a VPULSE part.
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Sim ulation Se ttin g s  - fourier

General Analysis | Cortiguration Fries | Options | Data Colecbon | Piobe Wtndow |

Analysis type:

3Time Domain I Transient)

Options:
2 General Settings

□Monte Carlo/Worst Case 
□Parametric Sweep 
□ Temperature (SweepI 
□Save Bias Point 
□Load Bias Point

Bun to time: |s4mi

Start saving data after: |0 
Transient options--------- ---

seconds (TSTOP) 

seconds

Maximum step srae: | seconds

r  Skip the initial transient bias point calculation (SKIPBP)

Output File Options... J

^ O K ^ J  Cancel | Apply | Help

FIGURE 15.8-4 The Simulation Settings dialog box.

Step 2: Specify a time domain simulation having a duration that is long enough to include one full period after all
transients have died out.

Select PSpice/New Simulation Profile from the PSpice menus to pop up the N ew  Simulation dialog box. 
Specify a simulation name and then select Create to pop up the Simulation Settings dialog box as shown in Figure
15.8-4. Select Time Domain(Transient) as the analysis type. Specify the Run To Time as 64 ms to run the 
simulation for four full periods o f  the input waveform.
Step 3: Request that the Fourier series coefficients be calculated and printed in the PSpice output file.

Click the Output File Options button to pop up the Transient Output File Options dialog box shown in 
Figure 15.8-5. Select the Perform Fourier Analysis box. PSpice represents the trigonometric Fourier series using 
the sine rather than the cosine, that is,

N
v{t) =  c0 +  ' 5 2 c n sm(nco0t +  dn) (15 .8-1)

n= 1

Center Frequency: |s2 5 ^

Number of Harmonics |8

Output Variables: Jv(output) V(V1:+j

H  {nclude detailed bias point information for nonlinear 
cont/ofied sources and semiconductors (/OP)

FIG L  RE 15.8-5 R equesting calcu lation  o f  the Fourier series coeffic ien ts .
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- SCH EM ATICl-fourier - PSpice A/D  D em o - [fouriei .ou t.! ]

V] File Edit Vrew Simulation Irace Plot Tools V£ndow Help

~ iO l x l

-.Iftl *1

J  - L » i r U U |  SCHEMATICl-touiet 11 ► 11
^  j-4 * f , |n a ® r i * S j p ! 3 S  V> dt 7k JF -4 f t  p  «  ^  s*

<*]
m
m
m

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(N00230) iJ

DC COMPONENT -2.QQ0199E+00
HARMONIC

NO
1
2
3
4
5
6
7
8

FREQUENCY
(HZ)

250E+01
250E+02
875E+02
500E+Q2
125E+02
75QE+Q2
375E+Q2
0Q0E+02

FOURIER
COMPONENT

242E+00 
968E-04 
6 0 2E-01 
996E-04 
297E-01 
038E-04 
613E-02 
106E-04

NORMALIZED
COMPONENT
1 OOOE+OO 
1 224E-04 
1 111E-01 
1 232E-04 
3.999E-02 
1 245E-04 
2.040E-02 
1 267E-04

PHASE
(DEG)

NORMALIZED
PHASE (DEG)

500E+01 
772E+02 
500E+01 
549E+01 
350E+02 
141E+00 
350E+02 
917E+01

-1
-8
-3
-2
-1
-4

0 000E+00 
2.67 2E+Q2 
800E+02 
451E-f 01 
600E+02 
bl9E+02 
800E+02 
392E+02

TOTAL HARMONIC DISTORTION 

j|fo u rw rd d H  jr| founw ouH [“

1 198281E+01 PERCENT

j

:C\DOCUMENTS AND SETTIMGS\JIM SVOBQOA^TAPT MENLftMy C Time- 064 jiOO%

F IG U R E  15.8-6 The coefficients o f  the Fourier series o f  v,(/).

Enter the fundamental frequency,/0 =  coq/ 2 ti, using units of Hertz, in the Center Frequency text box and N  in the 
Number of Harmonics text box. Enter the PSpice names for voltages or currents that are to be represented by their 
Fourier series in the Output Variables text box. Click OK to close the Transient Output File Options dialog box and 
then click OK to close the Simulation Settings dialog box and return to the PSpice workspace.

Step 4: Simulate the circuit.
Select PSpice/Run from the PSpice menus to run the simulation.

Step 5: Interpret the PSpice output.
After a successful Time Domain(Transient) simulation. Probe, the graphical post-processor for PSpice will 

open automatically in a Schematics window. Select View/Output File from the Schematics menus. Scroll through 
the output file to find the Fourier coefficients of the input voltage shown in Figure 15.8-6. (PSpice changed the 
name of the input voltage. We used the name V(V1:+) in the Output Variables text box in the Transient Output 
File Options dialog box in Figure 15.8-5. Nonetheless, PSpice used the name V(N00230) in Figure 15.8-6.) The 
table in Figure 15.8-6 has six columns and eight rows. The eight rows correspond to the eight coefficients, c b c2, 
c3, . . . c8. (There are eight rows because N  =  8 was the number entered in the Number of Harmonics text box in 
the Transient Output File Options dialog box in Figure 15.8-5.) The first column labels the rows with the 
subscripts, «, o f these coefficients. The second column lists the frequencies, na>o, using units of Hertz. The third 
column lists the coefficients, c\, c2, c3, . . . c8. The fourth column lists the normalized coefficients 
c \/c \  =  1, c2/ c \ , c3/ c i , .. .cg /c i. The fifth column lists the phase angles 0\, 02. 03,...#8* The sixth column 
lists the normalized coefficients, 0\ -  0\ = 0. 02 -  0 \ , #3 -  0 \ . . .  .0% -  0 \ .

We expect the even coefficients, c2, c4, c6, . . . c8, to be zero. They are much smaller than the odd 
coefficients, so we will interpret them to be zero. The coefficient c0 is the dc component of the Fourier series and is 
written above the table in Figure 15.8-5. Finally, PSpice represents the Fourier series, using sine instead of cosine, 
so the coefficients in Figure 15.8-6 indicate that Vj(t) is represented by the Fourier series

Vi(/) -  -2 .000199 +  3.242 sin (393/ +  45°) +  0.3602 sin (1178r — 45°) 4- 0.1297 sin (1963/ -  135°)

4-0.06613 sin (2749/ 4- 135°) 4 - . . .
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FIGURE 15.8-7 The coefficients of the Fourier series of v0(/).

We can represent the series, using cosine, by subtracting 90° from each phase angle. Then,

Vj(/) =  —2.000199 +  3.242 cos (393/ — 45°) +  0.3602 cos (1178/1 — 135°)

+  0 .1297 cos (1963? -  225°) +  0.06613 cos (2749/ +  45°) +  . . .

Scroll through the output file to find the Fourier coefficients o f  the output voltage shown in Figure 15.8-7. Figure
15.8-7 indicates that the Fourier series o f  vc(/) is

v0(t) =  4.001551 +  4 .444 cos (393/ +  88.4°) -I- 0 .2112 cos (1178/ — 24.06°)
+  0 .04794 cos (1963/ -  118.8°) +  0 .02040 cos (2749/ -  227°) +  . . .  (15 .8-3)

15.9 THE FOURIER TRANSFORM

The Fourier transform is closely related to the Fourier series and the Laplace transform. Recall that a 
periodic waveform / ( / )  possesses a Fourier series. As w e increase the period T, the fundamental 
frequency o>0 becom es smaller because

2 jt
u>0 =  Y

The difference between two consecutive harmonic frequencies is Aw =  (« +  1 )co0 -  nco0 =  u>0 =  2jt/T. 
Therefore, as T approaches infinity, Aa> approaches dw, an infinitesimal frequency increment. 
Furthermore, the number o f  frequencies in any given frequency interval increases as Aw  decreases. 
Thus, in the limit, nu>0 approaches the continuous variable, w.



The Fourier T ransform

Consider the exponential Fourier series

f { t )  =  £  C„eJnmt

rT/2l r
: n = T  /  f{ t)e~ jnw°' dt 

‘ J — T/I
and C„

Multiplying Eq. 15.9-2 by T and letting T approach infinity, we have

CnT =  ( "  f ( t ) e - J“'d t
J —OO

Let C„T equal a new frequency function F(jco) so that

F(jw) = r m *
J -00

dt

(15.9-1)

(15.9-2)

(15.9-3)

(15.9-4)

where F(Jco) is the Fourier transform off ( t) .  The inverse process is found from Eq. 15.9-1, where we 
let C„T — F(jco) so that

PC' 1 oo
/ ( / ) =  lim Y ,  CnTeJn“° ' - =  lim £  F(jco)e

T->oc z ' 1 T-> oo
jncoot

2tt

because \ / T  = too/2tc. As T —> oo, the sum becomes an integral, and the increment \co = cdq 
becomes da>. Then, we have

m j l  r F{j(o)e ̂  dco (15.9-5)

Equation 15.9-5 is called the inverse Fourier transform. This pair of equations (Eqs. 15.9-4 and 15.9- 
5), called the Fourier transform pair, permits us to complete the Fourier transformation to the 
frequency domain and the inverse process to the time domain.

A given function of time / ( / )  has a Fourier transform if

fJ  - c
f ( t ) d t  < OO

and if the number of discontinuities in f ( t )  is finite. From a practical point o f view, all pulses of finite 
duration in which we are interested have Fourier transforms.

The Fourier transform pair is summarized in Table 15.9-1.

The Fourier Transform Pair

EQUATION NAME

F{jco) ~
J —no

m = ~  f  F f j u ^ d *

Transform

Inverse transform

PROCESS

Time domain to frequency domain 
Conversion off ( t )  into F(jw)

Frequency domain to time domain 
Conversion of F{ja>) in to /(f)
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E x a m p l e  1 5 . 9 - 1  Fourier Transform o f  a Pulse

Derive the Fourier transform o f  the aperiodic pulse shown in Figure 15.9-1.

FIGURE 15.9-2 The Fourier transform for the rectangular aperiodic pulse is shown as a 
FIGURE 15.9-1 An aperiodic pulse. ofw

Solution
Using the transform, we have

r a/2
F(ju>) =

J -  A/2
A e-* *  d t = j  cot

A/2 ~ J V

A/2

A/2

sin (coA/2) 

a)A /2

;15.9-6)

Thus, the Fourier transform is o f  the form (sin x ) /x , where x =  <uA/2, as shown in Figure 15.9-2. N ote  
that (sin jc) /jc =  0 w h en *  =  w A /2  =  n n o r c o  =  2 n n / k ,  as shown in Figure 15.9-2. W e will denote ( s in x ) /x  =
Sa(x).

Let us consider the shifted version o f  the rectangular pulse o f  Figure 15.9-1 where A =  1 /A  and the width o f  
the pulse approaches zero, A— 0. whereas the area o f  the rectangle remains equal to 1. Then, w e have the unit
impulse 8 (t — to) so that

< to< b

otherwise
(15 .9-7)

We obtain the Fourier transform for a unit impulse at t0 as

rto +
F ( jc o )=  I "  8 (t -  t0)e~jw td t  =  e-***

Jt0 -

When to — 0, we have the special case,

F(jco) =  1

Thus, we note that F(ja>) =  1 o f  a unit impulse located at the origin is constant and equal to 1 for all freq u en c ie s^

(15.9-8)

(15 .9-9)

E X E R C I S E  1 5 .9 -1  Determine the Fourier transform o f f ( t )  =  e~a'u ( t) ,  where u(t)  is the unit 
step function.

Answer: F(ja>)  ---- !----
a + jco
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15.10 F O U R I E R  T R A N S F O R M  P R O P E R T I E S

We can derive some properties of the Fourier transform by writing F(jco) in complex form as
F(j(o) =  X  (co) + JY(co)

Alternatively, we have

F(jw) = \F{w)\eje

where 0 — tan ~x{Y/X). Note that we use F(jco) =  F(co) interchangeably. Furthermore,
F (-co)=F*(co)

where F*(co) is the complex conjugate of F(co).
If we have the Fourier transform of / ( / ) ,  we write

F [ f ( t ) ) = F ( c o )

where the script &  implies the Fourier transform. Then the inverse transform is written as

* - l [F(a>)] = f ( t )

Repeating the transformation equation, we have (Table 15.9-1)

/ o o

f ( t )e~ jw‘ dt (15.10-1)

•OO

Then, if ^[a f\{ t) \  =  aFx(co) and ^ [ b f 2(t)] — bF2(co), we have

/ o o

{af^ +  b f 2}e-**dt
■OO

/ o o  r o c

a f xe~**dt +  /  b f 2e - » d t
o o  J — O O

=  aF\(co) -f bF2(co)

This is known as the linearity property.
We now use the definition of the Fourier transform, Eq. 15.10-1, in the following examples to 

find several other properties.

E x a m p l e  1 5 . 1 0 - 1  F o u r i e r  T r a n s f o r m  P r o p e r ty  

Find the Fourier transform of a time-shifted fu n c tio n // -  t0).

Solution

/ oo
f ( t - t o ) e - * * d t

■OO

If we let x  — t — t0, we have

=  f  f (x )e~ M x + ,o) dx = e~jwt',F((o)
J  —OO

where F(co) — & { f ( t ) \ .
Selected properties of the Fourier transform are summarized in Table 15.10-1. We can use these properties 

to derive Fourier transform pairs.
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Table 15 10-1 S e le c t e d  Properties of t h e  Fourier Transform

NAME OF PROPERTY FUNCTION OF TIME FOURIER TRANSFORM

1. Definition m F (oj)

2. Multiplication by constant A M AF((v)

3. Linearity aft +  bf2 aF\{(v) 4- bF2(co)

4. Time shift At - 10) e-J**F(<u>)

i f - n
a \ a /5. Time scaling j(at), a > 0

6. Modulation F{(d -  o>o)

7. Differentiation
d”f( t )

dtn
(jaj)nF(co)

8. Convolution Fi((o)F2(oj)

9. Time multiplication 17U) ( , y " H
da/1

10. Time reversal A - t ) F (-w )

11. Integration J lo c /M  dx F((0> + ttF(0)S(co) 
j “>

With the aid o f  the properties o f  the Fourier transform and the original defining equation, w e can 
derive useful transform pairs and develop a table o f  these relationships. W e have already derived the 
first three entries in Table 15.10-2, and we w ill add several more by using the properties o f  Table 
15.10-1 and/or the original definition o f  the transformation.

E x a m p l e  1 5 . 1  0 - 2  Fourier Transform

Find the Fourier transform o f f ( t ) =  A e  al ' I, which is shown in Figure 15.10-1.

A

1 FIGURE 15.10-1 Waveform of Example 15.10-2.

Solution
We will break the function into two symmetric waveforms and use the linearity property. Then.

/ ( ' )  = / , ( / )  + / 2(/) =  A e~ atu(t)  +  A e a'u ( —t)
We have, from entry 3 o f  Table 15.10-2,

F , ( a > ) =  A

From property 10 o f  Table 15.10-1, we obtain

F 2(©) =  F ,  ( -< » )= ■

Using the linearity property, we have
a - j c o

F(a>) = F\ (co) + F2(co) = — +  A 2Aa
a + jco a  —jco a 2 +  co2

This result is entry 4 in Table 15.10-2. Note that F(co) is an even function.

(15.10-2)

____________y
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T able 15 10 2 Fourier Transform Pairs

ies - 0

m WAVEFORM fi<o)

l . Pulse

/lW  = + | )

2. Impulse
<$(' ~ ô)

3. Decaying exponential
Ae~alu(t)

A 0 A 
2 2

8(t-t0)

( f )

4. Symmetric decaying exponential
Ae~a\t\

5. Tone burst (gated cosine) 
Af x(t) coso>o/

6. Triangular pulse

7. ^  Sfl(to) =  A sin bt 
bt

8. Constant dc
f{t) — A

-A

2 aA
fl2 + (O2

A&
—  [Sa(co -  coq) +  Sa(co +  <wq)J

A ASfl2(f)

( t
I o M  >

2;ryl 5(o>)

9. Cosine wave
A cos coot

7iA[8((o -f coo) -I- S(co -  a)o)]

(icontinued)
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Table 15.10-2 (Continued)

fit)
10. Signum

f / \  f  t > 0 
t < 0

11. Step input 
Au(t)

WAVEFORM flw)

2_
joy

7TS(a>) +  —
J

Note: Sa(x) =  ( sin x)/x.

E x a m p l e  1 5 . 1 0 - 3  Fourier  Transform

Find the Fourier transform o f  the gated cosine waveform f { t )  =  / , ( / )  cos co0t, w here/,(? )  is the rectangular pulse 
shown in Figure 15.9-1.

Solution
The Fourier transform o f  the rectangular pulse is entry 1 in Table 15.10-2 and is written as

F\(co) =  A A (  sin jc)/jc 

where x  =  coh/2.  The cosine function can be written as

cos coot -  -  (eim ‘ +  e~ja>0')

Therefore,
/ ( ' )  =  \ f \  ( 0 ^ " ° '  +

Using the modulation property (entry 6) o f  Table 15.10-1, we obtain

F(co) — — F \  (co — coo) + — F\ (co + coo) 
Therefore, using F,(o>) from Eq. 15.9-6, we have

F(co) =  s ‘n [(*** ~  >̂0) ^ / 2 ] A A  sin [(o» +  a>o)A/2] 
2 (a)-(W q)A /2 2 (a> +  w0)A /2

or, using Sa(x) =  (sin x ) /x ,  we have

F ( c o ) = ~ S a (co +  CDo)-
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E X E R C IS E  15. 10-1  Find the Fourier transform of f(at) for a >  0 when F(co) = &\f(t)\-

Answer: .^ \f(a t) \  =  -  f (̂ —̂

E X E R C IS E  15 10-2  Show that the Fourier transform of a constant dc waveform f ( t )  = A for 
—oo < / < oo is F(co) = 27tAS(co) by obtaining the inverse transform of F(co).

15.11 T H E  S P E C T R U M  OF  S I G N A L S

The spectrum, also called the spectral density, of a signal f ( t )  is its Fourier transform F(co). We can plot 
F(co) as a function of co to show the spectrum. For example, for a rectangular pulse signal of 
Figure 15.9-1, we found that

F(co) = A \Sa{(oA/2)

which is plotted in Figure 15.9-2. The spectrum of the rectangular pulse is real.
The Fourier transform of an impulse 8(t) is (entry 2 of Table 15.10-2)

F(o>) = 1 ____

Thus, the spectrum of an impulse contains all frequencies, and a plot o f the spectrum of the 
impulse is shown in Figure 15.11-1.

The Fourier transform of a constant dc signal o f magnitude A is
F(co) = 2 ttA S (co)

which has a spectrum as shown in Figure 15.11-2. The integral of the impulse S(co) has value 
unity. The symbol for the impulse is a vertical line with an arrowhead.

For completeness, let us examine a function that has a Fourier transform that is complex.
When f ( t )  = Ae~atu(t),

F{co) = A
a -j- jco

To plot the spectrum, we calculate the magnitude and phase of F(co) as

|F(ttj)l =  , 2  \ l / 2  (a2 +  ci?y/l
and 4>(co) =  —tan ~]co/a

The Fourier spectrum is shown in Figure 15.11-3.

Fico)

F IG U R E  15.11-1
Spectrum  o f  im pulse

f m =

2 rt A

F IG U R E  15.11-2 
Spectrum  o f  constant dc 
signal o f  m agnitude A. 
The sym bol for an 
im pulse is a vertical line 
w ith an arrow head.

FIG URE 15.11-3 The Fourier spectrum fo r /( f )  =  Ae~a,u(t).
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The Fourier spectrum  o f  a signal is a graph o f  the magnitude and phase o f  the Fourier 

transform o f  the signal.

E X E R C I S E  15. 11 -1  Calculate the Fourier transform and draw the Fourier spectrum for/ ( / )  
shown in Figure E 1 5 .11-1, w h e r e / ( 0  =  A cos a>ot for all t.

FIGURE E 15.11-1

Answ er: F(co) =  7tAS(co +  coq) +  jrA8 (a> — a>o)

15.12 CONVOLUTI ON AND CIRCUIT RESPONSE

Circuit

f it) hit) y(t)

Fico) Him) Yico)

FIGURE 15.12-1
A linear circuit.

A circuit with an impulse response h{t) and an input f ( t )  has a response y (t)  that may be 
determined from the convolution integral. For the circuit shown in Figure 15.12-1, the 
convolution integral is

/ oo

h ( x ) f ( t  — x) d x

■OO

If we use the Fourier transform o f  the convolution integral, w e have

/ oo p o o

/  h ( x ) f ( t - x ) d x e ~ J(° 'd t
oo J  —OO

Let u =  t — x  to obtain

&

/ OO p OO
h{x) /  f ( t  — x )  e~Jwt d t d x

■OO J -o o

/ OO p o o

h(x)  /  / ( « ) * - > ( ' '+  *> d u d x

■OO J -OO/OO p o o

h { x ) e - * " d x  /  f ( u ) e
•00 J - o o

-JOJUdu

or Y(aj) =  H(co)F(co) (15.12-1)

Thus, convolution in the time domain corresponds to multiplication in the frequency domain. When 
the input is an impulse, / ( / )  =  <5(0, because F(co) =  1, w e obtain the impulse response

Y(co) =  H{a>)

When the input is a sinusoid, the Fourier transform o f  the output is the steady-state response to that 
sinusoidal driving function.
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E x a m p l e  1 5 . 12 - 1  C ir c u i t  A n a ly s i s  U s in g
th e  F o u r ie r  T r a n s f o r m

Find the response, vG(/), of the RL circuit shown in Figure 15.12-2 when v(t) =  Ae 2tu(t)W. The initial condition is zero.

1 H
Y"W

f T ) v(t) v0(t)

-o  F IG U R E  15.12-2 C ircuit o f  Exam ple 15.12-1.

Solution
Because v(t) = Ae~2tu(t), we obtain V(co) as

V(co) =  

th

H((o) =

2 +  jco
The circuit is represented by H(co), and, using the voltage divider principle, we have

R 5

Then, we have

V0(a>)=H(cD)V(a>) =

R -|- jcoL 5 -j- j(o 

20
(5 + jco)(2 -f jco)

Expand, using partial fractions, to obtain1
-2 0 /3  20/3

v o(c°) =  c.. ;...• +5 -f jco 2 +  jco

Using the inverse transform for each term (entry 3 of Table 15.10-2), we have

v0(f) =  -j- (e — e~5,)u(t)V

The time-domain responses obtained in this manner are responses of initially relaxed circuits. (No initial energy is 
stored.)

*See Chapter 14, Section 14.4, for a review of partial fraction expansion.

E x a m p l e  1 5 . 1 2 - 2  C ircuit A n a lysis  U sing  the Fourier Transform

Determine and plot the spectrum of the response V0(co) of the circuit o f Figure 15.12-3 when v =  10^ 2tu(t) V.

o  FIGURE 15.12-3 Circuit of  Example 15.12-2.
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Solution
The input signal v(t) has a Fourier transform

The circuit transfer function is

vr \ — ^  ^  / - t a n  1 co/2
M 2 +  jco (4 4- (t̂ 2) 1' 2

V ( ^ Z L _  =  _ _ L _  = _____ 1 / - t a n -

Then, the output is

-  R +  i / q w C ) 1 + jc o  ( i  +  ^ ) ' / 2 

F0(o>) =  H{a>)V{aj) =  (2 +  ya))(1 + -~ )

co

10
Thercfore' 1 1 “  [(4 +  «P)(1 +

, CD _ i
and <2>M =  F0(«;) =  -tan  -  -  tan

The calculated magnitude and phase for V0(co) are recorded in Table 15.12-1. For negative co, \ V0(co)\
|F0(-w )| and

(f>{-co) =  -<(>{co)
Therefore, the Fourier spectrum of VQ(co) is represented by the plot shown in Figure 15.12-4.

Table 15.12-1 Fourier Response for Example 15.12-2

a> 0 1 2 3 5 oo
|F0| 5 3.16 1.58 0.88 0.36 0
<P(a>) 0° -71.6° -108.4° -127.9° -146.9° -180°



EXERCISE 15.12-1 An ideal band-pass filter passes all frequencies between 24 rad/s and 48 
rad/s without attenuation and completely rejects all frequencies outside this passband.

(a) Sketch \V0\2 for the filter output voltage when the input voltage is

v(/) =  120 e~24tu(t)V

(b) What percentage o f the input signal energy is available in the signal at the output of the ideal 
filter?

Answer: (b) 20.5%

The Fourier T rans fo rm  and the Laplace T ransfo rm
- ©

15.13 THE F O U R I E R  T R A N S F O R M  A N D  THE  
LAPLACE T R A N S F O R M

The table of Laplace transforms, Table 14.2-1, developed in Chapter 14, can be used to obtain the 
Fourier transform of a function f( t) .  O f course, the Fourier transform formally exists only when the 
Fourier integral, Eq. 15.9-4, converges. The Fourier integral will converge when all the poles of F(s) 
lie in the left-hand s-plane, not on the y'^-axis or at the origin.

If f ( t )  is zero for t < 0 and dt < oo, we can obtain the Fourier transform from the
Laplace transform of f{ t)  by replacing 5 by jco. Then

F M = F ( 5 ) | , = >  (15.13-1)

where F(s) = & \f(t)]

For example, if  (entry 3 o f Table 15.10-2)

f { t )  = A e - a'u(t)

then, from Table 14.2-1,

F(s) = - 4 —  
w  s +  a

Therefore, with s =  jco we obtain the Fourier transform:

F(tu) =  ■ A
a +  jco

Iff{ t)  is a real function with a nonzero value for negative time only, then we can reflect f ( t )  to 
positive time, find the Laplace transform, and then find F(co) by setting 5 =  —jco. Therefore, when f{ t)  
=  0 for t > 0 and / ( / )  exists only for negative time, we have

Fico) = & ) f ( - t )  J U ^  (15.13-2)

For example, consider the exponential function

f ( t )  =  0 t > 0 
=  eat t <  0

Then, reversing the time function, we have

/ ( - * )  »  t~ *  t >  0
and, therefore,

Hence, setting s =  —jco, we obtain

F (s) = — —  
s + a

Fico) =  — L -  
a - jc o



F o u r ie r  S e r ies  and  F o u r ie r  T r a n s fo r m

Table 15.13-1 O bta in ing  th e  Fourier T ransform  Using th e  Laplace T ran sfo rm

CASE METHOD

Step

A. /(/) nonzero for positive time only and/(/) = 0, t < 0 1. F(s) = #[f(t)]
2. F((o) = F{s)\s =jw

Step

B. f(t)  nonzero for negative time only and/(/) = 0, t > 0 1. F(s) = ^ \A - t)]
2. F(co) = F(s) =

Step

C. f{t) nonzero over all time i . / ( 0 = / +W + /" ( 0
2. F \s ) = < f[ f \ t ) \

F~(s) = & {f-(-t)]
3. F(oo) = F \s ) \s =jo) -f F ’ Cs)!, = -jot

Note. The poles of F(s) must lie in the left-hand 5-plane.

Functions that are nonzero over all tim e can be d ivided into positive  tim e and negative tim e 
functions. W e then use Eqs. 15.13-1 and 15.13-2 to obtain the F ourier transform  o f  each part. The 
Fourier transform  o f  / ( / )  is the sum  o f  the Fourier transform s o f  the tw o parts.

