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Preface

The ninth edition of Electric Circuits represents a planned revision designed
to incrementally improve this introductory circuits text used by more than
700,000 students worldwide during the past 28 years. While the book has
evolved over the years to meet the changing learning styles of students, the
fundamental goals of the text remain unchanged. These goals are:

 To build an understanding of concepts and ideas explicitly in terms of
previous learning. Students are constantly challenged by the need to
layer new concepts on top of previous concepts they may still be
struggling to master. This text provides an important focus on helping
students understand how new concepts are related to and rely upon
concepts previously presented.

» To emphasize the relationship between conceptual understanding
and problem-solving approaches. Developing problem-solving skills
continues to be the central challenge in a first-year circuits course. In
this text we include numerous Examples that present problem-
solving techniques followed by Assessment Problems that enable
students to test their mastery of the material and techniques intro-
duced. The problem-solving process we illustrate is based on con-
cepts rather than the use of rote procedures. This encourages
students to think about a problem before attempting to solve it.

+ To provide students with a strong foundation of engineering prac-
tices. There are limited opportunities in a first-year circuit analysis
course to introduce students to realistic engineering experiences. We
continue to take advantage of the opportunities that do exist by
including problems and examples that use realistic component values
and represent realizable circuits. We include many problems related
to the Practical Perspective problems that begin each chapter. We
also include problems intended to stimulate the students’ interest in
engineering, where the problems require the type of insight typical of
a practicing engineer.

WHY THIS EDITION?

The ninth edition revision of Electric Circuits began with a thorough
review of the text by instructors who currently use Electric Circuits and
those who use other texts. This review provided a clear picture of what mat-
ters most to instructors and their students and led to the following changes:

» Problem solving is fundamental to the study of circuit analysis.
Having a wealth of new problems to assign and work is a key to suc-
cess in any circuits course. Therefore, existing end-of-chapter prob-
lems were revised, and new end-of-chapter problems were added.
The result is a text with approximately 75% new or revised problems
compared to the previous edition.

» Both students and instructors want to know how the generalized
techniques presented in a first-year circuit analysis course relate to
problems faced by practicing engineers. The Practical Perspective
problems provide this connection between circuit analysis and the
real world. We have expanded the use of the Practical Perspectives so
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that they now appear at the start of every chapter. Each Practical
Perspective problem is solved, at least in part, at the end of the chap-
ter, and additional end-of-chapter problems can be assigned to allow
students to explore the Practical Perspective topic further.

Examples embedded in the text that illustrate the application of con-
cepts just presented are an important tool to improve student under-
standing. The ninth edition adds new examples and now all chapters
except Chapter 12 have a minimum of four examples. Chapter 12,
which presents an introduction to Laplace transform techniques, is
comprised of a collection of examples, but does not follow the format
of concept-example employed by the other chapters.

Previous editions of Electric Circuits contained many end-of-chapter
problems with circuits comprised of components with standard val-
ues. These circuits could actually be constructed and tested in a labo-
ratory. New to the ninth edition is Appendix H, which lists standard
values for resistors, inductors, and capacitors. Also new are end-of-
chapter problems for most chapters that ask students to use compo-
nents from Appendix H to construct circuits that meet particular
requirements. The use of standard components is another effort to tie
circuit analysis concepts to real-world circuits.

Previous editions of Electric Circuits have been published with an
optional separate paperback manual presenting an introduction to
PSpice and its use in simulating circuits a student encounters in their
study of linear circuits. With the ninth edition, students and instruc-
tors can choose from two circuit-simulation manuals—PSpice, or
Multisim. Each manual presents the simulation material in the same
order as the material is presented in the text. These manuals continue
to include examples of circuits to be simulated that are drawn
directly from the text. The text continues to indicate end-of-chapter
problems that are good candidates for simulation using either PSpice
or Multisim.

Students who could benefit from additional examples and practice
problems can use the Student Workbook. This workbook has exam-
ples and problems covering the following material: balancing power,
simple resistive circuits, node voltage method, mesh current method,
Thévenin and Norton equivalents, op amp circuits, first-order cir-
cuits, second-order circuits, AC steady-state analysis, and Laplace
transform circuit analysis.

Instructors and students benefit greatly from thoughtful methods of
assessing student learning. The ninth edition makes PowerPoint pre-
sentations available to instructors that include embedded assessment
questions. During a lecture, the instructor can present material using
PowerPoint, pose a question to the students concerning that material,
and allow students to respond to the question. Using a Classroom
Response System, results from student responses are immediately
available to the instructor, providing real-time information about the
students’ comprehension of the material. This immediate feedback
allows the instructor go back and revisit material the students did not
comprehend, or to continue presenting new material if comprehen-
sion is satisfactory.

Every new copy of the book now comes with access to Video
Solutions and a Pearson etext. Video solutions are complete, step-by-
step solution walkthroughs of representative homework problems.
The Pearson etext is a complete on-line version of the book that
includes highlighting, note-taking and search capabilities.



HALLMARK FEATURES
Chapter Problems

Users of Electric Circuits have consistently rated the Chapter Problems
as one of the book’s most attractive features. In the ninth edition, there
are over 1300 problems with approximately 75% that are new or revised
from the previous edition. Problems are organized at the end of each
chapter by section.

Practical Perspectives

The ninth edition continues the use of Practical Perspectives introduced
with the chapter openers. They offer examples of real-world circuits, taken
from real-world devices. Every chapter begins with a brief description of a
practical application of the material that follows. Once the chapter mate-
rial is presented, the chapter concludes with a quantitative analysis of the
Practical Perspective application. A group of end-of-chapter problems
directly relates to the Practical Perspective application. Solving some of
these problems enables you to understand how to apply the chapter con-
tents to the solution of a real-world problem.

Assessment Problems

Each chapter begins with a set of chapter objectives. At key points in the
chapter, you are asked to stop and assess your mastery of a particular
objective by solving one or more assessment problems. The answers to all
of the assessment problems are given at the conclusion of each problem, so
you can check your work. If you are able to solve the assessment problems
for a given objective, you have mastered that objective. If you need more
practice, several end-of-chapter problems that relate to the objective are
suggested at the conclusion of the assessment problems.

Examples

Every chapter includes many examples that illustrate the concepts
presented in the text in the form of a numeric example. There are
nearly 150 examples in this text. The examples are intended to illus-
trate the application of a particular concept, and also to encourage
good problem-solving skills.

Fundamental Equations and Concepts

Throughout the text, you will see fundamental equations and concepts
set apart from the main text. This is done to help you focus on some of the
key principles in electric circuits and to help you navigate through the
important topics.

Integration of Computer Tools

Computer tools can assist students in the learning process by providing a
visual representation of a circuit’s behavior, validating a calculated solu-
tion, reducing the computational burden of more complex circuits, and
iterating toward a desired solution using parameter variation. This compu-
tational support is often invaluable in the design process. The ninth edition
includes the support of PSpice® and Multisim®, both popular computer
tools for circuit simulation and analysis. Chapter problems suited for
exploration with PSpice and Multisim are marked accordingly.
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Design Emphasis

The ninth edition continues to support the emphasis on the design of cir-
cuits in many ways. First, many of the Practical Perspective discussions
focus on the design aspects of the circuits. The accompanying Chapter
Problems continue the discussion of the design issues in these practical
examples. Second, design-oriented Chapter Problems have been labeled
explicitly, enabling students and instructors to identify those problems
with a design focus. Third, the identification of problems suited to explo-
ration with PSpice or Multisim suggests design opportunities using these
software tools. Fourth, new problems have been added to most chapters
that focus on the use of realistic component values in achieving a desired
circuit design. Once such a problem has been analyzed, the student can
proceed to a laboratory to build and test the circuit, comparing the analy-
sis with the measured performance of the actual circuit.

Accuracy

All text and problems in the ninth edition have undergone our strict hall-
mark accuracy checking process, to ensure the most error-free book possible.

RESOURCES FOR STUDENTS

Companion Website. The Companion Website, located at www.
pearsonhighered.com/nilsson, includes opportunities for practice and
review including:

« Video Solutions — Complete, step-by-step solution walkthroughs of
representative homework problems for each chapter.

+ Pearson etext — A complete on-line version of the book that includes
highlighting, note-taking and search capabilities.

» On-Line Study Guide - Chapter-by-Chapter notes that highlight key
concepts of electric circuits

An access code to the Companion Website is included with the purchase
of every new copy of Nilsson/Riedel, Electric Circuits 9¢ and can be
redecmed at www.pearsonhighered.com/nilsson. Access can also be pur-
chased directly from the site.

Student Study Pack. This resource teaches students techniques for solv-
ing problems presented in the text. Organized by concepts, this is a valu-
able problem-solving resource for all Jevels of students.

Introduction to Multisim and Introduction to PSpice Manuals— Updated
for the ninth edition, these manuals are excellent resources for those wish-
ing to integrate PSpice or Multisim into their classes.

RESOURCES FOR INSTRUCTORS

All instructor resources are available for download at www.pearsonhigh-
ered.com. If you are in need of a login and password for this site, please
contact your local Pearson representative.

Instructor Solutions Manual—Fully worked-out solutions to end-of-
chapter problems

PowerPoint lecture images— All figures from the text are available in
PowerPoint for your lecture needs.


http://pearsonhighered.com/nilsson
http://www.pearsonhighered.com/nilsson
http://www.pearsonhigh-
http://ered.com

Custom Solutions—New options for textbook customization are now
available for Electric Circuits, Ninth Edition. Please contact your local
Pearson representative for details.

PREREQUISITES

In writing the first 12 chapters of the text, we have assumed that the
reader has taken a course in elementary differential and integral calculus.
We have also assumed that the reader has had an introductory physics
course, at either the high school or university level, that introduces the
concepts of energy, power, electric charge, electric current, electric poten-
tial, and electromagnetic fields. In writing the final six chapters, we have
assumed the student has had, or is enrolled in, an introductory course in
differential equations.

COURSE OPTIONS

The text has been designed for use in a one-semester, two-semester, or a
three-quarter sequence.

Single-semester course: After covering Chapters 1-4 and Chapters 6-10
(omitting Sections 7.7 and 8.5) the instructor can choose from
Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits),
Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port
Circuits) to develop the desired emphasis.

o Two-semester sequence: Assuming three lectures per week, the first
nine chapters can be covered during the first semester, leaving
Chapters 10-18 for the second semester.

» Acadentic quarter schedule: The book can be subdivided into three
parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.

The introduction to operational amplifier circuits in Chapter 5 can be
omitted without interfering with the reading of subsequent chapters. For
example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7,
Section 8.5, Chapter 15, and those assessment problems and end-of-
chapter problems in the chapters following Chapter 5 that pertain to oper-
ational amplifiers.

There are several appendixes at the end of the book to help readers
make effective use of their mathematical background. Appendix A reviews
Cramer’s method of solving simultaneous linear equations and
simple matrix algebra; complex numbers are reviewed in Appendix B;
Appendix C contains additional material on magnetically coupled coils
and ideal transformers; Appendix D contains a brief discussion of the deci-
bel; Appendix E is dedicated to Bode diagrams; Appendix F is devoted to
an abbreviated table of trigonometric identities that are useful in circuit
analysis; and an abbreviated table of useful integrals is given in Appendix G.
A new Appendix H provides tables of common standard component values
for resistors, inductors, and capacitors. to be used in solving many new
end-of-chapter problems. Selected Answers provides answers to selected
end-of-chapter problems.
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Circuit Variables

CHAPTER CONTENTS

Electrical engineering is an exciting and challenging profession
for anyone who has a genuine interest in, and aptitude for,

1.1 Electrical Engineering: An Overview p. 4 ] ) )
applied science and mathematics. Over the past century and a

1.2 The International System of Units p. 8

1.3 Circuit Analysis: An Overview p. 10 half, electrical engineers have played a dominant role in the
1.4 Voltage and Current p. 11 development of systems that have changed the way people live
1.5 The Ideal Basic Circuit Element p. 12 and work. Satellite communication links, telephones, digital com-
1.6 Power and Energy p. 14 puters, televisions, diagnostic and surgical medical equipment,

assembly-line robots, and electrical power tools are representa-

‘/ CHAPTER OBJECTIVES tive components of systems that define a modern technological

society. As an electrical engineer, you can participate in this ongo-

1 Understand and be able to use SI units and the
standard prefixes for powers of 10.

2 Know and be able to use the definitions of . existing systems and by discovering and developing new systems

voltage and current. to meet the needs of our ever-changing society.
3 Eg;‘;"ft’:}‘l 2?7 :r';f o yseithe definttions of As you embark on the study of circuit analysis, you need to
& Be able to use the passive sign convention to gain a feel for where this study fits into the hierarchy of topics

calculate the power for an ideal basic circuit that comprise an introduction to electrical engineering. Hence we
element given its voltage and current.

ing technological revolution by improving and refining these

begin by presenting an overview of electrical engineering, some
ideas about an engineering point of view as it relates to circuit
analysis, and a review of the international system of units.

We then describe generally what circuit analysis entails. Next,
we introduce the concepts of voltage and current. We follow these
concepts with discussion of an ideal basic element and the need
for a polarity reference system. We conclude the chapter by
describing how current and voltage relate to power and energy.



Practical Perspective

Balancing Power

One of the most important skills you will develop is the
ability to check your answers for the circuits you design
and analyze using the tools developed in this text. A com-
mon method used to check for valid answers is to balance
the power in the circuit. The linear circuits we study have
no net power, so the sum of the power associated with each
circuit component must be zero. If the total power for
the circuit is zero, we say that the power balances, but if
the total power is not zero, we need to find the errors in
our calculation.

As an example, we will consider a very simple model for
the distribution of electricity to a typical home, as shown

below. (Note that a more realistic model will be investigated
in the Practical Perspective for Chapter 9.) The components
labeled a and b represent the electrical source to the home.
The components labeled ¢, d, and e represent the wires that
carry the electrical current from the source to the devices in
the home requiring electrical power. The components labeled
f, g, and h represent lamps, televisions, hair dryers, refriger-
ators, and other devices that require power.

Once we have introduced the concepts of voltage, current,
power, and energy, we will examine this circuit model in detail,
and use a power balance to determine whether the results of
analyzing this circuit are correct.

In 1
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4 Circuit Variables

1.1 Electrical Engineering: An Overview

Electrical engineering is the profession concerned with systems that
produce, transmit, and measure electric signals. Electrical engineering
combines the physicist’s models of natural phenomena with the mathe-
matician’s tools for manipulating those models to produce systems that
meet practical needs. Electrical systems pervade our lives; they are found
in homes, schools, workplaces, and transportation vehicles everywhere.
We begin by presenting a few examples from each of the five major class-
ifications of electrical systems:

« communication systems

» computer systems

= control systems

* power systems

» signal-processing systems

Then we describe how electrical engineers analyze and design such systems.

Communication systems are electrical systems that generate, trans-
mit, and distribute information. Well-known examples include television
equipment, such as cameras, transmitters, receivers, and VCRs; radio tele-
scopes, used to explore the universe; satellite systems, which return images
of other planets and our own; radar systems, used to coordinate plane
flights; and telephone systems.

Figure 1.1 depicts the major components of a modern telephone sys-
tem. Starting at the left of the figure, inside a telephone, a microphone turns
sound waves into electric signals. These signals are carried to a switching
center where they are combined with the signals from tens, hundreds, or
thousands of other telephones. The combined signals leave the switching
center; their form depends on the distance they must travel. In our example,
they are sent through wires in underground coaxial cables to a microwave
{ : transmission station. Here, the signals are transformed into microwave fre-
TransmissioR Communications Receiving  guencies and broadcast from a transmission antenna through air and space,

antenna satellite antenna 2 R : 7 .
. via a communications satellite, to a receiving antenna. The microwave
i receiving station translates the microwave signals into a form suitable for

|

/

’ further transmission, perhaps as pulses of light to be sent through fiber-optic
Y cable. On arrival at the second switching center, the combined signals are
separated, and each is routed to the appropriate telephone, where an ear-
= i phone acts as a speaker to convert the received electric signals back into
! . sound waves, At each stage of the process, electric circuits operate on the
’ M;f;‘t’i‘zflvc ' ' signals. Imagine the challenge involved in designing, building, and operating
T each circuit in a way that guarantees that all of the hundreds of thousands of

MW simultaneous calls have high-quality connections.
Coaxial  Fiber-optic Computer systems use electric signals to process information rang-
" cable cable ing from word processing to mathematical computations. Systems range
< - in size and power from pocket calculators to personal computers to
. supercomputers that perform such complex tasks as processing weather
data and modeling chemical interactions of complex organic molecules,
These systems include networks of microcircuits, or integrated circuits —
postage-stampsized assemblies of hundreds, thousands, or millions of
electrical components that often operate at speeds and power levels close
to fundamental physical limits, including the speed of light and the thermo-

‘ o dynamic laws.

> Z Control systems use electric signals to regulate processes. Examples
il T include the control of temperatures, pressures, and flow rates in an oil
Tekphene Telephone -efinery; the fuel-air mixture in a fuel-injected automobile engine; mecha-
refinery; \ gine;
Figure 1.1 A A telephone system. nisms such as the motors, doors, and lights in elevators; and the locks in the



Panama Canal. The autopilot and autolanding systems that help to fly and
land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power,
which is the foundation of our technology-based society, usually is gener-
ated in large quantities by nuclear, hydroelectric, and thermal (coal-, oil-,
or gas-fired) generators. Power is distributed by a grid of conductors that
crisscross the country. A major challenge in designing and operating such
a system is to provide sufficient redundancy and control so that failure of
any piece of equipment does not leave a city, state, or region completely
without power.

Signal-processing systems act on electric signals that represent infor-
mation. They transform the signals and the information contained in them
into a more suitable form. There are many different ways to process the
signals and their information. For example, image-processing systems
gather massive quantities of data from orbiting weather satellites, reduce
the amount of data to a manageable level, and transform the remaining
data into a video image for the evening news broadcast. A computerized
tomography (CT) scan is another example of an image-processing system.
It takes signals generated by a special X-ray machine and transforms them
into an image such as the one in Fig. 1.2. Although the original X-ray sig-
nals are of little use to a physician, once they are processed into a recog-
nizable image the information they contain can be used in the diagnosis of
disease and injury.

Considerable interaction takes place among the engineering disci-
plines involved in designing and operating these five classes of systems.
Thus communications engineers use digital computers to control the flow
of information. Computers contain control systems, and control systems
contain computers. Power systems require extensive communications sys-
tems to coordinate safely and reliably the operation of components, which
may be spread across a continent. A signal-processing system may involve
a communications link, a computer, and a control system.

A good example of the interaction among systems is a commercial
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor the
plane’s location, permitting the air traffic controller to design a safe flight
path for all of the nearby aircraft and enabling the pilot to keep the plane
on its designated path. On the newest commercial airplanes, an onboard
computer system is used for managing engine functions, implementing
the navigation and flight control systems, and generating video informa-
tion screens in the cockpit. A complex control system uses cockpit com-
mands to adjust the position and speed of the airplane, producing the
appropriate signals to the engines and the control surfaces (such as the
wing flaps, ailerons, and rudder) to ensure the plane remains safely air-
borne and on the desired flight path. The plane must have its own power
system to stay aloft and to provide and distribute the electric power
needed to keep the cabin lights on, make the coffee, and show the movie.
Signal-processing systems reduce the noise in air traffic communications
and transform information about the plane’s location into the more
meaningful form of a video display in the cockpit. Engineering challenges
abound in the design of each of these systems and their integration into a
coherent whole. For example, these systems must operate in widely vary-
ing and unpredictable environmental conditions. Perhaps the most
important engineering challenge is to guarantee that sufficient redun-
dancy is incorporated in the designs to ensure that passengers arrive
safely and on time at their desired destinations.

Although electrical engineers may be interested primarily in one
area, they must also be knowledgeable in other areas that interact with
this area of interest. This interaction is part of what makes electrical

1.1  Electrical Engineering: An Overview

Figure 1.2 A A (T scan of an adult head.

Figure 1.3 A An airplane.
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engineering a challenging and exciting profession. The emphasis in engi-
neering is on making things work, so an engineer is free to acquire and
use any technique, from any field, that helps to get the job done.

Circuit Theory

In a field as diverse as electrical engineering, you might well ask whether
all of its branches have anything in common. The answer is yes—electric
circuits. An electric circuit is a mathematical model that approximates
the behavior of an actual electrical system. As such, it provides an impor-
tant foundation for learning—in your later courses and as a practicing
engineer —the details of how to design and operate systems such as those
just described. The models, the mathematical techniques, and the language
of circuit theory will form the intellectual framework for your future engi-
neering endeavors.

Note that the term electric circuit is commonly used to refer to an
actual electrical system as well as to the model that represents it. In this
text, when we talk about an electric circuit, we always mean a model,
unless otherwise stated. It is the modeling aspect of circuit theory that has
broad applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the study
of static and moving electric charges. Although generalized field theory
might seem to be an appropriate starting point for investigating electric sig-
nals, its application is not only cumbersome but also requires the use of
advanced mathematics. Consequently, a course in electromagnetic field
theory is not a prerequisite to understanding the material in this book. We
do, however, assume that you have had an introductory physics course in
which electrical and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than
electromagnetic field theory, to study a physical system represented by an
electric circuit. These assumptions are as follows:

1. Electrical effects happen instantaneously throughout a system. We
can make this assumption because we know that electric signals
travel at or near the speed of light. Thus, if the system is physically
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously. A sys-
tem that is small enough so that we can make this assumption is
called a lnmped-parameter system.

2. The net charge on every component in the system is always zero.
Thus no component can collect a net excess of charge, although
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system.
As we demonstrate later, magnetic coupling can occur within a
component.

That’s it; there are no other assumptions. Using circuit theory provides
simple solutions (of sufficient accuracy) to problems that would become
hopelessly complicated if we were to use electromagnetic field theory.
These benefits are so great that engineers sometimes specifically design
clectrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the
basic circuit elements and the rules for analyzing interconnected elements.

However, we need to take a closer look at assumption 1. The question
is, “How small does a physical system have to be to qualify as a lumped-
parameter system?” We can get a quantitative handle on the question by
noting that electric signals propagate by wave phenomena. If the wave-
length of the signal is large compared to the physical dimensions of the



system, we have a lumped-parameter system. The wavelength A is the
velocity divided by the repetition rate, or frequency, of the signal; that is,
A = ¢/f. The frequency f is measured in hertz (Hz). For example, power
systems in the United States operate at 60 Hz. If we use the speed of light
(c =3 x 10° m/s) as the velocity of propagation, the wavelength is
S X 10° m. If the power system of interest is physically smaller than this
wavelength, we can represent it as a lumped-parameter system and use cir-
cuit theory to analyze its behavior. How do we define sinaller? A good rule
is the rule of 1/10th: If the dimension of the system is 1/10th (or smaller)
of the dimension of the wavelength, you have a lumped-parameter system.
Thus, as long as the physical dimension of the power system is less than
5 X 10° m, we can treat it as a lumped-parameter system.

On the other hand, the propagation frequency of radio signals is on the
order of 10° Hz. Thus the wavelength is 0.3 m. Using the rule of 1/10th, the
relevant dimensions of a communication system that sends or receives radio
signals must be less than 3 cm to qualify as a lumped-parameter system.
Whenever any of the pertinent physical dimensions of a system under study
approaches the wavelength of its signals, we must use electromagnetic field
theory to analyze that system. Throughout this book we study circuits
derived from lumped-parameter systems.

Problem Solving

As a practicing engineer, you will not be asked to solve problems that
have already been solved. Whether you are trying to improve the per-
formance of an existing system or creating a new system, you will be work-
ing on unsolved problems. As a student, however, you will devote much of
your attention to the discussion of problems already solved. By reading
about and discussing how these problems were solved in the past, and by
solving related homework and exam problems on your own, you will
begin to develop the skills to successfully attack the unsolved problems
you’ll face as a practicing engineer.

Some general problem-solving procedures are presented here. Many
of them pertain to thinking about and organizing your solution strategy
before proceeding with calculations.

1. Identify what's given and what’s to be found. In problem solving, you
need to know your destination before you can select a route for get-
ting there. What is the problem asking you to solve or find?
Sometimes the goal of the problem is obvious; other times you may
nced to paraphrase or make lists or tables of known and unknown
information to see your objective.

The problem statement may contain extraneous information
that you need to weed out before proceeding. On the other hand, it
may offer incomplete information or more complexities than can be
handled given the solution methods at your disposal. In that case,
you’ll need to make assumptions to fill in the missing information or
simplify the problem context. Be prepared to circle back and recon-
sider supposedly extraneous information and/or your assumptions if
your calculations get bogged down or produce an answer that doesn’t
seem to make sense.

2. Skerch a circuit diagram or other visual model. Translating a verbal
problem description into a visual model is often a useful step in the
solution process. If a circuit diagram is already provided, you may
need to add information to it, such as labels, values, or reference
directions. You may also want to redraw the circuit in a simpler, but
cquivalent, form. Later in this text you will learn the methods for
developing such simplified equivalent circuits.

1.1

Electrical Engineering: An Overview

7



Circuit Variables

3. Think of several solution methods and decide on a way of choosing
among them. This course will help you build a collection of analyt-
ical tools, several of which may work on a given problem. But one
method may produce fewer equations to be solved than another,
or it may require only algebra instead of calculus to reach a solu-
tion. Such efficiencies, if you can anticipate them, can streamline
your calculations considerably. Having an alternative method in
mind also gives you a path to pursue if your first solution attempt
bogs down.

4. Calculate a solution. Your planning up to this point should have
helped you identify a good analytical method and the correct equa-
tions for the problem. Now comes the solution of those equations.
Paper-and-pencil, calculator, and computer methods are all avail-
able for performing the actual calculations of circuit analysis.
Efficiency and your instructor’s preferences will dictate which tools
you should use.

5. Use your creativity. If you suspect that your answer is off base or if the
calculations seem to go on and on without moving you toward a solu-
tion, you should pause and consider alternatives. You may need to
revisit your assumptions or select a different solution method. Or, you
may need to take a less-conventional problem-solving approach, such
as working backward from a solution. This text provides answers to all
of the Assessment Problems and many of the Chapter Problems so
that you may work backward when you get stuck. In the real world,
you won’t be given answers in advance, but you may have a desired
problem outcome in mind from which you can work backward. Other
creative approaches include allowing yourself to see parallels with
other types of problems you’ve successfully solved, following your
intuition or hunches about how to proceed, and simply setting the
problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve
obtained makes sense. Does the magnitude of the answer seem rea-
sonable? Is the solution physically realizable? You may want to go
further and rework the problem via an alternative method. Doing
so will not only test the validity of your original answer, but will also
help you develop your intuition about the most efficient solution
methods for various kinds of problems. In the real world, safety-
critical designs are always checked by several independent means.
Getting into the habit of checking your answers will benefit you as
a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of,
or elaborate on certain steps to solve a particular problem. Use these steps
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units

Engineers compare theoretical results to experimental results and com-
pare competing engineering designs using quantitative measures. Modern
engineering is a multidisciplinary profession in which teams of engineers
work together on projects, and they can communicate their results in a
meaningful way only if they all use the same units of measure. The
International System of Units (abbreviated SI) is used by all the major
engineering societies and most engineers throughout the world; hence we
use it in this book.



TABLE 1.1 The International System of Units (SI)

Quantity Basic Unit Symbol
Length meter m

Mass kilogram kg

Time second s

Electric current ampere A
Thermodynamic temperature degree kelvin K
Amount of substance mole mol
Luminous intensity candela cd ‘

The SI units are based on seven defined quantities:

+ length

+ mass

+ time

« electric current
 thermodynamic temperature
+ amount of substance
 luminous intensity

These quantities, along with the basic unit and symbol for each, are
listed in Table 1.1. Although not strictly ST units, the familiar time units of
minute (60 s), hour (3600 s), and so on are often used in engineering cal-
culations. In addition, defined quantities are combined to form derived
units. Some, such as force, energy, power, and electric charge, you already
know through previous physics courses. Table 1.2 lists the derived units
used in this book.

In many cases, the SI unit is either too small or too large to use conve-
niently. Standard prefixes corresponding to powers of 10, as listed in
Table 1.3, are then applied to the basic unit. All of these prefixes are cor-
rect, but engineers often use only the ones for powers divisible by 3; thus
centi, deci, deka, and hecto are used rarely. Also, engineers often select the
prefix that places the base number in the range between 1 and 1000.
Suppose that a time calculation yields a result of 107 s, that is, 0.00001 s.
Most engineers would describe this quantity as 10 us, that is,
107 = 10 X 1075, rather than as 0.01 ms or 10,000,000 ps.

TABLE 1.2 Derived Units in SI

Quantity Unit Name (Symbol) Formula
Frequency hertz (Hz) 57!
Force newton (N) kg - m/s?
Energy or work joule (1) N.m
Power watt (W) J/s
Electric charge coulomb (C) A-s
Electric potential volt (V) J/C
Electric resistance ohm (Q) V/A
Electric conductance siemens (S) AV
Electric capacitance farad (F) c/v
Magnetic flux weber (Wb) Vs

Inductance henry (H) , Wh/A

tera

1.2 The International System of Units

TABLE 1.3 Standardized Prefixes to Signify
Powers of 10

Prefix Symbol Power
atto a 1078
femto £ 1071
pico P 10712
nano n 107?
micro M 107¢
milli m 1073
centi c 1072
deci d 107!
deka da 10
hecto h 102
kilo k 10°
mega M 10
giga G 10°

T 10"

9
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Example 1.1 illustrates a method for converting from one set of units

to another and also uses power-of-ten prefixes.

m Using SI Units and Prefixes for Powers of 10

If a signal can travel in a cable at 80% of the speed of Therefore, a signal traveling at 80% of the speed of
light, what length of cable, in inches, represents 1 ns? light will cover 9.45 inches of cable in 1 nanosecond.
Solution

First, note that 1ns = 107%s. Also, recall that the
speed of light ¢ = 3 X 10%m/s. Then, 80% of the
speed of light is 0.8¢ = (0.8)(3 X 10%) =
2.4 X 10®m/s. Using a product of ratios, we can
convert 80% of the speed of light from meters-per-
second to inches-per-nanosecond. The result is the

distance in inches traveled in 1 ns:

2.4 X 10% meters ) 1 second ) 100 centimeters . 1 inch

1 second 10° nanoseconds 1 meter 2.54 centimeters

_(24ax 10%)(100)

5 = 9.45 inches/nanosecond
(107)(2.54)

v ASSESSMENT PROBLEMS

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10

1.1 Assume a telephone signal travels through a 1.2  How many dollars per millisecond would the
cable at two-thirds the speed of light. How long federal government have to collect to retire a
does it take the signal to get from New York deficit of $100 billion in one year?

City to Miami if the distance is approximately
1100 miles? Answer: $317/IHS

Answer: 8.85 ms.

NOTE: Also try Chapter Problems 1.2, 1.3, and 1.4.

1.3 Circuit Analysis: An Overview

Before becoming involved in the details of circuit analysis, we need to
take a broad look at engineering design, specifically the design of electric
circuits. The purpose of this overview is to provide you with a perspective
on where circuit analysis fits within the whole of circuit design. Even
though this book focuses on circuit analysis, we try to provide opportuni-
ties for circuit design where appropriate.

All engineering designs begin with a need, as shown in Fig. 1.4. This
need may come from the desire to improve on an existing design, or it may
be something brand-new. A careful assessment of the need results in
design specifications, which are measurable characteristics of a proposed
design. Once a design is proposed, the design specifications allow us to
assess whether or not the design actually meets the need.

A concept for the design comes next. The concept derives from a com-
plete understanding of the design specifications coupled with an insight into



the need, which comes from education and experience. The concept may be
realized as a sketch, as a written description, or in some other form. Often
the next step is to translate the concept into a mathematical model. A com-
monly used mathematical model for electrical systems is a circuit model.

The elements that comprise the circuit model are called ideal circuit
components. An ideal circuit component is a mathematical model of an
actual electrical component, like a battery or a light bulb. It is important
for the ideal circuit component used in a circuit model to represent the
behavior of the actual electrical component to an acceptable degree of
accuracy. The tools of circuit analysis, the focus of this book, are then
applied to the circuit. Circuit analysis is based on mathematical techniques
and is used to predict the behavior of the circuit model and its ideal circuit
components. A comparison between the desired behavior, from the design
specifications, and the predicted behavior, from circuit analysis, may lead
to refinements in the circuit model and its ideal circuit elements. Once the
desired and predicted behavior are in agreement, a physical prototype can
be constructed.

The physical prototype is an actual electrical system, constructed from
actual electrical components. Measurement techniques are used to deter-
mine the actual, quantitative behavior of the physical system. This actual
behavior is compared with the desired behavior from the design specifica-
tions and the predicted behavior from circuit analysis. The comparisons
may result in refinements to the physical prototype, the circuit model, or
both. Eventually, this iterative process, in which models, components, and
systems are continually refined, may produce a design that accurately
matches the design specifications and thus meets the need.

From this description, it is clear that circuit analysis plays a very
important role in the design process. Because circuit analysis is applied to
circuit models, practicing engineers try to use mature circuit models so
that the resulting designs will meet the design specifications in the first
iteration. In this book, we use models that have been tested for between
20 and 100 years; you can assume that they are mature. The ability to
model actual electrical systems with ideal circuit elements makes circuit
theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be used
to quantitatively predict the behavior of a system implies that we can
describe the interconnection with mathematical equations. For the mathe-
matical equations to be useful, we must write them in terms of measurable
quantities. In the case of circuits, these quantities are voltage and current,
which we discuss in Section 1.4. The study of circuit analysis involves
understanding the behavior of each ideal circuit element in terms of its
voltage and current and understanding the constraints imposed on the
voltage and current as a result of interconnecting the ideal elements.

1.4 Voltage and Current

The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

= The charge is bipolar, meaning that electrical effects are described in
terms of positive and negative charges.

» The electric charge exists in discrete quantities, which are integral
multiples of the electronic charge, 1.6022 X 107" C.

+ Electrical effects are attributed to both the separation of charge and
charges in motion.

In circuit theory, the separation of charge creates an electric force (volt-
age), and the motion of charge creates an electric fluid (current).

1.4 Voltage and Current 11
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Circuit Variables

Definition of voltage P

Definition of current

The concepts of voltage and current are useful from an engineering
point of view because they can be expressed quantitatively. Whenever
positive and negative charges are separated, energy is expended. Voltage
is the energy per unit charge created by the separation. We express this
ratio in differential form as

_dw

U—E,

(1.1)

where
v = the voltage in volts,

]

w
q

The electrical effects caused by charges in motion depend on the rate
of charge flow. The rate of charge flow is known as the electric current,
which is expressed as

the energy in joules,

Il

the charge in coulombs.

i=— (1.2)

where
i = the current in amperes,

q = the charge in coulombs,
t = the time in seconds.

Equations 1.1 and 1.2 are definitions for the magnitude of voltage and
current, respectively. The bipolar nature of electric charge requires that we
assign polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete, moving electrons, we do not
need to consider them individually because of the enormous number of
them. Rather, we can think of electrons and their corresponding charge as
one smoothly flowing entity. Thus, / is treated as a continuous variable.

One advantage of using circuit models is that we can model a compo-
nent strictly in terms of the voltage and current at its terminals. Thus two
physically different components could have the same relationship
between the terminal voltage and terminal current. If they do, for pur-
poses of circuit analysis, they are identical. Once we know how a compo-
nent behaves at its terminals, we can analyze its behavior in a circuit.
However, when developing circuit models, we are interested in a compo-
nent’s internal behavior. We might want to know, for example, whether
charge conduction is taking place because of free electrons moving
through the crystal lattice structure of a metal or whether it is because of
electrons moving within the covalent bonds of a semiconductor material.
However, these concerns are beyond the realm of circuit theory. In this
book we use circuit models that have already been developed; we do not
discuss how component models are developed.

1.5 The Ideal Basic Circuit Element

An ideal basic circuit element has three attributes: (1) it has only two ter-
minals, which are points of connection to other circuit components; (2) it is
described mathematically in terms of current and/or voltage; and (3) it
cannot be subdivided into other elements. We use the word ideal to imply



that a basic circuit element does not exist as a realizable physical compo-
nent. However, as we discussed in Section 1.3, ideal elements can be con-
nected in order to model actual devices and systems. We use the word
basic to imply that the circuit element cannot be further reduced or sub-
divided into other elements. Thus the basic circuit elements form the build-
ing blocks for constructing circuit models, but they themselves cannot be
modeled with any other type of element.

Figure 1.5 is a representation of an ideal basic circuit element. The box
is blank because we are making no commitment at this time as to the type
of circuit element it is. In Fig. 1.5, the voltage across the terminals of the
box is denoted by v, and the current in the circuit element is denoted by i.
The polarity reference for the voltage is indicated by the plus and minus
signs, and the reference direction for the current is shown by the arrow
placed alongside the current. The interpretation of these references given
positive or negative numerical values of v and i is summarized in
Table 1.4. Note that algebraically the notion of positive charge flowing in
one direction is equivalent to the notion of negative charge flowing in the
opposite direction.

The assignments of the reference polarity for voltage and the refer-
ence direction for current are entirely arbitrary. However, once you have
assigned the references, you must write all subsequent equations to
agrec with the chosen references. The most widely used sign convention
applied to these references is called the passive sign convention, which
we use throughout this book. The passive sign convention can be stated
as follows:

Whenever the reference direction for the current in an element is in
the direction of the reference voltage drop across the element (as in
Fig. 1.5), use a positive sign in any expression that relates the voltage
to the current. Otherwise, use a negative sign.

We apply this sign convention in all the analyses that follow. Our pur-
pose for introducing it even before we have introduced the different
types of basic circuit elements is to impress on you the fact that the selec-
tion of polarity references along with the adoption of the passive sign
convention is not a function of the basic elements nor the type of inter-
connections made with the basic elements. We present the application
and interpretation of the passive sign convention in power calculations in
Section 1.6.

Example 1.2 illustrates one use of the equation defining current.

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5

1.5  The Ideal Basic Circuit Element

+ =11

<

_—_.2

Figure 1,5 A An ideal basic circuit element.

<« Passive sign convention

Positive Value Negative Value
v voltage drop from terminal 1 to terminal 2 voltage rise from terminal 1 to terminal 2
or or
voltage rise from terminal 2 to terminal | voltage drop from terminal 2 to terminal 1
i posilive charge flowing from terminal 1 to terminal 2 positive charge flowing from terminal 2 to terminal 1
or or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2

13
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Sl Relating Current and Charge

No charge exists at the upper terminal of the ele-
ment in Fig. 1.5 for r < 0. Att =0, a 5 A current
begins to flow into the upper terminal.

a) Derive the expression for the charge accumulat-
ing at the upper terminal of the element fort > 0.

b) If the current is stopped after 10 seconds, how
much charge has accumulated at the upper
terminal?

Solution

a) From the definition of current given in Eq. 1.2,
the expression for charge accumulation due to
current flow is

g(t) = Ai(x)dx.

Therefore,

t
q(t) = /Sd.r = S5x
0

b) The total charge that accumulates at the upper
terminal in 10 seconds due to a 5 A current is
q(10) = 5(10) = 50 C.

r
=5t —50)=5:C forz > 0.
0

 ASSESSMENT PROBLEMS

Objective 2—Know and be able to use the definitions of voltage and current

1.3  The current at the terminals of the element in

Fig.1.51s
i =0, t <0

i=20e”" A, =20

Calculate the total charge (in microcoulombs)

entering the element at its upper terminal.

Answer: 4000 uC.
NOTE: Also try Chapter Problem 1.10.

1.4  The expression for the charge entering the
upper terminal of Fig. 1.5 is

Find the maximum value of the current enter-
ing the terminal if « = 0.03679 s7'.

Answer: 10 A.

1.6 Power and Energy

Power and energy calculations also are important in circuit analysis. One
reason is that although voltage and current are useful variables in the analy-
sis and design of electrically based systems, the useful output of the system
often is nonelectrical, and this output is conveniently expressed in terms of
power or energy. Another reason is that all practical devices have limita-
tions on the amount of power that they can handle. In the design process,
therefore, voltage and current calculations by themselves are not sufficient.

We now relate power and energy to voltage and current and at the
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or



absorbing energy. (A water pump rated 75 kW can deliver more liters per
second than one rated 7.5 kW.) Mathematically, energy per unit time is
expressed in the form of a derivative, or

[ » (1‘3)
dt

the power in watts,

the energy in joules,

w

= the time in seconds.

~.

Thus 1 W is equivalent to 1 J/s.
The power associated with the flow of charge follows directly from
the definition of voltage and current in Eqs. 1.1 and 1.2, or

S dw _ (@)(f’ﬁ)
P =" dg /\dt )’

SO
p =i (1.4)
where
p = the power in watts,
v = the voltage in volts,

the current in amperes.

Equation 1.4 shows that the power associated with a basic circuit element
is simply the product of the current in the element and the voltage across
the element. Therefore, power is a quantity associated with a pair of ter-
minals, and we have to be able to tell from our calculation whether power
is being delivered to the pair of terminals or extracted from it. This infor-
mation comes from the correct application and interpretation of the pas-
sive sign convention.

If we use the passive sign convention, Eq. 1.4 is correct if the reference
direction for the current is in the direction of the reference voltage drop
across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign.
In other words. if the current reference is in the direction of a reference
voltage rise across the terminals, the expression for the power is

p = —vi (1.5)

The algebraic sign of power is based on charge movement through
voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through a rise in voltage, they gain
energy. Figure 1.6 summarizes the relationship between the polarity refer-
ences for voltage and current and the expression for power.

1.6 Power and Energy

<« Definition of power

<« Power equation

15
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(©)p=—vi (d)p = vi

Figure 1.6 A Polarity references and the expression
for power.
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We can now state the rule for interpreting the algebraic sign of power:

If the power is positive (that is,if p > 0), power is being delivered to
Interpreting algebraic sign of power > the circuit inside the box. If the power is negative (that is, if p < 0),
power is being extracted from the circuit inside the box.

For example, suppose that we have selected the polarity references
shown in Fig. 1.6(b). Assume further that our calculations for the current
and voltage yield the following numerical results:

i=4A and v=-10V.
Then the power associated with the terminal pair 1,2 is
p=—(-10)(4) = 40 W.

Thus the circuit inside the box is absorbing 40 W.

To take this analysis one step further, assume that a colleague is solv-
ing the same problem but has chosen the reference polarities shown in
Fig. 1.6(c). The resulting numerical values are

i=-4 A, v =10V, and p=40W,

Note that interpreting these results in terms of this reference system gives
the same conclusions that we previously obtained —namely, that the cir-
cuit inside the box is absorbing 40 W. In fact, any of the reference systems
in Fig. 1.6 yields this same result.

Example 1.3 illustrates the relationship between voltage, current,
power, and energy for an ideal basic circuit element and the use of the pas-
sive sign convention.

ED] WK Relating Voltage, Current, Power, and Energy

Assume that the voltage at the terminals of the ele-
ment in Fig. 1.5, whose current was defined in
Assessment Problem 1.3, is

=20 t <0
v = 10e M kv, t = 0.
a) Calculate the power supplied to the element
at 1 ms.

b) Calculate the total energy (in joules) delivered
to the circuit element.

Solution

a) Since the current is entering the + terminal of the
voltage drop defined for the element in Fig. 1.5,
we use a “+” sign in the power equation.

p=vi= (10,000e’5(""”)(20(5‘”"") = 200,000~ 10000 yy

p(0.001) = 200,000¢~'0001OND = 200,000¢ 1
= 200,000(45.4 X 107%) = 0.908 W.

b) From the definition of power given in Eq. 1.3,
the expression for energy is

w(t) = / p(x)dx
0

To find the total energy dclivered, integrate the
expresssion for power {rom zero to infinity.
Therefore,

.00 ) 200,000¢~10-000x | 00
Wigtal = A 200,000¢ 100008 gy = 0000 |,

= —20e”® — (=20e) =0 +20 =201

Thus, the total energy supplied to the circuit ele-
ment is 20 J.




v ASSESSMENT PROBLEMS

Practical Perspective

Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign

convention

1.5  Assume that a 20 V voltage drop occurs across
an element from terminal 2 to terminal 1 and
that a current of 4 A enters terminal 2.

a) Specify the values of v and i for the polarity
references shown in Fig. 1.6(a)—(d).

b) State whether the circuit inside the box is
absorbing or delivering power.

¢) How miuch power is the circuit absorbing?

Answer: (a) Circuit 1.6(a):v = =20 V,i = —4 A;
circuit 1.6(b):v = —20V,i = 4 A;
circuit 1.6(c):v = 20 V,i = —4 A;
circuit 1.6(d): v = 20 V,i = 4 A;
(b) absorbing;
(c) 80 W.

1.6  The voltage and current at the terminals of the
circuit element in Fig 1.5 are zero for t < 0. For
t = (, they are

v = 80,000re ™ Vv,

i = 15te75%0 A t=0

t =0

NOTE: Also try Chapter Problems 1.14, 1.18, 1.25, and 1.26.

Practical Perspective

Balancing Power

a) Find the time when the power delivered to
the circuit element is maximum.

b) Find the maximum value of power.

c) Find the total energy delivered to the cir-
cuit element.

Answer: (a) 2 ms; (b) 649.6 mW, (c) 2.4 mJ.

1.7 A high-voltage direct-current (dc) transmission
line between Celilo, Oregon and Sylmar,
California is operating at 800 kV and carrying
1800 A, as shown. Calculate the power (in
megawatts) at the Oregon end of the line and
state the direction of power flow.

L8KA_

- +
Celilo, .
Oregon 800 kv California

Sylmar,

Answer: 1440 MW, Celilo to Sylmar.

A model of the circuitry that distributes power to a typical home is shown in
Fig. 1.7 with voltage polarities and current directions defined for all of the
circuit components. The results of circuit analysis give the values for all of
these voltages and currents, which are summarized in Table 1.4. To deter-
mine whether or not the values given are correct, calculate the power asso-
ciated with each component. Use the passive sign convention in the power

calculations, as shown below.

Pa = Vaiy = (120)(~10) = —1200 W
Pe = vd. = (10)(10) = 100 W

De = Ve = (—10)(=9) = 90W

Py = Vgl = (120)(4) = 480 W

Py = —Vpip = —(120)(9) = —1080 W
pa = ~v4iqg = —(10)(1) = ~10W
pr = —vpp = —(—100)(5) = 500 W
Pi = Uiy = (—220)(=5) = 1100 W

The power calculations show that components a, b, and d are supplying
power, since the power values are negative, while components c, e, f, g, and
h are absorbing power. Now check to see if the power balances by finding

the total power supplied and the total power absorbed.
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Psupplicd = Pa t P + Pa = —1200 — 1080 — 10 = —2290 W

Pabsorbed = Pc + Pe + prt+ pg + py

=100 + 90 + 500 + 480 + 1100 = 2270 W

Psupplicd + Pabsorbea = —2290 + 2270 = —20 W

Something is wrong—if the values for voltage and current in this circuit are
correct, the total power should be zero! There is an error in the data and we
can find it from the calculated powers if the error exists in the sign of a sin-
gle component. Note that if we divide the total power by 2, we get —10 W,
which is the power calculated for component d. If the power for component
d was +10 W, the total power would be 0. Circuit analysis techniques from
upcoming chapters can be used to show that the current through component
d should be —1 A, not +1 A given in Table 1.4.

TABLE 1.4 Volatage and current
values for the circuit in Fig. 1.7. ——

Component

[o T e TN = M -]

o - o

—220 -5

+ v —

U(V) ,(A) 1:: I:a:l é iy le ‘IE{ l:f:l ‘ I

120 ~10 ey -,
—{df—— a0
120 9 —— el
+ ly + .
10 10 o [b:Hin v, [g] e
10 1 - + v, — 7
-0 -9 —{e}—
~100 5 T
120 4 Figure 1.7 A Circuit model for power
distribution in a home, with voltages and

e~ currents defined.

Note: Assess your understanding of the Practical Perspective by trying Chapter
Problems 1.31 and 1.32.

Sﬁummag

The International System of Units (SI) enables engineers
to communicate in a meaningful way about quantitative
results. Table 1.1 summarizes the base SI units; Table 1.2
presents some useful derived SI units. (See pages 8 and 9.)

Circuit analysis is based on the variables of voltage and
current. (See page 11.)

Voltage is the energy per unit charge created by charge
separation and has the SI unit of volt (v = dw/dq).
(See page 12.)

Current is the rate of charge flow and has the SI unit of
ampere (i = dq/dt). (See page 12.)