For exam ple, consider the function f ( t )  w ith a nonzero  value over all tim e w here

f { t ) = A e ~ a M

which is entry 4 in T able 15.10-2. The positive tim e portion  o f  the function will be called  /  +(/), and the 
negative tim e portion will be called  /  ~(t). Then,

/ ( , )  = / + ( , )  + / - ( , )  

n » ) = +  * r ( - >  ) L ~ „
In this case,

f +{t) =  A e~ at t >  0 

and f ~ ( t ) = A e al t <  0

N ote that / “ ( - / )  =  A e~ a‘. Then,

F +{ s ) = — - —  and F ~ ( s ) =  A
s +  a s  +  a

W e obtain the total F(co) as

F(fti) =  F +(s)s=JO) +  F - ( s ) s=. jw =  — d —  +  A 2aA
a  +  jco a — jco co2 +  a 2

The use o f  the Laplace transform  to find the Fourier transform  is sum m arized  in T able 15.13-1. 
Rem em ber that the m ethod sum m arized cannot be used for sin cot, cos cot, or u(t) because the poles o f f  
(5) lie on the y'w-axis or at the origin.

EXERCISE 15.13-1 Derive the Fourier transform  for

/ ( , )  =  te~a‘ t >  0 

=  teal t <  0
. —j4 a c oAnswer:-----

(a 2 +  co2 )2
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15.14 H O W C A N W E C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.

E x a m p l e  1 5 . 1 4 - 1  How Can We Check Fourier Series?

Figure 15.14-1 shows the transfer characteristic of the saturation nonlinearity. Suppose that the input to this 
nonlinearity is

Vin(0 — A sin cot

FIGURE 15.14-1 The saturation nonlinearity.

where A > a. How can we check that the output o f the nonlinearity will be a periodic function that can be 
represented by the Fourier series

where (Graham, 1971)

v0(/) =  b\ sin cot +  ^  bn sin ncot 

-  * -  ©

(15.14-1)
n= 3 
odd

B

b\ =  —A
7T

B + i f - ®

and K
4 A

7r(l — rt2)

a cos (nB)
— i / l -  0 )  sin (nB)

Solution
The output voltage, v0(/), will be a clipped sinusoid. We need to verify that Eq. 15.14-1 does indeed represent a 
clipped sinusoid. A straightforward, but tedious, way to do this is to plot vQ(t) versus t directly from Eq. 15.14-1. 
Several computer programs, such as spreadsheets and equation solvers, are available to reduce the work required 
to produce this plot. Mathcad is one of these programs. In Figure 15.14-2, Mathcad is used to plot v0(/) versus t. 
This plot verifies that the Fourier series in Eq. 15.14-1 does indeed represent a clipped sinusoid.
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Plot a periodic signal from its coefficients.
Define n, the index for the summation:

AT := 25 n := 3,5, . . . , N  
Define any parameters that are used to make it easier to 
enter the coefficient of the Fourier series:

A := 12.5 a := 12 B := as in (I)
Enter the fundamental frequency:

a > :=  2 • it  • 1 0 0 0

Define an increment of time. Set up an index to run over 
two periods of the periodic signal:

i := 1,2,..., 400 t L := d t  - i
a) 200

Enter the formulas for the coefficients of the Fourier 
series,

b 1 := — A
7T

B +

4 • A

T h a i
_a cos (n  
A n

- E l _ • sin (n- B)
tt • (1 -  n )

Enter the Fourier series;
v ( i) := -bj sin(<a-tp + ^  bn • sin(n* <o ■ t d)

Plot the periodic signal:
n = 3

50 !00 150 200 250 300 350 400

HGIJRE 15.14-2 Using Mathcad to verify the Fourier series of a clipped sinusoid.
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— | 1 5 . 1 5  D E S I G N  E X A M P L E

DC POWER SUPPLY

A laboratory power supply uses a nonlinear circuit called a rectifier to convert a sinusoidal 
voltage input into a dc voltage. The sinusoidal input

comes from the wall plug. In this example, A — 160 V and coo = 377 rad/s (fo =  60 Hz). 
Figure 15.15-1 shows the structure of the power supply. The output of the rectifier is the 
absolute value of its input, that is,

The purpose of the rectifier is to convert a signal that has an average value equal to zero into a 
signal that has an average value that is not zero. The average value of vs(/) will be used to 
produce the dc output voltage of the power supply.

The rectifier output is not a sinusoid but a periodic signal with fundamental frequency equal 
to 2co0. Periodic signals can be represented by Fourier series. The Fourier series of vs(f) will 
contain a constant, or dc, term and some sinusoidal terms. The purpose of the filter shown in 
Figure 15.15-1 is to pass the dc term and attenuate the sinusoidal terms. The output of the filter, 
vo(0, will be a periodic signal and can be represented by a Fourier series. Because we are designing 
a dc power supply, the sinusoidal terms in the Fourier series of vo(0 are undesirable. The sum of 
these undesirable terms is called the ripple of v0(f).

The challenge is to design a simple filter so that the dc term of v0(t) is at least 90 V, and 
the size of the ripple is no larger than 5 percent of the size of the dc term.

Describe the Situation and the Assumptions
1. From Table 15.4-1, the Fourier series o f vs(/) is

Let vsn(t) denote the term of vs(0 corresponding to the integer n. Using this notation, we 
can write the Fourier series of vs(/) as

2. Figure 15.15-2 shows a simple filter. The resistance Rs models the output resistance of 
the rectifier. We have assumed that the input resistance o f the regulator is large enough 
to be ignored. (The input resistance o f the regulator will be in parallel with R and will 
probably be much larger than R. In this case, the equivalent resistance of the parallel 
combination will be approximately equal to R.)

vac(/) =  A sin coot

vs(f) =  |A sin a>Qt\

N

vs(o  =  +  5 > ( o

Regulator v^

FIGURE 15.15-1 Diagram of a power supply.
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Rs = 10 17 I L

vs« ) ( :

FIGURE 15.15-2 A simple RL low-pass 
filter connected to the rectifier.

3 . The filter output. v0(t), will also be a periodic signal and will be represented by the Fourier

4 . Most of the ripple in vG(/) will be due to vci (/), the fundamental term of the Fourier series. The 
specification regarding the allowable ripple can be stated as

amplitude of the ripple <  0.05 • dc output 

Equivalently, we can state that we require

That is, the amplitude vol(7) must be less than 4 percent of the dc term of the output (vo0 =  
dc term of the output).

State the Goal
Specify values of R and L so that

dc output =  Vqo >  90 

and v0i(f) < 0 .0 4 -v o o

Generate a Plan
Use superposition to calculate the Fourier series of the filter output. First, the specification

dc output =  v0o > 90 V 

can be used to determine the required value of R. Next, the specification

|voi (0 l  <  0.04 • vo0

can be used to calculate L.

Act on the Plan
First, we will find the response to the dc term of vs(f). When the filter input is a constant and the 
circuit is at steady state, the inductor acts like a short circuit. Using voltage division

series
N

(15.15-1)

For ease of calculation, we replace Eq. 15.15-1 with the simpler condition

voi(0  <  0.04 • v0o

R R 320 
R +  1 0 ' V

The specification that vo0 >  90 V requires

“  R +  10  n 
R >  75.9or
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When R = 80 ft,
vo0 =  90.54 V

Next, we find the steady-state response to a sinusoidal term, vsn(/). Phasors and 
impedances can be used to find this response. By voltage division,

V  *  V
on R + Rs +  j2n<o0L s"

We are particularly interested in Voi:

V I = _______* _______ v , = - ! ° _____
01 R +  Rs +  j2w 0L sl 90 +  jl5 4 L  n  ■ 3

The amplitude o f v o 1 ( / )  is equal to the magnitude o f the phasor VQ|. The specification on the 
amplitude o f vol(0 requires that

80 640
. -------- -------- <  0.04 v0i

V W  +  7542/,2
< 0.04 -90.54

That is,
L > 1.986 H 

Selecting L =  2 H

completes the design.

Verify the Proposed Solution
Figure 15.15-3a displays a plot of vs(f) and vo(0, the input and output voltages of the circuit in 
Figure 15.15-2. Figure 15.15-36 shows the details of the output voltage. This plot indicates 
that the average value of the output voltage is greater than 90 V and that the ripple is no greater 
than ± 4  V. Therefore, the specifications have been satisfied.

Let us select
R =  80 n

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t, ms t (s)

(a) (b)
F1GURE 15.15-3 (a) Mathcad simulation of the circuit shown in Figure 15.15-2. (b) Enlarged plot of the output 
voltage.
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15.16 S U M M A R Y
O Periodic waveforms arise in many circuits. For example, the 

form of the load current waveforms for selected loads is 
shown in Figure 15.16-1. Whereas the load current for 
motors and incandescent lamps is of the same form as 
that of the source voltage, it is significantly altered for 
the power supplies, dimmers, and variable-speed drives 
as shown in Figures 15.16-16,c. Electrical engineers have 
long been interested in developing the tools required to 
analyze circuits incorporating periodic waveforms.

(b)

(c)

FIGURE 15.16-1 Load current waveforms for (a) motors and 
incandescent lights, (b) switch-mode power supplies, and (c) 
dimmers and variable-speed drives. The vertical axis is 
current, and the horizontal axis is time. Source: Lamarre,
1991.

O The brilliant mathematician-engineer Jean-Baptiste-Joseph 
Fourier proposed in 1807 that a periodic waveform could be 
represented by a series consisting of cosine and sine terms 
with the appropriate coefficients. The integer multiple fre­
quencies of the fundamental are called the harmonic fre­
quencies (or harmonics).

O The trigonometric form of the Fourier series is

N N

f i t )  = a0 +  an cos ncoo t +  bn sin ncoo t
n— 1 n= 1

The coefficients of the trigonometric Fourier series can be 
obtained from

\ fT  + t0 
°o = J  Jl f ( t )  dt

2  f T  +  f a

an = — f[ t )  cos na>ot dt n >  0
1 Jto

2 f T + ‘°
bn =  j  J  f ( t )  sin na>0t dt n > 0

An alternate form of the trigonometric form of the Fourier 
series is

N

f ( t )  =  Co +  Y l Cn cos (na)ot +  °n) 
n— 1

where cq = ao = average value o f / ( 0  and

0
Cn — \J an +  bn and 0n =

—tan if an >  0

180° — tan-1 if an < 0

(a) O The Fourier coefficients o f some common periodic signals 
are tabulated in 15.4-1.

O Symmetry can simplify the task of calculating the Fourier 
coefficients.

O The exponential form of the Fourier series is

f { t )  = < T c nejncoQt

where C n is the complex coefficients defined by

rt o + t
f i t )  dt

The line spectra consisting of the amplitude and phase o f the 
complex coefficients o f the Fourier series when plotted 
against frequency are useful for portraying the frequencies 
that represent a waveform.
The practical representation of a periodic waveform consists 
of a finite number of sinusoidal terms o f the Fourier series. 
The finite Fourier series exhibits the Gibbs phenomenon; 
that is, although convergence occurs as n grows large, there 
always remains an error at the points of discontinuity o f the 
waveform.
To determine the response of a circuit excited by a periodic 
input signal vs(/), we represent vs(f) by a Fourier series and 
then find the response of the circuit to the fundamental and 
each harmonic. Assuming the circuit is linear and the 
principle of superposition holds, we can consider that the 
total response is the sum of the response to the dc term, the 
fundamental, and each harmonic.
The Fourier transform provides a frequency-domain de­
scription of an aperiodic time-domain function.
A circuit with an impulse response h(t) and an input/(r) has 
a response>>(f) that may be determined from the convolution 
integral.
The table of Laplace transforms, Table 14.2-1, developed in 
C hapter 14, can be used to obtain the Fourier transform of a 
function /'(/).
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Section 15.2 The Fourier Series

P 15.2-1 Find the trigonometric Fourier series for a periodic 
function/^) that is equal to r  over the period from f =  0 to t =  2.
P 15.2-2 A “ staircase” periodic waveform is described by 
its first cycle as

( 1 0 < t < 0.25
2 0.25 < f < 0.5

0 0.5 < f < 1 

Find the Fourier series for this function.
P 15.2-3 Determine the Fourier series for the sawtooth 
function shown in Figure P 15.2-3.

F ig u re  P 15.2-3 Sawtooth wave.

P 15.2-4 Find the Fourier series for the periodic function/(f) 
that is equal to t over the period from t — 0 to t = 2 s.

Section 15.3 S ym m etry  of th e  Function f ( t )

P 15.3-1 Determine the Fourier series of the voltage wave­
form shown in Figure P 15.3-1.

Answer: vd(f) =  Y" — sin [n ^ t]  
nn V 2 /n— 1

F ig u re  P 15.3-1

P 15.3-2 Determine the Fourier series of the voltage wave­
form shown in Figure P 15.3-2.

Figure P 15.3-2

Hint: vc(f) =  vd(f — 1) — 6, where vd(f) is the voltage 
considered in problem Figure P 15.3-1.

/ \ ^ 12 . /  7T 7T\Answer: vc(f) = —6 + > — sin [ n - t  -  n — \
niz \  2 2/

P 15.3-3 Determine the Fourier series of the voltage wave­
form shown in Figure 15.3-3.

1 ^  18 /  f n7T\ \
Answer: va(0 -  ^ + 2 ^  ^ 2  ( cos V T/ /

/  IOOOtt \  
cos I n — -— t j

P 15.3-4 Determine the Fourier series of the voltage wave­
form shown in Figure P 15.3-4.

Hint: vb(f) =  va(f — 0.002) -  1, where va(f) is the voltage 
considered in Problem P 15.4-3.

Answer: vb(t) =  - 1 +  £  ( l  -  cos ( y ) )
n= 1

/  IOOOtt 2tt\cos

P 15.3-5 Find the trigonometric Fourier series of the saw­
tooth wave,/(f), shown in Figure P 15.3-5.



F o u r ie r  S e r ies  and  F o u r ie r  T r a n s fo r m

Answer:

P 15.3-10 Determine the Fourier series for the periodic
signal shown in Figure P 15.3-10.

K si )

P 15.3-6 Determine the Fourier series for the waveform 
shown in Figure P 15.3-6. Calculate ao, a \, a2, and a?>.

Figure P 15.3-6

P 15.3-7 Determine the Fourier series for

f ( t ) =  |A coso)/|

P 15.3-8 Find the trigonometric Fourier series for the func­
tion of Figure P 15.3-8. The function is the positive portion of a
cosine wave.

Section 15.5 Exponential Form of the Fourier Series

P 15.5-1 Determine the exponential Fourier series o f the 
function

f { t )  = \A sin (jrt)| 

shown in Figure P 15.5-1.

Figure P 15.3-8 Half-wave rectified cosine wave.

P 15.3-9 Determine the Fourier series for f ( t )  shown in 
Figure P 15.3-9.

Answer: an =  a0 =  0; bn — 0 fo r  even n, =  S /(n2n 2),for n =  1, 
5, 9, and =  -  8/(«V ) / o r  n =  3, 7, 11

P 15.5-2 Determine the exponential Fourier series of the 
function / ( / )  shown in Figure P 15.5-2.

A A n==(X) 1
Answer:f ( t )  = -  +  j —  V "  - eJ*2*t/T

2 2n ^  nn=-ex 
n* 0
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fit)

M M M
-T

F ig u re  P 15.5-2

2 T 37 t ( s )

P 15.5-3 Determine the exponential Fourier series of the 
function f( t)  shown in Figure P 15.5-3.

. ( nnd\
_  (A d \  Sm 

r \ T J
Answer: \  T )  

rind
~T~

fit)

_L
d O d
2 2

2 T 3 T t (s)

F ig u re  P 15.5-3

*P  15.5-7 A periodic function consists of rising and decaying 
exponentials of time constants of 0.2 s each and durations of
1 s each as shown in Figure 15.5-7. Determine the exponential 
Fourier series for this function.

Answer: C„ =
(jnn)(5 +  jnn)

n = 1,3,5

P 15.5-4 Consider two periodic functions,/ ( /)  and/(/), that 
have the same period and are related by

f ( t ) = a f ( t - t d) +  b

where a, b, and td are real constants. Let Cn denote the 
coefficients of the exponential Fourier series of f ( t )  and let 
Cn denote the coefficients of the exponential Fourier series of 
/(/). Determine the relationship between C„ and C„.

Answer: Co =  aCo +  b and Cn =  ae~JmooUCn n ^  0

*P  15.5-5 Determine the exponential form of the Fourier 
series for the waveform of Figure P 15.3-6.

P 15.5-6 Determine the exponential Fourier series for the 
waveform of Figure P 15.5-6.

Section 15.6 The Fourier Spectrum

P 15.6-1 Determine the cosine-sine Fourier series for the 
sawtooth waveform shown in Figure P 15.6-1. Draw the 
Fourier spectra for the first four terms, including magnitude 
and phase.

Figure P 15.6-2 The load current of a variable-speed drive.

P 15.6-2 The load current waveform of the variable-speed 
motor drive depicted in Figure 15.16-lc is show™ in Figure 
P 15.6-2. The current waveform is a portion of A sin co0t. 
Determine the Fourier series of this waveform and drawr the 
line spectra of |C„| for the first 10 terms.

Figure P 15.5-6
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P 15.6-3 The input to a low-pass filter is
vj(r) =  10cos / +  10cos 10/ +  10cos 100/ V 

The output of the filter is the voltage vc(/). The network 
function of the low-pass filter is

V o M  2
H M  = v ,M

( '
Plot the Fourier spectrum of the input and the output of the 
low-pass filter.

P 15.6-4 Draw the Fourier spectra for the waveform shown in 
Figure P 15.6-4.

P 15.7-3 The input to the circuit shown in Figure P 15.7-3 is 
the voltage of the voltage source

Vin(0 =  2 +  4 cos (1 OOf) +  5 cos (400/ +  45°) V

The output is the voltage across the 5-kfi resistor

Vout(0 =  - 5  +  7.071 cos (1001 +  135°) +  c4 cos (400r +  04) V

Determine the values of the resistance, /?, the capacitance, C, 
the coefficient, c4, and the phase angle, 04.

Answers: R =  25 kO; C =  0.4 /xF, c4 = 3.032 V, and 04 =  149°

C
Section 15.7 Circuits and Fourier Series
P 15.7-1 Determine the steady-state response, vG(/), for the 
circuit shown in Figure P 15.7-1. The input to this circuit is the 
voltage vc(/) shown in Figure P 15.3-2.

00 240
Answer: vQ(t) = — 6 -I-

n= \ nn\J400 +  n2n 2

“ ( " I ' - ( " I  +

0.01 F d =  V0(t)

Figure P 15.7-1

P 15.7-2 Determine the steady-state response, v0(7), for the 
circuit shown in Figure P 15.7-2. The input to this circuit is the 
voltage vb(/), shown in Figure P 15.3-4.

1#*F

Figure P 15.7-3

P 15.7-4 The input to a circuit is the voltage

Vj(f) = 2 + 4 cos (25/) +  5 cos (100/ +  45°) V 

The output is the voltage

vo(0 =5-1- 7.071 cos (25/ -  45°) +  c4 cos (w4t -I- &,) V 

The network function that represents this circuit is

V „ H  H 0H(<w) =
V iM .co 

l + j -
p

Determine the values of the dc gain, H0, the pole, p. the 
coefficient, c4, and the phase angle, 04.

A nswers: H0 =  2.5 V/V,/j =  25 rad/s, c4 =  3.032 V, and 04 =  -3 1  °

P 15.7-5 The input to the circuit in Figure P 15.7-5 is the 
voltage of the independent voltage source

V j ( / )  =  6 +  4 cos ( 1000/) +  5 cos (3000/ +  45°) V

The output is the voltage across a 500-0 resistor

v0(/) =  3.75+2.34cos(1000/ -  20.5°) +cjcos(3OOO/+03) V
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Determine the values of the resistance, /? ]; the capacitance, C; 
the coefficient, c3; and the phase angle, 03.
Answer: R\ =  30011, C = 2 /iF, c3 = 2.076 V, and 03 =  — 3.4° 

*1

Section 15.9 The Fourier Transform

P 15.9-1 Find the Fourier transform of the function

f{ t)  =  - u ( - t )  +  u(t)

as shown in Figure P 15.9-1. This is called the signum 
function.

P 15.7-6 Find the steady-state response for the output volt­
age, vQ, for the circuit of Figure P 15.7-6 when v(r) is as 
described in Figure P 15.5-6.

1 H

v(t) | v0

fit)
1

0
-1

t

10 nF

Figure P 15.7-6 An RLC circuit.

P 15.7-7 Determine the value of the voltage vQ(t) at / =  4 ms 
when vin is shown in Figure P \5.1-la and the circuit is shown 
in Figure P 15.7-76.

Figure P 15.9-1

P 15.9-2 Find the Fourier transform off  (t) — Ae~atu(t) when 
a > 0.
Answer: F(co) = ---------

a +  jco
P 15.9-3 Find the Fourier transform of the waveform shown 
in Figure P 15.9-3.

Figure P 15.9-3

P 15.9-4 Determine the Fourier transform of/(f) =  10 cos 501.

Answer: F(co) = 10̂ r5(o; — 50) + \0n8(co +  50)

P 15.9-5 Determine the Fourier transform of the pulse shown 
in Figure P 15.9-5.

Answer: F { jc o )  =  -  ( sin co — sin 2co) +  ( cos co — cos 2co)

(a)

1 mF

Figure P 15.9-5

P 15.9-6 Determine the Fourier transform of a signal with 
/(f) — At IB between t — 0 and t — B and f{t) = 0 elsewhere.

Answer: F(jco) =  — 
B

B  -jcoB , - j w B _____L
*  ̂ ^  CO2

Figure P 15.7-7

jco or or
P 15.9-7 Determine the Fourier transform of the waveform 
f( t)  shown in Figure P 15.9-7.

Answer: F{jco) =  — ( sin 2co — sin co)
CO
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fit)

-2

Figure P 15.9-7

-1 2 rts)

Section 15.12 Convolution and Circuit Response
P 15.12-1 Find the current i(t) in the circuit of Figure 
P 15.12-1 when i's(f) is the signum function, so that

+  40 A / >  0 

, -4 0  A / <  0

Also, sketch i(t).

h it)
■ {

Figure P 15.12-1

100 cos 31 A.P 15.12-2 Repeat Problem 15.12-1 when is
P 15.12-3 The voltage source of Figure P 15.12-3 is v(t)= 10 
cos It for all t. Calculate /(/) using the Fourier transform.

2Q
—AAA/—

v(t)( 1 H

P 15.12-6 T h e  pulse signal shown in Figure P 15.12-6a is the 
source vs(0 for the circuit of Figure P 15.12-6/?. Determine the 
output voltage, vQ, using the Fourier transform.

Figure P 15.12-3

P 15.12-4 Find the output voltage vQ(f) using the Fourier 
transform for the circuit of Figure P 15.12-4 when v(t) = 
e‘u (- t)  +  u(t) V.

i n

v s(t)
(V)

8

0 1 

(a)

1 H

f(s)

+

Vn

(b )

Figure P 15.12-6

Section 15.14 How Can We Check . . . ?

P 15.14-1 The Fourier series of vin(r) shown in Figure P 15.7-7 
is given as

/ \ 1 18 /  n n \ (  7i 2;A
Vin = 2 +  s y ) cos Jn= l ' '

Is this the correct Fourier series?

Hint: Check the average value and the fundamental frequency. 

Answer: The given Fourier series is not correct.

P 15.14-2 The Fourier series of v(t) shown in Figure P 15.14-2
is given as

Figure P 15.12-4

P 15.12-5 The voltage source of the circuit of Figure P 15.12-5 
is v(t) = \5e 5t V. Find the resistance R when it is known that 
the energy available in the output signal is two-thirds of the 
energy of the input signal.

• 0 - » + g = ( * f M - ! — D v

Is this the correct Fourier series?

Hint: Check the average value and the fundamental frequency. 

Answer: The given Fourier series is not correct.



Design P ro b le m s ------ ( 791

P 15.14-3 The Fourier series of v(t) shown in Figure SP 15-2 
in the next section is given as

oc / i \n
v(/) =  2 V -------cos (n2nt) V

nnn= 1
Is this the correct Fourier series?

Hint: Check the average value and the fundamental frequency. 
Check for symmetry.

Answer: The given Fourier series is not correct.

Figure P 15.14-2

PSpice Problems
SP 15-1 Use PSpice to determine the Fourier coefficients for SP 15-2 Use PSpice to determine the Fourier coel
v(f) shown in Figure SP 15-1. v(/) shown in Figure SP 15-2.

Figure SP 15-1

Design Problems
DP 15-1 A periodic waveform shown in Figure DP 15-la is 
the input signal of the circuit shown in Figure DP 15-16. 
Select the capacitance C so that the magnitude of the third 
harmonic of v2(f) is less than 1.4 V and greater than 1.3 V. 
Write the equation describing the third harmonic of v2(f) for 
the value of C selected.

10
»1
(V)

2
1 1 1............... - .....

3 n —►
~2 f(s)
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DP 15-2 A dc laboratory power supply uses a nonlinear circuit 
to convert a sinusoidal voltage obtained from the wall plug to a 
constant dc voltage. The wall plug voltage is A sin co0t, where f 0 
= 60 Hz and ,4 =  160 V. The voltage is then rectified so that vs =  
|A sin a)0t\. Using the filter circuit of Figure DP 15*2, determine 
the required inductance L so that the magnitude of each 
harmonic (ripple) is less than 4 percent of the dc component 
of the output voltage.

DP 15-3 A low-pass filter is shown in Figure DP 15-3. The 
input, vs, is a half-wave rectified sinusoid with o>0 =  8007T 
(item 5 o f Table 15.4-1). Select L and C so that the peak value 
o f the first harmonic is 1/20 o f the dc component for the 
output, vG.

Figure DP 15-2 An RL circuit.

75 kft v0

Figure DP 15-3 An RLC circuit.
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16.1 I N T R O D U C T I O N

Transfer functions are used to characterize linear circuits. In a previous chapter, we learned how to analyze 
a circuit so that we could determine its transfer function. In this chapter, we learn how to design a circuit to 
have a specified transfer function. This design problem does not have a unique solution. There are many 
ways to obtain a circuit from a specified transfer function. A popular strategy is to design the circuit to be a 
cascade connection of second-order filter stages. This is the strategy we will use in this chapter.

The problem of designing a circuit that will have a specified transfer function is called filter design. 
In this chapter we will learn the vocabulary of filter design and describe second-order filter stages. Finally, 
we will learn how to connect these filter stages to obtain a circuit that has a specified transfer function.

The concept of a filter was conceived early in human history. A paper filter was used to remove dirt and 
unwanted substances from water and wine. A porous material, such as paper, can serve as a 
mechanical filter. Mechanical filters are used to remove unwanted constituents, such as suspended 
particles, from a liquid. In a similar manner, an electric filter can be used to eliminate unwanted 
constituents, such as electrical noise, from an electrical signal.

The electrical filter was independently invented in 1915 by George Campbell in the United 
States and K. W. Wagner in Germany. With the rise of radio between 1910 and 1920, a need emerged 
to reduce the effect of static noise at the radio receiver. As regular radio broadcasting emerged in the 
1920s, Campbell and others developed the RLC filter, using inductors, capacitors, and resistors. These 
filters are called passive filters because they consist of passive elements. The theory required to design 
passive filters was developed in the 1930s by S. Darlington, S. Butterworth, and E. A. Guillemin. The 
Butterworth low-pass filter was reported in Wireless Engineering in 1930 (Butterworth, 1930).