The ideal basic circuit element is a two-terminal compo-
nent that cannot be subdivided; it can be described
mathematically in terms of its terminal voltage and cur-
rent. (See page 12.)

» The passive sign convention uses a positive sign in the

expression that relates the voltage and current at the
terminals of an element when the reference direction
for the current through the element is in the direction of
the reference voltage drop across the element. (See

page 13.)

Power is energy per unit of time and is equal to the
product of the terminal voltage and current; it has the SI
unit of watt (p = dw/dt = vi). (See page 15.)

+ The algebraic sign of power is interpreted as follows:

+ If p > 0, power is being delivered to the circuit or
circuit component.

» If p < 0, power is being extracted from the circuit or
circuit component. (See page 16.)



Problems

Section 1.2

1.1

1.2

13

1.4

1.5

1.6

Some species of bamboo can grow 250 mm/day.
Assume individual cells in the plant are 10 um long,

a) How long, on average, does it take a bamboo
stalk to grow 1 cell length?

b) How many cell lengths are added in one week,
on average?

One liter (L) of paint covers approximately 10 m’
of wall. How thick is the layer before it dries? (Hint:
1L =1 x 10°mm®)

There are approximately 260 million passenger
vehicles registered in the United States. Assume
that the battery in the average vehicle stores
540 watt-hours (Wh) of energy. Estimate (in
gigawatt-hours) the total energy stored in U.S. pas-
senger vehicles.

The 16 giga-byte (GB = 2% bytes) flash memory
chip for an MP3 player is 11 mm by 15 mm by 1 mm.
This memory chip holds 20,000 photos.

a) How many photos fit into a cube whose sides
are | mm?

b) How many bytes of memory are stored in a cube
whose sides are 200 um?

A hand-held video player displays 480 x 320 picture
elements (pixels) in each frame of the video. Each
pixel requires 2 bytes of memory. Videos are dis-
played at a rate of 30 frames per second. How many
hours of video will fit in a 32 gigabyte memory?

The line described in Assessment Problem 1.7 is
845 mi in length. The line contains four conductors,
each weighing 2526 Ib per 1000 ft. How many kilo-
grams of conductor are in the line?

Section 1.4

1.7 How much energy is imparted to an electron as it

1.8

flows through a 6 V battery from the positive to the
negative terminal? Express your answer in attojoules.

In electronic circuits it is not unusual to encounter
currents in the microampere range. Assume a
35 wA current, due to the flow of electrons. What is
the average number of electrons per second that
flow past a fixed reference cross section that is per-
pendicular to the direction of flow?

1.9

L.10

Problems 19

A current of 1600 A exists in a rectangular (0.4-by-
16 cm) bus bar. The current is due to free electrons
moving through the wire at an average velocity of
v meters/second. If the concentration of free elec-
trons is 10% electrons per cubic meter and if they
are uniformly dispersed throughout the wire, then
what is the average velocity of an electron?

The current entering the upper terminal of Fig. 1.5 is
i = 20 cos 5000t A.

Assume the charge at the upper terminal is zero at
the instant the current is passing through its maxi-
mum value. Find the expression for ¢(¢).

Sections 1.5-1.6

1.11

1.12

1.13

1.14

When a car has a dead battery, it can often be started
by connecting the battery from another car across its
terminals. The positive terminals are connected
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.11. Assume the current i
in Fig. P1.11 is measured and found to be 30 A.

a) Which car has the dead battery?

b) If this connection is maintained for 1 min, how
much energy is transferred to the dead battery?

Figure P1,11

One 12 V battery supplies 100 mA to a boom box.
How much energy does the battery supply in 4 h?

The manufacturer of a 1.5 V D flashlight battery
says that the battery will deliver 9 mA for 40 con-
tinuous hours. During that time the voltage will
drop from 1.5V to 1.0 V. Assume the drop in volt-
age is lincar with time. How much energy does the
battery deliver in this 40 h interval?

Two electric circuits, represented by boxes A and B,
are connected as shown in Fig. P1.14. The reference
direction for the current i in the interconnection and
the reference polarity for the voltage v across the
interconnection are as shown in the figure. For each
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1.18

1.19

Circuit Variables

of the following sets of numerical values, calculate
the power in the interconnection and state whether
the power is flowing from A to B or vice versa.

a) i =10A, v=125V
b) i=5A, v=-240V
c) i=-12A, v=480V
d) i=-25A, v=-660V
Figure P1.14
1
. = .
A ) B

The references for the voltage and current at the
terminal of a circuit element are as shown in
Fig. 1.6(d). The numerical values for v and i are 40 V
and —10 A.

a) Calculate the power at the terminals and state
whether the power is being absorbed or deliv-
ered by the element in the box.

b) Given that the current is due to electron flow,
state whether the electrons are entering or leav-
ing terminal 2.

¢) Do the electrons gain or lose energy as they pass
through the element in the box?

Repeat Problem 1.15 with a voltage of —60 V.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for¢t < 0.Fort = 0
they are

v =75- 751"V,

i =507 mA,
a) Find the maximum value of the power delivered

to the circuit.
b) Find the total energy delivered to the element.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero fort < 0. For¢ = 0
they are

v = SOe—lﬁ(N)I _ 50e~4001 \Y/

i = Se—IGOO! _ 56—400! mA.

a) Find the power at t = 625 us.

b) How much energy is delivered to the circuit ele-
ment between 0 and 625 us?

¢) Find the total energy delivered to the element.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are shown in Fig. P1.19.

a) Sketch the power versus ¢ plot for 0 = 7 = 10s.

b) Calculate the energy delivered to the circuit ele-
mentatf =1, 6,and 10s.

1.20
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1.22
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Figure P1.19
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The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zerofor t < 0.Fort = 0
they are

v = 400e """ sin 200¢ V,
i = 5¢71% gin 200 A.

a) Find the power absorbed by the element at
t = 10 ms.

b) Find the total energy absorbed by the element.

The voltage and current at the terminals of the cir-

cuit element in Fig. 1.5 are zerofor¢ < 0. Fort = 0
they are

v = (16,000t + 20)e ¥ Vv,
i= (128t + 0.16)e™8% A,

a) At what instant of time is maximum power
delivered to the element?

b) Find the maximum power in watts.
c) Find the total energy delivered to the element in
millijoules.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zerofor¢t < 0. Fort = 0
they are

v = (10,000r + 5)e™ % v,
i = (40t + 0.05)e™ ¥ A,

t=0;

t=0.

a) Find the time (in milliseconds) when the power
delivered to the circuit element is maximum.
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b) Find the maximum value of p in milliwatts.
¢) Find the total energy delivered to the circuit ele-
ment in millijoules.

The voltage and current at the terminals of the ele-
ment in Fig. 1.5 are

v = 250 cos 8007t V, i = 8 sin 8007t A.

a) Find the maximum value of the power being
delivered to the element.

b) Find the maximum value of the power being
extracted from the element.

¢) Find the average value of p in the interval
0=t=<25 ms.

d) Find the average value of p in the interval
0 =1t = 15625 ms.

The voltage and current at the terminals of an auto-
mobile battery during a charge cycle are shown in
Fig. P1.24.

a) Calculate the total charge transferred to the
battery.

b) Calculate the total energy transferred to the
battery.

Figure P1.24

N B~ O

|
|
|
|

0 4 8 12 16 20 ¢ (ks)

The voltage and current at the terminals of the circuit
element in Fig. 1.5 are zero fort < Oand s > 40s.In
the interval between 0 and 40 s the expressions are

(1 - 0.025¢) V.,
402 A,

v 0<t<40s;

0 <1t <40s.

{
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a) At what instant of time is the power being deliv-
ered to the circuit element maximum?

b) What is the power at the time found in part (a)?

c) At what instant of time is the power being
extracted from the circuit element maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit
at 0,10,20,30 and 40 s.

1.26 The numerical values for the currents and voltages

in the circuit in Fig. P1.26 are given in Table P1.26.
Find the total power developed in the circuit.

Figure P1.26
3 + VU, =
fa,
a [
. + Y% -~
L
b
: i ic|
+ Tlc - l ‘v +
V| ¢ V| e f v
— + —_
d —
- Yy 4+ &
TABLE P1.26
Element Voltage (kV) Current (mA)
a 150 0.6
b 150 -1.4
c 100 -0.8
d 250 -0.8
C 300 -2.0
f =300 1.2

1.27 The numerical values of the voltages and currents

in the interconnection seen in Fig. P1.27 are given in
Table P1.27. Does the interconnection satisfy the
power check?

Figure P1.27
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Circuit Variables

TABLE P1.27

Elemept Voltage (V) Current (mA)
a 990 -22.5

b 600 =30

c 300 60

d 105 52.5

¢ —120 30

f 165 82.5

g 585 52.5

h —588 82.5

1.28 Assume you are an engineer in charge of a project

and one of your subordinate engineers reports that
the interconnection in Fig. P1.28 does not pass the
power check. The data for the interconnection are
given in Table P1.28.

a) Is the subordinate correct? Explain your answer.

b) If the subordinate is correct, can you find the
error in the data?

Figure P1.28

- v, +
a
- vy + i + v —
b c
+ <ih + 1L' +
Uy Tld hf e [l 14 [
_ A - in_ -
o h
- v, + - vy, A+
TABLE P1.28
Element Voltage (V) Current (A)
a 46.16 6.0
b 14.16 472
c -32.0 —6.4
d 220 1.28
e 33.6 1.68
f 66.0 -0.4
g 2.56 1.28
h -0.4 0.4

1.29 a) The circuit shown in Fig. P1.29 identifies volt-

age polarities and current directions to be used
in calculating power for each component.
Using only the voltage polarities and current
directions, predict which components supply
power and which components absorb power,
using the passive sign convention.

b) The numerical values of the currents and volt-
ages for each element are given in Table P1.29.
How much total power is absorbed and how
much is delivered in this circuit?

c) Based on the computations in part (b), identify
the components that supply power and those
that absorb power. Why are these answers dif-
ferent from the ones in part (a)?

Figure P1.29
+ v, - - o +
a b
- i~ T . _
U ¢1£ ldf d [t iJ e |v 1[f £ v
+ l:‘.b - ’h» - +
g h
- o, + L T
TABLE P1.29
Element Voltage (V) Current (mA)
a 5 2
b 1 3
c 7 -2
d -9 l
e =20 5
f 20 2
g -3 =2
h -12 -3

1.30 One method of checking calculations involving

interconnected circuit elements is to see that the
total power delivered equals the total power
absorbed (conservation-of-energy principle). With
this thought in mind, check the interconnection in
Fig. P1.30 and state whether it satisfies this power
check. The current and voltage values for each cle-
ment are given in Table P1.30.
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Figure P1.30 1.31 Show that the power balances for the circuit shown
; -, + in Fig. 1.7, using the voltage and current values
e . given in Table 1.4, with the value of the current for
component d changed to —1 A.
+ 1 b T .+ " -
LS e 1.32 Suppose there is no power lost in the wires used to
1 b ¢ i i c 1_ T distribute power in a typical home.
L ¢ L . . .
+ ’ + - ¢ - a) Create a new model for the power distribution
va| d v e £ o g |v circuit by modifying the circuit shown in Fig 1.7.
- - + + Use the same names, voltage polarities, and cur-
in i rent directions for the components that remain
—— h R in this modified model.
+ o - + o - b) The following voltages and currents are calcu-
lated for the components:
TABLE P1.30 v, = 120V i, =—-10A
Element Voltage (V) Current (mA) vy =120V ih =10A
a 16 80 o= Ilgt\)/v i=3A
b 26 60 v = 12 0y o
c —42 ~50 o =240V =T
If the power in this modified model balances,
d 12 20 . .
what is the value of the current in component g?
e 1.8 30
£ -1.8 —40
g -36 -30
h 32 -20

j ~24 30
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CHAPTER

Circuit Elements

CHAPTER CONTENTS There are five ideal basic circuit elements: voltage sources,
current sources, resistors, inductors, and capacitors. In this chap-

2.1 Voltage and Current Sources p. 26

2.2 Electrical Resistance (Ohm’s Law) p. 30 ter we discuss the characteristics of voltage sources, current
2.3 Construction of a Circuit Madel p. 34 sources, and resistors. Although this may seem like a small num-
2.4 Kirchhoff’s Laws p. 37 ber of elements with which to begin analyzing circuits, many prac-
2.5 Analysis of a Circuit Containing Dependent  fical systems can be modeled with just sources and resistors. They

Sources p. 42 ; ; . ; 5 . .
. are also a useful starting point because of their relative simplicity;

the mathematical relationships between voltage and current in

v/ CHAPTER OBJECTIVES sources and resistors are algebraic. Thus you will be able to begin

A UndatsEatilithe syrabgis for and thi behEvior of learning the basic techniques of circuit analysis with only alge-

the following ideal basic circuit elements: . braic manipulations.

e adt a0 LSO eEs, | We will postpone introducing inductors and capacitors until
dependent voltage and current sources, and ) } )

resistors. Chapter 6, because their use requires that you solve integral and

2 Be able to state Ohm's law, Kirchhoff's current
law, and Kirchhoff’s voltage law, and be able to
use these laws to analyze simple circuits.

differential equations. However, the basic analytical techniques
for solving circuits with inductors and capacitors are the same as

3 Know how to calculate the power for each those introduced in this chapter. So, by the time you need to

element in a simple circuit and be able to . begin manipulating more difficult equations, you should be very
determine whether or not the power balances
for the whole circuit.

familiar with the methods of writing them.

24



Practical Pers»ipecrtﬂive

Electrical Safety

“Danger—High Voltage.” This commonly seen warning is mis-
leading. All forms of energy, including electrical energy, can
be hazardous. But it's not only the voltage that harms. The
static electricity shock you receive when you walk across a
carpet and touch a doorknob is annoying but does not injure.
Yet that spark is caused by a voltage hundreds or thousands
of times larger than the voltages that can cause harm.

The electrical energy that can actually cause injury is due
to electrical current and how it flows through the body. Why,
then, does the sign warn of high voltage? Because of the way
electrical power is produced and distributed, it is easier to
determine voltages than currents. Also, most electrical
sources produce constant, specified voltages. So the signs
warn about what is easy to measure. Determining whether
and under what conditions a source can supply potentially
dangerous currents is more difficult, as this requires an under-
standing of electrical engineering.

Before we can examine this aspect of electrical safety, we
have to learn how voltages and currents are produced and the
relationship between them. The electrical behavior of objects,

such as the human body, is quite complex and often beyond
complete comprehension. To allow us to predict and control
electrical phenomena, we use simplifying models in which sim-
ple mathematical relationships between voltage and current
approximate the actual relationships in real objects. Such mod-
els and analytical methods form the core of the electrical engi-
neering techniques that will allow us to understand all electrical
phenomena, including those relating to electrical safety.

At the end of this chapter, we will use a simple electric
circuit model to describe how and why people are injured by
electric currents. Even though we may never develop a com-
plete and accurate explanation of the electrical behavior of
the human body, we can obtain a close approximation using
simple circuit models to assess and improve the safety of
electrical systems and devices. Developing models that pro-
vide an understanding that is imperfect but adequate for solv-
ing practical problems lies at the heart of engineering. Much
of the art of electrical engineering, which you will learn with
experience, is in knowing when and how to solve difficult
problems by using simplifying models.

25



26 Circuit Elements

2.1 Voltage and Current Sources

Before discussing ideal voltage and current sources, we need to consider
the general nature of electrical sources. An electrical source is a device
that is capable of converting nonelectric energy to electric energy and
vice versa. A discharging battery converts chemical energy to electric
energy, whereas a battery being charged converts electric energy to
chemical energy. A dynamo is a machine that converts mechanical energy
to electric energy and vice versa. If operating in the mechanical-to-elec-
tric mode, it is called a generator. If transforming from electric to
mechanical energy, it is referred to as a motor. The important thing to
remember about these sources is that they can either deliver or absorb
electric power, generally maintaining either voltage or current. This
behavior is of particular interest for circuit analysis and led to the cre-
ation of the ideal voltage source and the ideal current source as basic cir-
cuit elements. The challenge is to model practical sources in terms of the
ideal basic circuit elements.

An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing in
those terminals. Similarly, an ideal current source is a circuit element that
maintains a prescribed current through its terminals regardless of the
voltage across those terminals. These circuit elements do not exist as
practical devices—they are idealized models of actual voltage and cur-
rent sources.

Using an ideal model for current and voltage sources places an
important restriction on how we may describe them mathematically.
Because an ideal voltage source provides a steady voltage, even if the
current in the element changes, it is impossible to specify the current in
an ideal voltage source as a function of its voltage. Likewise, if the only
information you have about an ideal current source is the value of cur-
rent supplied, it is impossible to determine the voltage across that cur-
rent source. We have sacrificed our ability to relate voltage and current
in a practical source for the simplicity of using ideal sources in circuit
analysis.

Ideal voltage and current sources can be further described as either
independent sources or dependent sources. An independent source estab-
lishes a voltage or current in a circuit without relying on voltages or cur-
rents elsewhere in the circuit. The value of the voltage or current supplied
is specified by the value of the independent source alone. In contrast, a
dependent source establishes a voltage or current whose value depends on
the value of a voltage or current elsewhere in the circuit. You cannot spec-
ify the value of a dependent source unless you know the value of the volt-

" age or current on which it depends.
Vs (_) iy CT The circuit symbols for the ideal independent sources are shown in
Fig. 2.1. Note that a circle is used to represent an independent source. To
completely specify an ideal independent voltage source in a circuit, you
must include the value of the supplied voltage and the reference polarity,
as shown in Fig. 2.1(a). Similarly, to completely specity an ideal independ-

(@) (b) ent current source, you must include the value of the supplied current and
Figure 2.1 A The circuit symbols for (a) an ideal inde- its reference direction, as shown in Fig. 2.1(b). '
pendent voltage source and (b) an ideal independent The circuit symbols for the ideal dependent sources are shown in

current source. Fig. 2.2. A diamond is used to represent a dependent source. Both the



dependent current source and the dependent voltage source may be con-
trolled by either a voltage or a current elsewhere in the circuit, so there
are a total of four variations, as indicated by the symbols in Fig. 2.2.
Dependent sources are sometimes called controlled sources.

To completely specify an ideal dependent voltage-controlled voltage
source, you must identify the controlling voltage, the equation that per-
mits you to compute the supplied voltage from the controlling voltage,
and the reference polarity for the supplied voltage. In Fig. 2.2(a), the con-
trolling voltage is named v,, the equation that determines the supplied
voltage v, is

Vg = MUy,

and the reference polarity for v, is as indicated. Note that w is a multiply-
ing constant that is dimensionless. .

Similar requirements exist for completely specifying the other idea
dependent sources. In Fig. 2.2(b), the controlling current is i,, the equation
for the supplied voltage v, is

vs = pl\’ ’

the reference polarity is as shown, and the multiplying constant p has the
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is v,,
the equation for the supplied current i is

Iy = avy,

the reference direction is as shown, and the multiplying constant « has the
dimension amperes per volt. In Fig. 2.2(d), the controlling current is i, the
equation for the supplied current i is

iy = Biy,

the reference direction is as shown, and the multiplying constant $ is
dimensionless.

Finally, in our discussion of ideal sources, we note that they are
examples of active circuit elements. An active element is one that models
a device capable of generating electric energy. Passive elements model
physical devices that cannot generate electric energy. Resistors, induc-
tors, and capacitors are examples of passive circuit elements.
Examples 2.1 and 2.2 illustrate how the characteristics of ideal inde-
pendent and dependent sources limit the types of permissible intercon-
nections of the sources.

2.1 Voltage and Current Sources 27

(a) (c)
V5 = piy i> iy = Biy <T
(b) (d)

Figure 2.2 A The circuit symbols for (a) an ideal
dependent voltage-controlled voltage source, (b) an
ideal dependent current-controlled voltage source, (c) an
ideal dependent voltage-controlled current source, and
(d) an ideal dependent current-controlled current source.
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m Testing Interconnections of Ideal Sources

Circuit Elements

Using the definitions of the ideal independent volt-
age and current sources, state which interconnec-
tions in Fig. 2.3 are permissible and which violate
the constraints imposed by the ideal sources.

Solution

Connection (a) is valid. Each source supplies volt-
age across the same pair of terminals, marked a,b.
This requires that each source supply the same volt-
age with the same polarity, which they do.

Connection (b) is valid. Each source supplies
current through the same pair of terminals, marked
a,b. This requires that each source supply the same
current in the same direction, which they do.

Connection (c) is not permissible. Each source
supplies voltage across the same pair of terminals,
marked a,b. This requires that each source supply
the same voltage with the same polarity, which they
do not.

Connection (d) is not permissible. Each source
supplies current through the same pair of terminals,
marked a,b. This requires that each source supply
the same current in the same direction, which they
do not.

Connection (e) is valid. The voltage source sup-
plies voltage across the pair of terminals marked
a,b. The current source supplies current through the
same pair of terminals. Because an ideal voltage
source supplies the same voltage regardless of the
current, and an ideal current source supplies the
same current regardless of the voltage, this is a per-
missible connection.

SA
a a
IOV ”
b

(a)

2A
a a
»
SV ”
b

()

SA

10V

(c)

Figure 2.3 A The circuits for Example 2.1.

b

®

(b)

b

(d)
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m Testing Interconnections of Ideal Independent and Dependent Sources

Using the definitions of the ideal independent and
dependent sources, state which interconnections in
Fig. 2.4 are valid and which violate the constraints
imposed by the ideal sources.

Solution

Connection (a) is invalid. Both the independent
source and the dependent source supply voltage
across the same pair of terminals, labeled a.b. This
requires that each source supply the same voltage
with the same polarity. The independent source sup-
plies 5 V, but the dependent source supplies 15V,

Connection (b) is valid. The independent volt-
age source supplies voltage across the pair of termi-
nals marked ab. The dependent current source
supplies current through the same pair of terminals.
Because an ideal voltage source supplies the same
voltage regardless of current, and an ideal current
source supplies the same current regardless of voit-
age, this is an allowable connection.

Connection (c) is valid. The independent cur-
rent source supplies current through the pair of ter-
minals marked a,b. The dependent voltage source
supplies voltage across the same pair of terminals.
Because an ideal current source supplies the same
current regardless of voltage, and an ideal voltage
source supplies the same voltage regardless of cur-
rent, this is an allowable connection.

Connection (d) is invalid. Both the independ-
ent source and the dependent source supply current
through the same pair of terminals. labeled a,b. This
requires that each source supply the same current
in the same reference direction. The independent (d)
source supplies 2 A, but the dependent source sup-
plies 6 A in the opposite direction. Figure 2.4 A The circuits for Example 2.2.
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v ASSESSMENT PROBLEMS

Objective 1—Understand ideal basic circuit elements

2.1  For the circuit shown,

a) What value of v, is required in order for the

interconnection to be valid?

b) For this value of v, find the power associ-

ated with the 8 A source.

Answer: (a) -2 V;

(b) —16 W (16 W delivered).

L

20 #) (#

2.2  For the circuit shown,
a) What value of a is required in order for the
interconnection to be valid?

b) For the value of a calculated in part (a), find
the power associated with the 25 V source.

Answer: (a) 0.6 A/V;

(b) 375 W (375 W absorbed).

ISA

NOTE: Also try Chapter Problems 2.2 and 2.4.

R
*—ANN—0

Figure 2.5 A The circuit symbol for a resistor having a
resistance R.

v=iR v=—iR

Figure 2.6 A Two possible reference choices for the
current and voltage at the terminals of a resistor, and
the resulting equations.

Ohm's law >

2.2 Electrical Resistance (Ohm'’s Law)

Resistance is the capacity of materials to impede the flow of current or,
more specifically, the flow of electric charge. The circuit element used to
model this behavior is the resistor. Figure 2.5 shows the circuit symbol for
the resistor, with R denoting the resistance value of the resistor.

Conceptually, we can understand resistance if we think about the
moving electrons that make up electric current interacting with and being
resisted by the atomic structure of the material through which they are
moving. In the course of these interactions, some amount of electric
energy is converted to thermal energy and dissipated in the form of heat.
This effect may be undesirable. However, many useful electrical devices
take advantage of resistance heating, including stoves, toasters, irons, and
space heaters.

Most materials exhibit measurable resistance to current. The amount
of resistance depends on the material. Metals such as copper and alu-
minum have small values of resistance, making them good choices for
wiring used to conduct electric current. In fact, when represented in a cir-
cuit diagram, copper or aluminum wiring isn’t usually modeled as a resis-
tor; the resistance of the wire is so small compared to the resistance of
other elements in the circuit that we can neglect the wiring resistance to
simplify the diagram.

For purposes of circuit analysis, we must reference the current in
the resistor to the terminal voltage. We can do so in two ways: either in
the direction of the voltage drop across the resistor or in the direction
of the voltage rise across the resistor, as shown in Fig. 2.6. If we choose
the former, the relationship between the voltage and current is

v = IR, (2.1)



where

<
1l

the voltage in volts,
i = the current in amperes,

R = the resistance in ohms.
If we choose the second method, we must write
v = —iR, (2.2)

where v, i, and R are, as before, measured in volts, amperes, and ohms,
respectively. The algebraic signs used in Egs. 2.1 and 2.2 are a direct conse-
quence of the passive sign convention, which we introduced in Chapter 1.

Equations 2.1 and 2.2 are known as Ohm’s law after Georg Simon
Ohm, a German physicist who established its validity early in the nine-
teenth century. Ohm’s law is the algebraic relationship between voltage
and current for a resistor. In SI units, resistance is measured in ohms. The
Greek letter omega () is the standard symbol for an ohm. The circuit
diagram symbol for an 8 {} resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. However,
expressing the current as a function of the voltage also is convenient. Thus,
from Eq.2.1,

v
=—, 2.3
=z (2.3)
or, from Eq. 2.2,
v
= ——. 2.4
i R (2.4)

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus,

1
G = E S. (2.5)

An 8 §) resistor has a conductance value of 0.125 S. In much of the profes-
sional literature, the unit used for conductance is the mho (ohm spelled back-
ward), which is symbolized by an inverted omega (U). Therefore we may
also describe an 8 () resistor as having a conductance of 0.125 mho, (U).

We use ideal resistors in circuit analysis to model the behavior of
physical devices. Using the qualifier ideal/ reminds us that the resistor
model makes several simplifying assumptions about the behavior of
actual resistive devices. The most important of these simplifying assump-
tions is that the resistance of the ideal resistor is constant and its value
does not vary over time. Most actual resistive devices do not have constant
resistance, and their resistance does vary over time. The ideal resistor
model can be used to represent a physical device whose resistance doesn’t
vary much from some constant value over the time period of interest in
the circuit analysis. In this book we assume that the simplifying assump-
tions about resistance devices are valid, and we thus use ideal resistors in
circuit analysis.

We may calculate the power at the terminals of a resistor in several
ways. The first approach is to use the defining equation and simply calculate

2.2 Electrical Resistance (Ohm’s Law)

8Q
—— "\ —o

Figure 2.7 A The circuit symbol for an 8 £} resistor.
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Power in a resistor in terms of current

Power in a resistor in terms of voltage >

the product of the terminal voltage and current. For the reference systems
shown in Fig. 2.6, we write

p=vi (2.6)
when v = i R and
p=—v (2.7)

whenv = —i R.

A second method of expressing the power at the terminals of a resis-
tor expresses power in terms of the current and the resistance.
Substituting Eq. 2.1 into Eq. 2.6, we obtain

p=vi=({R)

SO

p=i’R. (2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have
p = —vi=—(—i R)i = i*R. (2.9)

Equations 2.8 and 2.9 are identical and demonstrate clearly that, regard-
less of voltage polarity and current direction, the power at the terminals of
a resistor is positive. Therefore, a resistor absorbs power from the circuit.

A third method of expressing the power at the terminals of a resistor
is in terms of the voltage and resistance. The expression is independent of
the polarity references, so

p= (2.10)

1%

Sometimes a resistor’s value will be expressed as a conductance rather
than as a resistance. Using the relationship between resistance and con-
ductance given in Eq. 2.5, we may also write Egs. 2.9 and 2.10 in terms of
the conductance, or

~.
~

pP==, (2.11)

Ql

p = vG. (2.12)

Equations 2.6-2.12 provide a variety of methods for calculating the power
absorbed by a resistor. Each yields the same answer. In analyzing a circuit,
look at the information provided and choose the power equation that uses
that information directly.

Example 2.3 illustrates the application of Ohm’s law in conjunction
with an ideal source and a resistor. Power calculations at the terminals of a
resistor also are illustrated.
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m Calculating Voltage, Current, and Power for a Simple Resistive Circuit

In each circuit in Fig. 2.8, either the value of v or i is
not known.

"‘ln

OV 025 b3

(b)

1A 0 2003

() (d)
Figure 2.8 A The circuits for Example 2.3.

a) Calculate the values of v and i.
b) Determine the power dissipated in each resistor.

Solution

a) The voltage v, in Fig. 2.8(a) is a drop in the direc-
tion of the current in the resistor. Therefore,

v, = (1)(8) = 8V.

The current iy, in the resistor with a conductance
of 0.2 S in Fig. 2.8(b) is in the direction of the
voltage drop across the resistor. Thus
iv = (50)(0.2) = 10 A.
The voltage v, in Fig. 2.8(c) is a rise in the direc-
tion of the current in the resistor. Hence
v, = —(1)(20) = =20 V.

The current /4 in the 25 € resistor in Fig. 2.8(d)
is in the direction of the voltage rise across the
resistor. Therefore

g = 25 = -2 A.

b) The power dissipated in each of the four resistors is

8)2 ,
P = L = (1) = 8 W,

=
Poas = (50)%(0.2) = 500 W,
(=20
Puo = ——— = (1)%(20) = 20 W,
20
(50)°

Paso = 5o = (—2)%(25) = 100 W.
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v ASSESSMENT PROBLEMS

Objective 2—Be able to state and use Ohm’s Law . ..

2.3  For the circuit shown,

a) If v, = 1kV and i, = 5 mA, find the value

of R and the power absorbed by the resistor.

b) If iy = 75 mA and the power delivered by
the voltage source is 3 W, find v, R, and the
power absorbed by the resistor.

c) If R = 300 Q and the power absorbed by R
is 480 mW, find i, and Vg.

Answer: (a) 200kQ,5 W;
(b) 40V, 533.33 Q,3 W,

(c) 40mA,12V.
NOTE: Also try Chapter Problems 2.5 and 2.7.

2.4  For the circuit shown,

a) If i, = 0.5 A .and G = 50 mS, find v, and
the power delivered by the current source.

b) If v, = 15V and the power delivered to the
conductor is 9 W, find the conductance G
and the source current i,.

c) If G = 200 uS and the power delivered to
the conductance is 8 W, find i, and v,.

Answer; (a) 10 V,5 W,
(b) 40mS, 0.6 A;

(c) 40 mA, 200 V.
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Having introduced the general characteristics of ideal sources and resis-
tors, we next show how to use these elements to build the circuit model of
a practical system.

2.3 Construction of a Circuit Model

We have already stated that one reason for an interest in the basic circuit
elements is that they can be used to construct circuit models of practical
systems, The skill required to develop a circuit model of a device or system
is as complex as the skill required to solve the derived circuit. Although
this text emphasizes the skills required to solve circuits, you also will need
other skills in the practice of electrical engineering, and one of the most
important is modeling,

We develop circuit models in the next two examples. In Example 2.4
we consfruct a circuit model based on a knowledge of the behavior of the
system’s components and how the components are interconnected. In
Example 2.5 we create a circuit model by measuring the terminal behavior
of a device.

m Constructing a Circuit Model of a Flashlight

Construct a circuit model of a flashlight.

Solution

‘We chose the flashlight to illustrate a practical system
because its components are so familiar. Figure 2.9
shows a photograph of a widely available flashlight.

When a flashlight is regarded as an electrical
system, the components of primary interest are the
batteries, the lamp, the connector, the case, and the
switch. We now consider the circuit model for each
component.

A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is not
excessive. Thus if the dry-cell battery is operating
within its intended limits, we can model it with an
ideal voltage source. The prescribed voltage then is
constant and equal to the sum of two dry-cell values.

The ultimate output of the lamp is light energy,
which is achieved by heating the filament in the
lamp to a temperature high enough to cause radia-
tion in the visible range. We can model the lamp
with an ideal resistor. Note in this case that although
the resistor accounts for the amount of electric
energy converted to thermal energy, it does not pre-
dict how much of the thermal energy is converted to

Figure 2.9 A A flashlight can be viewed as an electrical system.

light energy. The resistor used to represent the lamp
does predict the steady current drain on the batter-
ies, a characteristic of the system that also is of inter-
est. In this model, R; symbolizes the lamp resistance.

The connector used in the flashlight serves a
dual role. First, it provides an electrical conductive
path between the dry cells and the case. Second, it is

formed into a springy coil so that it also can apply
mechanical pressure to the contact between the
batteries and the lamp. The purpose of this mechan-
ical pressure is to maintain contact between the two
dry cells and between the dry cells and the lamp.
Hence, in choosing the wire for the connector, we
may find that its mechanical properties are more



important than its electrical properties for the
flashlight design. Electrically, we can model the
connector with an ideal resistor, labeled R;.

The case also serves both a mechanical and an
electrical purpose. Mechanically, it contains all the
other components and provides a grip for the person
using it. Electrically, it provides a connection between
other elements in the flashlight. If the case is metal, it
conducts current between the batteries and the lamp.
If it is plastic, a metal strip inside the case connects
the coiled connector to the switch. Either way, an
ideal resistor, which we denote R, models the electri-
cal connection provided by the case.

The final component is the switch. Electrically,
the switch is a two-state device. It is either ON or
OFF. An ideal switch offers no resistance to the cur-
rent when it is in the ON state, but it offers infinite
resistance to current when it is in the OFF state.
These two states represent the limiting values of a
resistor; that is, the ON state corresponds to a resis-
tor with a numerical value of zero, and the OFF state
corresponds to a resistor with a numerical value of
infinity. The two extreme values have the descrip-
tive names short circuit (R = 0) and open circuit
(R = o0).Figure 2.10(a) and (b) show the graphical
representation of a short circuit and an open circuit,
respectively. The symbol shown in Fig. 2.10(c) rep-
resents the fact that a switch can be either a short
circuit or an open circuit, depending on the position
of its contacts.

We now construct the circuit model of the
flashlight. Starting with the dry-cell batteries, the
positive terminal of the first cell is connected to
the negative terminal of the second cell, as shown in
Fig. 2.11. The positive terminal of the second cell is
connected to one terminal of the lamp. The other
terminal of the lamp makes contact with one side of
the switch, and the other side of the switch is con-
nected to the metal case. The metal case is then con-
nected to the negative terminal of the first dry cell
by means of the metal spring. Note that the ele-
ments form a closed path or circuit. You can see the
closed path formed by the connected elements in
Fig. 2.11. Figure 2.12 shows a circuit model for the
flashlight.
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o

(a)

(b)
OFF

-—/——o

ON
(c)
Figure 2.10 A Circuit symbols. (a) Short circuit. (b) Open circuit.
(c) Switch.

Lamp

Filament
terminal

Case
Dry cell # 1

Figure 2.12 A A circuit medel for a flashlight.

We can make some general observations about modeling from our
flashlight example: First, in developing a circuit model, the electrical behav-
ior of each physical component is of primary interest. In the flashlight
model, three very different physical components—a lamp, a coiled wire,
and a metal case—are all represented by the same circuit element (a resis-
tor), because the electrical phenomenon taking place in each is the same.
Each is presenting resistance to the current flowing through the circuit.

Second, circuit models may need to account for undesired as well as
desired electrical effects. For example, the heat resulting from the resist-
ance in the lamp produces the light, a desired effect. However, the heat
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resulting from the resistance in the case and coil represents an unwanted
or parasitic effect. It drains the dry cells and produces no useful output.
Such parasitic effects must be considered or the resulting model may not
adequately represent the system.

And finally, modeling requires approximation. Even for the basic sys-
tem represented by the flashlight, we made simplifying assumptions in
developing the circuit model. For example, we assumed an ideal switch,
but in practical switches, contact resistance may be high enough to inter-
fere with proper operation of the system. Our model does not predict this
behavior. We also assumed that the coiled connector exerts enough pres-
sure to eliminate any contact resistance between the dry cells. Our model
does not predict the effect of inadequate pressure. Qur use of an ideal
voltage source ignores any internal dissipation of energy in the dry cells,
which might be due to the parasitic heating just mentioned. We could
account for this by adding an ideal resistor between the source and the
lamp resistor. Our model assumes the internal loss to be negligible.

In modeling the flashlight as a circuit, we had a basic understanding of
and access to the internal components of the system. However, sometimes
we know only the terminal behavior of a device and must use this infor-
mation in constructing the model. Example 2.5 explores such a modeling
problem.

m Constructing a Circuit Model Based on Terminal Measurements

The voltage and current are measured at the termi-
nals of the device illustrated in Fig. 2.13(a), and the
values of v, and /, are tabulated in Fig. 2.13(b).
Construct a circuit model of the device inside the box.

i v (V) | i (A)

- -40 | -10

+ l -20 -5

v, Device 0 0

° 20 5

_ 40 10
(a) (»)

Figure 2.13 A The (a) device and (b) data for Example 2.5.

(a)

for the device in Fig. 2.13.

v (V)
40 _______ + L ]
20F——— |
l
! v 40
5 10 ' §
i(A) *

Solution

Plotting the voltage as a function of the current
vields the graph shown in Fig. 2.14(a). The equation
of the line in this figure illustrates that the terminal
voltage is directly proportional to the terminal cur-
rent, v, = 4i,. In terms of Ohm’s law, the device
inside the box behaves like a 4 Q resistor. Therefore,
the circuit model for the device inside the box is a
4 (1 resistor, as seen in Fig. 2.14(b).

We come back to this technique of using termi-
nal characteristics to construct a circuit model after
introducing Kirchhoff’s laws and circuit analysis.

(b)

Figure 2,14 A (a) The values of v, versus i, for the device in Fig. 2.13. (b) The circuit model

NOTE: Assess your understanding of this example by trying Chapter Problems 2.11 and 2.13.




2.4 Kirchhoff's Laws

A circuit is said to be solved when the voltage across and the current in
every element have been determined. Ohm’s law is an important equation
for deriving such solutions. However, Ohm’s law may not be enough to
provide a complete solution. As we shall see in trying to solve the flash-
light circuit from Example 2.4, we need to use two more important alge-
braic relationships, known as Kirchhoff’s laws, to solve most circuits.

We begin by redrawing the circuit as shown in Fig. 2.15, with the
switch in the ON state. Note that we have also labeled the current and volt-
age variables associated with each resistor and the current associated with
the voltage source. Labeling includes reference polarities, as always. For
convenience, we attach the same subscript to the voltage and current
labels as we do to the resistor labels. In Fig. 2.15, we also removed some of
the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots are
the start and end points of an individual circuit element. A node is a point
where two or more circuit elements meet. It is necessary to identify nodes
in order to use Kirchhoff’s current law, as we will see in a moment. In
Fig. 2.15, the nodes are labeled a, b, ¢, and d. Node d connects the battery
and the lamp and in essence stretches all the way across the top of the dia-
gram, though we label a single point for convenience. The dots on either
side of the switch indicate its terminals, but only one is needed to repre-
sent a node, so only one is labeled node c.

For the circuit shown in Fig. 2.15, we can identify seven unknowns:
i iy, 1., i1, 1, Ve, and vy Recall that v, is a known voltage, as it represents
the sum of the terminal voltages of the two dry cells, a constant voltage
of 3 V. The problem is to find the seven unknown variables. From alge-
bra, you know that to find » unknown quantities you must solve » simul-
taneous independent equations. From our discussion of Ohm’s law in
Section 2.2, you know that three of the necessary equations are

v = ith (2.13)
v = i,R,, (2.14)
v = IR, (2.15)

What about the other four equations?

The interconnection of circuit elements imposes constraints on the
relationship between the terminal voltages and currents. These constraints
are referred to as Kirchhoff’s laws, after Gustav Kirchhoff, who first stated
them in a paper published in 1848. The two laws that state the constraints
in mathematical form are known as Kirchhoff’s current law and
Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law:

The algebraic sum of all the currents at any node in a circuit
equals zero.

To use Kirchhoff’s current law, an algebraic sign corresponding to a
reference direction must be assigned to every current at the node.
Assigning a positive sign to a current leaving a node requires assigning a
negative sign to a current entering a node. Conversely, giving a negative
sign to a current lcaving a node requires giving a positive sign to a current
entering a node.
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Figure 2.15 A Circuit model of the flashlight with
assigned voltage and current variables.

<« Kirchhoff’s current law (KCL)
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Kirchhoff's voltage law (KVL) b

Applying Kirchhoff’s current law to the four nodes in the circuit
shown in Fig. 2.15, using the convention that currents leaving a node are
considered positive, yields four equations:

node a ig— i =0, (2.16)
node b Lh+i =0, (2.17)
node ¢ —i.—§ =0, (2.18)
node d iy —ig=0. (2.19)

Note that Egs. 2.16-2.19 are not an independent set, because any one
of the four can be derived from the other three. In any circuit with # nodes,
n — 1 independent current equations can be derived from Kirchhoff’s
current law.! Let’s disregard Eq. 2.19 so that we have six independent
equations, namely, Egs. 2.13-2.18. We need one more, which we can derive
from Kirchhoff’s voltage law.

Before we can state Kirchhoff’s voltage law, we must define a closed
path or loop. Starting at an arbitrarily selected node, we trace a closed
path in a circuit through selected basic circuit elements and return to the
original node without passing through any intermediate node more than
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For
example, choosing node a as the starting point and tracing the circuit
clockwise, we form the closed path by moving through nodes d, c, b, and
back to node a. We can now state Kirchhoff’s voltage law:

The algebraic sum of all the voltages around any closed path in a circuit
equals zero.

To use Kirchhoff’s voltage law, we must assign an algebraic sign (refer-
ence direction) to each voltage in the loop. As we trace a closed path, a volt-
age will appear either as a rise or a drop in the tracing direction. Assigning a
positive sign to a voltage rise requires assigning a negative sign to a voltage
drop. Conversely, giving a negative sign to a voltage rise requires giving a
positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 2.15.
We elect to trace the closed path clockwise, assigning a positive algebraic
sign to voltage drops. Starting at node d leads to the expression

v — V. + v — v =0, (2.20)

which represents the seventh independent equation needed to find the
seven unknown circuit variables mentioned earlier.

The thought of having to solve seven simultaneous equations to find
the current delivered by a pair of dry cells to a flashlight lamp is not very
appealing. Thus in the coming chapters we introduce you to analytical
techniques that will enable you to solve a simple one-loop circuit by writ-
ing a single equation. However, before moving on to a discussion of these
circuit techniques, we need to make several observations about the
detailed analysis of the flashlight circuit. In general, these observations are
true and therefore are important to the discussions in subsequent chap-
ters. They also support the contention that the flashlight circuit can be
solved by defining a single unknown.

L We say more about this observation in Chapter 4.



First, note that if you know the current in a resistor, you also know the
voltage across the resistor. because current and voltage are directly
related through Ohm’s law. Thus you can associate one unknown variable
with each resistor, either the current or the voltage. Choose, say, the cur-
rent as the unknown variable. Then, once you solve for the unknown cur-
rent in the resistor, you can find the voltage across the resistor. In general,
if you know the current in a passive element, you can find the voltage
across it, greatly reducing the number of simultaneous cquations to be
solved. For example, in the flashlight circuit, we eliminate the voltages v,
v;, and v, as unknowns. Thus at the outset we reduce the analytical task to
solving four simultaneous equations rather than seven.

The second general observation relates to the consequences of con-
necting only two elements to form a node. According to Kirchhoff's cur-
rent law, when only two elements connect to a node, if you know the
current in one of the elements, you also know it in the second element.
In other words, you need define only one unknown current for the two
elements. When just two clements connect at a single node, the elements
are said to be in series. The importance of this second observation is
obvious when you note that each node in the circuit shown in Fig. 2.15
involves only two elements. Thus you need to define only one unknown
current. The reason is that Eqs. 2.16-2.18 lead directly to

I'_.; = i] = —i(. = i(, (2.21)

which states that if you know any one of the element currents, you
know them all. For example, choosing to use i as the unknown elimi-
nates iy, i., and ;. The problem is reduced to determining one unknown,
namely, i.

Examples 2.6 and 2.7 illustrate how to write circuit equations based
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws
and Ohm’s law to find an unknown current. Example 2.9 expands on the
technique presented in Example 2.5 for constructing a circuit model for a
device whose terminal characteristics are known.

Felul LR W Using Kirchhoff’s Current Law

Sum the currents at each node in the circuit shown
in Fig. 2.16. Note that there is no connection dot (e)
in the center of the diagram, where the 4 () branch
crosses the branch containing the ideal current
source i,.

2.4

Kirchhoff's Laws

Solution

[n writing the equations, we use a positive sign for a
current leaving a node. The four equations are

node a il + iq - i2 - i5 =0,
node b iz + i3 - i] - ih - ia = 0,
node ¢ ib—i3_i4_ic:0,

node d s+ i, +i.=0.

Figure 2.16 A The circuit for Example 2.6.
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el LW Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in
the circuit shown in Fig. 2.17.

Solution

In writing the equations, we use a positive sign for a
voltage drop. The four equations are

path a v+ v+ vy — v, — V3 =0,
path b —V, + vz +wvs =0,
path ¢ Vp — V4 — U — Vg — Us =0,

pathd —-v, — v+ v, — v, +v;, — vy =0.

Figure 2.17 A The circuit for Example 2.7.

SECWR M Applying Ohm’'s Law and Kirchhoff's Laws to Find an Unknown Current

a) Use Kirchhoff’s laws and Ohm’s law to find {, in
the circuit shown in Fig. 2.18.

10Q
WA »

-

ill
120V 5090 6A

Figure 2.18 A The circuit for Example 2.8.

b) Test the solution for i, by verifying that the total
power generated equals the total power dissipated.

Solution

a) We begin by redrawing the circuit and assigning
an unknown current to the 50 Q resistor and
unknown voltages across the 10 £) and 50 £)
resistors. Figure 2.19 shows the circuit. The nodes
are labeled a, b, and ¢ to aid the discussion.

a 100 o

—_—

b
a 04 b
+ Ul) - +
120V i i%soo v 6A
c

Figure 2.19 A The circuit shown in Fig. 2.18, with the
unknowns iy, v,,, and v, defined.

Because i, also is the current in the 120 V
source, we have two unknown currents and

therefore must derive two simultaneous equa-
tions involving i, and i;. We obtain one of the
cquations by applying Kirchhoff’s current law to
either node b or c. Summing the currents at node
b and assigning a positive sign to the currents
leaving the node gives

h—i,—6=0.

We obtain the second equation from Kirchhoft’s
voltage law in combination with Ohm’s law.
Noting from Ohm’s law that v, is 10i, and v, is
50i|, we sum the voltages around the closed path
cabc to obtain

—120 + 10, + 50i; = 0.

In writing this equation, we assigned a positive
sign to voltage drops in the clockwise direc-
tion. Solving these two equations for i, and
iy yields

i,=-3A and i =3 A.

o

b) The power dissipated in the 50 () resistor is
Psoq = (3)%(50) = 450 W.
The power dissipated in the 10 Q resistor is

proa = (—3)%(10) = 90 W.



The power delivered to the 120 V source is
Pioov = —120i, = —120(—=3) = 360 W.
The power delivered to the 6 A source is

Pea = —v1(6), but v, = 50i; = 150 V.

2.4 Kirchhoff's Laws

Therefore
Psa = —150(6) = =900 W.

The 6 A source is delivering 900 W, and the
120 V source is absorbing 360 W. The total
power absorbed is 360 + 450 + 90 = 900 W.
Therefore, the solution verifies that the power
delivered equals the power absorbed.

[3cluCE R Constructing a Circuit Model Based on Terminal Measurements

The terminal voltage and terminal current were
measured on the device shown in Fig. 2.20(a), and
the values of v, and /, are tabulated in Fig. 2.20(b).

‘I + v, (V) | i (A)
. 30 0
Device O .
. 15 3
- 0 6
(a) (b)

Figure 2.20 A (a) Device and (b) data for Example 2.9.

a) Construct a circuit model of the device inside
the box.

b) Using this circuit model, predict the power this
device will deliver to a 10 () resistor.

Solution

a) Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

v, = 30 — 5i,.