When active devices, typically op amps, are incorporated into an electric filter, the filter is called 
an active filter. Because inductors are relatively large and heavy, active filters are usually constructed 
without inductors— using, for example, only op amps, resistors, and capacitors. The first practical >
active-RC  filters were developed during World War II and were documented in a classic paper by R. P. ----- f  793
Sallen and E. L. Key (Sallen and Key, 1955).

16.2 T H E  E L E C T R I C  F I L T E R
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16.3 F I L T E R S  ----- ----------------------------------------------------

We begin by considering an ideal filter. For convenience, suppose that both the input and output of 
this filter are voltages. This ideal filter separates its input voltage into two parts. One part is passed, 
unchanged, to the output; the other part is eliminated. In other words, the output of an ideal filter is an
exact copy of part of the filter input.

This is a familiar use of the word filter. For example, we expect an automotive oil filter to 
separate a mixture of oil and dirt into two parts: oil and dirt. Ideally, the oil filter passes one part of its 
input, the oil, to its output without changing it in any way. The other part o f the input, the dirt, should 
be completely eliminated. The oil filter stops the dirt from getting to the output.

To understand how an electric filter works, consider an input voltage:
Vj(/) =  cos a)\t +  cosa>2/ +  cosa>3/

This input consists of a sum of sinusoids, each at a different frequency. (For example, periodic 
voltages can be represented in this way using the Fourier series.) The filter separates the input voltage 
into two parts, using frequency as the basis for separation. There are several ways of separating this 
input into two parts and, correspondingly, several types of ideal filter. Table 16.3-1 illustrates the 
common filter types. Consider the ideal low-pass filter, shown in row 1 of the table. The network 
function of the ideal low-pass filter is

H(w) =  ( 1^  co<o)c (16.3-1)
[ 0  CD >  Ct)c

The frequency coc is called the cutoff frequency. The cutoff frequency separates the frequency range co <  
coc, called the pass-band, from the frequency range co > coc, called the stop-band. Those components of the 
input that have frequencies in the pass-band experience unity gain and zero phase shift. These terms are 
passed, unchanged, to the output of the filter. Components of the input that have frequencies in the stop-band 
experience a gain equal to zero. These terms are eliminated or stopped. An ideal filter separates its input into

Table 16 3-1 Ideal Filters

FILTER TYPE IDEAL FREQUENCY RESPONSE FILTER INPUT AND O UTPUT

Low-pass

High-pass

Band-pass

Hl(co )

J _________L
G)l COc C02 C03 CO

H H(<o)

J _________L
0)2 (Oc C03 CO

Hb(0>)

I

1
Band-stop (notch) Hn(gj )

_L _L
COa C02 Cl)b C03 CO

Vj it) =  COS (D]t
+ cos 
+ cos co3 t

C0lt  I----------1
C02t O—  Hl(g) ) -----o v 0(t) = COS COit
COot I-------- 1 --1

tfj(f) = COS COit-  UUb UJ^l r

+ COS O' I
+ cos co3 t L

H H(co)

Uj(r) = cos coxt |-------------1
+ cos co2t O —J  Hg(ft) )\----- O v0(t) = cos C02t
+ cos co3t I— I ____ I

I v 0{t) = cos co3 t

V\(t) = COS (Ojt I----------- ,
•f cos co2t O------ HN(ct) )\------O v° = cos
+ cos co3t L  I + cos co3 t
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Denominators of Butterworth Low-Pass Filters with a Cutoff Frequency toc — 1 rad/s

ORDER DENOMINATOR, 0 ( 5 )

1 s +  1

2 s2 +  1.4145+ 1

3

4 (s2 +  0.765s +  lX s2 +  1 .8485+ 1)

5 ( j +  1)(52 + 0 .6 1 8 5 +  1 )(^  +  1 .6185+ 1)

6 [s2 +  0 .5185+  l)(j*  +  1.4145+ IX*2 +  1.9325+ 1)

7 (5 +  1)(52 +  0.4455 +  IX j2 +  1.2475 +  1K52 +  1.8025 +  1)

8 (.s2 +  0.3905 +  1)(52 +  1.1115 +  1)(52 +  1.6635 +  1H52 +  1.9625 +  1)

9 (5 +  1 )(^  +  0.3475 +  1X52 + 5  +  1)(52 +  1.5325 +  l ^ s 2 +  1.8795 +  1)

10 (s2 +  0.3135 +  V is 2 +  0.9085 +  l ^ s 2 +  1.4145 +  l ^ s 2 +  1.7825 +  IX52 +  1.9755 +  1)

two parts: those terms that have frequencies in the pass-band and those terms that have frequencies in the 
stop-band. The output of the filter consists of those terms with frequencies in the pass-band.

Unfortunately, ideal filter circuits don’t exist. (This fact can be proved by calculating the impulse 
response of the ideal filter by taking the inverse Laplace transform of the transfer function. The impulse 
response of an ideal filter would have to exist before the impulse itself. That is, the response would have to 
occur before the input that caused the response. Because that can’t happen, ideal filter circuits don’t 
exist.) Filters are circuits that approximate ideal filters. Filters divide their inputs into two parts, the terms 
in the pass-band and the terms in the stop-band. The terms in the pass-band experience a gain that is 
approximately 1 and experience some phase shift. These terms are passed to the output, but they are 
changed a little. The terms in the stop-band experience a small gain that isn’t quite zero. Because these 
terms aren’t eliminated entirely, some small residue of these terms shows up in the filter output.

Butterw orth transfer functions have magnitude frequency responses that approximate the 
frequency response of an ideal filter. Butterworth low-pass transfer functions are given by

" * > - m  ( ,6 -3-2 >

We can choose either +1 or — 1 for the numerator of HL(s). The polynomial D(s) depends on the cutoff 
frequency and on the order of the filter. These polynomials, called Butterworth polynomials, are 
tabulated in Table 16.3-2 for a>c =  1 rad/s. There is a trade-off involving the order o f the filter. The 
higher the order, the more accurately the filter frequency response approximates the frequency 
response of an ideal filter; that’s good. The higher the filter order, the more complicated the circuit 
required to build the filter; that’s not good.

^ ---------------------------------- | E x a m  p l e  1 6 .3  -1 Fi l terOrder

We wish to design a low-pass filter that will approximate an ideal low-pass filter with coc =  1 rad/s. Compare the 
fourth-order Butterworth low-pass filter to the eighth-order Butterworth low-pass filter.

Solution
The fourth row of Table 16.3-2 indicates that the transfer of the fourth-order Butterworth filter is

H a(s ) —_______________ !_______________ —________ !_______ x ________ !_______
(s2 -f 0.765s +  l)(s2 +  1,848s -f I) (s2 + 0 .7 6 5 5 +  1) {s2 +  1.848s +  1)
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Similarly, the eighth row of Table 16.3--2 indicates that the transfer function of the eighth-order Butterworth filter is
__________________________________________ 1________________________________________________ ______________________________

H&(s) ~  (52 _|_ o.390s +  l )(s2 +  111 Is +  l)(s2 +  1.6635 +  l )(s2 +  1.9625 +  1)
1 1 1 ,, \

= (s2 +  0.3905 +  1 j X {s2 +  1.1115+ 1) X (s2 +  1.66354- 1) X (52 4- 1.9625+ 1)

Figure 16.3-1 shows the magnitude frequency 
response plots for these two filters. Both fre­
quency responses show unity gain when co C  1 
and a gain of zero when co »  1. Thus, both 
filters approximate an ideal low-pass filter with 
coc =  1 rad/s. The eighth-order filter makes the 
transition from the pass-band to the stop-band 
more quickly, providing a better approximation 
to the ideal low-pass filter.

The transfer function of the fourth-order 
filter has been expressed as the product of two 
second-order transfer functions, whereas the 
transfer function of the eighth-order filter has 
been expressed as the product of four second- 
order transfer functions. Each of these second- 
order transfer functions will be implemented by 
a second-order circuit. Because all of these 
second-order circuits will be quite similar, it 
is reasonable to expect that the eighth-order 
circuit will be about twice as large as the
fourth-order filter. That means twice as many parts, twice the power consumption, twice the assembly cost, twice 
the space, and so on.

The eighth-order filter performs better, but it costs more. In some applications, the improved performance of 
s the eighth-order filter justifies the additional cost, whereas in other applications, it does not.

10-1 10°  

co, rad/s

101

FIGURE 16.3-1 A comparison of the frequency responses of fourth- 
order and eighth-order Butterworth low-pass filters with coc = 1 rad/s.

E x a m p l e  1 6 . 3 - 2  F r e q u e n c y  S c a l i n g

Determine the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s.

Solution
Equation 16.3-2 and Table 16.3-2 provide a third-order Butterworth low-pass filter with a cutoff frequency eaual 
to 1 rad/s:

H„(s) =
(5 +  l)(s2 + 5 + 1 )

A technique called frequency scaling is used to adjust the cutoff frequency to coc =  500 rad/s. Frequency scaling 
can be accomplished by replacing each 5 in H„(s) by s/coc. That is,

H(s) =

( i + l ) ( ( i )  + ^ + l )
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In this case, coc =  500 rad/s, so

1
/ / ( * )  =  , ,

V 5 0 0 + l / l V 5 0 0 i  +  5 0 0 + \

500i3

(s +  500) (s2 +  500s +  5002)
125,000,000

(s +  500) (s2 +  500s +  250,000)

H(s) is the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s.

EXERCISE 16.3-1 Find the transfer function of a first-order Butterworth low-pass filter having 
a cutoff frequency equal to 1250 rad/s.

1  1 2 5 0Answer: H is) =  —*-------- = -------—
_ L _ +  1 s +  1250 
1250

16.4 S E C O N D - O R D E R  F I L T E R S

Second-order filters are important for two reasons. First, they provide an inexpensive approximation to 
ideal filters. Second, they are used as building blocks for more expensive filters that provide more 
accurate approximations to ideal filters.

The frequency response of second-order filters is characterized by three filter parameters: the 
gain k, the comer frequency co0, and the quality factor Q. Filter circuits are designed by choosing the 
values of the circuit elements in such a way as to obtain the required values of k, co0, and Q.

A second-order low-pass filter is a circuit that has a transfer function o f the form

h l ( s ) = -  it— i  o 6-4- 1)
S2 +  — S +  (Do2

This transfer function is characterized by three parameters: the dc gain k , the comer frequency a>0, and 
the quality factor Q . When this circuit is stable, that is, when both co0 > 0 and Q > 0, the network 
function can be obtained by letting s = jco.

u  ( \ ko)°2h l (<») =
-CO1 + J  —  CD 4 -  COo

The gain of the filter is given by

IH l M I  =

Q

ka>o2

( w g - w 2)2 +

k co coq

0 co coo
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io- 1 10°  

co, rad/s

FIGURE 16.4-1 Frequency responses of 
101 second-order low-pass filters with four 

values of Q (coc = 1 rad/s).

When k =  1, this frequency response approximates the frequency response of an ideal low-pass 
filter with a cutoff frequency of a>c — a>0. When k /  1, the low-pass filter approximates an ideal low- 
pass filter together with an amplifier having gain equal to k. The quality factor, Q, controls the shape of 
the frequency response during the transition from pass-band to stop-band. Figure 16.4-1 shows the 
frequency response of a second-order low-pass filter (k =  1 and coc =  a>o =  \) for several choices 
of Q. A Butterworth approximation to the ideal low-pass filter is obtained by choosing Q =  0.707.

Table 16.4-1 Second-Order RLC Filters

FILTER TYPE CIRCUIT TRANSFER FUNCTION DESIGN EQ UATIONS

Low -pass

H igh-pass

H(s) = LC
,2+ * s + JL

L LC

H(s) =
s2+ * s  + J -  

L LC

" 0 = V Z ^

^  R ^ C  
k= 1

ft)0 =
Vl c

^  R VC 
k= 1

B and-pass His) =

LC

(O0 =
4l c

*  R v  C
k = 1
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Table 16.4-1 provides RLC circuits that can be used as second-order filters. Consider the low- 
pass filter shown in the first row of the table. The transfer function of this circuit is

H( s )  =

1
L C

, R 1
s2 + l s + I c

(16.4-2)

The relationship between the circuit parameters R, L , and C and the filter parameters k, a>0> and Q is 
obtained by comparing Eq. 16.4-2 to Eq. 16.4-1. First, compare the constant terms in the denominators 
to see that the cutoff frequency of the filter is given by

1
(Oq =

s/LC

Next, compare the coefficients of 5 in the denominators to see that

Solving these two equations for Q gives

Finally, comparing the numerators gives

c*>o_R
Q ~ L

- Ld

k(Oo = LC

So the dc gain is

k =  1

Notice that co0 and Q are determined by the values o f R , L, and C but that k is always 1.
Many different circuits are used to build second-order filters. One o f the popular filter circuits 

is called the Sallen-Key filter. Table 16.4-2 provides the information required to design Sallen-Key 
filters.

FILTER TYPE CIRCUIT DESIGN EQUATIONS

Low-pass

G)0 = 

0  =

1
RC

1
3 -A  

k -  A

(continued)
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Table 16.4-2 (C o n tin u ed )

F i l te r  C i rc u i t s

FILTER TYPE CIRCUIT

High-pass

Band-pass

Band-stop (notch)

DESIGN EQ UATIONS

1
RC  

1
3 - A  

k -  A

0)Q =

e  =

0)Q = 

Q =

1
RC

1
3 - A  

k = AQ

1
RC 

1
4 - 2 A  

k = A

co0 = 

0 =

E x a m p l e  1 6 . 4 - 1  RLC L o w - P a s s  F i l t e r  

Design a Butterworth second-order low-pass filter with a cutoff frequency of 1000 hertz.

Solution
Second-order Butterworth filters have Q =  —  =  0.707. The comer frequency is equal to the cutoff frequency 
that is, v 2 J'

ojq =  coc =  2n ■ 1000 =  6283 rad/s
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The RLC  circuit shown in the first row of Table 16.4-1 can be used to design the required low-pass filter. The 
design equations are

—L= =  0)0 =  6283 rad/s
V i c

and i /T  „  l
R\c Q  V2

The third design equation indicates that k = 1. This last design equation does not constrain the values of R , L, and 
C. Because we have two equations in three unknowns, the solution is not unique. One way to proceed is to choose 
a convenient value for one circuit element, say C =  0.1 /iF, and then calculate the resulting values o f the other 
circuit elements

L — \j(a>o2C) =  0.253 H

and
/? =  y ^  =  2 2 5 i n

If we are satisfied with this solution, the filter design is complete. Otherwise, we adjust our choice of the value of C 
and recalculate L and R. For example, if the inductance is too large, say L =  1000 H, or the resistance is too small, 
say R =  0.03 fl, it will be hard to obtain the parts to build these circuits. Because there is no such problem in this 
example, we conclude that the circuit shown in the first row of Table 16.4-1 with C =  0.1 /zF, L =  0.253 H, and 
R = 2251 A is the required low-pass filter.

E x a m p l e  1 6 . 4 - 2  Sallen-Key  Band-Pass Filter V

Design a second-order Sallen-Key band-pass filter with a center frequency of 500 hertz and a bandwidth of 100 
hertz.

Solution
The transfer function of the second-order band-pass filter is

, a>o k — s
H{s) ~ Q

The corresponding network function is

lk —  co
h m  = — —

coo2 - a t + j ^ a >
(Oo

Dividing numerator and denominator by J 'q 00 gives

HM = —
1 +JQ \(O0 (O )

We have seen network functions like this one earlier, when we discussed resonant circuits in Chapter 13. The gain, 
|H(<y)|, will be maximum at the comer frequency, o>0- In the case of this band-pass transfer function, ct>0 is also
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called the center frequency and the resonant frequency. The gain at the center frequency will be
|H(<uo)| =  k

Two frequencies, co\ and &>2, are identified by the property

|H(ftn)| =  |H(oi2)| =  - ^

These frequencies are called the half-pow er frequencies or the 3 dB frequencies. The half-power frequencies are 
given by

0)\ +  (0o2

The bandwidth of the filter is calculated from the half-power frequencies
(On
B W  =  (o2 -  cox =

The Sallen-Key band-pass filter is shown in the third row of Table 16.4-2. Our specifications require that

coo =  2n ■ 500 =  3142 rad/s

and
0  =  - ^  =  5 
^ BW

From Table 16.4-2, the design equations for the Sallen-Key band-pass filter are

and

^  =  o*o =  3142 

3 - 1 - 2 *
31 8 3  a

Pick C =  0.1 juF. Then

1R =  —— =  31 8 3 0  
Ccoo

Because k =  AQ, the gain of this band-pass filter at the 
center frequency is 14. Also, one of the resistances is 
given by

(A -  l)R =  5729 fl

»iW ©

The Sallen-Key band-pass filter is shown in Figure 16.4-2. FIGURE l6 4. 2 A Sallen-Key band-pass filter.

E x a m p l e  1 6 . 4 - 3  Sallen-Key Band-Stop Filter

Design a second-order band-stop filter with a center frequency of 1000 rad/s and a bandwidth o f 100 rad/s.

Solution
The transfer function of the second-order band-stop filter is

k(s2 -1- w 02)H(s) =
2 i 2 

S +  —  S -f" COq
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k —
k(s^ +  w o 2) _  k _________Q S

Notice that the transfer functions of the second-order band-pass and band-stop filters are related by

7 , ^ 0 ,  2
S* + - 7 T - S  +  (Oo s2 +  Ĉ s  +  (Oo2

The network function of the band-stop filter is

H M  =
Ar(cup2 -  a>2)

(o 0 2 -  CO2 + j - ^ co

When co <£(1)0 or co^> co0, the gain is |H(<w) | =  h. At co = co0, the gain is zero. The half-power frequencies, cox and 
co2, are identified by the property

|H(a>i )| =  |H(a>2)| =

The bandwidth of the filter is given by

BW  =  co2 — co\ =
COq

The Sallen-Key band-stop filter is shown in the last row of Table 16.4-2. Our specifications require that coo 
1000 rad/s and

Q  =  —  = 1 0  
^  BW

Table 16.4-2 indicates that the design equations for the Sallen-Key band-stop filter are

RC
=  coo =  1000

0. 2 /iF

and
A = 2 -  —  =  1.95

2 Q

Pick C =  0.1 /zF. Then

R  =  - J — =  10 k f l
Ccoo

The Sallen-Key band-stop filter is shown in 
Figure 16.4-3.

vQ(t)

F I G l :R E  16.4-3 A Sallen-K ey band-stop filter.

E x a m p l e  1 6 . 4 - 4  Tow-Thomas  Filter

Figure 16.4-4 show's another circuit that can be used to build a second-order filter. This circuit is called a Tow- 
Thomas filter. This filter can be used as either a band-pass or low-pass filter. When the output is the voltage 
the transfer function is

1

H l « = -
R*RC2
1

RqC R2c
1

2^2

(16.4-3)
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®.W 0

FIGURE 16.4-4 The 
Tow-Thomas filter.

and the filter is a low-pass filter. If, instead, the voltage v2{t) is used as the filter output, the network function is
1

H b ( s ) =
R kC (16.4-4)

R0C~ ' R2C2
and the Tow-Thomas filter functions as a band-pass filter. Design a Butterworth Tow-Thomas low-pass filter with 
a dc gain of 5 and a cutoff frequency of 1250 hertz.

Solution
Because the Tow-Thomas filter will be used as a low-pass filter, the transfer function is given by Eq. 16.4-3. 
Design equations are obtained by comparing this transfer function to the standard form o f the second-order low- 
pass transfer function given in Eq. 16.4-1. First, compare the constant terms (that is, the coefficients o f 5°) in the 
denominators of these transfer functions to get

1
coo =

RC

Next, compare the coefficients of s' in the denominators of these transfer functions to get
Rq Q = R
Finally, compare the numerators to get

(16.4-5)

(16.4-6)

(16.4-7)

Designing the Tow-Thomas filter requires that values be obtained for R, C, Rq, and Rk. Because there are four 
unknowns and only three design equations, we begin by choosing a convenient value for one of the unknowns, 
usually the capacitance. Let C =  0.01 n F. Then,

R = —g r =  12,732 ftco0C (2jt) (1250) (0.01) ( 10—6)

A second-order Butterworth filter requires Q =  0.707, so

Rq =  QR =  (0.707) (12,732) =  9003 ft
Finally

Rk = y  =  2546 ft k
and the design is complete.
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E x a m p l e  1 6 . 4 - 5  Tow-Thomas High-Pass Filter

Use the Tow-Thomas circuit to design a Butterworth high-pass filter with a high-frequency gain of 5 and a cutoff 
frequency of 1250 hertz.

Solution
The Tow-Thomas circuit does not implement the high-pass filter, but it does implement the low-pass filter and the 
band-pass filter. The transfer functions of the second-order high-pass, band-pass, and low-pass filters are related by

1 1

H h (s ) =
ks2

s2 +  -
1

+
1 =  * + *kC

r 2c 2
s2 +

1 1
RkRC2

RqC" ' R2C2
sz +

1 1 (16.4-8)
RqC~ r 2c 2RqC

= k  +  H b (s ) +  H l (s )

A high-pass filter can be constructed using a Tow-Thomas filter and a summing amplifier. Both the band­
pass and low-pass outputs of the Tow-Thomas filter are used. Equation 16.4-8 indicates that the band-pass and 
low-pass filters must have the same values o f k , Q , and a>0 as the high-pass filter. Thus, we require a Tow-Thomas 
filter having k =  5, Q = 0.707, and ô o =  7854 rad/s. Such a filter was designed in Example 16.4-4. The high-pass 
filter is obtained by adding a summing amplifier as shown in Figure 16.4-5.

io  ka  
AAA/—

FIGURE 16.4-5 
°  A Tow-Thomas 

high-pass filter.

16.5 H I G H - O R D E R  F I LTERS

In this section, we turn our attention to filters that have an order greater than 2. These filters are called 
high-order filters. A popular strategy for designing high-order filters uses a cascade connection of 
second-order filters. The cascade connection is shown in Figure 16.5-1. In this figure, the transfer 
functions//i(5),//2(s), . . . , Hn(s) represent second-order filters that are connected together to build a 
high-order filter. We refer to the second-order filter as filter stages to distinguish them from the high- 
order filter. That is, the high-order filter is a cascade connection of second-order filter stages. (When 
the order of the high-order filter is odd, a first-order filter stage is needed. Nonetheless, we talk about 
designing high-order filters as a cascade of second-order stages.)

The cascade connection is characterized by the fact that the output of one filter stage is used as 
the input to the next stage. Unfortunately, the behavior of a stage will sometimes change when another 
stage is connected to it. We call this phenomenon loading, and we say that the second stage loaded the 
first. Generally, loading is undesirable, and we try to avoid it. Figure 16.5-2 shows a model o f a filter
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Z 0(s)

e .  „ FIGURE 16.5-2 A model o f  one filter stage.
FIGURE 16.5-1 A cascade circuit o f n stages.

stage that is appropriate for investigating loading. This model includes the input and output impedance
of the filter stage as well as the transfer function.

Figure 16.5-3 shows a high-order filter consisting of the cascade connection of two filter stages. 
Let’s calculate the transfer function of the high-order filter. Starting at the output of the high-order 
filter, notice that there is no current in the output impedance, Zo2(s), of the second stage. Consequently, 
there is no voltage across Zo2(s), so

V3(s) =  H 2(s ) r2(s) (16.5-1)

Next, we use voltage division to find V2(s).

V2{s) =
Z i2 - H x{s)Vx(s) (16.5-2)

Z0 i +  Zy2
Connecting the second filter stage to the first stage has changed the output of the first stage. Without 
the second stage, there would be no current in Z0\(s). Consequently, there would be no voltage across 
Z01 (s), and the output of the first stage would be V2(s) =  Hi(s)V\(s). The second stage is said to load the 
first stage. This loading can be eliminated by making the input impedance of the second stage infinite, 
Z,2(s) =  oo, or the output impedance of the first stage zero, Z0\(s) =  0.

Combining Eqs. 16.5-1 and 16.5-2 gives

V3(s) =  H 2 ( s )  Z *— H \ ( s ) V x(s)
Z 0\ +  ^i2

Finally, the transfer function of the high-order filter is

W  rr ^  ^H(s) = =  H2(s)- -H X (s) (16.5-3)
V\ (5) w  Z0i -f- Zj2 

This equation simplifies to

H(s) = H 2(s)H x(s) (16.5-4)

when either the input impedance of the second stage is infinite, Zl2(s) =  00, or the output impedance o f  
the first stage is zero, Z01 (s) =  0. In other words, Eq. 16.5-4 can be used when the second stage does not 
load the first stage, but Eq. 16.5-3 must be used when the second stage does load the first stage. We will 
prove that the Sallen-Key filters have output impedances equal to zero. Therefore, there is no loading 
when Sallen-Key filter stages are cascaded. The transfer function of the high-order filter is the product of 
the transfer functions of the individual Sallen-Key filter stages. In contrast, the filters based on the series 
RLC circuit shown in Table 16.4-1 do not have output impedances that are equal to zero or input 
impedances that are infinite. If these filter stages were cascaded, the transfer function o f the high-order 
filter would not be equal to the product of the transfer functions of the individual filter stages. Thus, we 
can use cascaded Sallen-Key filter stages to design high-order filters without introducing loading.

ZolW z 02W

Cascade connection o f  
two filter stages.
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Table 16 5 1 Measuring the Parameters of a Filter Stage

PARAMETER DEFINITION MEASUREMENTS

Input impedance

Output impedance

Transfer function

VjGs)

l^ s)

Z0(5) =
VT(s)

Tfi)

H(s) =
Vis)

Z 0(s)

Next, consider calculating the output impedance o f a Sallen-Key band-pass filter. Table 16.5-1 
shows how the parameters of the model of a filter stage can be calculated or measured. The second row of 
this table indicates that to calculate the output impedance, a short circuit should be connected to the filter 
input, and a current source should be connected to the filter output. The voltage across the current source is 
calculated, and the ratio of this voltage to the current o f the current source is the output impedance. Figure 
16.5-4 shows a Sallen-Key filter with a short circuit across its input and a current source connected to its 
output. This circuit can be analyzed by writing node equations at nodes 1, 2, and T:

Vi Vi -  Vr
Y  + c s V ,+  ■' R J- + ( V { - V 2)Cs =  0

- ( r , - r 2)Cj + ^  = o

V2 v 2 -  V j
—  +  —--------   =  0
R (A -  1 )R

Solving these node equations for VT gives

[(/JCs)2 +  (3 -  A)RCs  +  1] VT =  0

Because the factor in brackets is not zero, this equation indicates that V j = 0. The output impedance 
of the Sallen-Key band-pass filter is

V j  0

Similarly, each of the Sallen-Key filters shown in Table 16.4-2 has an output impedance equal to zero.
High-order filters can be designed as a cascade connection o f second-order filter stages. Filter 

stages that have an output impedance equal to zero are used so that the transfer function of the high- 
order filter will be the product of the transfer functions o f the cascaded filter stages.
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FIGURE 16.5-4 Calculating the output of a 
Sallen-Key band-pass filter. Circled numbers 
are node numbers.

Table 16,5-2 F irst-O rder F ilter S tages

FILTER TYPE FIRST ORDER CIRCUIT DESIGN EQUATION

Low-pass

High-pass

where

and

where

and

His) — 

P =

k =

His) = 

P =

-k  
s + p

1
R2C

1
/?iC

-ks  
s + p

1
RXC

k - * L
Ri

Design a third-order Butterworth low-pass filter having a cutoff frequency of coc =  500 rad/s and a dc gain equal to 1.