Now we need to identify the components of a cir-
cuit model that will produce the same relation-
ship between voltage and current. Kirchhoff’s
voltage law tells us that the voltage drops across
two components in series. From the equation,
one of those components produces a 30 V drop
regardless of the current. This component can be
modeled as an ideal independent voltage source.
The other component produces a positive volt-
age drop in the direction of the current i,.
Because the voltage drop is proportional to the
current, Ohm’s law tells us that this component
can be modeled as an ideal resistor with a value
of 5 ). The resulting circuit model is depicted in
the dashed box in Fig. 2.21(b).

v (V)
30
15—
|
3 e W)
(2)

100

|
|
|
I 30V
I
|
|

Figure 2.21 A (a) The graph of v, versus i, for the device in
Fig. 2.20(a). (b) The resulting circuit model for the device in
Fig. 2.20(a), connected to a 10 £} resistor.

b) Now we attach a 10 Q) resistor to the device in
Fig. 2.21(b) to complete the circuit. Kirchhoff’s
current law tells us that the current in the 10 £}
resistor is the same as the current in the 5 €} resis-
tor. Using Kirchhoff’s voltage law and Ohm’s law,
we can write the equation for the voltage drops
around the circuit, starting at the voltage source
and proceeding clockwise:

=30 + 5i + 10i = 0.
Solving for i, we get
i=2A.

Because this is the value of current flowing in
the 10 {2 resistor, we can use the power equation
p = i*R to compute the power delivered to this
resistor:

Proa = (2)2(10) =40 W.
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v ASSESSMENT PROBLEMS

Objective 2—Be able to state and use Ohm’s law and Kirchhoff's current and voltage laws

2.5  For the circuit shown, calculate (a) is; (b) vy; 2.7  a) The terminal voltage and terminal current
(c) vy; (d) vs; and (e) the power delivered by were measured on the device shown. The
the 24 V source. values of v, and ; are provided in the table.

Answer: (a) 2 A;

Using these values, create the straight line
plot of v, versus i,. Compute the equation of

(b) -4 V; the line and use the equation to construct a
] circuit model for the device using an ideal
(c)6V; .
D14V voltage source and a resistor.
(d) ’ b) Use the model constructed in (a) to predict
(e) 48 W. the power that the device will deliver to a
25 Q resistor.
30 Answer: (a) A 25V source in series with a 100 )
il g resistor;
+ b) 1 W.
24V zglvém ®)
+ v - - .
AM- e
29 — o (V) | i(A)
. 25 0
Device v 15 0.1
e ~ 5 | 02
2.6  Use Ohm’s law and Kirchhoff’s laws to find the L 0 025
value of R in the circuit shown.
(a) (b)

Answer: R = 4.

2.8 Repeat Assessment Problem 2.7 but use the
equation of the graphed line to construct a cir-

J& - cuit model containing an ideal current source
and a resistor.
+
200V 120V 240 § 8Q Answer: (a) A 0.25 A current source connected
- between the terminals of a 100 ) resistor;
. (b) 1'W.

NOTE: Also try Chapter Problems 2.14,2.17,2.18, and 2.19.

b
Z’ + ¢ ’l]
500V v, 2200 Siy
c

Figure 2.22 A A circuit with a dependent source.

2.5 Analysis of a Circuit Containing
Dependent Sources

We conclude this introduction to elementary circuit analysis with a discus-
sion of a circuit that contains a dependent source, as depicted in Fig. 2.22.

We want to use Kirchhoff’s laws and Ohm’s law to find v, in this cir-
cuit. Before writing equations, it is good practice to examine the circuit
diagram closely. This will help us identify the information that is known
and the information we must calculate. It may also help us devise a strat-
egy for solving the circuit using only a few calculations.
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A look at the circuit in Fig. 2.22 reveals that

» Once we know i, we can calculate v, using Ohm’s law.

» Once we know iy, we also know the current supplied by the dependent
source Sia.

+ The current in the 500 V source is ix.

There are thus two unknown currents, iy and i,,. We need to construct and
solve two independent equations involving these two currents to produce
a value for v,,.

From the circuit, notice the closed path containing the voltage source,
the 5 () resistor, and the 20 Q resistor. We can apply Kirchhoff’s voltage
law around this closed path. The resulting equation contains the two
unknown currents:

500 = Siy + 20i,. (2.22)

Now we need to generate a second equation containing these two
currents. Consider the closed path formed by the 20 () resistor and the
dependent current source. If we attempt to apply Kirchhoff’s voltage
law to this loop, we fail to develop a useful equation, because we don’t
know the value of the voltage across the dependent current source. In
fact, the voltage across the dependent source is v,, which is the voltage
we are trying to compute. Writing an equation for this loop does not
advance us toward a solution. For this same reason, we do not use the
closed path containing the voltage source, the 5 () resistor, and the
dependent source.

There are three nodes in the circuit, so we turn to Kirchhoff’s current
law to generate the second equation. Node a connects the voltage source
and the 5 () resistor; as we have already observed, the current in these two
elements is the same. Either node b or node ¢ can be uscd to construct the
second equation from Kirchhoff’s current law. We select node b and pro-
duce the following equation:

i, = iy + 5iy = 6iy. (2.23)

Solving Eqs. 2.22 and 2.23 for the currents, we get

Z'A=4A,

i, =24 A. (2.24)

Using Eq. 2.24 and Ohm’s law for the 20 ) resistor, we can solve for the
voltage v,

v, = 20i, = 480 V.

Think about a circuit analysis strategy before beginning to write equa-
tions. As we have demonstrated, not every closed path provides an oppor-
tunity to write a useful equation based on Kirchhoff’s voltage law. Not
every node provides for a useful application of Kirchhoff’s current law.
Some preliminary thinking about the problem can help in sclecting the
most fruitful approach and the most useful analysis tools for a particular

Analysis of a Circuit Containing Dependent Sources
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problem. Choosing a good approach and the appropriate tools will usually
reduce the number and complexity of equations to be solved. Example 2.10
illustrates another application of Ohm’s law and Kirchhoff’s laws to a cir-
cuit with a dependent source. Example 2.11 involves a much more compli-
cated circuit, but with a careful choice of analysis tools, the analysis is
relatively uncomplicated.

AET RGN Applying Ohm’s Law and Kirchhoff's Laws to Find an Unknown Voltage

a) Use Kirchhoff’s laws and Ohm’s law to find the
voltage v, as shown in Fig. 2.23.

b) Show that your solution is consistent with the
constraint that the total power developed in the
circuit equals the total power dissipated.

Figure 2.23 A The circuit for Example 2.10.

Solution

a) A close look at the circuit in Fig. 2.23 reveals that:

+ There are two closed paths, the one on the
left with the current i; and the one on the
right with the current i,,.

» Once i, is known, we can compute v,,.

We need two equations for the two currents.

Because there are two closed paths and both have

voltage sources, we can apply Kirchhoff’s voltage

law to each to give the following equations:

10 = 6,

3i, = 2i, + 3i,.

Solving for the currents yields

1.67 A,

i

i, =1A.

Applying Ohm’s law to the 3 €} resistor gives
the desired voltage:

v, = 3i, =3 V.

b) To compute the power delivered to the voltage
sources, we use the power equation in the form
p = vi. The power delivered to the independent
voltage source is

p = (10)(~1.67) = —16.7 W.

The power delivered to the dependent voltage
source is

p = GBi)(—i,) = 5)(=1) = =5W.

Both sources are developing power, and the
total developed power is 21.7 W.

To compute the power delivered to the resis-
tors, we use the power equation in the form
p = i*R.The power delivered to the 6 () resistor is

p = (1.67)%(6) = 16.7 W.
The power delivered to the 2 () resistor is
p=(1)%2) =2W.
The power delivered to the 3 ) resistor is
p=(1)3) =3W.

The resistors all dissipate power, and the total
power dissipated is 21.7 W, equal to the total
power developed in the sources.




2.5  Analysis of a Gircuit Containing Dependent Sources

FEV R Kl Applying Ohm's Law and Kirchhoff’s Law in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common config-
uration encountered in the analysis and design of
transistor amplifiers. Assume that the values of all
the circuit elements— Ry, Ry, R¢, R, Ve, and Vy—
are known.

a) Develop the equations needed to determine the
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting i in terms of the circuit element values.

Figure 2.24 A The circuit for Example 2.11.

Solution

A careful examination of the circuit reveals a total
of six unknown currents, designated iy, i,, i, ic, if,
and icc. In defining these six unknown currents, we
used the observation that the resistor R is in series
with the dependent current source Big. We now
must derive six independent equations involving
these six unknowns.

a) We can derive three equations by applying
Kirchhoff's current law to any three of the nodes
a,b,c,and d. Let’s use nodes a, b, and ¢ and label
the currents away from the nodes as positive:

(1) i +ic—icc=0,

(2) i3+i2—i1=0,

(3) ig —ip—ic=0.

A fourth equation results from imposing the
constraint presented by the series connection of
R¢ and the dependent source:

(4) ic = Big.

We turn to Kirchhoff’s voltage law in deriv-
ing the remaining two equations. We need to
select two closed paths in order to use
Kirchhoff’s voltage law. Note that the voltage
across the dependent current source is unknown,
and that it cannot be determined from the source
current Big. Therefore, we must select two
closed paths that do not contain this dependent
current source.

We choose the paths bedb and badb and
specify voltage drops as positive to yield

(5) Vo +igRg — ihR, =0,

(6) — iRy + Voo — iR, = 0.

b) To get a single equation for iz in terms of
the known circuit variables, you can follow
these steps:

» Solve Eq. (6) for i, and substitute this solu-
tion for i; into Eq. (2).

+ Solve the transformed Eq. (2) for i,, and sub-
stitute this solution for i, into Eq. (5).

+ Solve the transformed Eq. (5) for ig, and sub-
stitute this solution for ir into Eq. (3). Use
Eq. (4) to eliminate i.- in Eq. (3).

+ Solve the trunsformed Eq. (3) for ip, and
rearrange the terms to yield

i (VeeR)/ (R + Ry) — Vo
P (RR)/(Ry + Ry) + (1 + B)R

. (2.25)

Problem 2.31 asks you to verify these steps. Note
that once we know ig, we can easily obtain the
remaining currents.

45
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v ASSESSMENT PROBLEMS

Objective 3—Know how to calculate power for each element in a simple circuit

2.9  For the circuit shown find (a) the current i, in c) the power delivered by the independent cur-
microamperes, {b) the voltage v in volts, (c) the rent source,

total power generated, and (d) the total power

absorbed.

Answer: (a) 25 pA;
(b)-2V;
(c) 6150 uW,
(d) 6150 W.

d) the power delivered by the controlled cur-
rent source,

e) the total power dissipated in the two resistors.

Answer: (a) 70 V;

2.10 The current i, in the circuit shown is 2 A.

Calculate

a) v,

b) the power absorbed by the independent

voltage source,

(b) 210 W
(c) 300 W;
(d) 40 W
(€) 130 W.
2,
* AM——— ¢
100
5A 13300 o,
Iy

NOTE: Also try Chapter Problems 2.22 and 2.28.

Practical Perspective

Electrical Safety
At the beginning of this chapter, we said that current through the body can
cause injury. Let’s examine this aspect of electrical safety.

You might think that electrical injury is due to burns. However, that is
not the case. The most common electrical injury is to the nervous system.
Nerves use electrochemical signals, and electric currents can disrupt those
signals. When the current path includes only skeletal muscles, the effects
can include temporary paralysis (cessation of nervous signals) or involun-
tary muscle contractions, which are generally not life threatening. However,
when the current path includes nerves and muscles that control the supply
of oxygen to the brain, the problem is much more serious. Temporary paral-
ysis of these muscles can stop a person from breathing, and a sudden mus-
cle contraction can disrupt the signals that regulate heartbeat. The result is
a halt in the flow of oxygenated blood to the brain, causing death in a few
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minutes unless emergency aid is given immediately. Table 2.1 shows a range ﬁ
of physiological reactions to various current levels. The numbers in this v
» . - . ~

table are approximate; they are obtained from an analysis of accidents g
because, obviously, it is not ethical to perform electrical experiments on /\ ~
people. Good electrical design will limit current to a few milliamperes or less F
under all possible conditions. /

TABLE 2.1 Physiological Reactions to Current Levels in Humans @ "

Physiological Reaction Current _ A & -

Barely perceptible 3-5 mA /(a)

Extreme pain 35-50 mA

Muscle paralysis 50-70 mA

Heart stoppage 500 mA

Note: Data taken from W. F. Cooper, Electrical Safety Engineering, 2d ed. (London: Butterworth,
1986); and C. D. Winburn, Practical Electrical Safety (Monticello, N.Y.: Marcel Dekker, 1988).

Now we develop a simplified electrical model of the human body. The
body acts as a conductor of current, so a reasonable starting point is to
model the body using resistors. Figure 2.25 shows a potentially dangerous
situation. A voltage difference exists between one arm and one leg of a
human being. Figure 2.25(b) shows an electrical model of the human body in
Fig. 2.25(a). The arms, legs, neck, and trunk (chest and abdomen) each have
a characteristic resistance. Note that the path of the current is through the
trunk, which contains the heart, a potentially deadly arrangement. Figure 2.25 A (a) A human body with a voltage

difference hetween one arm and one leg. (b) A sim-
NOTE: Assess your understanding of the Practical Perspective by solving Chapter  plified model of the human body with a voltage dif-

Problems 2.34-2.38. ference between one arm and one leg.
Summary
« The circuit elements introduced in this chapter are volt- resistor is called its resistance and is measured in
age sources, current sources, and resistors: ohms. (See page 30.)

+ An ideal voltage source maintains a prescribed volt- \ . ) )
age regardless of the current in the device. An ideal ~ * Ohm’s law establishes the proportionality of voltage

current source maintains a prescribed current and current in a resistor. Specifically,
regardless of the voltage across the device. Voltage )
and current sources arc cither independent, that is, v =R

not influenced by any other current or voltage in the
circuit; or dependent, that is, determined by some
other current or voltage in the circuit. (See pages 26
and 27.)

« A resistor constrains its voltage and current to be
proportional to each other. The value of the propor- if the current flow in the resistor is in the direction of
tional constant relating voltage and current in a the voltage risc across it. (See page 31.)

if the current flow in the resistor is in the direction of
the voltage drop across it, or

v = —IR
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+ By combining the equation for power, p = vi, with
Ohm’s law, we can determine the power absorbed by a
resistor:

p = R = v*/R.
(See page 32.)

+ Circuits are described by nodes and closed paths. A
node is a point where two or more circuit elements join.
When just two elements connect to form a node, they
are said to be in series. A closed path is a loop traced
through connecting elements, starting and ending at the
same node and encountering intermediate nodes only
once each. (See pages 37-39.)

Problems

Section 2.1

2.1 If the interconnection in Fig. P2.1 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.1

10V
SA

(D

_/

2.2 If the interconnection in Fig. P2.2 is valid, find the
total power developed by the voltage sources. If the
interconnection is not valid, explain why.

Figure P2.2

N
o
(D2

10\/ 20v 100v
AR

/

5A

» The voltages and currents of interconnected circuit ele-

ments obey Kirchhoff’s laws:

» Kirchhoff’s current law states that the algebraic sum
of all the currents at any node in a circuit equals zero.
(See page 37.)

+ Kirchhoff’s voltage law states that the algebraic sum
of all the voitages around any closed path in a circuit
equals zero. (See page 38.)

A circuit is solved when the voltage across and the cur-
rent in every element have been determined. By com-
bining an understanding of independent and dependent
sources, Ohm’s law, and Kirchhoff’s laws, we can solve
many simple circuits.

2.3 a) Is the interconnection of ideal sources in the cir-
cuit in Fig. P2.3 valid? Explain.

b) Identify which sources are developing power
and which sources are absorbing power.

c) Verify that the total power developed in the cir-
cuit equals the total power absorbed.

d) Repeat (a)-(c), reversing the polarity of the

20V source.
Figure P2.3
15V
)
NG
20V 5SA

2.4 If the interconnection in Fig. P2.4 is valid, find the
power developed by the current sources. If the
interconnection is not valid, explain why.

Figure P2.4
40V

10A 100V 5A




Problems 49

2.5 If the interconnection in Fig. P2.5 is valid, find the Figure P2.8
total power developed in the circuit. If the intercon- *
nection is not valid, explain why.
9A Uy
+
Figure P2.5 n, <+ 10 v,
N -
20V 6A ",

2.9 a) Istheinterconnection in Fig. P2.9 valid? Explain.

b) Can you find the total energy developed in the
circuit? Explain.

Figure P2.9

2.6 The interconnection of ideal sources can lead to an N
indeterminate solution. With this thought in mind, °
explain why the solutions for »; and v, in the circuit 20V 16 A
in Fig. P2.6 are not unique. <1 2
Dy
8A 100V
Figure P2.6
20 \'%
+ :
Sections 2.2-2.3
15 mA 2.10 A pair of automotive headlamps is connected to a
12 V battery via the arrangement shown in
Fig. P2.10. In the figure, the triangular symbol V¥ is

used to indicate that the terminal is connected

2() A .
m directly to the metal frame of the car.

a) Construct a circuit model using resistors and an

independent voltage source.
2.7 If the interconnection in Fig. P2.7 is valid, find the

total power developed in the circuit. If the intercon-
nection is not valid, explain why.

b) Identify the correspondence between the ideal
circuit element and the symbol component that
it represents.

Figure P2.7 Figure P2.10

50V o 25A
i Cf) 250V
Ois é 80V

12V battery

2.8 Find the total power developed in the circuit in
Fig. P28ifv, =5 V.
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2.12

2.13

Circuit Elements

The terminal voltage and terminal current were
measured on the device shown in Fig. P2.11(a). The
values of v and i are given in the table of
Fig. P2.11(b). Use the values in the table to con-
struct a circuit model for the device consisting of a
single resistor from Appendix H.

Figure P2.11

; i(mA)| v (V)
. —4 —108
® -2 —54
Device g 2 54
b B 4 108
6 162

(2) (b)

A variety of current source values were applied to
the device shown in Fig. P2.12(a). The power
absorbed by the device for each value of current is
recorded in the table given in Fig. P2.12(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor from
Appendix H.

Figure P2.12

i(uA) | p (mW)
50 5.5
100 | 220
¢ , 150 | 495
De::lcc o i 200 8.0
~ 250 | 137.5
) 300 | 1980
@) (b)

A variety of voltage source values were applied to
the device shown in Fig. P2.13(a). The power
absorbed by the device for each value of voltage is
recorded in the table given in Fig. P2.13(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor from
Appendix H.

Figure P2.13

v (V) [p (mW)
< -10 | 17.86
-5 4.46
Y
. CD 5 4.46
Device "
° - 10 17.86
. 15 | 40.18
20 7143

(a) (b)

2.14 The voltage and current were measured at the ter-

2.15

minals of the device shown in Fig. P2.14(a). The
results are tabulated in Fig. P2.14(b).

a) Construct a circuit model for this device using
an ideal current source and a resistor.

b) Use the model to predict the amount of power
the device will deliver to a 20 (2 resistor.

Figure P2.14

<[' v, (V) | i (A)
100 0
+
J 120 | 4
De::xcc o 140 3
- 160 12
180 16
(a) (b)

The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.15(a). The
results are tabulated in Fig. P2.15(b).

a) Construct a circuit model for this device using
an ideal voltage source and a resistor.

b) Use the model to predict the value of i, when v,
is zero.

Figure P2.15

. v (V) | i (A)
S 50 0
3 66 2
J ' 82 4
De::lce Y 98 6
- 114 8
‘ 130 10

(a) (b)
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2.16 The table in Fig. P2.16(a) gives the relationship
between the terminal current and voltage of
the practical constant current source shown in
Fig. P2.16(b).

a) Plot i, versus v,.

b) Construct a circuit model of this current source
that is valid for 0 < », = 75V, based on the
equation of the line plotted in (a).

c) Use your circuit model to predict the current
delivered to a 2.5 k() resistor.

d) Use your circuit model to predict the open-circuit
voltage of the current source.

¢) What is the actual open-circuit voltage?

f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.16

i (mA)| v, (V)
20.0 0
17.5 25 " .
15.0 50 [ '
12.5 75 CCS
9.0 100 )
4.0 125 ————o
0.0 140
(a) (b)
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Figure P2.17

v, (V) |is (mA)

24 0 i

22 8 " e
20 16 s *
18 24 CVs ",
15 32 .

10 40 L o

0 48
(a) (b)

Section 2.4

2.18 a) Find the currents i; and i, in the circuit in
PoPICE Fig. P2.18.

MULTISIM

b) Find the voltage v,,.

c¢) Verify that the total power developed equals the
total power dissipated.

Figure P2.18

2.17 The table in Fig. P2.17(a) gives the relationship
between the terminal voltage and current of
the practical constant voltage source shown in
Fig. P2.17(b).

a) Plot v, versus i;.

b) Construct a circuit model of the practical source
that is valid for 0 < i, = 24 mA, based on the
equation of the line plotted in (a). (Use an ideal
voltage source in series with an ideal resistor.)

c) Use your circuit model to predict the current
delivered to a 1kQ resistor connected to the
terminals of the practical source.

d) Use your circuit model to predict the current
delivered to a short circuit connected to the ter-
minals of the practical source.

e) What is the actual short-circuit current?

f) Explain why the answers to (d) and (e) are not
the same.

2.19
PSPICE
MULTISIM

2.20
PSPICE
MULTISIM

Given the circuit shown in Fig. P2.19, find
a) the value of i,,

b) the value of #,,

c) the value of v,,

d) the power dissipated in each resistor,
e) the power delivered by the 50 V source.

Figure P2.19

w% » "

~

-+
", 3800

S0V ,,3200

The current i, in the circuit shown in Fig. P2.20 is
2 mA. Find (a) i,; (b) i,: and (c) the power delivered
by the independent current source.
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Figure P2.20
1kQ
* AW
ia
|
iy iy 320 $4kQ
3kQ
A g VW

2.21 The current i, in the circuit in Fig. P2.21is 1 A,

PSFPICE

MULTISIM a) Find il'

b) Find the power dissipated in each resistor.

¢) Verify that the total power dissipated in the cir-
cuit equals the power developed by the 150 V
source.

Figure P2.21

500 b
VYW
40 10 Q2
L 4
< + ,
sov(” i1, 3650 $250

2.22 The voltage across the 16 () resistor in the circuit in

PSPICE
MULTISIM

Fig. P2.22 is 80 V, positive at the upper terminal.
a) Find the power dissipated in each resistor.

b) Find the power supplied by the 125V ideal volt-
age source.

c) Verify that the power supplied equals the total
power dissipated.

Figure P2.22

7Q ‘i 15Q
125V
300 @l 16

2.23 For the circuit shown in Fig. P2.23, find (a) R and

PSPICE
MULTISIM

(b) the power supplied by the 240 V source.

2.24
PSPICE
MULTISIM

2.25

2.26
PSPICE
MULTISIM

Figure P2.23
5Q

R —4A 100
40

e

10Q 140

The variable resistor R in the circuit in Fig, P2.24 is
adjusted until v, equals 60 V. Find the value of R.

Figure P2.24

45 Q)
0'A'A%
R
100
- +

240V 180 O U §12 Q

180

L 3 'A%\

The currents iy and i, in the circuit in Fig. P2.25 are
21 A and 14 A, respectively.

a) Find the power supplied by each voltage source.

b) Show that the total power supplied equals the
total power dissipated in the resistors.

Figure P2.25

The currents i, and i, in the circuit in Fig. P2.26 are
4 A and —2 A, respectively.

a) Find i,.
b) Find the power dissipated in each resistor.



¢) Find vg.
d) Show that the power delivered by the current

source is equal to the power absorbed by all the
other elements.

Figure P2.26

100

100V

Section 2.5
2.27 Find (a) i,, (b) i;,and (c) i, in the circuit in Fig. P2.27.

PSPICE

MULTISIM
Figure P2.27
120
+ lil liz
18V 60gu ()3 2100 250
2.28 a) Find the voltage v, in the circuit in Fig. P2.28.

PSPICE

wosw  0) Show that the total power generated in the cir-

cuit equals the total power absorbed.

Figure P2.28

2.29 Find v, and v, in the circuit shown in Fig. P2.29
PSPCE  when v, equals 5 V. (Hint: Start at the right end of
MU the circuit and work back toward V)

Problems 53

Figure P2.29
60 0 B

2.30 For the circuit shown in Fig. P2.30, calculate (a) i, and

ot Vo and (b) show that the power developed equals the

power absorbed.

Figure P2.30
20i, 5i, 8i,

2.31 Derive Eq. 2.25. Hint: Use Egs. (3) and (4) from
Example 2.11 to express ig as a function of i 5. Solve
Eq. (2) for i, and substitute the result into both
Egs. (5) and (6). Solve the “new” Eq. (6) for i; and
substitute this result into the “new” Eq. (5). Replace
i in the “new” Eq. (5) and solve for iz. Note that
because ic appears only in Eq. (1), the solution for
ig involves the manipulation of only five equations.

2.32 For the circuit shown in Fig. 2.24, R, = 40 k{2,

PSPIE Ry = 60kQ, Rc =750Q, R =120Q,Vc =10V,

WIS 0 = 600 mV, and B = 49. Calculate ig, ic, ig, Vsa,

Vpd» £25 i1, Van» bcc» and vp3. (Note: In the double sub-

script notation on voltage variables, the first sub-

script is positive with respect to the second
subscript. See Fig. P2.32.)

Figure P2.32
3

R E [2¥]
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Sections 2.1-2.5

233

DESIGN
PROBLEM

It is often desirable in designing an electric wiring
system to be able to control a single appliance from
two or more locations, for example, to control a
lighting fixture from both the top and bottom of a
stairwell. In home wiring systems, this type of con-
trol is implemented with three-way and four-way
switches. A three-way switch is a three-terminal,
two-position switch, and a four-way switch is a four-
terminal, two-position switch. The switches are shown
schematically in Fig. P2.33(a), which illustrates a
three-way switch, and P2.33(b), which illustrates
a four-way switch.

a) Show how two three-way switches can be con-
nected between a and b in the circuit in
Fig. P2.33(c) so that the lamp / can be turned ON
or OFF from two locations.

b) If the lamp (appliance) is to be controlled from

more than two locations, four-way switches are

used in conjunction with two three-way
switches. One four-way switch is required for
each location in excess of two. Show how one
four-way switch plus two three-way switches can
be connected between a and b in Fig. P2.33(c) to
control the lamp from three locations. (Hint:

The four-way switch is placed between the

three-way switches.)

Figure P2.33
1 1
[ ] [ ) [ ) [ ]
2 3 2 3
Position 1 Position 2
(a)

1 2 1 2
] l [ ]

3 4 3 4
Position 1 Position 2
(b)

a
b
v,
l

2.34

PRACTICAL
PERSPECTIVE

2.35

PRACTICAL
PERSPECTIVE

2.36

PRACTICAL
PERSPECTIVE

2.37

PRACTICAL
PERSPECTIVE

a) Suppose the power company installs some
equipment that could provide a 250 V shock to a
human being. Is the current that results danger-
ous enough to warrant posting a warning sign
and taking other precautions to prevent such a
shock? Assume that if the source is 250 V, the
resistance of the arm is 400 (), the resistance of
the trunk is 50 (2, and the resistance of the leg is
200 Q. Use the model given in Fig. 2.25(b).

Find resistor values from Appendix H that could
be used to build a circuit whose behavior is the
closest to the model described in part (a).

b)

Based on the model and circuit shown in Fig. 2.25,
draw a circuit model of the path of current through
the human body for a person touching a voltage
source with both hands who has both feet at the
same potential as the negative terminal of the volt-
age source.

a) Using the values of resistance for arm, leg, and
trunk provided in Problem 2.34, calculate the
power dissipated in the arm, leg, and trunk.

b) The specific heat of water is 4.18 X 10° J/kg°C,
so a mass of water M (in kilograms) heated by a
power P (in watts) undergoes a rise in tempera-
ture at a rate given by

dT 239 x 107'P
"E = M C/s.

Assuming that the mass of an arm is 4 kg, the
mass of a leg is 10 kg, and the mass of a trunk is
25 kg, and that the human body is mostly water,
how many seconds does it take the arm. leg, and
trunk to rise the 5°C that endangers living tissue?

¢) How do the values you computed in (b) com-

pare with the few minutes it takes for oxygen
starvation to injure the brain?

A person accidently grabs conductors connected to
each end of a dc voltage source, one in each hand.

a) Using the resistance values for the human body
provided in Problem 2.34, what is the minimum
source voltage that can produce electrical shock
sufficient to cause paralysis, preventing the per-
son from letting go of the conductors?

b) Is there a significant risk of this type of accident
occurring while servicing a personal computer,
which typically has 5 V and 12 V sources?



2.38 To understand why the voltage level is not the sole

determinant of potential injury due to electrical
shock, consider the case of a static clectricity shock
mentioned in the Practical Perspective at the start of
this chapter. When you shuffle your feet across a
carpet, your body becomes charged. The effect of
this charge is that your entire body represents a volt-
age potential. When you touch a metal doorknob, a

Problems 55

voltage difference is created between you and the
doorknob, and current flows—but the conduction
material is air, not your body!

Suppose the model of the space between your
hand and the doorknob is a 1 M resistance. What
voltage potential exists between your hand and
the doorknob if the current causing the mild shock
is 3 mA?
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1 Be able to recognize resistors connected in
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combining series-connected resistors and
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resistance.

2 Know how to design simple voltage-divider and
current-divider circuits.

3 Be able to use voltage division and current
division appropriately to solve simple circuits.
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when added to a circuit to measure current; be
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when added to a circuit to measure voltage.

5 Understand how a Wheatstone bridge is used to

measure resistance.

6 Know when and how to use delta-to-wye
equivalent circuits to solve simple circuits.
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Simple Resistive Circuits

Our analytical toolbox now contains Ohm’s law and Kirchhoff’s
laws. In Chapter 2 we used these tools in solving simple circuits.
In this chapter we continue applying these tools, but on more-
complex circuits. The greater complexity lies in a greater number
of elements with more complicated interconnections. This chap-
ter focuses on reducing such circuits into simpler, equivalent cir-
cuits. We continue to focus on relatively simple circuits for two
reasons: (1) It gives us a chance to acquaint ourselves thoroughly
with the laws underlying more sophisticated methods, and (2) it
allows us to be introduced to some circuits that have important
engineering applications.

The sources in the circuits discussed in this chapter are lim-
ited to voltage and current sources that generate either constant
voltages or currents; that is, voltages and currents that are invari-
ant with time. Constant sources are often called de sources. The
dc stands for direct current, a description that has a historical basis
but can seem misleading now. Historically, a direct current was
defined as a current produced by a constant voltage. Therefore, a
constant voltage became known as a direct current, or dc, voltage.
The use of dc for constant stuck, and the terms dc current and dc
voltage are now universally accepted in science and engineering
to mean constant current and constant voltage.
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Practical Perspective
A Rear Window Defroster
The rear window defroster grid on an automobile is an exam-
ple of a resistive circuit that performs a useful function. One '. Z
such grid structure is shown on the left of the figure here. The ’ f
grid conductors can be modeled with resistors, as shown on
the right of the figure. The number of horizontal conductors
varies with the make and model of the car but typically ranges
from 9 to 16.

How does this grid work to defrost the rear window? How ‘
are the properties of the grid determined? We will answer
these questions in the Practical Perspective at the end of this
chapter. The circuit analysis required to answer these ques-
tions arises from the goal of having uniform defrosting in
both the horizontal and vertical directions.
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58 Simple Resistive Circuits

Figure 3.2 A Series resistors with a single unknown
current .

Figure 3.3 A A simplified version of the circuit shown
in Fig. 3.2.

Combining resistors in series >

a8 R4 <= N RL'(]

h R; Rg Rs h

Figure 3.4 A The black box equivalent of the circuit
shown in Fig. 3.2.

3.1 Resistors in Series

In Chapter 2, we said that when just two elements connect at a single
node, they are said to be in series. Series-connected circuit elements carry
the same current. The resistors in the circuit shown in Fig. 3.1 are con-
nected in series. We can show that these resistors carry the same current
by applying Kirchhoff’s current law to each node in the circuit. The series
interconnection in Fig. 3.1 requires that

is = i| = “iz = i3 = i4 = _is = —i(, = i';, (31)

which states that if we know any one of the seven currents, we know them
all. Thus we can redraw Fig. 3.1 as shown in Fig. 3.2, retaining the identity
of the single current i,.

To find i, we apply Kirchhoff’s voltage law around the single closed
loop. Defining the voltage across each resistor as a drop in the direction of
i, gives

-V l._\‘Rl + lISRZ + i‘vR::, + l._,‘R4 + iSR5 + l'l‘.R(, + 1'5R7 =0, (32)
or
Vg = l&(RI + RZ + R3 + R4 + RS + Rﬁ + R';). (33)

The significance of Eq. 3.3 for calculating i, is that the seven resistors can
be replaced by a single resistor whose numerical value is the sum of the
individual resistors, that is,

I{cqul+R2+R3+R4+R5+R(,+R7 (3.4)
and

v, = i,R (3.5)

ey

Thus we can redraw Fig. 3.2 as shown in Fig. 3.3.
In general, if k resistors are connected in series, the equivalent single

resistor has a resistance equal to the sum of the & resistances, or

k
Ry = ERi=R1+R2+ <+ + Ry. (3.6)

Note that the resistance of the equivalent resistor is always larger than
that of the largest resistor in the series connection.

Another way to think about this concept of an equivalent resistance is
to visualize the string of resistors as being inside a black box. (An electri-
cal engineer uses the term black box to imply an opaque container; that is,
the contents are hidden from view. The engineer is then challenged to
model the contents of the box by studying the relationship between the
voltage and current at its terminals.) Determining whether the box con-
tains k resistors or a single equivalent resistor is impossible. Figure 3.4
illustrates this method of studying the circuit shown in Fig. 3.2.



3.2 Resistors in Parallel

When two elements connect at a single node pair, they are said to be in
parallel. Parallel-connected circuit elements have the same voltage across
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected
in parallel. Don’t make the mistake of assuming that two elements are
parallel connected merely because they are lined up in parallel in a circuit
diagram. The defining characteristic of parallel-connected elements is that
they have the same voltage across their terminals. In Fig. 3.6, you can see
that R; and R; are not parallel connected because, between their respec-
tive terminals, another resistor dissipates some of the voltage.

Resistors in parallel can be reduced to a single equivalent resistor
using Kirchhoff’s current law and Ohm’s law, as we now demonstrate. In
the circuit shown in Fig. 3.5, we let the currents iy, i, i3, and i4 be the cur-
rents in the resistors R through Ry, respectively. We also let the positive
reference direction for each resistor current be down through the resistor,
that is, from node a to node b. From Kirchhoff’s current law,

l..\. = i1 + iz + i3 + l4 (3.7)

The parallel connection of the resistors means that the voltage across each
resistor must be the same. Hence, from Ohm’s law,

ilR[ = isz = i3R3 = i4R4 = V. (38)
Therefore,
. Vs
i = —,
1 R,
. vS
Iy = —,
2 R,
v)‘
i = g, and
= 3.9)
iy = —. .
‘= Re (
Substituting Eq. 3.9 into Eq. 3.7 yields
S S I S (3.10)
* "\R, R, Ry RS '
{from which

== — =+ — 4+ — (3.11)

Equation 3.11 is what we set out to show: that the four resistors in the cir-
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con-
nected in parallel, Eq. 3.11 becomes

RN T U B 612
ch i=1 Ri Rl RZ Rk. ’

Note that the resistance of the equivalent resistor is always smaller than the
resistance of the smallest resistor in the parallel connection. Sometimes,

3.2 Resistors in Parallel

Figure 3.5 A Resistors in parallel.

R,

Ry R;3

Figure 3.6 A Nonparallel resistors.

}um

L~

Vs § Req

ce
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Figure 3.7 A Replacing the four parallel resistors shown

in Fig. 3.5 with a single equivalent resistor.

<« Combining resistors in parallel
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Simple Resistive Circuits

[ R
p

using conductance when dealing with resistors connected in parallel is more

convenient. In that case, Eq. 3.12 becomes
R R k
] § 2 ch=zGi:Gl+G2+"'+Gk‘ (313)
i=1
b N Many times only two resistors are connected in parallel. Figure 3.8
illustrates thi ial casc. € d i i
Figure 3.8 A Two resistors connected in paralleL. ;{2 (11153rz112<?s is special casc. We calculate the equivalent resistance from
11, 1 _R+R .14
ch Rl RZ R]RZ ' ‘
or
R\R;
Ry =—"—+. .15
‘4 R+ R, (3.15)

2R Applying Series-Parallel Simplification

Thus for just two resistors in parallel the equivalent resistance equals
the product of the resistances divided by the sum of the resistances.
Remember that you can only use this result in the special case of just two
resistors in parallel. Example 3.1 illustrates the usefulness of these results.

Find i;, |, and i, in the circuit shown in Fig. 3.9.

Solution

We begin by noting that the 3 () resistor is in series
with the 6 () resistor. We therefore replace this series
combination with a 9 €} resistor, reducing the circuit
to the one shown in Fig. 3.10(a). We now can replace
the paralle] combination of the 9 () and 18 Q resis-
tors with a single resistance of (18 X 9)/(18 + 9), or
6 Q. Figure 3.10(b) shows this further reduction of
the circuit. The nodes x and y marked on all diagrams
facilitate tracing through the reduction of the circuit.

From Fig. 3.10(b) you can verify that i; equals
120/10, or 12 A. Figure 3.11 shows the result at this
point in the analysis. We added the voltage v, to
help clarity the subsequent discussion. Using Ohm’s
law we compute the value of v;:

v = (12)(6) = 72 V. (3.16)
But v, is the voltage drop from node x to node y, so

we can return to the circuit shown in Fig. 3.10(a)
and again use Ohm’s law to calculate i; and #,. Thus,

. o 72

=-Ll=-2= 3.17
TR TN G17)
. O] 72
l2=—9—=?=8A. (3.18)

We have found the three specified currents by using
series-parallel reductions in combination with
Ohm’s law.

120V

@ >

120V

< @

120V

Figure 3.10 A A simplification of the circuit shown in Fig. 3.9.

40 x
MW—e
W
12A
120V v, 360
y

Figure 3.11 A The circuit of Fig. 3.10(b) showing the numerical
value of i .




3.3

Before leaving Example 3.1, we suggest that you take the time to
show that the solution satisfies Kirchhoff’s current law at every node and
Kirchhoff’s voltage law around every closed path. (Note that there are
three closed paths that can be tested.) Showing that the power delivered
by the voltage source equals the total power dissipated in the resistors also
is informative. (See Problems 3.8 and 3.9.)

v ASSESSMENT PROBLEM

The Voltage-Divider and Current-Divider Circuits 61

Objective 1—Be able to recognize resistors connected in series and in parallel

3.1 For the circuit shown, find (a) the voltage v,
(b) the power delivered to the circuit by the
current source, and (c) the power dissipated in
the 10 £} resistor.

Answer: (a) 60V,

720 68

(b) 300 W:
(c) 57.6'W.

NOTE: Also try Chapter Problems 3.1-3.4.

3.3 The Voltage-Divider
and Current-Divider Circuits

At times—especially in electronic circuits—developing more than one
voltage level from a single voltage supply is necessary. One way of doing
this is by using a voltage-divider circuit, such as the one in Fig. 3.12.

We analyze this circuit by directly applying Ohm's law and
Kirchhoff’s laws. To aid the analysis, we introduce the current i as shown in
Fig. 3.12(b). From Kirchhoff’s current law, R; and R, carry the same cur-
rent. Applying Kirchhoff’s voltage law around the closed loop yields

v, = iRy + iRy, (3.19)
or
= s 3.20
! R+ Ry (3.20)

Now we can use Ohm'’s law to calculate »; and v,:

—_ R — . S 3.21
v = v“R, + R, (3.21)
=iR, = 2 3.22

4 .
v2 z ‘Rl + R, (3.22)

Equations 3.21 and 3.22 show that v, and v, are fractions of v,. Each frac-
tion is the ratio of the resistance across which the divided voltage is
defined to the sum of the two resistances. Because this ratio is always less
than 1.0, the divided voltages v; and v, are always less than the source
voltage v,.

(a) (®)

Figure 3.12 A (a) A voltage-divider circuit and (b) the
voltage-divider circuit with current J indicated.
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R,

1@ :

A

Figure 3.13 A A voltage divider connected to a load R, .

the maximum and minimum value of »,,.

e

100kQ 2 R,

R, v, §RL

If you desire a particular value of v,, and v, is specified, an infinite
number of combinations of Ry and R, yield the proper ratio. For example,
suppose that v, equals 15V and v, is to be 5 V. Then v,/v, = % and, from
Eq.3.22, we find that this ratio is satisfied whenever R, = %R]. Other fac-
tors that may enter into the selection of R, and hence R, include the
power losses that occur in dividing the source voltage and the effects of
connecting the voltage-divider circuit to other circuit components.

Consider connecting a resistor R; in parallel with R,, as shown in
Fig. 3.13. The resistor R; acts as a load on the voltage-divider circuit. A
load on any circuit consists of one or more circuit elements that draw
power from the circuit. With the load R, connected, the expression for the
output voltage becomes

R

p— 4
v, = R+ Reg Vg, (3.23)
where
RyR,
=—_. 3.24
Ra =R, + R, (3.24)
Substituting Eq. 3.24 into Eq. 3.23 yields
R
v, 2 (3.25)

TR+ (R/R)] + Ry ™

Note that Eq. 3.25 reduces to Eq. 3.22 as R; — 00, as it should.
Equation 3.25 shows that, as long as R; >> R,, the voltage ratio v, /v, is
cssentially undisturbed by the addition of the load on the divider.

Another characteristic of the voltage-divider circuit of interest is the
sensitivity of the divider to the tolerances of the resistors. By tolerance we
mean a range of possible values. The resistances of commercially avail-
able resistors always vary within some percentage of their stated value.
Example 3.2 illustrates the effect of resistor tolerances in a voltage-
divider circuit.

m Analyzing the Voltage-Divider Circuit

The resistors used in the voltage-divider circuit Solution
shown in Fig. 3.14 have a tolerance of +10%. Find

From Eq.3.22, the maximum value of v, occurs when
R, is 10% high and R; is 10% low, and the minimum
value of v, occurs when R, is 10% low and R, is
10% high. Therefore

_ ooty oo
vo(max) = y157 5y 5 = 8302V,
100)(90
'v,,(min) = % = 76.60 V.

"’l}
Thus, in making the decision to use 10% resistors in

o |

@

Figure 3.14 A The circuit for Example 3.2.

this voltage divider, we recognize that the no-load
output voltage will lic between 76.60 and 83.02 V.




3.3

The Current-Divider Circuit

The current-divider circuit shown in Fig. 3.15 consists of two resistors con-
nected in parallel across a current source. The current divider is designed
to divide the current i, between R; and R,. We find the relationship
between the current i; and the current in each resistor (that is, {; and i,) by
directly applying Ohm’s law and Kirchhoff’s current law. The voltage
across the parallel resistors is

‘R = iR RR, . 326
= = = ——1.. .
v =R = R, R, + R,” (3.26)
From Eq. 3.26,
i R (3.27
i = ——i, .
""RI+ R )
= — 3.28
h = R, + Rzls- (3.28)

Equations 3.27 and 3.28 show that the current divides between two resis-
tors in parallel such that the current in one resistor equals the current
entering the parallel pair multiplied by the other resistance and divided by
the sum of the resistors. Example 3.3 illustrates the use of the current-
divider equation.

m Analyzing a Current-Divider Circuit

Find the power dissipated in the 6 £ resistor shown
in Fig. 3.16.

10A
Solution

First, we must find the current in the resistor by sim-
plifying the circuit with series-parallel reductions.
Thus, the circuit shown in Fig. 3.16 reduces to the
one shown in Fig. 3.17. We find the current i, by
using the formula for current division:

and the power dissipated in the 6 ) resistor is
p = (3.2)%6) = 6144 W.

The Voltage-Divider and Current-Divider Circuits

Figure 3.15 A The current-divider circuit.

1.6Q
—W

16 O

40

Figure 3.16 A The circuit for Example 3.3.

16
i, = 10) = 8 A.
b= Tg 4 a¢ ) =38 )
Note that i, is the current in the 1.6} resistor in )
. ’ .. . 10 Q 40 o
Fig. 3.16. We now can further divide i, between the A 16 gll
6 ) and 4 € resistors. The current in the 6 () resistor is
i = - i 4(8) ~32A. Figure 3.17 A A simplification of the circuit shown in Fig. 3.16.
D
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 ASSESSMENT PROBLEMS

Objective 2—Know how to design simple voltage-divider and current-divider circuits

3.2 a) Find the no-load value of v, in the
circuit shown.

b) Find v, when R; is 150 k).
c) How much power is dissipated in t

3.3 a) Find the value of R that will cause 4 A of
current to flow through the 80 resistor in
the circuit shown.

he 25 kQ b) How much power will the resistor R from

resistor if the load terminals are accidentally part (a) need to dissipate?

short-circuited?

d) What is the maximum power dissipated in

the 75 k) resistor?

25k

c) How much power will the current source
generate for the value of R from part (a)?

60 O

40 0

e

+eo

75k

S

[ W

20A<I> RZ

R, 80 Q)

Answer: (a) 150V,
(b) 13333 V;
(c) 1.6 W,
(d) 0.3 W.

Answer: (a) 304Q;
(b) 7680 W,
(c) 33,600 W.

NOTE: Also try Chapter Problems 3.15, 3.16, and 3.18.

R, R,
.—+_Wv M— +
Circuit | \ R,évj
i
—1 v AN -
Rn Rn—l

Figure 3.18 A Circuit used to illustrate voltage division.

3.4 Voltage Division
and Current Division

We can now generalize the results from analyzing the voltage divider cir-
cuit in Fig. 3.12 and the current-divider circuit in Fig. 3.15. The generaliza-
tions will yield two additional and very useful circuit analysis techniques
known as voltage division and current division. Consider the circuit shown
in Fig. 3.18.

The box on the left can contain a single voltage source or any other
combination of basic circuit elements that results in the voltage v shown in
the figure. To the right of the box are n resistors connected in series. We
are interested in finding the voltage drop v; across an arbitrary resistor R;
in terms of the voltage v. We start by using Ohm’s law to calculate i, the
current through all of the resistors in series, in terms of the current v and
the »n resistors:

v v

"R tR+--+R, Ry

i (3.29)

The equivalent resistance, R.q, is the sum of the n resistor values
because the resistors are in series, as shown in Eq. 3.6. We apply Ohm’s



law a second time to calculate the voltage drop v; across the resistor R;,
using the current i calculated in Eq. 3.29:

v, = iR, = —v. (3.30)

Note that we used Eq. 3.29 to obtain the right-hand side of Eq. 3.30.
Equation 3.30 is the voltage division equation. It says that the voltage
drop w; across a single resistor R; from a collection of series-connected
resistors is proportional to the total voltage drop v across the set of series-
connected resistors. The constant of proportionality is the ratio of the sin-
gle resistance to the equivalent resistance of the series connected set of
resistors, or Rj/ R

Now consider the circuit shown in Fig. 3.19. The box on the left can
contain a single current source or any other combination of basic circuit
elements that results in the current i shown in the figure. To the right of
the box are # resistors connected in parallel. We are interested in finding
the current {; through an arbitrary resistor R; in terms of the current i. We
start by using Ohm’s law to calculate v, the voltage drop across each of the
resistors in parallel, in terms of the current i and the n resistors:

v = (RRA ... IR,) = iRoq (3.31)

The equivalent resistance of 7 resistors in parallel, R.q, can be calculated
using Eq. 3.12. We apply Ohm’s law a second time to calculate the current
i; through the resistor R}, using the voltage v calculated in Eq. 3.31:

=i (3.32)

A
"R R

Note that we used Eq. 3.31 to obtain the right-hand side of Eq. 3.32.
Equation 3.32 is the current division equation. It says that the current i
through a single resistor R; from a collection of parallel-connected resis-
tors is proportional to the total current i supplied to the set of parallel-
connected resistors. The constant of proportionality is the ratio of the
equivalent resistance of the parallel-connected set of resistors to the single
resistance, or R.q/R;. Note that the constant of proportionality in the cur-
rent division equation is the inverse of the constant of proportionality in
the voltage division equation!

Example 3.4 uses voltage division and current division to solve for
voltages and currents in a circuit.

Circuit

Figure 3.19 A Circuit used to illustrate current division.