Solution
Equation 16.3-2 and Table 16.3-2 provide a third-order Butterworth low-pass filter having a cutoff frequency 
equal to 1 rad/s.

f f n ( s )  =  ------------- 1---------------
( s + i x ^ + s + l )

Frequency scaling is used to adjust the cutoff frequency so that ioc =  500 rad/s.

5003
{s +  500) ( s 2 +  500.v +  5002)
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H(s) is the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s. 
This transfer function can be expressed as

+  5- ^ o W
A Sallen-Key low-pass filter can be designed to implement the second-order low-pass transfer function H ^s). 
Table 16.5-2 provides circuits and design equations for first-order filter stages. The circuit shown in the first row 
of this table can be used to implement H2(s). The first-order filter stages in Table 16.5-2 have output impedances 
equal to zero. Cascading these filter stages will not cause loading. Cascading the Sallen-Key filter with the first- 
order filter stage will produce a third-order filter with the transfer function H(s).

First, let’s design the Sallen-Key filter with transfer function

H  ( ) =  -250,000
l(s> s2 +  5005 +  250,000

Values o f the filter parameters k , co0, and Q are determined by comparing H x(s) with the standard form of the 
second-order low-pass transfer function given in Eq. 16.4-1. From the constant term in the denominator,

Io02 =  250,000

Next, from the coefficient o f s in the denominator,

i - 500

Finally, from the numerator,

k ■ coo2 =  250,000

So, coo =  500 rad/s, Q — 1, and k =  1. The Sallen-Key low-pass filter is shown in row 1 of Table 16.4-2.
Designing this filter requires finding values of R , C, and A. The design equations given in row 1 of the table
indicate that

« o = ^ ;  (16.5-6)

Q =  (16.5-7)

k = A (16.5-8)

Equation 16.5-7 gives

„ , 3 - i = 3 - i = 2

but Eq. 16.5-8 gives

A = k = \

Apparently, we can select A to get the correct value of Q , or we can select A to get the correct value o f k, but not 
both. The dc gain is easy to adjust later, so we pick A — 2 to make Q =  1 and settle for k =  2. Equation 16.5-6 is 
satisfied by taking C =  0.1 /zF and

/? =  - — =  7------------------------=  20 kft
Ccdo (0.1 x 10 ) (500)

The Sallen-Key filter stage is shown in Figure 16.5-5a. The transfer function of this stage is

-500 ,000
H 3(s )

s2 +  500? +  250,000
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0 . 1 /iF

(a)

0 . 1 /iF

(b)

0 .1 /iF 0 . 1 /iF

FIGURE 16.5-5 (a) A 
Sallen-Key filter stage, (6) a 
first-order filter stage, and 
(c) a third-order Butterworth 
filter.

The Sallen-Key filter stage achieved the desired values of co0 and Q — 1 but not the desired value of the dc gain. 
To compensate, we will adjust the dc gain of the first-order filter. The desired transfer function o f the third-order 
filter can be expressed as

H(s) =
-500,000

52 +  5005 +  250,000 H a ( s )

which requires

H 4 (s ) =
-2 5 0

5 -|- 500
The design equations in row 1 of Table 16.5-2 indicate that

and

Choose C =  0.1 /uF. Then

500 =  

250 =

1

R2C

1

r 7c

R 2 =
500 C  (500) (0.1 x I0 "6)

=  20 k n
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The first-order filter stage is shown in Figure 16.5-56. Cascading the Sallen-Key stage and the first-order stage 
the third-order Butterworth filter shown in Figure 16.5-5c.

R ' 250 C  (250)(0.1 x IO-6 ) 40k°

^produces

16.6 S I M U L A T I N G  F I L T E R  C I R C U I T S  U S I N G  P S P I C E

PSpice provides a convenient way to verify that a filter circuit does indeed have the correct transfer 
function. Figure 16.6-1 illustrates a method of testing a filter design. The filter that is being tested here 
is a fourth-order notch filter consisting of two Sallen-Key notch filter stages and an inverting amplifier. 
This filter was designed to have the transfer function

//(„ -)_  4 (*2 + 6 2 >50° )2
(52 +  2505 +  62,500)2

The voltage source voltage, (/), is used as the input to two separate circuits. One of these circuits is 
the filter circuit consisting of the Sallen-Key stages and the inverting amplifier. The response of this 
circuit is the node voltage vol(/). The other “ circuit”  implements H(s) directly using a feature of 
PSpice. The response of this circuit is vo2(t). A single PSpice simulation produces the frequency 
responses corresponding to the transfer functions of both of these circuits, VQ\(s) /  Vx(s) and Vo2(s)/ 
V{(s). Next, we use Probe, the graphical post processor included with PSpice, to display both frequency 
responses on the same axis. If these frequency responses are identical, we know that the filter circuit 
does indeed implement the transfer function H(s).

Figure 16.6-2 shows the PSpice input file corresponding to Figure 16.6-1. Two aspects o f this 
file require some explanation. First, notice that parameters are used in the subcircuit that represents 
the Sallen-Key filter stage. The line

. subckt sk_n in out params: C=. luF wO = 1 krad/s Q = 0.707

* 1G U R L 16.6-1 V erifying the transfer function o f  a fourth-order notch filter using PSpice.
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Testing a 4th order notch filter 

Vin 1 0 ac 1
XSK1 1 2 sk_n params: C=.luF w0=250 Q=1
XSK2 2 3 sk_n params: C=.luF w0=250 Q=1
Rl 3 4 10k
R2 4 5 17.78k
XOA 4 0 5 op_amp
RL 5 0 10G
XLP 1 6 4th_order_notch_filter

.subckt sk_n in out params: C=.luF w0=lkrad/s Q=0.707
Rl in 2 {l/C/wO}
R2 2 3 jl/C/wO)
Cl in 6 {C }
C2 6 3 {C }
C3 2 out {2 *C }
R3 6 0 {1/2/C/wO}
XOA 5 3 out op_amp
R4 5 0 lOkOhm
R 5 out 5 { (l-l/Q/2) *10k0hm}
.ends sk_n

.subckt op_amp inv non out 
* an ideal op amp 
E (out 0) (non inv) 1G 
.ends op_amp

.subckt 4th_order_notch_filter in out 
Rl in 0 1G
R2 out 0 1G
El out 0 LAPLACE {V(in) } = { ( 4 *( s * s + 6 2 5 0 0 ) *( s * s + 6 2 5 0 0 ) ) /
+ (s*s+250*s+62500) *(s*s+250*s+62500)}
.ends 4th_order_notch_filter

.ac dec 100 1 1000

.probe V (1) V (5) V(6)

. end

FIGURE 16.6-2 PSpice input file used to test the fourth-order notch filter.

marks the beginning of the subcircuit named sk_n. (PSpice allows us to name, rather than number, 
nodes. The nodes “ in” and “ out” will connect this subcircuit to the rest of the circuit.) Three parameters 
are defined: C, wO, and Q. All are given default values, as required by PSpice. Expressions involving these 
parameters replace the values of some of the devices that comprise the subcircuit; for example, the line

Rl in 2 {1/C/wO}
indicates that resistor R\ is connected to nodes “ in” and 2 and that the resistance of Rl is given by 1/C/wO. 
The values of parameters like C and wO are given when the subcircuit is used. Consider the line

XSK2 2 3 sk_n params : C = .luf wO = 250 Q = 1
which indicates that device XSK2 is a subcircuit sk_n . This line provides values for C, wO, and Q. 
These values will be used to calculate the resistance /?1 that is used when s k _ n  implements XSK2. 
Different values of C, wO, and Q can be used each time the subcircuit sk _ n  is used to implement a 
different device. Table 16.6-1 provides PSpice subcircuits for the four Sallen-Key filter stages.
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Table 16 6 PSpice Subcircuits for Sallen-Key Filter Stages

FILTER STAGE PSPICE SUBCIRCUIT

.subckt s k jp  in out params: C = .luF  
wO = lkrad/sQ = 0.707
R l in 2 {1/C/wO}
R2 2 3 {1/C/wO}
C l 3 0 {C}
C2 2 out {C}
XOA 5 3 out op_amp
R3 5 0 lOkOhm
R4 out 5 { (2 -  1/Q) * lOkOhm}
.ends s k jp

.subckt sk_hp in out params: C = .luF  
wO = lkrad/sQ = 0.707
R l 3 0 {1/C/wO}
R2 2 out {1/C/wO}
C l in 2 (C)
C2 2 3 {C}
XOA 5 3 out op_amp
R3 5 0 lOkOhm
R4 out 5 { (2 -  1/Q) * lOkOhm)
.ends sk_hp

.subckt sk_bp in out params: C = .luF  
wO = lkrad/s Q = 0.707
R l in 2 {1/C/wO}
R2 2 out {1/C/wO}
C l 2 3 {C}
C2 2 0 {C}
R3 3 0 {2/C/wO}
XOA 5 3 out op_amp
R4 5 0 lOkOhm
R5 out 5 {(2 -  1/Q)*10k0hm}
.ends sk_bp

.subckt sk_n in out params: C = .luF  
wO = lkrad/s Q = 0.707
R l in 2 {1/C/wO}
R2 2 3 {1/C/wO}
C l in 6 {C}
C2 6 3 {C}
C3 2 out {2*C}
R3 6 0 {1/2/C/wO}
XOA 5 3 out op_amp
R4 5 0 lOkOhm
R5 out 5 {(1 -  l/Q/2)*lOkOhm)
.ends sk n



Table 16.6-2 PSpice Subcircuits for Second-Order Transfer Functions

TRANSFER FUNCTION PSPICE SUBCIRCUIT

Low-pass

High-pass

Band-pass

Band-stop (notch)

. subckt lp_filter_stage in out params : wO - 1 krad/s Q - 0 . 707 k 1 
Rl in 0 1G 
R2 out 0 1G
E out 0 LAPLACE {V( in) } = { (k*w0*w0 )/(s*s+wO*s/Q + w0*w0 ) }
.ends lp_filter_stage
. subckt hp_filter_stage in out params : wO = 1 krad/s Q = 0.707 k = l  
Rl in 0 1G 
R2 out 0 1G
E out 0 LAPLACE {V(in)} = {(k*s*s)/(s*s+wO*s/Q + w0*w0 ) }
.ends hp_filter_stage
. subckt bp_filter_stage in out params : wO = lkrad/sQ = 0.707 k = l  
Rl in 0 1G 
R2 out 0 1G
E out 0 LAPLACE {V( in) } = { ( k*wO*s/Q) / ( s*s + wO*s/Q + w0*w0 ) }
.ends bp_filter_stage
. subckt n_filter_stage in out params : wO = lkrad/sQ = 0.707k=l 
Rl in 0 1G 
R2 out 0 1G
E out 0 LAPLACE {V( in) } = { ( k* ( s*s + w0*w0 )/(s*s+w0*s/Q + w0*w0 ) } 
.ends n_filter_stage

Next, consider the subcircuit 
. s u b c k t  4 t h _ o r d e r _ n o t c h _ f i l t e r  in  o u t  
R l in  0 1G 
R2 o u t  0 1G
E l  o u t  0 LAPLACE ( V ( i n ) }  = {4*  ( s * s  + 6 2 5 0 0 ) *  ( s * s  + 6 2 5 0 0 ) /
+ ( s  * s + 2 5 0 * s  + 6 2 5 0 0 )  ( s * s  + 2 5 0 * s  + 6 2 5 0 0 ) }
. en d s  4 t h _ o r d e r _ n o t c h _ f i l t e r

The keyword LAPLACE indicates that controlled voltage of the VCVS is related to the controlling voltage, 
using a transfer function. The controlling voltage of the VCVS is identified inside the first set of braces. The 
transfer function is given inside the second set of braces. The transfer function was too long to fit on the line 
describing the VCVS. The +  sign at the beginning of the fourth line indicates that this line is a continuation 
of the previous line. Table 16.6-2 provides subcircuits describing second-order transfer functions.

Figure 16.6-3 shows the frequency responses produced using the PSpice input file shown in 
Figure 16.6-2. The frequency responses are identical and overlap exactly. The filter circuit does indeed 
implement the specified transfer function.

1.0 h 3.0 h 10 h 30 h 100 h
Frequency

300 h
b IGURE 16.6-3 Frequency response plots used 

1.0  Kh to verily the transfer function of the fourth-order 
notch filter.
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Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all of the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of 
problem discussed in this chapter.

16.7 H O W C A N W E C H E C K  . . . ?

E x a m p l e  1 6 . 7 - 1  How Can We Check Filter Frequency Response':

Figure 16.7-1 shows the frequency response 
of a band-pass filter obtained using PSpice. 
Such a filter can be represented by

V o M
v,„M= H(<y) = H o

1 +JQ
COq

(Do

where Vin(a>) and V0(o>) are the input and 
output of the filter. This filter was designed 
to satisfy the specifications

a>o = 2jrl000 rad/s, Q — 10, Ho =  10

How can we check that the specifications 
are satisfied?

dB 10 -

5 00  Hz 1.0 kHz

Frequency

F IG U R E  16.7-1 A band-pass frequency response.

2 .0  kHz

Solution
The frequency response was obtained by analyzing the filter using PSpice. The vertical axis of Figure 16.7-1 gives 
the magnitude of H(a>) in decibels. The horizontal axis gives the frequency in hertz. Three points on the frequency 
response have been labeled, giving the frequency and magnitude at each point. We want to use this information 
from the frequency response to check the filter to see whether it has the correct values of co0, Q , and H0.

The three labeled points on the frequency response have been carefully selected. One of these labels 
indicates that the magnitude of H( cl>) and frequency at the peak of the frequency response are 20 dB and 1000 Hz. 
This peak occurs at the resonant frequency, so

a>o =  2^1000 rad/s 

The magnitude at the resonant frequency is / / 0, so

20 log10/ / 0 := 20 
or Ho =  10

The other two labeled points were chosen so that the magnitudes are 3 dB less than the magnitude at the peak. The 
frequencies at these points are 951 Hz and 1051 Hz. The difference o f these tw o frequencies is the bandwidth, B 
of the frequency response. Finally, Q is calculated from the resonant frequency, a>0, and the bandwidth, BW:

coo 2n\000
Q = 10

BW  2tt( 1051 - 9 5 1 )

In this example, three points on the frequency response were used to verify that the band-pass filter satisfied 
the specifications for its resonant frequency, gain, and quality factor.
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E x a m p l e  1 6 . 7 - 2  H o w  Can W e  C h e c k  F i l t er  Tr a n s f e r  F u n c t i o n ?

ELab is a circuit analysis program that can be used to calculate the transfer function of a filter circuit (Svoboda, 
1997). Figure 16.7-2 shows the result of using ELab to analyze the Sallen-Key band-pass filter shown in Figure 
16.4-2. This Sallen-Key filter was designed in Example 16.4-2 to have coq =  3142 rad/s, Q =  5, and k =  14. How 
can we check that the filter does indeed have the required values of o>0, Q, and kl

S'
Transfer Function Coefficients

numerator denominator
0 0 9.87e+06
1 8800 629
2 0 1

J

/ \
Transfer Function Menu
Transfer Function
Poles
Zeros
Frequency Response
exit to previous menu

V J
c

Poles
real imaginary
-315 3130
-315 -3130

V _

r N
Zeros

real imaginary
0 0

V
FIGURE 16.7-2 Using ELab to determine the transfer function of a band-pass filter.

Solution
The coefficients of the transfer function of the filter are given in the upper left-hand portion of Figure 16.7-2. The 
coefficients indicate that the transfer function of this filter is

rr/ . 88OO5

~~ s2 +  6295 +  9.87 x 106 (16.7-1)
The general form transfer function of the second-order band-pass filter is

,  coo
k — S

H(s) =
2 i . 2 s2 + — s + coo

(16.7-2)

Notice that the coefficient o fs2 in the denominator polynomial is 1 in both of these transfer functions. Values of 
<«o, Q, and k are determined by comparing the coefficients of the transfer functions in Eqs. 16.7-1 and 16.7-2. 

The square root of the constant term of the denominator polynomial is equal to a>0. Therefore,

a>o =  \/9 .87  x 10 6 =  3142 rad/s 
Next, the coefficient of 5 in the denominator polynomial is equal to too/Q. Therefore,

0_ =  3142 
629 629

“ rqô ,o \coT h ™ «fi!f 1  in ,he numera,or polynomial ,o the coefflcien' ° f  s  in ,he dmomma“
, 8880k = ------ =  14

629
The Sallen-Key band-pass filler shown in Fignre 16.4-2 does indeed have the required values o f .* .  Q, and k.
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— I 1 6 . 8  D E S I G N  E X A M P L E

ANTI-ALIASING FILTER

Digital signal processing (DSP) frequently involves sampling a voltage and converting the 
samples to digital signals. After the digital signals are processed, the output signal is converted 
back into an analog voltage. Unfortunately, a phenomenon called aliasing can cause errors to 
occur during digital signal processing. Aliasing is a possibility whenever the input voltage 
contains components at frequencies greater than one-half of the sampling frequency. Aliasing 
occurs when these components are mistakenly interpreted to be components at a lower 
frequency. Anti-aliasing filters are used to avoid these errors by eliminating those components 
o f the input voltage that have frequencies greater than one-half of the sampling frequency.

An anti-aliasing filter is needed for a DSP application. The filter is specified to be a 
fourth-order Butterworth low-pass filter having a cutoff frequency of 500 hertz and a dc gain 
equal to 1. This filter is to be implemented as an RC  op amp circuit.

Describe the Situation and the Assumptions
The anti-aliasing filter will be designed as a cascade circuit consisting of two Sallen-Key low- 
pass filters and perhaps an amplifier. The amplifier will be included if it is necessary to adjust 
the dc gain of the anti-aliasing filter.

The operational amplifiers in the Sallen-Key filter stages will be modeled as ideal 
operational amplifiers. Resistances will be restricted to the range of 2 kfi to 500 kfi, and 
capacitances will be restricted to the range of 1 nF to 10 /zF.

State the Goal
The transfer function of a fourth-order Butterworth low-pass filter having a cutoff frequency 
of 500 hertz and a dc gain equal to 1 can be obtained in two steps. First, the transfer function of 
a fourth-order Butterworth low-pass filter is given by Eq. 16.3-2 and Table 16.3-2 to be

n  ̂  ̂ (s2 -f 0.765s -f l)(s2 -I- 1.8485 +  1)  ̂ ^ ^

H„(s) is the transfer function of a filter having a cutoff frequency equal to 1 rad/s. Next,
frequency scaling can be used to adjust the cutoff frequency to 500 hertz =  3142 rad/s.

s s
Frequency scaling can be accomplished by replacing s by —  =  - - in Hn(s).

coc 3142

m  (1„ 2)

31424
(s2 +2403.65 +  31 42: )(s2 4- 5806.4s +  31422)

The goal is to design a filter circuit that has this transfer function.

Generate a Plan
We will express H(s) as the product of two second-order low-pass transfer functions. For each 
of these second-order transfer functions, we will do the following:

1. Determine the values o f the filter parameters k , co0, and Q.

2. Design a Sallen-Key low-pass filter to have the required values o f co0 and Q.

It’s likely that the Sallen-Key filters won’t have the desired values o f the dc gain, so an 
amplifier will be required to adjust the dc gain. The anti-aliasing filter will consist of a cascade 
connection of the Sallen-Key filter stages and the amplifier.
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Act on the Plan
Consider the first factor of the denominator of H(s). From the constant term,

4  =  3142*

—  =  2403.6
So o)0 =  3142 rad/s. Next, from the coefficient of 5 in the denominator,

0  =
3142

=  1.31
so K 2403.6
Next, design a Sallen-Key low-pass filter with a)0 =  3142 rad/s and Q =  1.31. The design 
equations given in row 1 of Table 16.4-2 indicate that

coq =

and

Pick C =  0.1 n F. Then, 

Also,

Q  =

R =
1

RC
1

3 - A  

1

(o0C 3142 10“ 7

^  =  3 - r 3 - n T

=  3 1 8 3 0  

=  2.24

The dc gain of this filter stage is k =  A =  2.24, so the transfer function of this stage is

2 .2 4 - 3 1422 
H] ^  _ s2 +  2403.6s+  3 1422 

Next, consider the second factor in the denominator of H(s). Once again, the constant term 
indicates that coo =  3142 rad/s. Now Q can be calculated from the coefficient o f 5 to be

e  =  2 i i ? _  =  0.541 
^  5806.4

We require a Sallen-Key low-pass filter with coq =  3142 rad/s and Q =  0.541. Pick 
C =  0.1 n F. Then,

R =  - L ; =  /  - -  =  3183 0

and

to0C 3142 10

^  = 3 _ i  =  3 _______ L _
Q 0.541

=  1.15

The dc gain of this filter stage is k =  A =  1.15, so the transfer function of this stage is

1.15 • 31422
/7 2 (s) =  —---------------------------- t

w  s +  5806.4s -(- 3142 
The product of the gains of the filter stages is

H,(s) H2(s) =  2.516 H(s) 
so H(s) =  0.388 - H i ( s ) - H 2 (s )

The third stage of the anti-aliasing filter is an inverting amplifier having gain equal to 0.388. 
The anti-aliasing filter is shown in Figure 16.8-1.

Verify the Proposed Solution
Section 16.14 describes a procedure for verifying that a circuit has a specified transfer 
function. This procedure consists of using PSpice to plot the frequency response of both the 
circuit and the transfer function. These two frequency responses are compared. If they are the 
same, the transfer function of the circuit is indeed the specified transfer function.

Figure 16.8-2 shows the PSpice input file used to plot the frequency responses of both 
the circuit shown in Figure 16.8-1 and the transfer function given in Eq. 16.8-2. These
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0.1 /iF 0.1 nF

V e r i f y  t h e  t r a n s f e r  f u n c t i o n  o f  t h e  4 t h  o r d e r  l o w - p a s s  f i l t e r

V i n  1  0 a c  1

X S K 1  1  2  s k _ l p  p a r a m s :  C = { C }  w 0 = { w 0 }  Q = 1 . 3 1

X S K 2  2  3  s k _ l p  p a r a m s :  C = { C }  w 0 = { w 0 )  Q = 0 . 5 4 1

R i  3  4 2 0 0 0 0

R f  4 5  7 7 6 0

X O A  4 0 5  o p _ a m p

X I  1  6 H I

X 2  6 7  H2

. s u b c k t  s k _ l p  i n  o u t  p a r a m s :  C = . l u f  w 0 = l k r a d / s  Q = 0 . 7 0 7  

R l  i n  2  { 1 / C / w O }

R 2  2  3  { 1 / C / w O }

C l  3  0 { C }

C 2  2  o u t  { C }

X O A  5  3  o u t  o p _ a m p

R 3  5  0 l O k O h m

R 4  o u t  5  { ( 2 - 1 / Q ) * 1 0 k 0 h m )

. e n d s

. s u b c k t  o p _ a m p  i n v  n o n  o u t  

♦ a n  i d e a l  o p  a mp  

E ( o u t  0 )  ( n o n  i n v )  1 G

. e n d s  o p _ a m p

. s u b c k t  H I  i n  o u t  

R l  i n  0 1 G  

R 2  o u t  0 1 G

E o u t  0 L A P L A C E  { V ( i n ) } =  { 3 1 4 2  *  3 1 4 2 / ( s * s  + 2 4 0 3 . 6  * s  + 3 1 4 2  * 3  1 4 2 )  ) 

. e n d s  H I

. s u b c k t  H2  i n  o u t  

R l  i n  0 1 G  

R 2  o u t  0 1 G

E o u t  0 L A P L A C E  { V  ( i n ) } = { 3  1 4  2  *  3  1 4  2  /  ( s  *  s  + 5  8 0 6 . 4 * s  + 3  1 4  2  *  3  1 4  2  ) } 

. e n d s  H2

. a c  d e c  2 5  . 0 1  5 0 0 0

. p r o b e  V ( 7 )  V ( 5 )

. p a r a m :  C * 0 . 1 u F  w0  = 3 1 4 2  Q = 2  k  = 2 . 5  

. e n d

FIG U R E  16.8-2 The PSpice input file used to verify that the circuit show n in F igure 16.8-1 has the specified 
transfer function.
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FIGURE 16.8-3 The frequency response of the circuit shown in Figure 16.8-1 and frequency response 
corresponding to the transfer function given in Eq. 16.8-2 are identical.

frequency responses are shown in Figure 16.8-3. These frequency responses overlap exactly 
so that the two plots appear to be a single plot. Therefore, the filter does indeed have the 
required transfer function.

16.9 S U M M A R Y
O An ideal filter separates its input into two parts. One part is 

passed, unchanged, to the output; the other part is elimi­
nated. In other words, the output of an ideal filter is an exact 
copy of part of the filter input.

O There are several ways of separating the filter input into two 
parts and, correspondingly, several types of ideal filter. 
Table 16.3-1 illustrates the common filter types.

O Unfortunately, ideal filter circuits don’t exist. Filters are 
circuits that approximate ideal filters.

O Butterworth transfer functions have magnitude frequency 
responses that approximate the frequency response of an 
ideal filter.

O The frequency response of second-order filters is character­
ized by three filter parameters: a gain k, the comer frequency 
ct>0, and the quality factor Q. Filter circuits are designed by

choosing the values of the circuit elements in such a way as 
to obtain the required values of k , o)0, and Q.
1. Table 16.4-1 provides the information required to design 

second-order RLC  filters.
2. Table 16.4-2 provides the information required to design 

Sallen-Key filters.
O High-order filters are filters that have an order greater than 2. 

A popular strategy for designing high-order filters uses a 
cascade connection of second-order filters.

O PSpice provides a convenient way to verify that a filter 
circuit does indeed have the correct transfer function.

O PSpice subcircuits reduce the complexity of simulations of 
high-order filters. Table 16.6-1 provides PSpice subcircuits 
for the four Sallen-Key filter stages.

P R O B L E M S

Section 16.3 Filters

P 16.3-1 Obtain the transfer function of a third-order Butter­
worth low-pass filter having a cutoff frequency equal to 100 
hertz.

6283Answer: H L(s) =
(s +  628) (s2 +  628s +  6282)

P 16.3-2 A dc gain can be incorporated into Butterworth low- 
pass filters by defining the transfer function to be

H l (s ) =
± k

D(s)

where D(s) denotes the polynomials tabulated in Table 16.3-2 
and k is the dc gain. The dc gain k is also called the pass-band
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gain. Obtain the transfer function of a third-order Butterworth 
low-pass filter having a cutoff frequency equal to 100 rad/s and 
a pass-band gain equal to 5.
P 16.3-3 High-pass Butterworth filters have transfer func­
tions of the form

"»<*>* m
where n is the order of the filter, Dn(s) denotes the wth order 
polynomial in Table 16.3-2, and k is the pass-band gain. 
Obtain the transfer function of a third-order Butterworth 
high-pass filter having a cutoff frequency equal to 100 rad/s 
and a pass-band gain equal to 5.

Answer: f fH(s) =  ^  ^ 7 ^ 0 )

P 16.3-4 High-pass Butterworth filters have transfer func­
tions of the form

H h (s ) = ±ks"

D Jf)

where n is the order of the filter, Dn(s) denotes the nth order 
polynomial in Table 16.3-2, and k is the pass-band gain. 
Obtain the transfer function of a fourth-order Butterworth 
high-pass filter having a cutoff frequency equal to 500 hertz 
and a pass-band gain equal to 5.