3.4 Voltage Division and Current Division

<« Voltage-division equation

<« Current-division equation

65
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m Using Voltage Division and Current Division to Solve a Circuit

Use current division to find the current i, and use .
voltage division to find the voltage v, for the circuit 400 vl
- 360
in Fig. 3.20. +
SACD 1003 1003 2403 v
Solution 440 003, -
I’l)
We can use Eq. 3.32 if we can find the equivalent =

A A @

resistance of the four parallel branches containing
resistors. Symbolically, Figure 3.20 A The circuit for Example 3.4.

Req = (36 + 44)[10]/(40 + 10 + 30)[24

= 80]10(80[24 = 1 =60, This is also the voltage drop across the branch con-
1 UL IR taining the 40 £}, the 10 €, and the 30 €} resistors in
8 10 & 24 series. We can then use voltage division to determine

the voltage drop v, across the 30 € resistor given

Applying Eq. 3.32,
pPyInE =4 that we know the voltage drop across the series-

i, = ﬁ(g A) = 2A. connected resistors, using Eq. 3.30. To do this, we
24 recognize that the equivalent resistance of the
We can use Ohm’s law to find the voltage drop series-connected resistors is 40 + 10 + 30 = 80 (:

across the 24 () resistor:

30
v = (24)(2) = 48 V. v, = %(48 V) =18 V.

 ASSESSMENT PROBLEM

Objective 3—Be able to use voltage and current division to solve simple circuits

3.4 a) Use voltage division to determine the 40 Q 50 )
voltage v, across the 40 ) resistor in the N 1”‘“‘ W

circuit shown.

+
60V C_) 20 0 300 1008
b) Use v, from part (a) to determine the cur-

rent through the 40 () resistor, and use this 700
current and current division to calculate the Wv ¢
current in the 30 () resistor.

Answer: (a) 20V,

¢) How much power is absorbed by the 50 ( (b) 166.67 mA;
resistor? (c) 347.22 mW.

NOTE: Also try Chapter Problems 3.23 and 3.24.

3.5 Measuring Voltage and Current

When working with actual circuits, you will often need to measure volt-
ages and currents. We will spend some time discussing several measuring
devices here and in the next section, because they are relatively simple to
analyze and offer practical examples of the current- and voltage-divider
configurations we have just studied.

An ammeter is an instrument designed to measure current; it is placed
in series with the circuit element whose current is being measured. A
voltmeter is an instrument designed to measure voltage; it is placed in par-
allel with the element whose voltage is being measured. An ideal ammeter
or voltmeter has no effect on the circuit variable it is designed to measure.



That is, an ideal ammeter has an equivalent resistance of 0 £ and func-
tions as a short circuit in series with the element whose current is being
measured. An ideal voltmeter has an infinite equivalent resistance and
thus functions as an open circuit in parallel with the element whose volt-
age is being measured. The configurations for an ammeter used to meas-
ure the current in Ry and for a voltmeter used to measure the voltage in R,
are depicted in Fig. 3.21. The ideal models for these meters in the same cir-
cuit are shown in Fig, 3.22.

There are two broad categories of meters used to measure continuous
voltages and currents: digital meters and analog meters. Digital meters meas-
ure the continuous voltage or current signal at discrete points in time, called
the sampling times. The signal is thus converted from an analog signal, which
is continuous in time, to a digital signal, which exists only at discrete instants
in time. A more detailed explanation of the workings of digital meters is
beyond the scope of this text and course. However, you are likely to see and
use digital meters in lab settings because they offer several advantages over
analog meters. They introduce less resistance into the circuit to which they
are connected, they are easier to connect, and the precision of the measure-
ment is greater due to the nature of the readout mechanism.

Analog meters are based on the dAr sonval meter movement which
implements the readout mechanism. A d’Arsonval meter movement con-
sists of a movable coil placed in the field of a permanent magnet. When cur-
rent flows in the coil, it creates a torque on the coil, causing it to rotate and
move a pointer across a calibrated scale. By design, the deflection of the
pointer is directly proportional to the current in the movable coil. The coil is
characterized by both a voltage rating and a current rating. For example,
one cominercially available meter movement is rated at 50 mV and 1 mA.
This means that when the coil is carrying 1 mA, the voltage drop across the
coil is 50 mV and the pointer is deflected to its full-scale position. A
schematic illustration of a d’Arsonval meter movement is shown in Fig, 3.23.

An analog ammeter consists of a d’Arsonval movement in parallel
with a resistor, as shown in Fig. 3.24. The purpose of the parallel resistor is
to limit the amount of current in the movement’s coil by shunting some of
it through R 4. An analog voltmeter consists of a d’Arsonval movement in
series with a resistor, as shown in Fig. 3.25. Here, the resistor is used to
limit the voltage drop across the meter’s coil. In both meters, the added
resistor determines the full-scale reading of the meter movement.

From these descriptions we see that an actual meter is nonideal; both the
added resistor and the meter movement introduce resistance in the circuit to
which the meter is attached. In fact, any instrument used to make physical
measurements extracts energy from the system while making measurements.
The more energy extracted by the instruments, the more severely the meas-
urement is disturbed. A real ammeter has an equivalent resistance that is not
zero, and it thus effectively adds resistance to the circuit in series with the ele-
ment whose current the ammeter is reading. A real voltmeter has an equiva-
lent resistance that is not infinite, so it effectively adds resistance to the
circuit in parallel with the element whose voltage is being read.

How much these meters disturb the circuit being measured depends
on the effective resistance of the meters compared with the resistance in
the circuit, For example, using the rule of 1/10th, the effective resistance of
an ammeter should be no more than 1/10th of the value of the smallest
resistance in the circuit to be sure that the current being measured is
nearly the same with or without the ammeter. But in an analog meter, the
value of resistance is determined by the desired full-scale reading we wish
to make, and it cannot be arbitrarily selected. The following examples
illustrate the calculations involved in determining the resistance needed in
an analog ammeter or voltmeter. The examples also consider the resulting
effective resistance of the meter when it is inserted in a circuit.
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Ry
AW\~

Figure 3.21 A An ammeter connected to measure the
current in Ry ,and & voltmeter connected to measure the
voltage across R;.

R] -

Figure 3.22 A A short-circuit model for the ideal amme-
ter, and an open-circuit model for the ideal voltmeter.

Scale
¥

Moveable
coil

Permanent

/ magnet

Restoring spring

Magnelic steel core

Figure 3.23 A A schematic diagram of a d'Arsonval
meter movement.

d"Arsonval
movement

Ammeter
terminals

Figure 3.24 A A dc ammeter circuit.

R,
d’Arsonval

movement

Voltmeter
terminals

Figure 3.25 A A dc voltmeter circuit.
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m Using a d’Arsonval Ammeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in an ammeter with a full-scale reading of
10 mA. Determine R ;.

b) Repeat (a) for a full-scale reading of 1 A.

c) How much resistance is added to the circuit
when the 10 mA ammeter is inserted to measure
current?

d) Repeat (c) for the 1 A ammeter.

Solution

a) From the statement of the problem, we know
that when the current at the terminals of the
ammeter is 10 mA, 1 mA is flowing through the
meter coil, which means that 9 mA must be
diverted through R,. We also know that when
the movement carries 1 mA, the drop across its
terminals is 50 mV. Ohm’s law requires that

9 X 107*R, = 50 X 107%,
or

R, = 50/9 = 5.555 Q0.

b) When the full-scale deflection of the ammeter is
1 A, R, must carry 999 mA when the movement
carries 1 mA. In this case, then,

999 x 1073R, = 50 X 1073,
or
R4 = 50/999 =~ 50.05 mQ.

c) Let R, represent the equivalent resistance of the
ammeter. For the 10 mA ammeter,

_ 50 mV .

= =5
" 10 mA @,
or, alternatively,
50)(50/9
JCDIC D N,
50 + (50/9)
d) For the 1 A ammeter
50 mV
mE A 0.050 Q,
or, alternatively,
50)(50/999
_ B0/ = 0.050 Q.

50 + (50/999)

SEILICICN  Using a d’Arsonval Voltmeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in a voltmeter in which the full-scale read-
ing is 150 V. Determine R,

b) Repeat (a) for a full-scale reading of 5 V.

¢) How much resistance does the 150 V meter
insert into the circuit?

d) Repeat (c) for the 5 V meter.

Solution

a) Full-scale deflection requires 50 mV across the
meter movement, and the movement has a resist-
ance of 50 ). Therefore we apply Eq. 3.22 with
R, = R,,R, = 50,v, = 150,and v, = 50 mV:

5350
50 X 107 = —R,, n 50(150).

Solving for R, gives

R, = 149950 Q.

b) For a full-scale reading of 5V,

. 50
X 107 = ———(5),
50 R, + 50 )

or
R, = 4950 Q.

c) If we let R,, represent the equivalent resistance
of the meter,

150 v
107*A
or, alternatively,

R,, = 149,950 + 50 = 150,000 Q.
d) Then,

R, = = 150,000 Q,

R, = % = 5000 €,
107° A
or, alternatively,

R,, = 4950 + 50 = 5000 0.
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v ASSESSMENT PROBLEMS

Objective 4—Be able to determine the reading of ammeters and voltmeters

3.5 a) Find the current in the circuit shown, 3.6 a) Find the voltage v across the 75 k() resistor

b) If the ammeter in Example 3.5(a) is used to in the circuit shown.

measure the current, what will it read? b) If the 150 V voltmeter of Example 3.6(a) is
used to measure the voltage, what will be
the reading?

15kQ
+

60V v $75kQ

Answer: (a) 10 mA; Answer: (a) S0V,
(b) 9.524 mA. (b) 46.15V.

NOTE: Also try Chapter Problems 3.31 and 3.35.

3.6 Measuring Resistance—
The Wheatstone Bridge

Many different circuit configurations are used to measure resistance. Here
we will focus on just one, the Wheatstone bridge. The Wheatstone bridge
circuit is used to precisely measure resistances of medium values, that is, in e
the range of 1) to 1 M{}. In commercial models of the Wheatstone -
bridge. accuracies on the order of +0.1% are possible. The bridge circuit
consists of four resistors, a dc voltage source, and a detector. The resistance
of one of the four resistors can be varied, which is indicated in Fig. 3.26 by
the arrow through R;. The dc voltage source is usually a battery, which is
indicated by the battery symbol for the voltage source v in Fig. 3.26. The  Figure 3.26 A The Wheatstone bridge circuit.
detector is generally a d’Arsonval movement in the microamp range and is
called a galvanometer. Figure 3.26 shows the circuit arrangement of the
resistances, battery, and detector where Ry, R, and R; are known resistors
and R, is the unknown resistor.

To find the value of R, we adjust the variable resistor R until there is
no current in the galvanometer. We then calculate the unknown resistor
from the simple expression

R, = =°R;. (3.33)

2|3

The derivation of Eq. 3.33 follows directly from the application of
Kirchhoff’s laws to the bridge circuit. We redraw the bridge circuit as
Fig. 3.27 to show the currents appropriate to the derivation of Eq. 3.33. —
When i, is zero, that is, when the bridge is balanced, Kirchhoff’s current T
law requires that

I = i3, (3.34)

=i, (3.35) Figure 3.27 A A balanced Wheatstone bridge (i, = 0).
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Now, because i, is zero, there is no voltage drop across the detector, and
therefore points a and b are at the same potential. Thus when the bridge is
balanced, Kirchhoff’s voltage law requires that

i3R3 = i.\’Rxa (3.36)

ilRl = izRg. (337)
Combining Eqs. 3.34 and 3.35 with Eq. 3.36 gives

i1R3 = l.sz. (3.38)

We obtain Eq. 3.33 by first dividing Eq. 3.38 by Eq. 3.37 and then solving
the resulting expression for R,:

Ry _ R« 3.39
R, R, (3.39)
from which
Ry
R. = —R.. .
X Rl R3 (3 40)

Now that we have verified the validity of Eq. 3.33, several comments
about the result are in order. First, note that if the ratio R,/ R, is unity, the
unknown resistor R, equals R;. In this case, the bridge resistor R; must
vary over a range that includes the value R,. For example, if the unknown
resistance were 1000 2 and R; could be varied from 0 to 100 Q, the bridge
could never be balanced. Thus to cover a wide range of unknown resistors,
we must be able to vary the ratio R,/R;. In a commercial Wheatstone
bridge, R, and R, consist of decimal values of resistances that can be
switched into the bridge circuit. Normally, the decimal values are
1, 10, 100, and 1000 £ so that the ratio R,/ R, can be varied from 0.001 to
1000 in decimal steps. The variable resistor R; is usually adjustable in inte-
gral values of resistance from 1 to 11,000 €.

Although Eq. 3.33 implies that R, can vary from zero to infinity, the
practical range of R, is approximately 1 Q to 1 MQ. Lower resistances are
difficult to measure on a standard Wheatstone bridge because of thermo-
clectric voltages generated at the junctions of dissimilar metals and
because of thermal heating effects —that is, *R effects. Higher resistances
are difficult to measure accurately because of leakage currents. In other
words, if R, is large, the current leakage in the electrical insulation may be
comparable to the current in the branches of the bridge circuit.

\/ASSESSMENT PROBLEM

Objective 5—Understand how a Wheatstone bridge is used to measure resistance

3.7  The bridge circuit shown is balanced when
Ry =100 Q, R, = 1000 €,and R; = 150 Q.
The bridge is energized from a 5V dc source.

a) What is the value of R,? =

b) Suppose each bridge resistor is capable of
dissipating 250 mW. Can the bridge be left
in the balanced state without exceeding the
power-dissipating capacity of the resistors, Answer:  (a) 1500 {;
thereby damaging the bridge? (b) yes.

NOTE: Also try Chapter Problem 3.51.



3.7 Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits

The bridge configuration in Fig. 3.26 introduces an interconnection of
resistances that warrants further discussion. If we replace the galvano-
meter with its equivalent resistance R,,, we can draw the circuit shown in
Fig. 3.28. We cannot reduce the interconnected resistors of this circuit to a
single equivalent resistance across the terminals of the battery if restricted
to the simple series or parallel equivalent circuits introduced earlier in this
chapter. The interconnected resistors can be reduced to a single equiva-
lent resistor by means of a delta-to-wye (A-to-Y) or pi-to-tee (7-to-T)
equivalent circuit.!

The resistors Ry, R, and R,, (or R3, R,, and R,) in the circuit shown
in Fig. 3.28 are referred to as a delta (A) interconnection because the
interconnection looks like the Greek letter A. It also is referred to as a
pi interconnection because the A can be shaped into a 7 without dis-
turbing the electrical equivalence of the two configurations. The clectri-
cal cquivalence between the A and = interconnections is apparent in
Fig. 3.29.

The resistors Ry, R,,, and R; (or R,, R,, and R,) in the circuit shown in
Fig. 3.28 are referred to as a wye (Y) interconnection because the inter-
connection can be shaped to look like the letter Y. It is easier to see the Y
shape when the interconnection is drawn as in Fig. 3.30. The Y configuration
also is referred to as a tee (T) interconnection because the Y structure can
be shaped into a T structure without disturbing the electrical equivalence of
the two structures. The electrical equivalence of the Y and the T configura-
tions is apparent from Fig. 3.30.

Figure 3.31 illustrates the A-to-Y (or 7 -to-T) equivalent circuit trans-
formation. Note that we cannot transform the A interconnection into the
Y interconncection simply by changing the shape of the interconnections.
Saying the A-connected circuit is equivalent to the Y-connected circuit
means that the A configuration can be replaced with a Y configuration to
make the terminal behavior of the two configurations identical. Thus if
each circuit is placed in a black box, we can’t tell by external mecasure-
ments whether the box contains a set of A-connected resistors or a set of
Y-connected resistors. This condition is true only if the resistance between
corresponding terminal pairs is the same for each box. For example, the
resistance between terminals a and b must be the same whether we use
the A-connected set or the Y-connected set. For each pair of terminals in
the A-connected circuit, the equivalent resistance can be computed using
series and parallel simplifications to yield

Ry = R(R, + Ry) _ R, + R 3.41
ab — R“+ Rh+ R(: - 1 2 ( )

_ Ra(RIJ + Rc) _
Ry = R, + R, + R, = R, + R;, (3.42)

_ Rh(Rc + Ru) _
Ra= % v R 1R -R*HR (3.43)

"'A and Y structures are present in a variety of useful circuits, not just resistive networks.
Hence the A-to-Y transformation is a helpful tool in circuit analysis.
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Figure 3.28 A A resistive network generated by a
Wheatstone bridge circuit.

R[, Ru RI; 1 eu

C C

Figure 3.29 A A A configuration viewed as a 7
configuration.

Figure 3.30 A AY structure viewed as a T structure.

R,
a b a
<~ R,
Rl: R‘,
C

Figure 3.31 A The A-to-Y transformation.
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Straightforward algebraic manipulation of Eqgs. 3.41-3.43 gives values
for the Y-connected resistors in terms of the A-connected resistors
required for the A-to-Y equivalent circuit:

o RuR

TR ¥R, + R (3.44)
R.R

R —_ ¢ (4 .

2R, * R, + R’ (3.45)
R R

R; ah (3.46)

3T R, + R, + R~

Reversing the A-to-Y transformation also is possible. That is, we can start
with the Y structure and replace it with an equivalent A structure. The
expressions for the three A-connected resistors as functions of the three
Y-connected resistors are

_ Rle + R2R3 + R3R1

R, = : .
u R, (3.47)
R{R, + RyRy + R:R
R, = FiRe & Ros + Rofy (3.48)
Ry
RiRy + R,R; + RsR
R, = -2 ;3 L (3.49)
3

Example 3.7 illustrates the use of a A-to-Y transformation to simplify
the analysis of a circuit.

FENDHICKAE Applying a Delta-to-Wye Transform

source in the circuit shown in Fig. 3.32.

Figure 3.32 A The circuit for Example 3.7.

Solution

Find the current and power supplied by the 40 V

resistances, defined in Fig. 3.33, from Eqgs. 3.44 to

3.46. Thus,
R1=52§%§=50Q
= BE5 Lo
R3=E%§£§=IOQ

Substituting the Y-resistors into the circuit
shown in Fig. 3.32 produces the circuit shown in
Fig. 3.34. From Fig. 3.34, we can easily calculate the
resistance across the terminals of the 40 V source by
series-parallel simplifications:
(50)(50)

100

The final step is to note that the circuit reduces to
an 80 Q resistor across a 40 V source, as shown in
Fig. 3.35, from which it is apparent that the 40 V
source delivers 0.5 A and 20 W to the circuit.

Ry =55+ = 80 Q.

We are interested only in the current and power
drain on the 40 V source, so the problem has been
solved once we obtain the equivalent resistance
across the terminals of the source. We can find this
equivalent resistance easily after replacing either
the upper A (100, 125,25 Q) or the lower A (40,
25, 37.5 Q) with its equivalent Y. We choose to
replace the upper A. We then compute the three Y

100 © 125 0

ol

250

Figure 3.33 A The equivalent Y resistors.
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5O
AW + -1,
s0v_="4 3800
+ ———
W0V = Figure 3.35 A The final step in the simplification of the circuit

T

shown in Fig. 3.32.

Figure 3.34 A A transformed version of the circuit shown in
Fig. 3.32.

' ASSESSMENT PROBLEM

Objective 6—Know when and how to use delta-to-wye equivalent circuits

3.8  Use a Y-to-A transformation to find the voltage
v in the circuit shown.

Answer: 35V.

NOTE: Also try Chapter Problems 3.53, 3.56, and 3.58.

Practical Perspective

A Rear Window Defroster

A model of a defroster grid is shown in Fig. 3.36, where x and y denote the -
horizontal and vertical spacing of the grid elements. Given the dimensions R,
of the grid, we need to find expressions for each resistor in the grid such :Af,-l A
that the power dissipated per unit length is the same in each conductor. R, R- 5v’ Ry
This will ensure uniform heating of the rear window in both the x and y WA~
directions. Thus we need to find values for the grid resistors that satisfy the R,%fi,, ) ;" %Rb
following relationships: ‘\N;
Rl.%’; i, 77R:" %R(.
R R R R AW
) LY _ =2 21 _ 2 31 _ 2 4 2 5 .
— | =5l—])=5l—])=5Kl— )= — 1, 3.50 e
ll<x> 2\ 7 3<x) 4(x> ls(x) (3.50) R(% R_u %Rd
. —AWA ®
R
el
y

N\

_ 2 Rc 2 Rd . .
=l —=i{—) (3.52) Figure 3.36 A Model of a defroster grid.

(3.53)

g
®
®
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Figure 3,37 A A simplified model of the
defroster gnd.

We begin the analysis of the grid by taking advantage of its structure.
Note that if we disconnect the lower portion of the circuit (i.e., the resistors
R., Ry, Ry, and Rs), the currents iy, iy, i3, and i, are unaffected. Thus, instead
of analyzing the circuit in Fig. 3.36, we can analyze the simpler circuit in
Fig. 3.37. Note further that after finding R,, R,, R3;, R, and R,, in the circuit
in Fig. 3.37, we have also found the values for the remaining resistors, since

R4 = RZ:
Rs = Ry,
o (3.54)
R(_. = Rb’
Rd = R,,.

Begin analysis of the simplified grid circuit in Fig. 3.37 by writing
expressions for the currents iy, iy, i3, and i,. To find i, describe the equiva-
lent resistance in parallel with Rj:

Ry(Ry + 2R,)
R, + R, + 2R,

_ (Ry + 2R,))(R; + 2Rp) + 2R3R,,

e=2RIJ+

3.55
(Ry + R, + 2R,) (3.59)
For convenience, define the numerator of Eq. 3.55 as
D = (Rl + 2Ra)(R2 + 2Rb) + 2R2R],, (356)
and therefore
D
R, = . 3.57
¢ (R + R, +2R) (3:57)
It follows directly that
_Vae
lp = Re
Va(Ry + + 2R
- dc( 1 RZ a). (3.58)

D

Expressions for i; and i, can be found directly from i, using current
division. Hence

. iRy ~ VacRy
"SR tR,+2R, D’ (3.59)
and
_ (R +2R;)  Vu(Ry + 2R,)
i = = ) (3.60)
(Ry + R, + 2R)) D
The expression for i3 is simply
. Vdc
= . 3.61
i3 R (3.61)

Now we use the constraints in Eqs. 3.50-3.52 to derive expressions for
R, Ry, R, and R; as functions of R;. From Eg. 3.51,

R, R

1

y X



or
R, = 2R, = oR,,
p
where
o= y/x. (3.62)
Then from Eq. 3.50 we have
i \?
Rz = | R]. (363)
I
The ratio (Z;/i,) is obtained directly from Egs. 3.59 and 3.60:
1 R R
ho_ 2 2 (3.64)

ih R, +2R, R, +20R

When Eq. 3.64 is substituted into Eq. 3.63, we obtain, after some algebraic

manipulation (see Problem 3.69),
R, = (1 + 20)*R;. (3.65)

The expression for R, as a function of R, is derived from the constraint
imposed by Eg. 3.52, namely that

it \2
R,=|—]R, (3.66)
p
The ratio (i,/i)) is derived from Egs. 3.58 and 3.59. Thus,
/ R
1. 2 (3.67)

in, (R + R, +2R)’
When Eq. 3.67 is substituted into Eq. 3.66, we obtain, after some algebraic
manipulation (see Problem 3.69),
_q+ 20)’0 R,
41 + o)?

Finally, the expression for R; can be obtained from the constraint given
in Eq. 3.50, or

b (3.68)

: \2
Ry = (1—') Ry, (3.69)
I3
where
i_1 _ RR;
i3 D

Once again, after some algebraic manipulation (see Problem 3.70), the
expression for R; can be reduced to

(1 +20)*

s ol (3.70)

3

The results of our analysis are summarized in Table 3.1.

NOTE:  Assess your understanding of the Practical Perspective by trying Chapter
Problems 3.72-3.74.

Practical Perspective

TABLE 3.1 Summary of Resistance
Equations for the Defroster Grid

Resistance Expression

Rﬂ G‘Rl

R (1 + 20)’0R,

o 41 + o)

R, (1 + 20)°R,
1+ 20)*
a1+ o)

where o = y/x

75
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Summarl

+ Series resistors can be combined to obtain a single
equivalent resistance according to the equation

k
Ry = ZR,~=R1+R2+ o+ Ry

(See page 58.)

+ Parallel resistors can be combined to obtain a single
equivalent resistance according to the equation

1 11 1

k
1
—=—+ —+ - + —.
ch 1=le Rl RZ Rk

1

When just two resistors are in parallel, the equation for
equivalent resistance can be simplified to give

R = RiRy
“7 R+ R,

(See pages 59-60.)