P 16.3-5 A band-pass filter has two cutoff frequencies, coa and 
a>b. Suppose that (oa is quite a bit smaller than a>b, say 
ct>a < a>b/10. Let HL(s) be a low -pass transfer function having 
a cutoff frequency equal to <o\b and Hu{s) be a high-pass transfer 
function having a cutoff frequency equal to (oa. A band-pass 
transfer function can be obtained as a product of low-pass and 
high-pass transfer functions, HB(s) = HL(s) • H h ( s ). The order 
of the band-pass filter is equal to the sum of the orders of the 
low-pass and high-pass filters. We usually make the orders of 
the low-pass and high-pass filter equal, in which case the order 
of the band-pass is even. The pass-band gain of the band-pass 
filter is the product of pass-band gains of the low-pass and high- 
pass transfer functions. Obtain the transfer function of a fourth- 
order band-pass filter having cutoff frequencies equal to 100 
rad/s and 2000 rad/s and a pass-band gain equal to 4.
Answer:
Hb{s) »

16,000,000 • s2
(s2 +  141.45 + 10,000)(s2 + 28285 + 4,000,000)

P 16.3-6 In some applications, band-pass filters are used to 
pass only those signals having a specified frequency o>0. The 
cutoff frequencies of the band-pass filter are specified to 
satisfy y /c o ^  =  o>q. The transfer function of the band-pass 
filter is given by

coo
QS H b (s ) =  k s2 +̂ J + a>02
The order of this band-pass transfer function is n = 2m. The 
pass-band gain is k. Transfer functions of the type are readily

implemented as the cascade connection of identical second- 
order filter stages. Q is the quality factor of the second-order 
filter stage. The frequency u)0 is called the center frequency of 
the band-pass filter. Obtain the transfer function of a fourth- 
order band-pass filter having a center frequency equal to 250 
rad/s and a pass-band gain equal to 4. Use Q — 1.

„  , x 250,OOO*2Answer: H r Is) = --------------------------
{s2 + 250s +  62,500)

P 16.3-7 A band-stop filter has two cutoff frequencies, (o.d and 
(jl̂ . Suppose that coa is quite a bit smaller than say cua < o^lO. 
Let HL(s) be a low-pass transfer function having a cutoff 
frequency equal to coa and Hh(s) be a high-pass transfer 
function having a cutoff frequency equal to cô . A band-stop 
transfer function can be obtained as a sum of low-pass and 
high-pass transfer functions, H^(s) = Hl(s) + Hh(s ). The order 
of the band-pass filter is equal to the sum of the orders of the 
low-pass and high-pass filters. We usually make the orders of 
the low-pass and high-pass filter equal, in which case, the order 
of the band-stop is even. The pass-band gains of both the low- 
pass and high-pass transfer functions are set equal to the pass- 
band gain of the band-stop filter. Obtain the transfer function of 
a fourth-order band-stop filter having cutoff frequencies equal 
to 100 rad/s and 2000 rad/s and a pass-band gain equal to 2.

Answer:

H n (s ) = 2s4 + 282.8s3 + 40.000s2 + 56. 560.000s +  8 10IC 
(s2 + 141.4s + 10.000) (s2 + 2828s + 4,000,000)

P 16.3-8 In some applications, band-stop filters are used to 
reject only those signals having a specified frequency 6t>0. The 
cutoff frequencies of the band-stop filter are specified to satisfy 
y/a>a(Ob =  (Oo. The transfer function of the band-pass filter is 
given by

/  (oo 
'  0 sH u (s)  =  k - H b (s ) =  k - k

The order of this band-stop transfer function is n — 2m. The 
pass-band gain is k. Transfer functions of the type are readily 
implemented using a cascade connection of identical second- 
order filter stages. Q is the quality factor of the second-order 
filter stage. The frequency (o0 is called the center frequency of 
the band-stop filter. Obtain the transfer function of a fourth- 
order band-stop filter having a center frequency equal to 250 
rad/s and a pass-band gain equal to 4. Use Q = 1.

u / , 4(s2 +  62,500)2Answer: H^(s) = -------------------------- =-
(s2 +  250s + 62,500)

P 16.3-9 Transfer functions of the form

(Oo
2 . , 2

are low-pass transfer functions. (This is not a Butterworth 
transfer function.) The order of this low-pass transfer function
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is n =  2m. The pass-band gain is k. Transfer functions of this 
type are readily implemented using a cascade connection of 
identical second-order filter stages. Q is the quality factor of the 
second-order filter stage. The frequency wn is the cutoff fre­
quency, of the low-pass filter. Obtain the transfer function of 
a fourth-order low-pass filter having a cutoff frequency equal to 
250 rad/s and a pass-band gain equal to 4. Use Q =  1.

P 16.3-10 Transfer functions of the form

I -* V
«»<*> = ‘ ( j T f T w J

are high-pass transfer functions. (This is not a Butterworth 
transfer function.) The order of this high-pass transfer function 
is n — 2m. The pass-band gain is k. Transfer functions of the 
type are readily implemented using a cascade connection of 
identical second-order filter stages. Q is the quality factor of the 
second-order filter stage. The frequency co0 is the cutoff fre­
quency, coc, of the high-pass filter. Obtain the transfer function of 
a fourth-order high-pass filter having a cutoff frequency equal to 
250 rad/s and a pass-band gain equal to 4. Use Q — 1.

Section 16.4 Second-Order Filters

P 16.4-1 The circuit shown in Figure P 16.4-1 is a second- 
order band-pass filter. Design this filter to have k  =  1, 
coq = 1000 rad/s, and Q = 1.

v0it)

Figure P 16.4-1

P 16.4-2 The circuit shown in Figure P 16.4-2 is a second- 
order low-pass filter. Design this filter to have k =  1, 
w0 =  200 rad/s, and Q = 0.707.

i 'o(')

Figure P 16.4-2

P 16.4-3 The circuit shown in Figure P 16.4-3 is a second-order 
low-pass filter. This filter circuit is called a multiple-loop feed­
back filter (MFF). The output impedance of this filter is zero, so 
the MFF low-pass filter is suitable for use as a filter stage in a 
cascade filter. The transfer function of the low-pass MFF filter is

1

H l (s ) = ------------ -------------- #l/?3C iC 2_______________

+ ( V - +—  + — ) s  + — !—
\* iC , tf2C, R3C i )  R2R3C iC2

‘S«  Q )

Design this filter to have coo =  2000 rad/s and Q — 8. What is 
the value of the dc gain?

Hint: Let R2 =  Ri =  R and Cx = C2 =  C. Pick a convenient 
value of C and calculate R to obtain coo =  2000 rad/s. Calcu­
late R i to obtain Q — 8.

Figure P 16.4-3

P 16.4-4 The circuit shown in Figure P 16.4-4 is a second- 
order band-pass filter. This filter circuit is called a multiple- 
loop feedback filter (MFF). The output impedance o f this filter 
is zero, so the MFF band-pass filter is suitable for use as a filter 
stage in a cascade filter. The transfer function o f the band-pass 
MFF filter is

s

7 , (  1 M  *1 + * 3s2 + ------------------ )s H---------!------ -—
\ R 2C x R2C2)  R xR2R ,C xC2

To design this filter, pick a convenient value of C and then use

p - - Q —  f? - 1 2 -  a p -  2 Q
1 kco0C ' 2 w0 C ' 3 a>0C (2Q 2 - k )

Design this filter to have k = 5, co0 =  2000 rad/s, and Q — 8.

P 16.4-5 The circuit shown in Figure P 16.4-5 is a low-pass 
filter. The transfer function of this filter is

1

H l (s ) =  ----------- R j R i C j C j

s2 + - 1 —  s  H-------- !____
* |C , /f |/f iC lC2

Design this filter to have k =  J, ^  =  |0()0 rad/s, and Q  =  1.
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Ci

P 16.4-6 The CR.RC transformation is used to transform 
low-pass filter circuits into high-pass filter circuits and vice 
versa. This transformation is applied to RC op amp filter 
circuits. Each capacitor is replaced by a resistor, when each 
resistor is replaced by a capacitor. Apply the CR. RC transfor­
mation to the low-pass filter circuit in Figure P 16.4-5 to obtain 
the high-pass filter circuit shown in Figure P 16.4-6. Design a 
high-pass filter to have k = 1, c o q  =  1000 rad/s, and Q — 1.

F ig u re  P 16.4-6

P 16.4-7 We have seen that transfer functions can be fre­
quency scaled by replacing s by s/kf each time that it occurs. 
Alternately, circuits can also be frequency scaled by dividing 
each capacitance and each inductance by the frequency scaling 
factor kf. Either way, the effect is the same. The frequency 
response is shifted to the right by kf. In particular, all cutoff, 
comer, and resonant frequencies are multiplied by kf. Suppose 
that we want to change the cutoff frequency of a filter circuit 
from coQ\d to a>new. We set the frequency scale factor to

^ _ ft̂ new
&>old

and then divide each capacitance and each inductance by kf. 
Use frequency scaling to change the cutoff frequency of the 
circuit in Figure P 16.4-7 to 250 rad/s.

Answer: kf = 0.05.

25 a  lOmH

Figure P 16.4-7

P 16.4-8 Impedance scaling is used to adjust the impedances 
of a circuit. Let km denote the impedance scaling factor. 
Impedance scaling is accomplished by multiplying each im­
pedance by km. That means that each resistance and each 
inductance is multiplied by km, but each capacitance is divided 
by km. Transfer functions of the form H(s) =  or H(s) — 
Yj^ are not changed at all by impedance scaling. Transfer 
functions of the form = are multiplied by k^, 
whereas transfer functions of the form H(s) = y fy  are divided 
by km. Use impedance scaling to change the values of the 
capacitances in the filter shown in Figure P 16.4-8 so that the 
capacitances are in the range of 0.01 /jl¥ to 1.0 fiF. Calculate 
the transfer function before and after impedance scaling.

10 Q

F ig u re  P 16.4-8

P 16.4-9 A band-pass amplifier has the frequency response 
shown in Figure P 16.4-9. Find the transfer function. H(s).

Hint: co0 = 2n(\0 MHz), k = 10 dB =  3.16, BW = 0.2 MHz, 
Q = 50

co
—  (MHz)i. K

Figure P 16.4-9 A band-pass amplifier.

P 16.4-10 A band-pass filter can be achieved using the circuit 
of Figure P 16.4-10. Find (a) the magnitude of H =  YVVS,
(b) the low- and high-frequency cutoff frequencies co\ and oh, 
and (c) the pass-band gain when co\ <C co <  C02.
Answers:
(t>) a»i =  jr^r and a* =  ^
(c) pass-band gain = ^
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Figure P 16.4-10 A band-pass filter.

P 16.4-11 A unity gain, low-pass filter is obtained from the 
operational amplifier circuit shown in Figure P 16.4-11. 
Determine the network function H(a>) =  VG/V S.

Figure P 16.4-12

Section 16.5 High-Order Filters

P 16.5-1 Design a low-pass filter circuit that has the transfer 
function

H l (s) =
6283

(s +  628) (s2 +  6285  +  6282) 

Answer: See Figure SP 16-1.

P 16.5-2 Design a filter that has the transfer function

h h(s ) =  ---------------- ________________
(s +  100)(s2 +  100s +  10,000) 

Answer: See Figure SP 16-2.

P 16.5-3 Design a filter that has the transfer function

16,000,000 • s2

H b =  (52 +  i 4 i .4 ,  +' 10,000)(s2 +  2828s +  4,000,000) 

Answer: See Figure SP 16-3.

P 16.5-4 Design a filter that has the transfer function

_______ 250,000s2

“  (s2 +  250s +  62,500)2 

Answer: See Figure SP 16-4.

P 16.5-5 Design a filter that has the transfer function 

2s2 2 0 ,0 0 0

(s2 +  2828s +  4,000,000) +  (s2 +  I4 l .4s +  10,000) 

Answer: See Figure SP 16-5.

P 16.5-6 Design a filter that has the transfer function

H n (s )
4 (s2 +  62,500)

Figure P 16.4-11

P 16.4-12 A particular acoustic sensor produces a sinusoidal 
output having a frequency equal to 5 kHz. The signal from the 
sensor has been corrupted with noise. Figure P 16.4-12 shows 
a band-pass filter that was designed to recover the sensor signal 
from the noise. The voltage vs represents the noisy signal from 
the sensor. The filter output, vG, should be a less noisy signal. 
Determine the center frequency and bandwidth of this band­
pass filter. Assume that the op amp is ideal.

50 pF

(s2 +  2505 +  62,500)

Answer: See Figure SP 16-6.

P 16.5-7

(a) For the circuit of Figure P 16.5-7a, derive an expression 
for the transfer function H a(s) = V \ /V s.

(b) For the circuit of Figure P 16.5-76, derive an expression 
for the transfer function Hb(s) = V2/V \ .

(c) Each of the above filters is a first-order filter. The circuit of 
Figure P 16.5-7c is the cascade connection o f the circuits 
of Figure P 16.5-1 a and Figure P 16.5-7b. Derive an 
expression for the transfer function H c(s) =  F 2/ F 5 o f 
the second-order circuit in Figure P 16.5-7c.

(d) Why doesn’t H c(s) = H a(s)Hb(s)7

Hint: Consider loading.

C

+
V*

( a )

R2
o— v w

v2

+

V*

C
H(-

(b )

R2
-AAAt-

+

v2

(c)

Figure P 16.5-7 (a) Circuit for H,. (b) Circuit for H2. (c) Circuit 
for H .



P 16.5-8 Two filter stages are connected in cascade as shown 
in Figure P 16.5-8. The transfer function of each filter stage is 
of the form

H(s)
As

(1 S/ CO]_)( 1 + s /^ H)

Determine the transfer function of the fourth-order filter. 
(Assume that there is no loading.)

Amplifier 1 Amplifier 2

> +

F igure  P 16.5-8 Two cascaded amplifiers.

P 16.5-9 A second-order filter uses two identical first-order 
filter stages as shown in Figure P 16.5-9. Each filter stage is 
specified to have a cutoff or break frequency at coc = 
1000 rad/s and a pass-band gain of 0 dB. (a) Find the required 

Ri, R2i and C. (b) Find the gain of the second-order filter at 
co = 10,000 rad/s in decibels.

PSpice Problems

Section 16.7 How Can We Check . . . ?

— @

F ig u re  P 16.5-9

P 16.7-1 The specifications for a band-pass filter require that 
coq = 100 rad/s, Q — 5, and k = 3. The transfer function of a 
filter designed to satisfy these specifications is

Hi \ = 755
{S) s2 + 25s + 10,000

Does this filter satisfy the specifications?
P 16.7-2 The specifications for a band-pass filter require that 
coq = 100 rad/s, Q = 4, and k =  3. The transfer function of a 
filter designed to satisfy these specifications is

Hi ) -  15S
{SJ s2 + 255+ 10,000

Does this filter satisfy the specifications?

P 16.7-3 The specifications for a low-pass filter require that 
coq = 20 rad/s, Q =  0.8, and k = 1.5. The transfer function of 
a filter designed to satisfy these specifications is

m  \ =  600
(s) s2 +  25s +  400 

Does this filter satisfy the specifications?

P 16.7-4 The specifications for a low-pass filter require that 
coq =  25 rad/s, Q — 0.4, and k — 1.2. The transfer function of 
a filter designed to satisfy these specifications is

m  \ = 750
W s2 +  62.5s + 625 

Does this filter satisfy the specifications?

P 16.7-5 The specifications for a high-pass filter require that 
coo =  12 rad/s, Q = 4, and k = 5. The transfer function of a 
filter designed to satisfy these specifications is

5s2
H('S'> = s2 + 30s +  144 

Does this filter satisfy the specifications?

PSpice Problems
^  _  Use PSpice to verify that the filter circuit does indeed imple-
SP 16-1 The filter circuit shown in Figure SP 16-1 was mem ^  ^
designed to have the transfer function

SP 16-2 The filter circuit shown in Figure SP 16-2 was

» d s )  6283
(s + 628 )(s2 + 628s +  6282)

designed to have the transfer function

H h (s )  =
5 • s

o—VW1 1  v w

+

tfj (/)

15,920 Q 15,920 Q 

0.1 /iF:

AMr-
31,840 Q

0.1 /iF

—V A — f —o
15,920 Q

15.920 Q

15.920 Q

( s +  100)(s2 -h 100s +  10,000)

v0(t)

Figure SP 16-1



^82fT)------Fi Iter Circuits

Use PSpice to verify that the filter circuit does indeed imple­
ment this transfer function.

Figure SP 16-2

SP 16-3 The filter circuit shown in Figure SP 16-3 was 
designed to have the transfer function

16,000,000 s2
H^ s> _  (52 + 141.4s + 10,000) (s2 + 2828s + 4,000,000)

Use PSpice to verify that the filter circuit does indeed imple­
ment this transfer function.

SP 16-4 The filter circuit shown in Figure SP 16-4 was 
designed to have the transfer function

„  , x 250,000s2
H b (s ) =  — ---------------------------------- -

(s2 +  250s +  62,500)
Use PSpice to verify that the filter circuit does indeed imple- 
ment this transfer function.

Figure SP 16-4



PSpice Problems

SP 16-5 The filter circuit shown in Figure SP 16-5 was 
designed to have the transfer function

I s 2 20,000
N(J) “  (s2 +  2828s + 4,000,000) + (s2 +  141,4s +  10,000)

Use PSpice to verify that the filter circuit does indeed imple­
ment this transfer function.

SP 16-6 The filter circuit shown in Figure SP 16-6 was 
designed to have the transfer function

-------4(^+62.500)=
(s2 + 250s + 62,500)

Use PSpice to verify that the filter circuit does indeed imple­
ment this transfer function.
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SP 16-7 A notch filter is shown in Figure SP 16-7. The output 
of a two-stage filter is and the output of a three-stage filter is 
v2. Plot the Bode diagram of V i/V s and V2/V s and compare 
the results when L =  10 mH and C =  1/iF.

Figure SP 16-7

SP 16-8 An acoustic sensor operates in the range of 5 kHz to 
25 kHz and is represented in Figure SP 16-8 by vs. It is specified 
that the band-pass filter shown in the figure passes the signal in the 
frequency range within 3 dB of the center frequency gain. 
Determine the bandwidth and center frequency of the circuit 
when the op amp has R\ = 500 kH, RQ =  1 kfi, and A =  106.

50 pF

Figure SP 16-8

SP 16-9 Frequently, audio systems contain two or more 
loudspeakers that are intended to handle different parts of 
the audio-frequency spectrum. In a three-way setup, one 
speaker, called a woofer, handles low frequencies. A second, 
the tweeter, handles high frequencies, and a third, the mid­
range, handles the middle range of the audio spectrum.

A three-way filter, called a crossover network, splits the 
audio signal into the three bands of frequencies suitable for each 
speaker. There are many and varied designs. A simple one is 
based on series LR, CR, and resonant RLC circuits as shown in 
Figure SP 16-9. All speaker impedances are assumed resistive. 
The conditions are (1) woofer, at the crossover frequency: XL] =  
/?W; (2) tweeter, at the crossover frequency: XC3 = Rt- and (3) 
midrange, with components C2, L2, and /?mr forming a series 
resonant circuit with upper and lower cutoff frequencies/, andy^ 
respectively. The resonant frequency =  (/^./L)112■

When all the speaker resistances are 8 (1, determine the 
frequency response and the cutoff frequencies. Plot the Bode 
diagram for the three speakers. Determine the bandwidth of 
the midrange speaker section.

Figure SP 16-9 Three-way filter for a speaker system.

Design Problems
DP 16-1 Design a band-pass filter with a center frequency of 
100 kHz and a bandwidth of 10 kHz, using the circuit shown in 
Figure DP 16-1. Assume that C =  100 pF and find R and R3. 
Use PSpice to verify the design.

Figure DP 16-1

16-2 A communication transmitter requires a band-pass 
liner to eliminate low-frequency noise from nearby traffic. 
Measurements indicate that the range of traffic rumble is

2 <  co < 12 rad/s. A designer proposes a filter as

H(s) =  0  + ‘y/fr»i)2U + V ^ 3)
(1 + s/co2)3

where s =  jco.
It is desired that signals with to >  100 rad/s pass with less 

than 3-dB loss, whereas the traffic rumble be reduced by 46 dB 
or more. Select cv\, co2, and co3 and plot the Bode diagram.

DP 16-3 A communication transmitter requires a band-stop 
filter to eliminate low-frequency noise from nearby auto traffic. 
Measurements indicate that the range of traffic rumble is
2 rad/s < co < 12 rad/s. A designer proposes a filter as

= (1 +  s/co\)2(\ + s/co3)2 
(1 + s/co2)2(\ +  s/co^)2

where 5 =  jco. It is desired that signals above 130 rad/s pass with 
less than 4-dB loss, whereas the traffic rumble be reduced by 35 dB 
or more. Select cou co2, co3, and co4 and plot the Bode diagram.
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Two-Port and 
Three-Port Networks

I N T H I S  C H A P T E R

17.1 Introduction 17.6 Relationships Between Two-Port Parameters
17.2 T-to-FI Transformation and Two-Port Three- 17.7 Interconnection of Two-Port Networks

Terminal Networks 17.8 How Can We Check . . . ?
17.3 Equations of Two-Port Networks 17.9 DESIGN EXAM PLE— Transistor Amplifier
17.4 Z and Y  Parameters for a Circuit with 17.10 Summary

Dependent Sources Problems
17.5 Hybrid and Transmission Parameters Design Problems

17.1 I N T R O D U C T I O N

Many practical circuits have just two ports of access, that is, two places where signals may be input or 
output. For example, a coaxial cable between Boston and San Francisco has two ports, one at each of 
those cities. The object here is to analyze such networks in terms of their terminal characteristics 
without particular regard to the internal composition of the network. To this end, the network will be 
described by relationships between the port voltages and currents.

We study two-port networks and the parameters that describe them for a number o f reasons. 
Most circuits or systems have at least two ports. We may put an input signal into one port and obtain 
an output signal from the other. The parameters o f the two-port network completely describe its 
behavior in terms o f the voltage and current at each port. Thus, knowing the parameters o f a two- 
port network permits us to describe its operation when it is connected into a larger network. Two- 
port networks are also important in modeling electronic devices and system components. For 
example, in electronics, two-port networks are employed to model transistors, op amps, transform­
ers, and transmission lines.

A two-port network is represented by the network shown in Figure 17.1-1. A four-terminal 
network is called a two-port network when the current entering one terminal o f a pair exits the other 
terminal in the pair. For example, I\ enters terminal a and exits terminal b of the input terminal pair 
a - b .  It will be assumed in our discussion that there are no independent sources or nonzero initial 
conditions within the linear two-port network. Two-port networks may or may not be purely 
resistive and can in general be formulated in terms o f the 5-variable or the jco-variable.

A two-port netw ork has two access points appearing as terminal pairs. The current entering 
one terminal of a pair exits the other terminal in the pair.

_ ©



Two-Port and Three-Port Networks

Input
port

a —

+ +

Vl Circuit v :
-

u

Output
port

F IG U R E  17.1-1 A
tw o-port netw ork.

17.2 T - T O - I I T R A N S F O R M A T I O N  A N D  T W O - P O R T  
T H R E E - T E R M I N A L  N E T W O R K S  -------------------------

Two networks that occur frequently in circuit analysis are the T and n  networks, as shown in Figure
17.2-1. When redrawn, they can appear as the Y or delta (A) networks of Figure 17.2-2.

If a network has mirror-image symmetry with respect to some centerline, that is, if a line can be 
found to divide the network into two symmetrical halves, the network is a symmetrical network. The T 
network is symmetrical when Z\ — Z2, and the FI network is symmetrical when ZA =  ZB. Further­
more, if all the impedances in either the T or FI network are equal, then the T or II network is 
completely symmetrical.

Note that the networks shown in Figure 17.2-1 and Figure 17.2-2 have two access ports and three 
terminals. For example, one port is obtained for the terminal pair a-c and the other port is b-c.

We can obtain equations for direct transformation or conversion from a T network to a FI 
network, or from a II network to a T network, by considering that, for equivalence, the two networks 
must have the same impedance when measured between the same pair of terminals. For example, at 
port 1 (at a-c) for the two networks of Figure 17.2-2, we require

7  \ 7  _ ZA(ZB + Z C)
1 3 Za +Zb +Zc

To convert a II network to a T network, relationships forZ ,, Z2, and Z3 must be obtained in terms o f the 
impedances ZA, ZB, and Zc . With some algebraic effort, we can show that

Z aZcZ, =
Za +  Zb +  Zc 

ZBZC 
Za +  Zb +  Zc 

ZaZb 
Za +  Z b +  Zc

(17.2-1)

(17.2-2)

(17.2-3)

(a)

(b)

FIG U R E 17.2-1 (a) T network and (b) II network.
(a) (b) 

FIG U R E  17.2-2 (a) Y netw ork and (b ) A network.



T-to - I l  T rans fo rm a t ion  and Two-Port Three-Term ina l Networks

Similarly, we can obtain the relationships for ZA, ZB, and Zc as
Z 1Z2 -h Z2Z3 -h Z3Z 1

Z a =  z .
(17.2-4)

Z 1Z2 -f Z2Z3 -h Z3Z 1

z “ “  z ,
(17.2-5)

Z 1Z2 -1- Z2Z3 -I- Z3Z 1 

Z c ‘  Z ,
(17.2-6)

Each T impedance equals the product o f the two adjacent legs of the II network divided by the
sum of the three legs of the II network. On the other hand, each leg of the IT network equals the sum of 
the possible products of the T impedances divided by the opposite T impedance.

When a T or a f l network is completely symmetrical, the conversion equations reduce to

and
z  - Zn z T - T ; 17.2-7)

Zn =  3ZT (17.2-8)

where ZT is the impedance in each leg o f the T network and Zn is the impedance in each leg of the n  
network.

E x a m p l e  1 7 . 2 - 1  T- to II-Transformation

Find the n  form of the T circuit given in Figure 17.2-3a.

Solution
The first impedance o f the II network, using Eq. 17.2-4, is

,  Z . Z a + Z a Z j + Z a Z ,  JS {-jS ) +  (-./5)1 +  l(/5) c ^
= ------------ % -------------= ----------  —j5 ---------------= j5 S l

Similarly, the second impedance, using Eq. 17.2-5, is

ZB =  —/5 a

and the third impedance, using Eq. 17.2-6, is

Zc =  25 fi

The II equivalent circuit is shown in Figure 17.2-36.

j 5 Q

1 Q

3 0 -

lo -
25 a

- w v

j  5 f i

- 0

-;5Q
H I------ 02

“ ° 3  ( a )

------ 0 2

-y'5 Q

----- 0 3  (b)3 0 -

F IG U R E  17.2-3 (a)  T circuit o f  Exam ple 
17.2-1. (b ) FI equivalent o f  T circuit.

E x a m p l e  1 7 . 2 - 2  II -to  T-Transformation )
Find the T network equivalent to the FI network shown in Figure 17.2-4 in the 5-domain 
using the Laplace transform. Then, for s = y l ,  find the elements of the T network.

Solution
First, using Eq. 17.2-1, we have

1 F :

1 Q
-A/VV -02

1 H

- 0 3

z, = ( 0 ( i  A)  =  i
s +  \ + \ / s  s2 + s + \

3 0 ------

FIGURE 17.2-4 n  circuit of
Example 17.2-2.
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Then, using Eq. 17.2-2, we have

Z2 =

5(1/5) _____ 5_
Finally, the third impedance is (Eq. 17.2-3)

5 4-1  + 1 /s s2 -f  5 + 1
To find the elements of the T network at 5 =yT, we substitute 5 =  j l  and 

determine each impedance. Then, we have

Z\ = z2 =y, z3 = 1
Therefore, the equivalent T network is as shown in Figure 17.2-5 for the value

Ks = j l .

1 F 1 H

3 0 ---------------A-----------------------0 3

F IG U R E  17.2-5 T circuit 
equivalent o f  the original n  
circuit o f  E xam ple 17.2-2

for s =  j  1.

EXERCISE 17.2-1 Find the T circuit equivalent to the n  circuit shown in Figure E 17.2-1.

2 5  n

>125Q

o FIGURE E 17.2-1

Answer: R\ = 10 fl, R2 =  12.5 fl, and R t, =  50 Cl

17.3 E Q U A T I O N S  OF T W O - P O R T  N E T W O R K S

Let us consider the two-port network of Figure 17.1-1. By convention, I x and /2 are assumed to be 
flowing into the network as shown. The variables are Vu V2, I\, and /2. Within the two-port network, 
two variables are independent and two are dependent, and we may select a set o f two independent 
variables from the six possible sets: (Vu V2), (/], / 2), (VX, I 2), (/], V2), and (F 2, 12). We will also
assume linear elements.

The possibilities for independent (input) variables and the associated dependent variables are 
summarized in Table 17.3-1. The names of the associated six sets of circuit parameters are also identified 
inTable 17.3-1. For the case of phasor transforms or Laplace transforms with the circuit of Figure 17.1-1, we

Six Circuit-Parameter Models

INDEPENDENT  
VARIABLES (IN PU TS)

DEPENDENT  
VARIABLES (O U T PU T S) CIRCUIT PARAM ETERS

l u h V u V 2 Impedance Z
Vi ,V2 l u h Admittance Y
V u h I u V 2 Inverse hybrid g
I u V 2 V u h Hybrid h
V2J 2 V u h Transmission T
V u h V2J 2 Inverse transmission T'



Equations of Two Port Networks
- i

rv,«
I v2 = 
r/i  = Yu v i
\h ~ Y 2 \V i  
f V\ = hui 
\ / 2 =/i2./

{ ? :
r V2 = A 'V \  — B ' l , 

\ h  = C 'V \ — D'11

Equations for the Six Sets of Two-Port Parameters

Impedance Z 

Admittance Y 

Hybrid h 

Inverse hybrid g  

Transmission T

— Z \\I\  +  Z 12/2 
Z21/1 + Z22/2

+ Y n V2 

+ Y 2 2 V2 
h  + h X2V2 

1 +  ^22 V2 

I\ =gll^l  + Sl272 
8 l \ V \ + 8 2 2*2 

vx -  a v 2 -  b i 2

t = C V 2 -  D I2

Inverse transmission V

have the familiar impedance equations in which the output variables are V\ and V2, as follows:

V, = Z n I x + Z n h  (17.3-1)

V2 = Z 21/ ,  + Z 22I 2 (17.3-2)

The equations for the admittances are

h  =  Y n V l + Y l2V2 (17.3-3)

f 2 = r 2iV l + Y22V2 (17.3-4)

It is appropriate, if preferred, to use lowercase letters z and y  for the coefficients o f Eqs. 17.3-1 through
17.3-4. The equations for the six sets of two-port parameters are summarized in Table 17.3-2.

For linear elements and no dependent sources or op amps within the two-port network, we can
show by the theorem of reciprocity that Z \2 =  Z 2\ and Y2\ — Y \2. One possible arrangement of a
passive circuit as a T circuit is shown in Figure 17.3-1. Writing the two mesh equations for Figure
17.3-1, we can readily obtain Eqs. 17.3-1 and 17.3-2. Therefore, the circuit o f Figure 17.3-1 can
represent the impedance parameters. A possible arrangement of the admittance parameters as a II
circuit is shown in Figure 17.3-2.

Examining Eq. 17.17, we see that we can measure Zn by obtaining

7  - Fl
_ 7T h =0

O f course, I2 =  0 implies that the output terminals are open-circuited. Thus, the Z parameters are often 
called open-circuit impedances.

The Y parameters can be measured by determining

Y i  2 =
V2 v ^ o

In general, the admittance parameters are called short-circuit admittance parameters.

Z 2 2 ~ Z 2\Z 11 - Z 12

■CD-
-12 : L21

F IG U R E  17.3-1 A T  circuit representing the im pedance 
param eters.

-0
-Y;

I
+ + 1

Vl

-0 0— X

12 ■ 21

+ Y12 *22 + Y:21

F IG U R E  17.3-2 A II c ircuit representing the adm ittance 
param eters.
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E x a m p l e  17 . 3 - 1  Admittance Parameters
and Impedance Parameters A

Determine the admittance and the impedance parameters o f the T 
network shown in Figure 17.3-3.

Solution
The admittance parameters use the output terminals shorted and

/i

o—+

V\

24  ft
-AAAr

8 ft 
AAAr*

8 ft

Y n = F IG U R E  17.3-3 C ircuit for E xam ple 17.3-1.

V2=0

Then, the two 8 -0  resistors are in parallel and V\ =  2 8 / i . Therefore, we have

For >"12, we have

y , 2 = ^ y 1=0

so we short-circuit the input terminals. Then we have the circuit as 
shown in Figure 17.3-4.

Employing current division, we have

=  ' 2 ( s T m )

and

Therefore

Furthermore,

h V2
8 +  [8(24)/(8 +  24)] 14

Y  = 1 l =  —(*Wl4)(l/4) 1 „
V2 V2 56

F IG U R E  17.3-4 C ircuit o f  E xam ple 17.3-1 
w ith the input term inals shorted.

^21 =  ^12 =  - —  S
JO

Finally, Y22 is obtained from Figure 17.3-4 as

Y - h
Y22~ v 2

where h  =

Therefore,

Thus, in matrix form, we have I =  YV or

8 +  [8(24)/(8 +  24)] 14

r 2 2 = T 4 S

- i i -
/ r 28 56 'Vx

. h . 1 1 y 2.
- 5 6  14 -

+ 6
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Now, let us find the impedance parameters. We have

The output terminals are open-circuited, so we have the circuit o f Figure 17.3-3. Then,

Zn =  24 +  8 =  32 0

Similarly, Z22 =  16 0  and Z2i =  Z 12 =  8 0 .  Then, in matrix form, we have V =  Z l or

'Vx ■32 8 ' ~I\

V2 _ _ 8 16 J l .

The general methods for finding the Z parameters and the Y parameters are summarized in Tables 17.3-3 and
17.3-4, respectively.

Table 1 Method of Obtaining the ZParameters of a Circuit

Step IA To determine Z\ \ and Z21, connect a voltage source V\ to the input terminals and open-circuit the output terminals.

Step IB Find I\ and V2 and then Z\ 1 =  Vx/I \  and Z2\ — V2/I \ .

Step IIA To determine Z22 and Z\2, connect a voltage source V2 to the output terminals and open-circuit the input terminals.

Step IIB Find I2 and V\ and then Z22 — V2H 2 and Z \2 =  V \/ I2.

Note : Z \2 — Z 2\ only when there are no dependent sources or op amps within the two-port network.

Method for Obtaining the KParameters of a Circuit

Step I  A To determine Y\ \ and Y2U connect a current source I\ to the input terminals and short-circuit the output terminals ( V2 = 0 ) .

Step IB Find V\ and I2 and then Y\\ — l \ j V \  and F2i — I i /V y .

Step IIA To determine Y22 and Yi2, connect a current source I2 to the output terminals and short-circuit the input terminals {Vx — 0).

Step IIB Find I x and V2 and then Y22 =  I 2/ V 2 and Yn  = I \ /V 2.

Note : Y\2 — Y2\ only when there are no dependent sources or op amps within the two-port network.

EXERCISE 17.3-1 Find the Z and Y parameters o f the circuit o f E 17.3-1. 

Answer: Z =

- 1 1 -
18 6 '

, Y = 14 ~ 2 l
6 9 1 1

-  ~ 2 \ 7 - F IG U R E  E 17.3-1

17.4 Z A N D  K P A R A M E T E R S  F O R  A C I R C U I T  W I T H
D E P E N D E N T  S O U R C E S  ----------------------------------------------------------------

When a circuit incorporates a dependent source, it is easy to use the methods o f Table 17.3-3 or Table
17.3-4 to determine the Z or Y parameters. When a dependent source is within the circuit, Z2i /  Z 12 
and Y \2 ^  Y2\ .

+6



836 )-------T w o - P o r t  a n d  T h r e e - P o r t  N e t w o r k s

E x a m p l e  17. 4-1  Im p e d a n c e  P a r a m e te r s

Determine the Z parameters of the circuit of Figure 17.4-1 when
m =  2/3.

Solution
We determine the Z parameters using the method of Table 17.3-3. 
Connect a voltage source Vx and open-circuit the output terminals as 
shown in Figure MA-2a.

KCL at node a leads to

/ ,  - m V 2 - I  = 0

KVL around the outer loop is

V\ = 4 / ,  + 5 /

Furthermore, V2 = 37, so I  — V2/3 . Substituting /  =  V2/3  into Eq. 17.4-1, we have

V2

F IG U R E  17.4-1 C ircuit o f  Exam ple 17.4-1.

(17.4-1)

/ 1 = m V 2 + ^ = ( m +  l /3 ) V 2

(17.4-2)

(17.4-3)

Therefore. z 2 , = ^ = i n

Substituting I  = V2/3  into Eq. 17.4-2, we obtain

Therefore.

5Vi 5
Vx = 4 / , + - ^  =  4/1 + | / 1

7  -  F l 1 7  OZn — —  =  — 11
1 1 3

(17.4-4)

To obtain Z22 and Z12, we connect a voltage source V2 to the output terminals and open-circuit the input terminals, 
as shown in Figure 17.4-2. We can write two mesh equations for the assumed current directions, shown as

V i -f 5 /4  — 3 /2  =  0

and V2 +  3 /4  - 3 /2  =  0

■ urthermore, / 4 = mV2y so substituting into Eq. 17.4-6, we have

V2 +  3m V2 -  3 /2 =  0

(17.4-5)

(17.4-6)

cr

\ Therefore,

V2 = 3 Jl 

z 22 = ~ = \ n

v2 < 5 ) > ( ^ r ^ 3 £ 2

I K. I  R t  17.4-2 Circuit for determining (a) Z , , and Z2, and (b) Z22 and
(b)

<22 ‘ina z l2.
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Substituting I* — m V2 into Eq. 17.4-5, we have

Vi + 5 m V 2 =  3/2

or V\ +  5 m l 2 — 3/2

Therefore,

Then, in summary, we have

V\ 1
Z 12 =  —  =  (3 -  5m) =  -  -  a

Z =
17 1
T  3
1 1

Note that Z21 /  Z 12, because a dependent source is present within the circuit.

EXERCISE 17.4-1
l l

Answer: Y = 18
17
18

Determine the Y parameters of the circuit of Figure 17.4-1.

17.5 H Y B R I D  A N D  T R A N S M I S S I O N  P A R A M E T E R S

The two-port hybrid parameter equations are based on V\ and /2 as the output variables, so that
(17.5-1)

(17.5-2)

V\ — h \\I\ + h ]2 V2 

1 2 = h2\I  1 +  h2iV 2

'VX' 'h „ hn h  ' _ |J h  '
.h. hn. Vl.

— rl
Vl.

or, in matrix form,

These parameters are used widely in transistor circuit models. The 
hybrid circuit model is shown in Figure 17.5-1.

The inverse hybrid parameter equations are

I\ ~  S \ \ V \ +&12^2

^2 —£21^1 +&22^2

or, in matrix form,

'^11 i n Vx' — n Vx
Vl. S i i g  n . Ji.

— VJI
.h.

(17.5-6)

The inverse hybrid circuit model is shown in Figure 17.5-2.
The hybrid and inverse hybrid parameters include both imped­

ance and admittance parameters and are thus called hybrid. The 
parameters h u , h X2, h2\, and h22 represent the short-circuit input

(17.5-3)

21M n22

F IG U R E  17.5-1 The //-param eter m odel o f  a 
tw o-port circuit.

£22 ^
AAA/------o

sii -
£1272

F IG U R E  17.5-2 The inverse hybrid circuit 
(g-param eter) m odel.
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impedance, the open-circuit reverse voltage gain, the short-circuit forward current gain, and the open- 
circuit output admittance, respectively. The parameters g } i , gi 2, g2 1, and g22 represent the open-circuit 
input admittance, the short-circuit reverse current gain, the open-circuit forward voltage gain, and the 
short-circuit output impedance, respectively.

The transmission parameters are written as

or, in matrix form, as

* v A B ’ V2 '
— T

■ V2 '

. / l . C D_ - h .
—  1

- h .

Transmission parameters are used to describe cable, fiber, and line transmission. The transmission 
parameters A, 5 , C, and D represent the open-circuit reverse voltage gain, the negative short-circuit 
transfer impedance, the open-circuit transfer admittance, and the negative short-circuit reverse current 
gain, respectively. The transmission parameters are often referred to as the ABCD  parameters. We are 
primarily interested in the hybrid and transmission parameters because they are widely used.

E x a m p l e  17. 5-1  H y b r id  P a r a m e te r s  a n d  T r a n s m is s io n  P a r a m e te r s

V\ = A V 2 -  B I2 

/1  =  C V 2 - D I 2

(17.5-7)

(17.5-8)

(a) Find the h parameters for the T circuit of Figure 17.5-3 in term so f R u R2, 
and R3,

(b) Evaluate the parameters when R\ = 1 fi,/?2 =  4 O, and R3 = 6 H.

Solution
(a) First, we find h\\ and h2\ by short-circuiting the output terminals and F IG U R E  17.5-3 The T circuit o f  

Exam ple 17.5-1.connecting an input current source I u as shown in Figure 17.5-4a.
Therefore,

Then, using the current divider principle, we have

Therefore,
y2=o ^2 +  ^3

(a)
H C U R E  17.5-4 The circuits for determining (a) h „  andA2] and (b) h22 and ht2.

(b)
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The next step is to redraw the circuit with I\ =  0 and to connect the voltage source V2 as shown in 
Figure 17.5-46. Then we may determine h {2 by using the voltage divider principle, as follows:

Rih - Vl 
h '2 ~ r 2 /, =0

Finally, we determine h22 from Figure 17.5-46 as

1
h22 = v 2 11=0 R2 + R 3

It is a property of a passive circuit (no op amps or dependent sources within the two-port network) that 
h \ 2 =  —h 2\.

(b) When R\ = 1 ft,/?2 = 4 ft, and R$ = 6 ft, we have

h"=R'+̂+%=>4a 

h l2 = ' -  =  0.4
Ri H” R3

h22 = —- L — = 0.1 s
R2 +  R2

EXERCISE 17.5-1 Find the hybrid parameter model of the circuit shown in 
Figure E 17.5-1.

Answers: h\\ =  0.9 ft, h \2 =  0.1, h2\ =  4.4, and /z22 — 0.6 S
F IG U R E  E 17.5-1

17.6 R E L A T I O N S H I P S  B E T W E E N  
T W O - P O R T  P A R A M E T E R S

If all the two-port parameters for a circuit exist, it is possible to relate one set o f parameters to another 
because the variables VU I\, V2, and /2 are interrelated by the parameters. First, let us consider the 
relation between the Z parameters and the Y parameters. The matrix equation for the Z parameters is
V =  Z l or

Vi = z
V2. .h .

(17.6-1)

Similarly, the equation for the Y parameters is I =  YV or

=  Y V\
.h . Vl.

(17.6-2)

+ 6
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Substituting for I from Eq. 17.6-2 into Eq. 17.6-1, we obtain

V =  ZYV

or Z =  Y -l (17.6-3)

Thus, we can obtain the matrix Z by inverting the Y matrix. O f course, we can likewise obtain the Y 
matrix if we invert a known Z matrix. It is possible that a two-port network has a Y matrix or a Z 
matrix but not both. In other words, Z _l or Y-1 may not exist for some networks.

If we have a known Y matrix, we obtain the Z matrix by finding the determinant o f the Y matrix 
as Ay and the adjoint o f the Y matrix as

Then

adj Y =

Z =  Y-1 =

Y22 

- Y 21

adj Y 
Ay

- Y n
Y u

(17.6-4)

where Ay =  Yn Y22 -  YX2 Y2l.
The two-port parameter conversion relationships for the Z , Y, h, g, and T parameters are 

provided in Table 17.6-1.

Parameter Relationships

Z Y h 9 T

z
Z\l Z \2 

Z 21 z 22

Y 22 - Y n  
A Y  A Y 

- Y 21 Y  n 
A Y A Y

A/i h n
h22 h12  

- J 121 1 
h22 h22

_ L  Z l i l  
£ ll &11 

B n ^ 8  
8 n 8 n

A A T
C  ~C 
1 D  
C C

Y

Z 22 - Z \2 
AZ AZ 

—%2 \ Z\l  
AZ AZ

Y n  Y n  

Y2\ y 22

1 - h n  
h\\ hn  
h2\ A h 

h\\ hn

^ 8  £12
8 22  822

- 8 2 1  J _  
8 22  822

D - \ T  
B B 

- 1  A 
B B

h

AZ Z n  
Z 22 Z 22 

—Z21 1 
Z 22 Z 22

1 Y 12
1̂1 Y u  

Y2\ a  y  
Y n Yn

hn  h n  

h2\ h22

8 22  8 12 
Ag Ag 

-#21 g ll 
Ag Ag

B A T 
D  ~D 
- 1  C 
D D

8

J _
Z\\ Z\\  
221 AZ 
Z\\ Z\\

AK Y n
Y22 Y22 

- Y 2i 1 
Y 22 Y22

h22 —h \2 
A/i A/?

- h 2\ hn
A/z A/i

S n  8 n  

£21 822

C  - A  T  
A A 
1 B 

A A

T

Z n  AZ 
^21 Z21

_ L  £22
^21 Z21

- y 22 - 1
Y21 Y2l 

- A  Y - Y n 
Y21 Y21

-A /i -A n  

/*21 /»21 
-*22 ^ 1  
/*21 /»21

_ L  £22
2̂1 2̂1 

£ n  Ag 
8 2 \ 8 2 \

A B 

C D

AZ Z n Z22 Z l2Z 2l, AY -  Y„ Y22 ~  Y[2Y2l, Ag = g t ,g 22 - g l2g 2l, Ah =  hn h22 -  hu h2i ,AT = AD — BC
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E x a m p l e  17. 6- 1  T w o - P o r t  P a r a m e t e r  C o n v e r s i o n

Determine the Y and h parameters if

Z =
18 6 
6 9

Solution
First, we will determine the Y parameters by calculating the determinant as

AZ =  Z,iZ22 -  Z 12Z2i =  18(9) -  6(6) =  126 

Then, using Table 17.6-1, we obtain

Z22 1
7,1 A Z 126 14S

- Z n  - 1  ,
Y n  = Y2l 

Z ,,
A Z 21

y  -  18 - U
K22- A Z  - l 2 6 “ 7 S

i. AZ 126 .4 0h\\ =  —— =  —— =  14 f l
Z22 9

A _  Zl2 -  6 -  2
12 Z22 9 3

i. _  ~ Z2' _  ~ 6 _  “ 2 
21 Z22 9 3

EXERCISE 17.6-1 Determine the Z parameters if the 7 parameters are

Y =

The units are siemens.
Answers: Z \\ =  12 fl, Z ]2 =  6 0 ,  Z2i =  3 fl, and Z22 =  4 f l

EXERCISE 17.6-2 Determine the T parameters from the Y parameters o f Exercise 17.6-1. 

Answer: A =  4, B =  10 fl, C =  1/3 S, and D =  4 /3

2 - 1
\5 T
- 1 2
To 5

17.7 I N T E R C O N N E C T I O N  OF T W O - P O R T  N E T W O R K S

It is common in many circuits to have several two-port networks interconnected in parallel or in 
cascade. The parallel connection of two two-ports shown in Figure 17.7-1 requires that the V\ of each 
two-port be equal.
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F IG U R E  17.7-1 Parallel connection o f  tw o tw o-port 

netw orks.

Similarly, at the output port V2 is the output voltage o f both two-port networks. The defining 
matrix equation for network iVa is

I a =  Y aV a ( 1 7 . 7 - 1 )

and, for network .Vb, we have 

In addition, we have the total current 1 as

Ib =  Y bV b

I =  Ia +  Ib

(17.7-2)

Furthermore, because V a =  V b =  V

I =  Y aV  +  Y bV  =  ( Y a +  Y b ) Y  =  Y V  

Therefore, the Y parameters for the total network o f two parallel two-ports are described by 
the matrix equation

Y  =  Y a +  Y b (17.7-3)

For example,
Y\\ =  Y\\& +  Y \ lb

Hence, to determine the Y parameters for the total network, we add the Y parameters of each network. 
In general, the y-parameter matrix of the parallel connection is the sum of the F-parameter matrices of 
the individual two-ports connected in parallel.

The series interconnection of two two-port networks is shown in Figure 17.7-2. We will use the 
Z parameters to describe each two-port and the series combination. The two networks are described by 
the matrix equations

(17.7-4) 

(17.7-5)

V a =  Z aI a

and

'la / 2a
: ------------------ c ---------
+ +

^ la _ N ,
I— 1 1 - o  o  + + 

_ V 2a

' i l 2b V;
k ^

"bVn /

FIG U R E 17.7-2 Senes connection o f  two two-port
networks.

i 2a

Na
— o—

Via V'lh V;
------o— ------- o

v b =  Z bI b 

The terminal currents are

I =  Ia =  Ib

Therefore, because V  =  V a +  V b, we have
V  =  Z aI a +  Z bI b 

=  ( Z a +  Z b ) I  =  Z I  

or Z  =  Z a +  Z b (17.7-6)

Therefore, the Z parameters for the total network are equal to the 
sum of the Z parameters for the networks.

When the output of one network is connected to the input 
port of the following network, as shown in Figure 17.7-3, the 
networks are said to be cascaded. Because the output variables of 
the first network become the input variables of the second network, 
the transmission parameters are used. The first two-port, jVa, is 
represented by the matrix equation

FIG URE 17.7-3 Cascade connection o f  two two-port
networks.

'Vu = Ta' v2i ■
- 7la _ ~h*.
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For Nb, we have

V\b
I  lb

*= Tb
V 2b

J  2b

Furthermore, we note that at the input and output, we have

V \ ' ' V u
and

' ^2b ' ■ v 2 ■
— =

_ 1 \. ./la. .~ h b . ~ h .

At the intermediate connection, we have

V2* 
- h  

Vl 

h
T =  TaTb

Therefore,

and

=  TaTb

V {b

^ lb  J

V 2 
~h_

(17 .7-7)

Hence, the transmission parameters for the overall network are derived by matrix multiplication, 
observing the proper order.

All of the preceding calculations for interconnected networks assume that the interconnection 
does not disturb the two-port nature of the individual subnetworks.

E x a m p l e  1 7 . 7 - 1  Parallel and Cascade Connections 
of Two-Port Networks

For the T network o f Figure 17.7-4, (a) find the Z, Y, and T parameters and (b) 1 q

determine the resulting parameters after connecting two two-ports in parallel and in 0----- W V
cascade. Both two-ports are identical as in Figure 17.7-4.

Solution _̂_____

1 Q
■AAA/— o

l a

First, we find the Z parameters of the T network. Examining the network, we have fig u r e  17.7-4 T netw ork of
Z j2 =  Z21 =  1 f t  Example 17.7-1.

Z22 =  Z n  =  2 f t 

Then, using the conversion factors of Table 17.6-1, we find

Y =

and

2 z l
3 T

z l  2 
T  3

2 3 

1 2

Two identical networks connected in parallel will have a total Y matrix of

Y =  Ya +  Yb
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Because Ya =  Yb, we have

Y =  2Ya =

T  3

4  —
3 T

- 2  4

Finally, when two identical networks are connected in cascade, we have a total T matrix of

T =  TaTb =
'2  3 ' '2  3 ' '7 12'

1 2 . J  2 . 4 7 .

EXERCISE 17.7-1 Determine the total transmission parameters of the cascade connection of 
three two-port networks shown in Figure E 17.7-1.

12 ft 
o— VW — 9“

I
I
I
I

-0-

3 f t
-9— VVV— o

* 6 ft

I
F IG U R E  E 17.7-1

Answers: A =  3, £  =  21 CL, C = 1/6 S, and D = 3 /2

17.8 H O W C A N W E C H E C K  . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For 
example, proposed solutions to design problems must be checked to confirm that all o f the 
specifications have been satisfied. In addition, computer output must be reviewed to guard against 
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example, 
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify 
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort o f 
problem discussed in this chapter.

E x a m p l e  1 7 . 8 - 1  How Can We Check Circuits with Two-Port Networks?

The circuit shown in Figure 17.8.1a was designed to have a transfer function given by

V0(s) 2 s - 10
V\n{s) ~  s2 + 2 1s  +  2 

How can we check that the circuit satisfies this specification?
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(a) (b)

F IG U R E  17.8-1 (a)  A circuit including a tw o-port netw ork. (b ) U sing the /?-parameter m odel to represent the tw o-port network.

Solution
The /z-parameter model from Figure 17.5-1 can be used to redraw the circuit as shown in Figure 17.8-16. This 
circuit can be represented by node equations

5

~ 2 > i W

+

i

. K « w .

2

0

where lO/^s) =  5 has been used to express the current o f the dependent source in terms o f the node voltages. 
Applying Cramer’s rule gives

vm{s) K 5 + D 25 +  2 0

s2 — 135 +  2

This is not the required transfer function, so the circuit does not satisfy the specification.

EXERCISE 17.8-1 Verify that the circuit shown in Figure E 17.8-1 does indeed have the 
transfer function

V0(s) 2s -  10
Fin (s) s2 +  27^ +  2 

(The circuits in Figures 17.8-la  and E 17.8-1 differ only in the sign of h2\.)

FIGURE E 17.8-1 A modified version of the circuit
from Figure 17.8-1.
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— I 17 . 9  D E S I G N  E X A M P L E  j-------------------------------

TRANSISTOR AMPLIFIER

Figure 17.9-1 shows the small signal equivalent circuit of a transistor 
amplifier. The data sheet for the transistor describes the transistor by 
specifying its h parameters to be

hie =  1250 ft, =  0, Afc =  100, and hn =  0

The value of the resistance Rc must be between 300 ft and 5000 0  
to ensure that the transistor will be biased correctly. The small 
signal gain is defined to be F IG U R E  17.9-1 A

v0 transistor amplifier.
Av =

Vin

The challenge is to design the amplifier so that

A s = - 2 0

(There is no guarantee that these specifications can be satisfied. Part o f the problem is to 
decide whether it is possible to design this amplifier so that A y = -2 0 .)

Describe the Situation and the Assumptions
1. Rc must be between 300 f t and 5000 ft.

2. The transistor is represented by h parameters. Figure 17.9-la shows that the transistor can be 
configured to be a two-port network and represented by h parameters. Figure 11.9-2b shows 
an equivalent circuit for the transistor. This equivalent circuit is based on the h parameters. 
For this particular transistor, the values of the h parameters are

Because

F IG l RL 17.9-2 (a) Using h param eters to describe a transistor. (6) An equivalent circuit. (c ) A sim plified 
equivalent circuit for hre = 0 and hoe = 0.

R b = 23 kQ
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the dependent voltage source is a short circuit. Figure 17.9-2c shows the equivalent circuit 
after these simplifications are made.

3. The voltage gain must be =  —20.

the resistor at the right side of the equivalent circuit is an open circuit. Because
hK - 0

State the Goal
Select Rc so that Av = -2 0 .

Generate a Plan
Replace the transistor in Figure 17.9.1 by the equivalent circuit in Figure 17.9-2c. Analyze the 
resulting circuit to obtain a formula for the voltage gain, A v. This formula will involve Rc. 
Determine the value of Rc that will make A v =  -2 0 . If this value of Rc is between 300 0  and 
5000 fl, the amplifier design is complete. On the other hand, if this value of Rc is not between 
300 fl and 5000 fl, the specifications cannot be satisfied.

Act on the Plan
Figure 17.9-3 shows the amplifier after the transistor has been replaced by the equivalent 
circuit. Applying Ohm’s law to Rc gives

v0 =  —Rc100ib

where the minus sign is due to reference directions. Next, apply KVL to the left mesh to get

Vin =  23,000z'b +  1000/b  

v0 -100/?cThen Av =  —  =  - ---- --- -
vin 24,000

Finally, set A v =  —20, obtaining

- 2 0 :  - ,00^

Now solve for Rc to determine
24,000 

Rc = 4800 f l

Verify the Proposed Solution
First, the resistance Rc =  4800 f l is indeed between 300 f l and 5000 fl. Second, the gain of the 
circuit shown in Figure 17.9-3 is

v0 —hfeRc 100 x 4800
Vin îe 23,000 -}- 1000

Therefore, both specifications have been satisfied.

=  - 2 0

F IG U R E  17.9-3 An equivalent circuit
for the transistor amplifier.



848 )-------T w o - P o r t  a n d  T h r e e - P o r t  N e t w o r k s

17.10 S U M M A R Y
O A port is a pair of terminals together with the restriction that 

the current directed into one terminal be equal to the current 
directed out of the other terminal.

O Two-port models of circuits or devices are useful for 
describing the performance of the circuit or device in terms 
of the currents and voltages at its ports. The internal details 
of the circuit or device are not included in the two-port 
model, so the two-port model of a circuit may be considera­
bly simpler than the circuit itself.

O The two-port model involves four signals— the current and 
voltage at each port. Two of these signals are treated as 
inputs, and the other two are treated as outputs. There are six

ways of separating the four signals into input and output 
signals, and so there are six sets of two-port parameters. The 
six sets of two-port parameters are called the impedance, 
admittance, hybrid, inverse hybrid, transmission, and in­
verse transmission parameters. Table 17.3-2 summarizes the 
six sets of two-port parameters.

O Table 17.6-1 summarizes the equations used to convert one 
set of two-port parameters into another, for example, to 
convert impedance parameters into hybrid parameters.

O We may use two-port parameters to describe the perform­
ance of the parallel, series, or cascade connection of two or 
more circuits.

PROBLEMS

Section 17.2 T -to -n  Transform ation and Tw o-Port 
Three-Terminal Netw orks

P 17.2-1 Determine the equivalent resistance Rab of the 
network of Figure P 17.2-1. Use the 11-to-T transformation 
as one step of the reduction.

Answer: Rab =  3.2 H

Figure P 17.2-1

P17.2-2 Repeat problem P 17.2-1 when the 6 -0  resistance 
is changed to 4 O and the 10-H resistance is changed to
12 n.

P 17 .2-3 The two-port network of Figure 17.1-1 has an input 
source Vs with a source resistance Rs connected to the input 
terminals so that Vx =  Vs — I XRS and a load resistance 
connected to the output terminals so that V2 =  —I2 Rl  =  
4 A .  Find Rm =  Vi/Iu Av =  V2/V, ,  A, =  - I 2/ I u and Ap =  
~ ^ 2  h/(V\ I\) by using the Z-parameter model.

P 1 7 .2 -4  Using the A-to-Y transformation, de term ine  the
current I  when R x =  15 n  and R =  20  Q  for  the circuit  show n
in Figure P 17.2-4.

Answer: I  = 385 m A

Figure P 17.2-4

P 17.2-5 Use the Y-to-A transformation to determine Rin of 
the circuit shown in Figure P 17.2-5.

Answer: /?in =  673.85 0
800 Q

în

Figure P 17.2-5

Section 17.3 Equations of Tw o-P ort N etw orks

P 17.3-1 Findthe Kparameters and Z parameters for the two- 
port network of Figure P 1 7 .3 -1.

12 Q 3(1
° -------W v ------£ — V W -------o

> 6( 1

Figure P 17.3-1
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Answer: Z\ j = 2  — jA f l ,  Z ]2 =  Z2\ =  —jA f l, Z22 =  - j2  f l

P 1 7 .3 -2  D eterm ine  the Z  param eters  o f  the ac  circuit  show n
in Figure P 17.3-2.

2Q
O— vw -

' Gx G3

Ve F : V2

- o

Figure P 17.3-6

A nswers: Z, x =  (4s +  1 )/s, Z { 2 =  Z2 1 =  1 /s, and Z22 =  (2s2 -f-1)/ s

2 H

P  1 7 .3 -7  Determine the impedance parameters in the 5-domain
(Laplace domain) for the circuit shown in Figure P 17.3-7.

4 f t
O— v w -

1 F

F igure  P 17.3-2

P 17.3-3 Find the Y parameters of the circuit of Figure P 17.3-3 
when b — 4, G\ =  2 S, G2 =  1 S, and G3 =  3 S.

Figure P 17.3-7

P 17.3-8 Determine a two-port network that is represented by 
the Y parameters:

~s +  1
Y  = s

-1

-1

( * + i ) j

F ig u re  P 17.3-3

P 17.3-4 Find the Y parameters for the circuit of Figure 
P 17.3-4.

Answers: Yu =  0.3 S, Y2, =  Yl2 =  -0 .1  S, and Y22 =  0.15 S

Z  =  -
1

F ig u re  P 17.3-4

P 17.3-5 Find the ^parameters of the circuit shown in Figure 
P 17.3-5.

100 kQ
-WV

P 17.3-9 Find a two-port network incorporating one inductor, 
one capacitor, and two resistors that will give the following 
impedance parameters:

(s2 +  2s +  2 ) 1

1 (a* +  i)

where A =  s2 +  s +  1 .

P 17.3-10 An infinite two-port network is shown in Figure 
P 17.3-10. When the output terminals are connected to the circuit’s 
characteristic resistance R0, the resistance looking down the line 
from each section is the same. Calculate the necessary Rq.

Answer: R0 =  (V 5  — l)/?

R R R R
------------ r— W v — t—W V

►75kn >50kQ V2

F ig u re  P 17.3-5

P 17.3-6 Find the Z parameters for the circuit shown in 
Figure P 17.3-6 for sinusoidal steady-state response at w =
3 rad/s.

Answers: Z n =  3 -fy fi, Z\2 =  Z2i =  —/2 f l,  and Z22 =  —j2 f l  

3Q  1 H

Figure P 17.3-10 Infinite two-port network.

Section 17.4 Z and ^P aram eters for a Circuit w ith  
Dependent Sources

P 17.4-1 Determine the Y parameters of the circuit shown in 
Figure P 17.4-1.

b i

< 0 > — W H

V2

-o

F ig u re  P 17.4-1

P 17.4-2 An electronic amplifier has the circuit shown in Figure 
P 17.4-2. Determine the impedance parameters for the circuit.

Answers: Z u =  4, Z J2 =  3( l + cr), Z2i =  3, and Z22 =  5 + 3a
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Figure P 17.4-2 

P 17.4-3

(a) For the circuit shown in Figure P 17.4-3, determine the 
two-port Y model using impedances in the 5 -domain.

(b ) Determine the response v2(/) when a current source ix =  1 
u(t) A is connected to the input terminals.

Figure P 17.4-4 (a ) Heart-assist device and (b ) model o f  
controller and pump.

- A M r - < 0 > -
bv\

P 17.4-5 D ete rm ine  the Y p aram e te rs  for  the c ircuit  sh o w n  in
F igure  P 17.4-5.

Answer: Y \2 =  — j ;  and  Y21 =

*>1 :* 3 v2 

----o

Figure P 17.4-5

Section 17.5 Hybrid and Transm ission Param eters

P 17.5-1 Find the transmission parameters of the circuit of 
Figure P 17.5-1.

Answers: A =  1.2. B =  6 . 8  f l, C =  0.1 S, and D =  1.4

2 Q
o -^ W V

P 17.4-4 One form of a heart-assist device is shown in Figure 
P 17.4-4a. The model of the electronic controller and pump/ 
drive unit is shown in P 17.4-46. Determine the impedance 
parameters of the two-port model.

Ventricular assist device

Figure P 17.5-1

P 17.5-2 An op amp circuit and its model are shown in Figure 
P 17.5-2. Determine the /z-parameter model of the circuit and 
the H matrix when =  100 kfi, R x =  R2 =  1 Mfl, R0 =  1 kfi, 
and A =  104.

Answer: hX \ =  600 kfl,/zj2=  1/2, /z2i =  - 1 06, and h22 = 10-3 S

(a)

(b)

Figure P 17.5-2 (a) Op amp circuit and (b) circuit model.

P 17.5-3 Determine the h parameters for the ideal trans­
former of Section 1 1 . 1 1 .

P 17.5-4 D eterm ine  the h pa ram ete rs  for the T  circuit  o f
Figure P 17.5-4.
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*1
<̂ -AA/V

z  =
2 6

Y  =

‘ l o

c o - - o  c (a)

1 a  
-AAAr- - o  b

>20

c o - -o  c (b)
Figure P 17.7-1

P 17.7-2 For the T network of Figure P 17.7-2, find the Y 
and T parameters and determine the resulting parameters 
after the two two-ports are connected in (a) parallel and (b) 
cascade. Both two-ports are identical as defined in Figure 
P 17.7-2

P 17.5-5 A simplified model of a bipolar junction transistor is 
shown in Figure P 17.5-5. Determine the h parameters of this 
circuit.

50 0
-o

Figure P 17.5-4 2 O
o----V W

4 0
-AAA/— 0

6 O v2 

—o

F ig u re  P 17.5-5 Model of bipolar junction transistor.

Section 17.6 Relationships Betw een Tw o-Port 
Param eters

P 17.6-1 Derive the relationships between the Y parameters 
and the h parameters by using the defining equations for both 
parameter sets.

P 17.6-2 Determine the Y parameters if  the Z  parameters are 
(in ohms):

r3 21

F ig u re  P 17.7-2

P 17.7-3 Determine the Y parameters of the parallel combi­
nation of the circuits of Figures P 17.7-3a, b .

(a)
F ig u re  P 17.7-3

(b)

P 17.6-3 Determine the h parameters when the Y parameters 
are (in siemens):

0.1 o . r
.0.4 0.5.

P 17.6-4 A two-port has the following Y parameters: Yn — 
Y2\ =  -0 .4  S, Yu =  0.5 S, and Y22 =  0.6 S. Determine the h 
parameters.

Answers: hn = 2 f l ,  h2x =  -0 .8 , h]2 =  0.8, and h22 =  0.28 S

Section 17.7 Interconnection of T w o-P ort N etw orks

P 17.7-1 Connect in parallel the two circuits shown in Figure 
P 17.7-1 and find the Y parameters of the parallel combination.

Answers: Yu =  17/6, Yl2 =  Y2l =  - 4 /3 ,  and Y22 =  5 /3
3 Q

a o-------- f ---------V A ----------o b

Section 17.8 H ow  Can W e Check . . . ?

P 17.8-1 A laboratory report concerning the circuit of Figure 
P 17.8-1 states that Z 12 =  15H and Yn = 2 4  mS. Verify these 
results.

+

vl

125 Q

-AAAr-

50 Q 75 Q v2

F ig u re  P 17.8-1

P 17.8-2 A student report concerning the circuit of Figure 
P 17.8-2 has determined the transmission parameters as A =  2
(s + 10)/s, D =  A, C  =  10/s, and B =  {3s2 +  80s+)400/^2. 
Verify these results when M =  0.1 H.

Figure P 17.8-2



Design Problems
DP 17-1 Select Rt and R so that R,n =  16.6 f l  for the circuit of 
Figure DP 17-1. A design constraint requires that both R i and R 
be less than 1 0  H.

^ 8 5 2 ^ -------T w o - P o r t  a n d  T h r e e - P o r t  N e t w o r k s

(a) Determine the impedance parameters of the two-port 
network.

(b) Select RL so that maximum power is delivered to RL.

Figure DP 17-1

DP 17-2 The bridge circuit shown in Figure DP 17-2 is said to 
be balanced when 1 =  0. Determine the required relationship for 
the bridge resistances when balance is achieved.

Figure DP 17-4

DP 17-5

(a) Determine the ABCD (transmission matrix) of the two-port 
networks shown in Figures DP 17-5a and DP 17-56.

(b) Using the results of part (a), find the 5 -domain ABCD  
matrix of the network shown in c.

(c) G i v e n =(10/^)m H,L2 = (2.5/;r)mH, C\ =  (0.78/^)/xF, 
C2 =  C3 = (1/7r) /iF, and RL =  100 H, find the open-circuit 
voltage gain V2/V\ and the short-circuit current gain I2/I\ 
under sinusoidal-state conditions at the following frequen­
cies: 2.5 kHz, 5.0 kHz, 7.5 kHz, 10 kHz, and 12.5 kHz.

Hint: Use the appropriate entries of the ABCD matrix. Also, note
the resonant frequencies of the circuit.

Figure DP 17-2 Bridge circuit.

DP 17-3 A hybrid model of a common-emitter transistor 
amplifier is shown in Figure DP 17-3. The transistor parameters
are h2X =  80, hn =  45 O, h22 =  12.5 /zS, and hX2 =  5 x 1 0 "4. 
Select /?L so that the current gain i2/ix =  79 and the input 
resistance of the amplifier is less than 1 0  Cl.

Z ( s )

IM s ) V 2(s)  

—o

V l ( s )  

o---

1
Y ( s )

X
V 2(s)

(a) (b)

Figure DP 17-3 Model of transistor amplifier.

DP 17-4 A two-port network connected to a source vs and a
load resistance RL is shown in Figure DP 17-4. Figure DP 17-5
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with PSpice j j

A.1 PSPI CE

SPICE, an acronym for Simulation Program with Integrated Circuit Emphasis, is a computer program 
used for numerical analysis o f electric circuits. Developed in the early 1970s at the University of 
California at Berkeley, it is generally regarded as the most widely used circuit simulation program 
(Perry, 1998). PSpice is a version of SPICE, designed for personal computers, developed by 
MicroSim Corporation in 1984 (Tuinenga, 88). SPICE was a text-based program that required the 
user to describe the circuit using only text, and the simulation results were displayed as text. MicroSim 
provided a graphical postprocessor, Probe, to plot the results o f SPICE simulations. Later, MicroSim 
also provided a graphical interface called Schematics that allowed users to describe circuits 
graphically. The name of the simulation program was changed from PSpice to PSpice A/D when 
it became possible to simulate circuits that contained both analog and digital devices. MicroSim was 
acquired by ORCAD R, which was in turn acquired by Cadence H . ORCAD improved Schematics and 
renamed it Capture. “ Using PSpice”  loosely refers to using ORCAD Capture, PSpice A/D, and Probe 
to analyze an electric circuit numerically.

A.2 G E T T I N G  S T A R T E D

Begin by starting the ORCAD Capture program. Figure A .l shows the opening screen of ORCAD 
Capture. (If necessary, maximize the Session Log window.) The top line of the screen shows the title 
of the program, ORCAD Capture CIS -  Demo Edition. A menu bar providing menus called File, View, 
Edit, Options, Window, and Help is located under the title line. A row of buttons is located under the 
menu bar, and a ruler is located below the row of buttons. A workspace is located beneath the ruler. 
The circuit to be simulated is described by drawing it in this workspace. A line containing two message 
fields is located under the workspace. The left message field is of particular interest because it provides 
information about the Capture screen. For example, move the cursor to one of the buttons. The left 
message field describes the function of the button. Save Active Document is the function of the third 
button from the left.

Select File/New/Project from the Capture menus, as shown in Figure A.2. The New Project 
dialog box, shown in Figure A.3, will pop up. Select Analog Or Mixed A/D, as shown. The New 
Project dialog box requires a project name and a location. The location is the name of the directory or 
folder in which Capture should store the project file. The name will be the file name of the project file. 
ORCAD Capture uses OPJ as a suffix for project files, so choosing Name to be ExampleCircuit and 
Location to be c:\PSpiceCircuits causes ORCAD to store a file named ExampleCircuit.opj in the 
c:\PSpiceCircuits folder. Notice that long file names are supported, making it easier to give descriptive 
names to projects.
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(Save active document. Session Log //.

FIG U R E  A .l The opening screen o f  O RCA D  Capture CIS dem o edition version 15.7.
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Fie View Edit Options Window Help
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Save Ctrf+S
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FIG U R E  A.2 O pening a new project in O RC A D  Capture.

New Project

Name L _0K 1
ExampleCircuit [ Cancel j
Qeate a New Protect Using

© Analog or Mixed A/D

O PC Board Wizard

* O Programmable Logic Wizard

Q Schematic

Q m*  ]

Tip for New Users
Deate a new Analog or Mixed A/D project The new protect may be blank or copied from an existr>g template

Lgcabon
C APSpiceCircuits 1 Browse... 1

1_____________________
F IG U R E  A.3 New Project dialog box.
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Create PSpice Project

C  £rea»e based upon an ending p»oiect

--------------------------

f* jGeate a blank pioject

FIG U R E  A.4 Create PSpice Project dialog box.

F IG U R E  A.5 The exam ple circuit.

Click OK in the New Project dialog box to close the New Project dialog box and pop up the 
Create PSpice Project dialog box shown in Figure A.4. Select Create a blank project and then click OK 
to return to the ORCAD Capture screen. The Capture screen has changed: Place, Macro, PSpice, and 
Accessories have been added to the menu bar; there are more buttons; and there is a grid on the 
workspace.

We are ready to begin our first PSpice simulation. In that first simulation, we will simulate the 
circuit shown in Figure A.5 to determine its node voltages. We start by drawing the circuit in the 
ORCAD Capture workspace.

A.3 D R A W I N G  A C I R C U I T  IN THE O R C A D  C A P T U R E
W O R K S P A C E  --------------------------------------------------------------------------------

Drawing a circuit in the ORCAD workspace requires three activites:

1. Placing the circuit elements in the ORCAD Capture workspace

2. Adjusting the values o f the circuit element parameters, for example the resistances of the 
resistors

3. Wiring the circuit to connect the circuit elements

To begin, select Part/Place from the Capture menus to pop up the Place Part dialog box shown 
in Figure A.6. To obtain a resistor, select ANALOG from the list o f libraries and R from the list of 
parts. Click OK to close the Place Part dialog box and return to the Capture screen. Upon returning 
to the Capture screen, the cursor will be dragging the symbol for a resistor. Place the resistor, as 
desired, with a click. The cursor will now be dragging a second resistor symbol. A right-click 
produces the menu shown in Figure A.7. Selections from this menu will flip or rotate the resistor. 
Select End Mode to stop placing resistors. (If ANALOG is not listed among the available libraries in 
the Place Part dialog box, click the Add Library button. ORCAD Capture provides several libraries

*J

OK, |

Cancel 

Hdp |
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Part List
EPOIY
F
FPOLY
G
GPOLY
H
HPOLY 
K Uneai 
I
OPAMP
El-----
R v« 

Ut»anes
Design Cache
SOURCE

~Tj Add Lb»aty | 
Remove Libiary J 
Part Search | 

E*« IJ

a*  I
Graphic 
<• tiamal
r  Convex

Packaginfl 
Parts pet Pkg 1

Pa! | U
Type Homogeneous

R?
— M V — 1k

F IG U R E  A.6 The Place Part dialog box.

jjf Oread Capture - Demo Edition - [/ - (SCHEMATIC! : PAGE!)]
g  File Ed* View Place Macro PSpice Accessories Options Window Help
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X
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f#H

F IG U R E  A.7 A right-click w hile placing parts pops up this menu.

containing parts for circuits. File names o f parts libraries use the suffix OLB. Select the analog.olb 
and source.olb libraries.)

SPICE requires every circuit to include a ground node. Select Part/Ground from the Capture 
menus to pop up the Place Ground dialog box. The ground node is a PSpice part called 0 that is 
contained in the SOURCE library. (It may be necessary to add this library. Click the Add Library 
button to pop up a Browse File dialog box. The library file is called source.olb and resides in the PSpice 
folder. Select the source.olb and library then click Open to make this library available and to return to
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F IG U R E  A.8 O RC A D  Capture screen after placing the parts.

the Place Ground dialog box.) Place the ground node in the Capture workspace. Figure A.8 shows the 
Capture screen after the parts have been placed.

The resistances o f the resistors each has its default value, lk. Click the lk  of the vertical 
resistor to select it, then right-click anywhere in the Capture workspace to obtain the menu shown in 
Figure A.9. Choose Edit Properties to pop up the Display properties dialog box shown in

8$ Oread Capture Demo Edition - [/ - (SCHEMATICI: PAGE!)]
g  File Edit View Place Macro PSpice Accessories Options Window Help

a J g l M l # l  m m  M  •! 3 M J !
| SCHE MATIC1 -dcCKT

. j a i x j
-jg| X|

3  talnl ►N • 111 * iwi I
3  M m a m

J ^ j
in
x

i i 

. JOVdc-dr

R1

V1 J *

' I

i l j  ________
Edit sele l item sheeted

"=#■  
- 0

Rotate
j Edit Properties...

Selection Ffcer j
Zoom In I
Zoom Out 0
Go To...

frjio

Delete -200% X-1.60 Y-0.50

F IG U R E  A.9 The value, lk , is show n highlighted. R ight-clicking anyw here in the C apture w orkspace pops up this 
menu.
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Display Properties Xjl

Name Value 
Value (3

Display Format-------
C £0 Not Display 
G Value 0 nfc>
C Namg andValue 
C Name On̂
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OK

Font
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Change | Use Default}

Cokx

Rotation—

r  ao-

Cancel

r  iso* 
r  27cr

Help

F IG U R E  A. 10 The Display Properties dialog box.

Figure A. 10. Change the value from lk  to 3. Figure A .l 1 shows the Capture workspace after the 
parameter values of the parts have been adjusted.

Select Parts/Wire to wire the parts together. In Figure A .l 1, notice that the terminals o f each 
part are marked with small squares. To wire two terminals together, click and hold one terminal, 
drag the mouse to the other terminal, and then release the mouse. The path o f the wire will generally 
follow the path of the mouse, but wires will be drawn using straight horizontal and vertical lines. 
Wires can also connect part terminals to wires or connect wires to wires. To stop wiring, right-click 
and then select End Mode from the menu that appears. Figure A. 12 shows the circuit after it has 
been wired.
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K (G l iR E  A.l 1 Capture screen after adjusting the values o f  the circuit parameters.
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F IG U R E  A.12 The circuit o f  F igure A.5 as described in Capture.

A.4 S P E C I F Y I N G  A N D  R U N N I N G  THE S I M U L A T O I N

Select PSpice/New Simulation Profile from the ORCAD Capture menus to pop up the New Simulation 
dialog box. Provide a name, such as dc analysis, and then click Create. The Simulation Settings dialog 
box will pop up. Select Bias Point from the Analysis type list and select General Settings under 
Options. Click OK to close the Simulation Settings dialog box. Select PSpice/Run from the ORCAD 
menu bar to run the simulation. Figure A. 13 shows the simulation results.

gj File Edt View Place Macro PSpce Accessories Options Window Help

a l i l m i  * i  i m \  i - m i  “ " 3  u I
| SCHE MATIC1 -dcCkl

JLlI

R1

Read/ 0 items selected Scate-200% X«3,00 Y-0.60

FIGURE A .13 O R C A D  Capture labels node voltages after performing a PSpice simulation.



M A T L A B , 
Matrices and 
Complex Arithmetic
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It has become commonplace for engineers to use the MATLAB K computer program to perform a 
variety of technical calculations. MATLAB, short for MATrix LABoratory, is produced and supported 
by the company named The Math Works, which provides demos and application notes at its Web site, 
www.mathworks.com. In addition, MATLAB has extensive built-in help, as shown in Figure B.l.

In this appendix, we will first use MATLAB as a powerful calculator, then use it to solve 
equations involving matrices or complex numbers and, finally, use it to plot functions.

B.1 U S I N G  M A T L A B  AS A C A L C U L A T O R

Consider the equation

C D  = 4 A + B  => D =
4 A +  B

C
Let’s use MATLAB to evaluate D when A =  4, B = 7, and C =  6. To do so, we write the equations 
representing A, B ,C , and D in the MATLAB workspace, using the arithmetic operations and functions

rm Help B O ®1 Fie Edit Vtew Go Fayorfces Desktop Window Help *
* «■ *  o  #  «

..Search.JL DemosContents index Tide MATLAB® V
O Begin Here 

| i $  Release Notes 
8* Înstallation M AT LA B' 'oaamap pa,e|
1 s 22EESO Support and Web Functions:■ Bv Cateqorv■ In Alphabetical Order

Handle Graphics:■ Object Properties

Documentation Set
■ Gettinq StartedIntroduces MATLAB and gets you started using it
« User Guides
Provides tutonals and comprehensive information about MATLAB ► usL,of user Qmfrs

■ Proqrammina Ties
Provides helpful techniques and shortcuts for programming in MATLAB

< > < ...... V 1
1----------------------

F IG l  RE B.l MATLAB Help is accessed by clicking Help on the MA TLAB menu bar.

http://www.mathworks.com


U s i n g  M A TLAB a s  a C a l c u l a t o r

Arithmetic Operations

OPERATION SYMBOL EQUATION MATLAB

Addition + 4 +  x 4 +  x

Subtraction - 4 — x 4 — x

Multiplication * 4 x 4 * x

Division / 4/x 4 / x

Power A 4X 4Ax

Built-in Functions

FUNCTION EQUATION MATLAB

sine sin (jc) sin (x)
cosine cos (x) cos(x)
tangent tan (x) tan (x)
arc sine sin _ 1 (jc) asin (x)
arc cosine cos - 1 (x) acos(x)
arc tangent tan - 1 (x) atan (x)
logarithm log io (x) loglO(x)
natural logarithm In (x) log(x)
exponential ex exp (x)
square root sqrt (x)
absolute value w abs (x)

available in MATLAB. Tables B.l and B.2 list the arithmetic operations and some of the functions 
available in MATLAB.

Figure B.2 shows the MATLAB workspace. The symbol is the MATLAB cursor. To 
indicate that A = 4, we type

A = 4 ; < E n t e r >

after the cursor. (< E n ter>  indicates the Enter key. If  we omit the semicolon, MATLAB will tell 
us the value o f A. Because we already know the value o f A , we include the semicolon to save 
space.) MATLAB responds to < E n ter>  by providing another cursor. We type the equations for 
B , C, and then D similarly. (MATLAB uses the usual order o f precedence for the arithmetic

MATIA8
Fie Edft Debug Desktop Window Help 

D j & % H  o  r- Vt Ef y 4ATLAB7<j 
Shortens 89 How to Add iflWhaTsNew

To get started, select HATLAB Help *

(4*A + B)/C

F IG U R E  B.2 Using M A TLA B  as a
calculator.
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operations. Consequently, parentheses are used in the equation representing D  to ensure that the 
addition is performed before the division.) Notice that the semicolon was om itted from the 
equation representing D, so MATLAB responded to < E n ter>  by providing the value o f D.

Evaluate

E x a m p l e  B.1 Trigonometric Functions

0 = sin l ( cos (72°))

Solution
The trigonometric functions sin, cos, and tan expect an angle in radians, and the inverse trigonometric functions 
asin, acos, and atan produce an angle in radians. Because we were given an angle in degrees, let’s determine the 
value of 0 in degrees. The MATLAB command

> >  t h e t a  = ( 1 8 0 / p i )  * a s i n ( c o s ( 7 2 * p i / 1 8 0 ) )

produces the result t h e t a  = 1 8 . 0 0 0 0

The multipliers p i/180 and 180/pi convert units of angles from degrees to radians and vice versa. As a check, the
MATLAB command

produces the result
> >  p h i  = ( 1 8 0 / p i )  * a c o s ( s i n ( t h e t a * p i / 1 8 0 ) )  

p h i  = 72

B.2 M A T R I C E S ,  D E T E R M I N A N T S ,  A N D  S I M U L T A N E O U S  
E Q U A T I O N S  -------------------------------------------------------------------------

There are many situations in circuit analysis in which we have to deal with rectangular arrays of 
numbers. The rectangular array o f numbers

a\\ a \2 • ••  a \n
ai\ <222 • • • Uln

Qm\ Cl m2 ' a mn

is known as a matrix. The numbers are called elements o f the matrix, with the subscript i denoting 
the row and the subscript j  denoting the column.

A matrix with m rows and n columns is said to be a matrix of order m x n or, alternatively, an 
m x n matrix. (We read “ m x «”  as “ w by « .’’) When the number of the columns equals the number 
of rows, m — n, the matrix is called a square matrix o f order n. It is common to use boldface capital 
letters to denote an m x n matrix.

A matrix consisting of only one column, that is, anm x 1 matrix, is known as a column matrix or, 
more commonly, a column vector. We represent a column vector with boldface lowercase letters as

x\
x2

x =



M a t r i c e s ,  D e t e r m i n a n t s ,  a n d  S i m u l t a n e o u s  E q u a t i o n s -------( 863

The addition of two matrices is possible for matrices of the same order. The sum of two 
matrices is obtained by adding the corresponding elements. Thus, if the elements of A are atJ and the 
elements of B are bip and if

then the elements of C are obtained as 

Matrix addition is commutative, that is,

C = A +  B

C 'ij — Qij “1“ b i j

A +  B =  B +  A

Also, the addition operation is associative, so that

(A +  B) +  C =  A +  (B +  C)

To perform the operation of multiplying matrix A by a constant a , every element of the matrix is 
multiplied by the constant. Therefore, we can write

aA

aa  11 cta\2
OLQ2\ 01(122

aami aam2

ota Xn 
aa2n

Otdmn

Matrix multiplication is defined in such a way as to assist in the solution of simultaneous linear 
equations. The multiplication of two matrices AB requires the number of columns of A to be equal to 
the number of rows of B. Thus, if A is of order m x n and B is o f order n x q, the product is a matrix of 
order m x q. The elements of a product

C =  AB

are found by multiplying the ith row of A and they'th column of B and summing these products to give 
the element c^. That is,

Cy — Qi\b\j + 0/2̂ 2/ + • • • + a,[qbqj — ^ " Clikbkj
k— 1

Thus we obtain c } 1, the first element o f C, by multiplying the first row o f A by the first column of B and 
summing the products of the elements. We should note that, in general, matrix multiplication is not 
commutative, that is,

AB ^  BA

E x a m p l e  B . 2  M a t r i c e s  in M A T L A B

Evaluate

2 1
4 2

‘6 f '2  1 ‘ '6  f '2  \ '6  f
+ 3 1 9 4 2 3 1

and 4 2
*

3 1



864 ------- M A T L A B ,  M a t r i c e s  a n d  C o m p l e x  A r i t h m e t i c

[ a  MATLAB fZj
1 File Edit Debug Desktop Window Help j
ID *  % e  «o c* *  a* ?
I Shortcuts OS How to Add \E What's New

»  A = 
A =

[2 1; 4 2] A

2 1
4 2

»  B - 

B =

[6 1 
3 1]

6 1
3

»  A+B
ans *

1

8 2
7

»  A-B 
ans =

3

-4 0
1

»  A*B
ans =

1

15 3
30 6

» V
< >
^  Start)

Solution
Figure B.3 shows how to do these calculations, using MATLAB. First, 
two matrix variables

A = 2 1 
4 2

and B =
6 1 
3 1

are defined. Figure B.3 shows two ways o f defining a matrix variable in 
MATLAB. The command

> > A  = [2  1 ;  4 2 ]

uses a space to separate the elements in each row o f the matrix and a 
semicolon to separate the rows o f the matrix. The command

» B  =  [ 6  1 

2 1]

uses a space to separate the elements in a row o f the matrix and an 
< E nter>  to separate the rows o f the matrix. (After the < E nter> , 
spaces are used to line up the columns o f matrix B.) Both commands 
use the bracket symbols, [ and ], to indicate the beginning and end of 
the matrix.

Figure B.3 shows that operations listed in Table B.l can be used 
to perform matrix arithmetic. We see that

'2  r "6 r '8  r '2  1 ' '6  r

o1

+ — =
4 2 3 1 7 3 4 2 3 1 1 1

FIGURE B.3 Matrix arithmetic.

'2  r "6 r '15  3 '
and *

.4  2 3 1 .30 6 .

A set o f simultaneous equations

a n x\ +  a n x 2 +  • ■ ■ + a \nx n =  b\
d2\X\ +  # 2 2 *2  +  * ' • +<22nXn =  b2

: : : : ^
0 *1*1 +  an2x 2 +  • • • + a nnx n =  bn

can be written in matrix form as
Ax =  b (B-2)

a\\ a ]2 • ‘ • d\n *1 ’b
2̂1 a22 ’ ' ‘ ^2n x 2

and b =
b 2

where A = , x =

_<ln\ Cln2 ‘ d-nn _ X ". A .
Frequently, we will want to solve a set o f simultaneous equations such as Equation B-l.  In other 
words, given the values o f the coefficients ay and &/, we will want to determine the values o f the 
variables Using MATLAB, we express the equation in matrix form as shown in Equation B-2, 
entering matrices A and b and then giving the MATLAB command

> >  x = A \b

M ATLAB will respond with the value of the matrix x.
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Solve the simultaneous equations:

JCj — 1 X2 +  3*3 =  12
4x2 -  2*3 =  -1  

6x\ — x 2 — *3 =  0

Solution
First, write the simultaneous equations as

Ax — b
where

cn<N1 " 12" ~X\~
0 4 - 2 , b = - 1 and x = X2
6 - 1  - 1 0 _*3_

A =

Next, enter matrices A and b in the MATLAB command window as 
shown in Figure B.4. Then, issue the MATLAB command

> >  x  =  A \ b

MATLAB provides the result

x —
1.2407
2.3148
5.1296

indicating that

x, =  1.2407, x 2 = 2.3148, andxj =  5.1296

..
-) MATLAB Q @ ®1
He Edit Debug Desktop Window Help
□ Or r % «  ^ 7 .  ft Br ■Y 4A7
Shortcuts <£) How to Add J3 V̂at's New
»  A = [ 1 -23;  04-2;  6-1 -13 *
A -

1 - 2  3
0 4 - 2
6 -1 -1

»  b * [12; -1; 0]
b *

12
-1
0

»  x = A\b
x *

1.2407
2.3148
5.1296

» V
<

F IG U R E  B.4 Solving sim ultaneous 
equations.

We can also solve simultaneous equations using Cramer's rule, which involves determinants, 
minors, and cofactors. The determinant of a matrix is a number associated with a square matrix. We 
define the determinant o f a square matrix A as A, where

flu a 12 

021 022

an i an 2

For example, the determinant o f a 2 x 2 matrix 

Similarly, the determinant o f a 3 x 3 matrix is

a\n
a2n

a ii a 12 
021 022

=  011022 ~  012021

A =
011 012 013

021 022 023

031 032 033
(011022033 +012023031 +  013032021) “  (0J3022031 +  023 032011 +033021012)
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In general, we are able to determine the determinant A in terms of cofactors and minors. The 
determinant ot a submatrix of A obtained by deleting from A the zth row and theyth column is called 
the minor of the element a„ and denoted as mtJ.

The cofactor c0 is a minor with an associated sign, so that

Cij =  ( - 1 ) (H%

The rule for evaluating the determinant A using the zth row of an n x n matrix is
n

A =  ^  dijCjj
7=1

for a selected value of i. Alternatively, we can obtain A by using the y'th column and, thus,
n

A = Y a'Jc>J
7=1

for a selected value of j .
Cramer’s rule states that the solution for the unknown, xk, of the simultaneous equations of 

Equation B-l is

Ak

where A is the determinant of A and A* is the determinant formed by replacing the Ath column of A by 
the column vector b.

B.3 C O M P L E X  N U M B E R S  A N D  C O M P L E X  A R I T H ME T I C

We can represent the complex number c as
c =  a + jb  (B-3)

where a and b are real numbers and j  =  %/—I. It’s useful to associate this complex number with a point 
in the complex plane as shown in Figure B.5a. Figure B.5a shows that the real numbers a and b in 
Equation B-3 are the projections of the point unto the real and imaginary axes. Consequently, a is 
called the real part of c, and b is called the imaginary part of c. We write

a =  Re{c} and b =  Im{c}
Figure B.5 b illustrates an alternate representation of the complex number c. in which a line segment is 
drawn from the origin of the complex plane to the point representing the complex number. The angle 
of this line segment, 0, measured counterclockwise from the real axis, is called the angle of the 
complex number. The length of the line segment, r, is called the magnitude of the complex number.

Imaginary axis Imaginary axis

b 1
11 r

v  c = rZ f

0

1
1
1

D o l l  ovi c
0 ----------Real axis FIGURE B.5 Rectangular

0
—---------—1-----rceai axib

a 0 (a) and polar (h) forms of a
c o m p le x  n um ber .
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The polar form represents the complex number in terms of its Imaginary axis

magnitude and angle. We write

c — r / o

To indicate that r is the magnitude of the complex number c 
and that 0 is the angle of c , we write

r — \c\ and 0 — / c

Figure B.6 shows a complex number c with Re{c} <  0. Notice that 0, not 0, is the angle of c. 
Because a complex number can be expressed in both rectangular and polar forms, we write

a + j  b = c — r / p

The trigonometry of Figure B.4 and Figure B.5 provides the following equations for converting 
between the rectangular and polar forms of complex numbers.

- cos (0), b = r sin (0), r = \ j a 2 +  b2 

(b \

and 0 =
tan

180° -  t a n ”

a > 0 

a < 0

Several special cases are worth noticing.

1 =  1 /o ° . / =  1 790°. - 1  =  1 /± 1 8 0 °  and -  j  =  1 7 -9 0 °  =  1 /270°

Next, consider doing arithmetic with complex numbers. We will convert complex numbers to 
rectangular form before adding or subtracting. Then,

(a + j  b) +  (c + j  d) =  (a + c ) + j{b  + d)

and (a + j  b) — (c +  j  d) =  (a -  c) + j(b  -  d)

We will convert complex numbers to polar form before multiplying or dividing. Then,

( a  / e )  =  A B /jO  +  t )  and ^  / ( # - < £ )

The conjugate o f the complex number c = a + jb  is denoted as c" and is defined as

c* =  a - j b

In polar form, we have

C* = r / - f l

A third representation of complex numbers, the exponential form, is motivated by Euler's 
formula. Euler’s formula is

eJ0 =  cos 9 + j  sin 0
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Com plex-Arithm etic Functions
FUNCTION EQUATION MATLAB
Real part Re{c} real(c)
Imaginary part Im{c} imag(c)
Magnitude \c\ abs(c)
Angle u angle(c)
Complex conjugate *c conj(c)

Consequently, r  eJ0 — r  cos 0 + j  r  sin 9

Similarly, when we convert from polar to rectangular form,

r ( d  =  r  cos 9 + j  r  sin 9

Noticing that the right-hand sides of the two previous equations are identical establishes the 
equivalence between the exponential and polar forms of a complex number.

r  ejd =  r / 9

The conversion between the polar and exponential forms is immediate. When using MATLAB, we 
will represent a polar form complex number by the equivalent exponential form complex number. 

It’s worth noticing that Euler's formula provides formulas for the sine and cosine.

cos 9 =   ̂(eje + e~j6) and sin 9 — (eJd — e~je)

Table B.3 list some of the complex arithmetic functions available in MATLAB.

E x a m p l e  B . 4  Rectangular and Polar Forms o f  Com plex Numbers

( 3 1 1 ®MATLAB
File Edit Debug Desktop Window Help

p e g  1 *  j H e f  1 1  j

Shortcuts S  How to Add 03 What's New

>> cl = 4 - j»3;
»  abs(cl) 
ans *

5
>> angle(cl)*(180/pi) 
ans *
-36.8699 |

»  c2 * 6.2*exp(-j*120*pi/180)
c2 *

-3.1000 - 5.36941 
»  v
< >

Start I

A

Express c\ = 4 — f l  in exponential and polar forms. Express ci 
6.2 7-120° in rectangular form.

Solution
Doing the conversions by hand yields

c I =  ^ 4 2 +  (—3)2 / t a n - ' f - f j  = 5 /-36.„8_r

and

ci =  6.2 cos( — 120°) +  y'6.2 sin( — 120°) =  -3 .1  -j5 .37

In Figure B.7, MATLAB does the same conversions with the same 
results. The factors 180/tt and tt/180 are used to convert radians to 
degrees and degrees to radians. Notice that the function angle(cl) 
gives the angle of cl in radians and the function exp ( - j* 9 )  expects 
9 to be given in degrees.

FIG U R E B.7 Complex numbers



P l o t t i n g  F u n c t i o n s  U s i n g  MATLAB 869

E x a m p l e  B . 5  A r i t h m e t i c  w i t h  C o m p l e x  N u m b e r s

Find c + d, c -  d, cd , and c /d  when c =  4 —y'3 and d  =  6.2 / —120°. 

Solution
First, let’s convert c to polar form and d  to rectangular form.

=  V/42 +  (— 3)2 / t a n  - i  =  5 / -3 6 .8 7 °

and

J  =  6 .2  cos ( - 120°) + 7 6 .2  sin ( - 1 20°)
=  -3 .1  -75 .37

Using the rectangular form for addition and subtraction yields

c +  rf =  (4  —y3) +  (—3.1 —y'5.37)
=  (4 — 3.1) +  y'(—3 — 5.37) =  0.9 —y'8.37

and

c -  d  =  (4 — y3) -  (-3 .1  —y'5.37)
=  (4 +  3.1) 4-y‘(—3 +  5.37) =  7.1 +  y'2.37

Using the polar form for multiplication and division yields

c < / =  (5 7 -3 6 .8 7 °)  (6.2 7 -1 2 0 ° )

=  (5  x 6 .2 ) / ( —36-87° — 120°)

=  31 /-1 5 6 .8 7 °

and

c 5 7 -3 6 .8 7 °

d  6.2 7 -1 2 0 °

_  / ( —36.87° +  120°)

=  0 .806 /83.13°

-> MATLAB
File Edit Debug Desktop Window Help
D t f  * o  r / ;  |jj gf
Shortcuts 3  How to Add >J What's New 
»  c = 4 - j*3;
»  d = 6.2*exp(-j*120»pi/180); 
»  c+d 
ans =

0.9000 - 8.3 6941 
»  c-d 
ans *

7.1000 + 2.36941 
»  e ■ c*d;
»  abs(e) 
ans *

31.0000 
»  (180/pi)*angle(e) 
ans *
-156.8699 
»  f*c/d;
»  abs(f) 
ans =

0.8065 
»  (180/pi)*angle(£) 
ans *

83.1301
»
< >
Start!

F IG U R E  B.8 C om plex A rithm etic 

In Figure B.8, MATLAB does the same arithmetic with the same results.

B.4 P L O T T I N G  F U N C T I O N S  U S I N G  M A T L A B

Consider the equation

y  =  0.2 jc2 +  1.6

The MATLAB command

> >  p l o t ( x , y )

tells MATLAB to plot y as a function of x. The command requires x to be a row vector, that is, a 1 x n 
matrix containing a list of equally spaced values of the variable jc, and y to be a row vector containing a 
list of the corresponding values o f the variable y.
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To obtain a list of equally spaced values of the variable x, we issue a MATLAB command of the
form

>> x = [ xs : dx : xf ]
where xs is the starting value of x, dx is the increment of jc, and xf is the final value of x. For example, 
the MATLAB command

>> x = [ -5 : 4 : 15 ]
produces the list

»  x = -5 -1 3 7 11 15
To obtain the list of the corresponding values of the variable y, we issue the MATLAB command

»  y=0.2*x.~2+l.6
which produces the list

» y  = 0.6 1.4 2.2 3.0 3.8 4.6
(Notice the operation “ ,A” in this command. The operation A is the power operation from Table B.l, 
and x is a matrix. The . before the A tells MATLAB to apply the power operation to each element of x 
rather than to the matrix x itself.)

E x a m p l e  B .6  P lotting Functions U sing MATLAB

Use MATLAB to verify that

5.61 cos(1000 — 13.96sin(1000 =  15 cos(100t +  68.1°)

Solution
The MATLAB commands

>> t = [0 : 0.001 : 0.12];
>> vl = 5.61*cos(100*t) - 16.96*sin(100*t);
>> v2 = 15*cos(100 *t +68.l*pi/180);
>> plot(t,vl,t,v2)

Produce the plot shown in Figure B.9. The MATLAB command

>> plot(t,vl,t,v2)
tells MATLAB to plot both vl versus t and v2 versus t on the same axis. Because these plots overlap exactly, we 
conclude that vl and v2 are identical functions of t.
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Formulas

C.1 T R I G O N O M E T R I C  I D E N T I T I E S

1. sin ( —a) =  —sin a

2. cos ( —a) =  cos a

3. sin a = cos (a -  90°) =  —cos (a +  90°)

4. cos a  =  —sin (a -  90°) =  sin (a  +  90°)

5. sin a = —sin (a ±  180°)

6. cos a  =  —cos (a ±  180°)

7. sin (a ±  ft) — sin a cos ±  cos a  sin

8. cos (a ±  P) = cos a cos ft sin a  sin ft 

tan a ±  tan 6
9. tan (a ±  /?) =  ---------------- —n

1 =F tan a  tan

10. sin 2a = 2 sin a  cos a

11. cos 2a  = cos2a  — sin2a

12. 2 sin a  sin =  cos (a — fi) -  cos (a +  /?)

13. 2 sin a  cos ft =  sin (a -j- /?) +  sin (a — ft)

14. 2 cos a  cos p  =  cos (a +  /J) -I- cos (a -  ft)

15. 2 sin2 a  =  1 -  cos 2a

16. 2 cos2a  =  1 +  cos 2a

17. sin2or -f cos2or =  1

C.2 D E R I V A T I V E S  --------------------------------------------------------

The letters u and v represent functions of x, whereas a, b, and m are constants.



872 J—  Mathematical  Formulas

- d du dv3. —  (uv) =  —  v + w — dx dx dx
du dv

4.
rfx Vv/

V</JC U dx
V2

5. — (xm) = mxm- 1
d x

6. — ( 0  =  0 ^
d x

7. —  (In x) = - 
ax jc

8. — cos (ax + 6) = — a sin (ax -(- Z>)
d x

9. — sin (ax +  b) — a cos (ax + b)
d x

C.3 I N D E F I N I T E  I N T E G R A L S

The letters u and v represent functions of x, whereas a and b are constants.

1. J  au dx =  a J  u dx

2. J  (u +  v)dx =  J  udx +  J  vdx

r  xm+13. xm dx = ------- when m /  —1
J  m+  1

f  dv f  du4. / u —  dx =  uv — / v — dx
J dx J dx

5. / f . h W

6. /  sin ax dx = — -  cos ax
J  a

7. [  cos ax dx =  -  sin ax
J  a

/ , x sin 2ax
sin ax dx =  - ~

/ 7 x sin 2ax
cos ax dx =  -  -\---- -----

2 4a

r  . sin2 ax
10. / cos ax sin ax dx =
S '

" •  /
x  s i n  a x  d x  =

2 a
sin ax — ax cos ax

a2
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. cos ax + ax sin ax
x  cos ax dx = -----------------------

a1n I
f  i j sin ( a - b ) x  sin (a +  b)x 2 . 2

13. / sin a* sin dx =  ——--------------------------------------------------- —--—--------- —  when bz ^  a2
J  2 (a -  b) 2 (a +  b)

/ . , sin (a -  b)x sin (a +  b)x , , 9 , 0
cos ax cos to  dx = -- --------—---- h ——------ —— when bl ±  a2

2(a -  b) 2 (a +  b)

/ cos (a -  b)x cos (a +  b)x , ,
sin ax cos bx dx = -----—------  ----------—----- —-  when bL ^  a2

2 (a -  b) 2 (a +  b)

!■
I ̂  j* jax sin bx -  b cos foe)

/ .  _ _ _ _

16. I eaxdx = - e ax 
a

. nr , ax — 1 _Y
17. I x e dx = ---- z— e

a-

a2 -f b2 

e ^ ia  cos bx b sin for)
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Resistor Color Code I— -y

Low-power resistors have a standard set of values. Color-band codes indicate the resistance value as 
well as a tolerance. The most common types of resistors are the carbon composition and carbon film 
resistors.

The color code for the resistor value uses two digits and a multiplier digit, in that order, as shown 
in Figure D. 1. A fourth band designates the tolerance. Standard values for the first two digits are listed 
in Table D.l.

The resistance of a resistor with the four bands of color may be written as

where a and b are the values of the first and second bands, respectively, and m is a multiplier. These 
resistance values are for 2 percent and 5 percent tolerance resistors, as listed in Tables D.l. The color 
code is listed in Table D.2. The multiplier and tolerance color codes are listed in Tables D.3 and D.4, 
respectively. Consider a resistor with the four bands, yellow, violet, orange, and gold. We write the 
resistance as

R = (a x 10 + b)m ±  tolerance

R = (4 x 10+ 7) kfi ±5% 
= 47 kfi ±5%

2nd digit Tolerance

FIGURE D.l Resistor with four color bands.

St andard  V alues for First Two Digits for 2 P e rc e n t and 5 
P e rc e n t T o le ran ce  R esisto rs



S t a n d a r d  R e s i s t o r  C o l o r  C o d e

Color Code Table D-3 Multiplier Color Code

0 black silver 0.01
1 brown gold 0.1
2 red black 1
3 orange brown 10
4 yellow red 100
5 green orange 1 k
6 blue yellow 10k
7 violet green 100 k
8 gray blue 1 M
9 white violet 10 M

Table 0-4 Tolerance Band Code

red 2%
gold 5%
silver 10%
none 20%
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Complex-frequency domain, 684 
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Differential equation, 315 

direct method, 369, 370 
first-order circuits, 314 
integrating factor, 335 
Laplace transform, 680 
operator method, 370, 371 
state variable method, 389 

Differential operator, 371 
Differentiator, 282 
Digital signal processing, 817 
Dirchlet conditions, 732 
Direct current (dc), 3 
Dot convention, 524

Effective value, 501 
EFS, 750
Electric field, 258, 264 
Element, 2
Element equation (constitutive equation). 20 

capacitor, 293
complex-frequency domain, 684 
coupled inductors, 541 
frequency domain, 433 
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Forced response, 313, 336, 339, 

382
Fourier, Jean-Baptise-Joseph, 731 
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Fourier spectrum, 754, 773 
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Fourier transform, 766 
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properties, 769, 770 
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capacitor voltage and current,
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frequency response, 636, 815 
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Ohm’s law, 41



882 )------- I n d e x
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operational amplifier, 237 
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phase shift, 637 
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Hybrid parameters, 837
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Line losses, 567 
Linear element, 21 
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Low-pass filter, 794
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Kirchhoffs Laws, 82 
Fourier series, 779 
simultaneous equations, 238
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Fourier spectrum, 757 
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PSpice, 138 

Nodes, 54, 109 
Nonideal op amps, 227 
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in the frequency domain, 452 
Notch filter, 794

Odd function, 739 
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Ohm’s law, 26, 44 
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Op amp circuits, 208 
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DC circuits, 217 
differential equations, 281 
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first order filters, 808 
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linear algebraic equations, 222
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linear differential equations,
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node equations, 212 
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PSpice, 236 
Sallen-Key filters, 799 
summing integrator, 283 

Open circuit, 44, 347
capacitor in a dc circuit, 278 
ideal voltmeter, 31 

Open-circuit voltage, 171 
Operational amplifier, 208 

bias current, 227, 229 
catalog of op amp circuits, 217 
circuits having poles or zeros, 622 
common-mode rejection ratio, 233 
first-order low-pass filters, 605 
frequency-dependent gain, 630 
gain-bandwidth product, 233 
ideal operational amplifier, 210 
input resistance, 227 
models, 227, 234 
offset voltage, 227, 229 
output resistance, 227 
saturation current, 210 
saturation voltage, 210, 234 
slew rate limit, 210 
typical parameters, 228 
voltage gain, 227, 231 
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Overdamped, 377, 394

Parallel, 66 
admittances, 439, 465 
capacitors, 267, 294 
current sources, 73 
inductors, 276, 294 
resistors, 66, 87 
two-port networks, 841 
voltage sources, 87 

Partial fraction expansion, 672 
MATLAB, 702

Pass-band, 794
Passive convention, 8, 26, 44, 
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resistor, 28 
Periodic function, 416, 731 
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Per-phase equivalent circuit, 

564
Phase angle, 417, 420 
Phase current, 573 
Phase shift, 594 
Phase spectrum, 754 
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Phasor diagram, 454 
Phasors, 426 
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MATLAB, 703 
stability, 700 
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table, 505 

Power factor, 511 
Power factor correction, 512 

three phase circuit, 587 
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Power triangle, 505 
Pressure transducer, 239 
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Problem-solving method, 11 
Proper rational function, 671
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initial condition, 342 
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Repeated poles, 675 
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color code, 874 
tolerance, 874 

Resonant circuit, 623, 640 
parallel RLC, 624, 629 
series RLC, 626, 629 

Resonant frequency, 624
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Step response, 692, 708 
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Switched dc circuits, 278 
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Thevenin, M.L., 171 
Three phase circuit, 560 

instaneous power, 578 
Three phase source, 561 
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Tow-Thomas filters, 803 
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Transfer function, 692, 708 
Transformer, 527 
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Transient response, 313
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Two-port parameter conversion, 840
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Underdamped, 377, 394 

natural response, 380
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VCVS, 35 
Volt, 5 
Voltage, 7
Voltage divider, 62, 87, 220 

design, 64
frequency domain, 439, 466 
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Voltage source, 29 
nonideal, 162 
series, 73 

Voltage-controlled switch, 290 
Voltmeter, 31

Watt, 5

Y parameters, 833, 842 
Y-connected three phase source, 561 
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Y-delta transformation, 571 
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Zeros, 610, 672
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