+ When voltage is divided between series resistors, as
shown in the figure, the voltage across each resistor can
be found according to the equations

v Ry
—
"TRIAR T
R, ’
v =
° R +R
(See page 61.)

» When current is divided between parallel resistors, as
shown in the figure, the current through each resistor
can be found according to the equations

. R
HT R AR
. Ry, .
= ——i.
TR+ R

(See page 63.)

+ Voltage division is a circuit analysis tool that is used to
find the voltage drop across a single resistance from a

collection of series-connected resistances when the volt-
age drop across the collection is known:

¢q

where v; is the voltage drop across the resistance R;
and v is the voltage drop across the series-connected
resistances whose equivalent resistance is Req. (See
page 65.)

Current division is a circuit analysis tool that is used to
find the current through a single resistance from a col-
lection of parallel-connected resistances when the cur-
rent into the collection is known:

RCQ .

j

where i; is the current through the resistance R; and i is
the current into the parallel-connected resistances
whose equivalent resistance is R.. (See page 65.)

A voltmeter measures voltage and must be placed in par-
allel with the voltage being measured. An ideal voltmeter
has infinite internal resistance and thus does not alter the
voltage being measured. (See page 66.)

An ammeter measures current and must be placed in
series with the current being measured. An ideal amme-
ter has zero internal resistance and thus does not alter
the current being measured. (See page 66.)

Digital meters and analog meters have internal resist-
ance, which influences the value of the circuit variable
being measured. Meters based on the d’Arsonval meter
movement deliberately include internal resistance as a
way to limit the current in the movement’s coil. (See
page 67.)

The Wheatstone bridge circuit is used to make precise
measurements of a resistor’s value using four resistors, a dc
voltage source, and a galvanometer. A Wheatstone bridge
is balanced when the resistors obey Eq. 3.33, resulting in
a galvanometer reading of 0 A. (See page 69.)

A circuit with three resistors connected in a A configu-
ration (or a 7 configuration) can be transformed into an
equivalent circuit in which the three resistors are Y con-
nected (or T connected). The A-to-Y transformation is
given by Eqgs. 3.44-3.46; the Y-to-A transformation is
given by Eqs. 3.47-3.49. (See page 72.)



Problems

Sections 3.1-3.2 33

3.1 For each of the circuits shown,
a) identify the resistors connected in series,

b) simplify the circuit by replacing the series-
connected resistors with equivalent resistors.

34

35
PSPICE
MULTISIM

3.6
PSPICE
MULTISIM

3.2 For each of the circuits shown in Fig. P3.2,
a) identify the resistors connected in parallel,
b) simplify the circuit by replacing the parallel-
connected resistors with equivalent resistors.

77

Problems

Find the equivalent resistance seen by the source in
each of the circuits of Problem 3.1.

Find the equivalent resistance seen by the source in
each of the circuits of Problem 3.2.

Find the equivalent resistance R, for each of the
circuits in Fig. P3.5.

Find the equivalent resistance R, for each of the
circuits in Fig. P3.6.

Figure P3.1
200 mV
60 120 90 300 Q2
— + AM—¢
10V 40 70 3mA 500 600 Q) 1.2kQ
400 O
L VWA *
(a) (©)
Figure P3.2
10Q 5kQ
~ ~ 2500
50 mA
600022 20002 02A 30003 1508
(©)
Figure P3.5
100
a
5Q 2080
60
b
(a)
Figure P3.6 140 300
120 90 « A
30
a
200 27Q 240
b
300 120

(c)
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3.7
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3.8
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MULTISIM

3.9
PSPICE
MULTISIM

Simple Resistive Circuits

a) In the circuits in Fig. P3.7(a)~(c), find the equiv-
alent resistance Ry,

b) For each circuit find the power delivered by the
source.

a) Find the power dissipated in each resistor in the
circuit shown in Fig. 3.9.

b) Find the power delivered by the 120 V source.

c) Show that the power delivered equals the power
dissipated.

a) Show that the solution of the circuit in Fig. 3.9
(see Example 3.1) satisfies Kirchhoff’s current
law at junctions x and y.

b) Show that the solution of the circuit in Fig. 3.9
satisties Kirchhoff’s voltage law around every
closed loop.

Sections 3.3-3.4

3.10
PSPICE
MULTISIM

3.11
PSPICE
MULTISIM

Find the power dissipated in the 5 €} resistor in the
circuit in Fig. P3.10.

Figure P3.10

60 8Q

10A 100 50 $120

@ A

For the circuit in Fig. P3.11 calculate

a) v,and i,.

b) the power dissipated in the 6 () resistor.

c) the power developed by the current source.
Figure P3.11

Figure P3.7

15V

312

3.13

3.14
PSPICE
MULTISIM

a) Find an expression for the equivalent resistance
of two resistors of value R in series.

b) Find an expression for the equivalent resistance
of n resistors of value R in series.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 3 k() using
two resistors with the same value from Appendix
H.

Using the results of (b), design a resistive net-
work with an equivalent resistance of 4 k() using
a minimum number of identical resistors from
Appendix H.

d)

Find an expression for the equivalent resistance
of two resistors of value R in parallel.

a)
b) Find an expression for the equivalent resistance
of n resistors of value R in parallel.

Using the results of (a), design a resistive net-
work with an equivalent resistance of 5k}
using two resistors with the same value from
Appendix H.

Using the results of (b), design a resistive net-
work with an equivalent resistance of 4 k() using
a minimum number of identical resistors from
Appendix H.

d)

In the voltage-divider circuit shown in Fig. P3.14, the
no-load valuc of v, is 4 V. When the load resistance
R, is attached across the terminals a and b, v, drops
to3V.Find R;.

Figure P3.14

40 € a

60
-y 20V SR,
i, 3900 $100
a 60 70 90
a 30
- L 'A%
40 70 (b)
a 140 250 40
s 2 * AAA *—@
b 20
(2) 5A 60
b 100 560 120
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3.15

DESIGN
PROBLEM

PSPICE
MULTISIM

3.16

DESIGN
PROBLEM

PSPICE
MULTISIM

3.17

3.18

DESIGN
PROBLEM

3.19

PSPICE
MULTISIM

a) Calculate the no-load voltage v, for the voltage-
divider circuit shown in Fig. P3.15.

b) Calculate the power dissipated in R; and R,.

c) Assume that only 0.5 W resistors are available.
The no-load voltage is to be the same as in (a).
Specify the smallest ohmic values of Ry and R,.

Figure P3.15

Ri347k0

160V <+> ————
- +

o
— WA
(8]
[}
7—‘
o~
(g
o =

The no-load voltage in the voltage-divider circuit

shown in Fig. P3.16 is 8 V. The smallest load resistor

that is ever connected to the divider is 3.6 k). When

the divider is loaded, v,, is not to drop below 7.5 V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical values
of Ry and R,.

b) Assume the power ratings of commercially
available resistors are 1/16, 1/8, 1/4, 1, and 2 W.
What power rating would you specity?

Figure P3.16

R,
e

+

(" § RL

40V R,

A4

Assume the voltage divider in Fig. P3.16 has been
constructed from 1 W resistors. What is the smallest
resistor from Appendix H that can be used as R,
before one of the resistors in the divider is operat-
ing at its dissipation limit?

Specity the resistors in the circuit in Fig. P3.18 to
meet the following design criteria:

ip = 1mA; v, = 1 Vi = 2iy;
iz = 2(3, and i3 = 2[4

Figure P3.18

a) The voltage divider in Fig. P3.19(a) is loaded
with the voltage divider shown in Fig. P3.19(b);
that is, a is connected to a’, and b is connected to
b’. Find v,,.

Problems 79

b) Now assume the voltage divider in Fig. P3.19(b)
is comnected to the voltage divider in
Fig. P3.19(a) by means of a current-controlled
voltage source as shown in Fig. P3.19(c). Find v,

¢) What effect does adding the dependent-voltage
source have on the operation of the voltage
divider that is connected to the 380 V source?

Figure P3.19

75kQ . 40kQ
a
+
60kQE 7,
bl
(b)
40 k0

250000 60KQ

3.20

QESIGN
PROBLEM

There is often a need to produce more than one
voltage using a voltage divider. For example, the
memory components of many personal computers
require voltages of —12V, 5V, and +12 V, all with
respect to a common reference terminal. Select the
values of R, Ry, and Rj in the circuit in Fig. P3.20 to
meet the following design requirements:

a) The total power supplied to the divider circuit
by the 24 V source is 80 W when the divider is
unloaded.

b) The three voltages, all measured with respect to
the common reference terminal, are v; = 12V,
v, =5V,andv; = —12 V.

Figure P3.20

o
R,
s
24V Cf Ry
Common
R
' ® V3

3.21

PSPICE
MULTISIM

a) Show that the current in the kth branch of the
circuit in Fig. P3.21(a) is equal to the source current
i, times the conductance of the kth branch divided
by the sum of the conductances, that is,

i,Gi
_GI+GZ+G—‘++Gk+.+GN

iy
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b) Use the result derived in (a) to calculate the cur-
rent in the 5} resistor in the circuit in
Fig. P3.21(b).

Figure P3.21

40 A 050 250 80 2100 32003400
i‘!
\

(®)

3.22 A voltage divider like that in Fig. 3.13 is to be

oo designed so that v, = kv, at no load (R, = 00) and
v, = av,at full load (R; = R,,). Note that by defini-
tiona < k < 1.

a) Show that

and

k-«
Ry = ——<R,.
2 a(l _ k) 0
b) Specify the numerical values of R} and R, if
k =085 a = 0.80,and R, = 34 k.
c) If v, = 60V, specify the maximum power that
will be dissipated in R, and R,.
d) Assume the load resistor is accidentally short

circuited. How much power is dissipated in R,
and R,?

3.23 Look at the circuit in Fig. P3.2(a).

a) Use voltage division to find the voltage drop
across the 18 £ resistor, positive at the left.

b) Using your result from (a), find the current flow-
ing in the 18 () resistor from left to right.

¢) Starting with your result from (b), use current
division to find the current in the 25 () resistor
from top to bottom.

d) Using your result from part (c), find the voltage
drop across the 25 () resistor, positive at the top.

e) Starting with your result from (d), use voltage
division to find the voltage drop across the 10 £}
resistor, positive on the left.

3.24 Look at the circuit in Fig. P3.2(b).

a) Use current division to find the current flowing
from top to bottom in the 10 k() resistor.

b) Using your result from (a), find the voltage drop
across the 10 k() resistor, positive at the top.

¢) Starting with your result from (b), use voltage
division to find the voltage drop across the 2 k()
resistor, positive at the top.

d) Using your result from part (c), find the current
through the 2 k() resistor from top to bottom.

e) Starting with your result from part (d), use cur-
rent division to find the current through the
18 k() resistor from top to bottom.

3.25 Find »; and v, in the circuit in Fig. P3.25.
PSPICE
MULTISIM

Figure P3.25

3.26 Find v, in the circuit in Fig. P3.26.
PSPICE
MULTISIM

Figure P3.26

10kQ 3kQ
2kQ + 0, — 4kQ
18mA( | ,
15 kQ 12 kO

3.27 a) Find the voltage v, in the circuit in Fig. P3.27.
PSPICE

wuse ) Replace the 18 V source with a general voltage

source equal to V,. Assume V; is positive at the
upper terminal. Find v, as a function of V.

Figure P3.27

2kQ 9kQ
18 VCD + ot =
6k 3kQ




3.28 Find i, and i, in the circuit in Fig. P3.28.
et Figure P3.28

MULTISIM

3.29 For the circuit in Fig. P3.29, calculate (a) i, and
seice  (b) the power dissipated in the 30 () resistor.

MULTISIM

Figure P3.29

300V

3.30 The current in the 12 {) resistor in the circuit in
et Fig. P3.30is 1 A, as shown.

MULTISIM .
a) Find v,.

b) Find the power dissipated in the 20 () resistor.

Figure P3.30

20
2 'AA%
120 50 20
wA
108 O
ty o U, 120
& A & A
30 6Q

Section 3.5

3.31 A d’Arsonval voltmeter is shown in Fig. P3.31. Find
the value of R, for each of the following full-scale
readings: (a) 50V, (b) 5V, (c) 250 mV, and (d) 25 mV.

Figure P3.31
R,
.—
20mV
1 mA
.__
Voltmeter
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3.32 Suppose the d’Arsonval voltmeter described in
Problem 3.31 is used to measure the voltage across
the 45 Q resistor in Fig. P3.32.

a) What will the voltmeter read?

b) Find the percentage of error in the voltmeter

reading if
measured value
% error = | —— — —1 | X 100.
true value
Figure P3.32
i()
50 mA 150 3450

3.33 The ammeter in the circuit in Fig. P3.33 has a resist-
ance of 0.1 ). Using the definition of the percent-
age error in a meter reading found in Problem 3.32,
what is the percentage of error in the reading of
this ammeter?

Figure P3.33
60 2
WA
100
! Ammeter
50V 2“9\/9 @

3.34 The ammeter described in Problem 3.33 is used to
measure the current i, in the circuit in Fig. P3.32. What
is the percentage of error in the measured value?

3.35 a) Show for the ammeter circuit in Fig. P3.35 that
the current in the d’Arsonval movement is
always 1/25th of the current being measured.

b) What would the fraction be if the 100 mV,2 mA
movement were used in a 5 A ammeter?

c) Would you expect a uniform scale on a dc
d’Arsonval ammeter?

Figure P3.35
100 mV,2 mA

1

I!]K‘.I\
-

g WA *
(25/12) Q
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3.36

3.37
PSPICE
MULTISIM

3.38

DESIGN
PROBLEM

3.39

DESIGN
PROBLEM

3.40

Simple Resistive Circuits

A shunt resistor and a 50 mV, 1 mA d’Arsonval
movement are used to build a 5 A ammeter. A
resistance of 20 mQ is placed across the terminals
of the ammeter. What is the new full-scale range of
the ammeter?

The elements in the circuit in Fig. 2.24 have the follow-
ing values: R; = 20kQ, R, = 80k, R = 0.82 k),
R =02%kQ. Ve =75V,V;,=0.6V,and B = 39.

a) Calculate the value of iz in microamperes.

b) Assume that a digital multimeter, when used as a
dc ammeter, has a resistance of 1k. If the
meter is inserted between terminals b and 2 to
measure the current i g, what will the meter recad?

c) Using the calculated value of iz in (a) as the cor-
rect value, what is the percentage of error in the
measurement?

A d’Arsonval ammeter is shown in Fig. P3.38.
Design a set of d’Arsonval ammeters to read the fol-
lowing full-scale current readings: (a) 10 A, (b) 1 A,
(c) S0 mA, and (d) 2 mA. Specify the shunt resistor
for each ammeter.

Figure P3.38

Ammeter

A d’Arsonval movement i1s rated at 1 mA and
50 mV. Assume 0.5 W precision resistors are avail-
able to use as shunts. What is the largest full-scale-
reading ammeter that can be designed using a
single resistor? Explain.

The voltmeter shown in Fig. P3.40(a) has a full-
scale reading of 750 V. The meter movement is
rated 75 mV and 1.5 mA. What is the percentage of
error in the meter reading if it is used to measure
the voltage v in the circuit of Fig. P3.40(b)?

Figure P3.40

Common

(a) (b)

34

342

3.43

You have been told that the dc voltage of a power
supply is about 350 V. When you go to the instrument
room to get a dc voltmeter to measure the power
supply voltage, you find that there are only two dc
voltmeters available. One voltmeter is rated 300 V
full scale and has a sensitivity of 900 {2/ V. The other
voltmeter is rated 150 V full scale and has a sensitiv-
ity of 1200 Q/V. (Hint: you can find the effective
resistance of a voltmeter by multiplying its rated full-
scale voltage and its sensitivity.)

a) How can you use the two voltmeters to check
the power supply voltage?

b) What is the maximum voltage that can be
measured?

c) If the power supply voltage is 320 V, what will
each voltmeter rcad?

Assume that in addition to the two voltmeters
described in Problem 3.41, a 50 k() precision resis-
tor is also available. The 50 k) resistor is con-
nected in series with the series-connected
voltmeters. This circuit is then connected across
the terminals of the power supply. The reading on
the 300 V meter is 205.2 V and the reading on the
150 V meter is 136.8 V. What is the voltage of the
power supply?

The voltage-divider circuit shown in Fig. P3.43 is
designed so that the no-load output voltage is
7/9ths of the input voltage. A d’Arsonval volt-
meter having a sensitivity of 100 {}/V and a full-
scale rating of 200V is used to check the operation
of the circuit.

a) What will the voltmeter read if it is placed across
the 180 V source?

b) What will the voltmeter read if it is placed across
the 70 k{} resistor?

c) What will the voltmeter read if it is placed across
the 20 kQ resistor?

d) Will the voltmeter readings obtained in parts (b)
and (c) add to the reading recorded in part (a)?
Explain why or why not.

Figure P3.43

$20k0

180V _—_ ——




3.44

3.45

OESIGN
PROBLEM

3.46

DESIGN
PROBLEM

The circuit model of a dc voltage source is shown in
Fig. P3.44. The following voltage measurements are
made at the terminals of the source: (1) With the
terminals of the source open, the voltage is meas-
ured at 50 mV, and (2) with a 15 M{} resistor con-
nected to the terminals, the voltage is measured at
48.75 mV. All measurements are made with a digital
voltmeter that has a meter resistance of 10 MQ.

a) What is the internal voltage of the source (v;) in
millivolts?

b) What is the internal resistance of the source (R,)
in kilo-ohms?

Figure P3.44

| R, |

|

| |

| I Terminals of

: I' the source

|

|

Assume in designing the multirange voltmeter
shown in Fig. P3.45 that you ignore the resistance of
the meter movement.

a) Specity the values of R, R,, and Rs.

b) For each of the three ranges, calculate the percent-
age of error that this design strategy produces.

Figure P3.45
R,

100 V ——wWA—
R,

10 Ve——w

N

50 mV
2 mA

R
IVo—w— (

Common

Design a d’Arsonval voltmeter that will have the
three voltage ranges shown in Fig. P3.46.

a) Specify the values of R, Ry, and R;.

b) Assume that a 750 k() resistor is connected
between the 150 V terminal and the common
terminal. The voltmeter is then connected to an
unknown voltage using the common terminal
and the 300 V terminal. The voltmeter reads
288 V. What is the unknown voltage?

c) What is the maximum voltage the voltmeter in (b)
can measure?

Problems 83

Figure P3.46

150V

30V

Common

A 600 k() resistor is connected from the 200V ter-
minal to the common terminal of a dual-scale volt-
meter, as shown in Fig. P3.47(a). This modified
voltmeter is then used to measure the voltage across
the 360 k() resistor in the circuit in Fig. P3.47(b).

a) What is the reading on the 500 V scale of
the meter?

b) What is the percentage of error in the measured
voltage?

Figure P3.47
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|
|
I 300k
: | 200V
— e
[
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[
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Sections 3.6-3.7

3.48

3.49
PSPICE
MULTISIM

3.50
PSPICE
MULTISIM

3.51

PSPICE
MULTISIM

3.52
PSPICE
MULTISTM

3.53
PSPICE
MULTISIM

Assume the ideal voltage source in Fig. 3.26 is
replaced by an ideal current source. Show that
Eq. 3.33 is still valid.

Find the power dissipated in the 3 k) resistor in the
circuit in Fig. P3.49,

Figure P3.49

750 Q
AN ”

15 kQ % 25kQ
3k ‘ 5kQ

IQZVCD

Find the detector current i, in the unbalanced
bridge in Fig. P3.50 if the voltage drop across the
detector is negligible.

Figure P3.50
@
12 k kQ
The bridge circuit shown in Fig. 3.26 is energized

from a 24 V dc source. The bridge is balanced when
R, = 500 2, R, = 1000 2,and R; = 750 ).

a) What is the value of R,?

b) How much current (in milliamperes) does the dc
source supply?

¢) Which resistor in the circuit absorbs the most
power? How much power does it absorb?

d) Which resistor absorbs the least power? How
much power does it absorb?

In the Wheatstone bridge circuit shown in Fig. 3.26,
the ratio R,/R); can be set to the following values:
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor R;
can be varied from 1 to 11,110 £, in increments of
1 ). An unknown resistor is known to lie between
4 and 5 ). What should be the setting of the Ry/R;
ratio so that the unknown resistor can be measured
to four significant figures?

Use a A-to-Y transformation to find the voltages v,
and v, in the circuit in Fig. P3.53.

Figure P3.53

+
400 s %50 Q

3.54 Use a Y-to-A transformation to find (a) i,; (b) i;
PSPIE () iy; and (d) the power delivered by the ideal cur-

" rent source in the circuit in Fig. P3.54.
Figure P3.54
3200
M
i
200 500
MWW
A , 36000

?40 Q f:l 100 O i,

® <

3.55 Find Ry, in the circuit in Fig. P3.55.
PSPICE
MULTISIM

Figure P3.55

3.56 a) Find the equivalent resistance R, in the circuit
MI:JSL:II:M in Fig. P3.56 by using a A-to-Y transformation
involving the resistors R,, R;, and Ry.

b) Repeat (a) using a Y-to-A transformation
involving resistors R;, Ry, and Rs.

c) Give two additional A-to-Y or Y-to-A transfor-
mations that could be used to find R,j,.

Figure P3.56
13Q

Ry



3.57
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3.58
PSPICE
MULTISIM

3.59
PSPICE
MULTISIM

3.60
PSPICE
MULTISIM

a) Find the resistance seen by the ideal voltage
source in the circuit in Fig. P3.57.

b) If v,, equals 400 V, how much power is dissi-
pated in the 31 Q resistor?

Figure P3.57

a 150 20 0
——e——W\—¢ A
500 30Q
100 Q
60 Q 200
40 Q
. WA

b

Find the equivalent resistance R, in the circuit in
Fig. P3.58.

Figure P3.58

330 500

a

320

200
40 Q

Find i, and the power dissipated in the 140 () resis-
tor in the circuit in Fig. P3.59.

Figure P3.59

20 200
240v750 0o 8¢

AN L A~

100 20

For the circuit shown in Fig. P3.60, find (a) i, (b) v,
(c) iy, and (d) the power supplied by the voltage
source.

Figure P3.60
120 Q

24Q

50

750V 430

3.61
PSPICE
MULTISIM

3.62

3.63

Problems 85

In the circuit in Fig. P3.61(a) the device labeled D
represents a component that has the equivalent cir-
cuit shown in Fig. P3.61(b). The labels on the termi-
nals of D show how the device is connected to the
circuit. Find v, and the power absorbed by the device.

Figure P3.61

b
250 o,
b 6.25 Q)
(D6A —e D a
+

n3600| € 150
L 2 C

(2) (b)

Derive Eqgs. 3.44-3.49 from Egs. 3.41-3.43. The fol-
lowing two hints should help you get started in the
right direction:

1) To find R, as a function of R,, R;, and R, first
subtract Eq. 3.42 from Eq. 3.43 and then add this
result to Eq. 3.41. Use similar manipulations to
find R, and Rj as functions of R, R,, and R...

2) To find R, as a function of R|, R,, and R;, take
advantage of the derivations obtained by hint
(1), namely, Egs. 3.44-3.46. Note that these equa-
tions can be divided to obtain

Ry, R, R RZR

B T 50 T < = 5 ’

R, R, ° Ry P
and

R’l Rl} RZ

—_—=— = —R,.

R2 Ra R" Rl b

Now use these ratios in Eq. 3.43 to eliminate R,
and R.. Use similar manipulations to find R, and
R. as functions of Ry, Ry, and Rj.

Show that the expressions for A conductances as
functions of the three Y conductances are

G - GGs
“ G+ G+ Gy
_ GG3
@"Q+@+@’
G — GG,
©T G+ Gy, + Gy
where
1 1
G, = R—a, G, = R_1 etc.
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3.64

DESIGN
PROBLEM

3.65

DESIGN
PROBLEM

Resistor networks are sometimes used as volume-
control circuits. In this application, they are
referred to as resistance attenuators or pads. A typi-
cal fixed-attenuator pad is shown in Fig. P3.64. In
designing an attenuation pad, the circuit designer
will select the values of R; and R, so that the ratio
of v, /v; and the resistance seen by the input voltage
source R,, both have a specified value.

a) Show thatif Ry, = Ry, then

R} = 4R{(R; + Ry),

Yo _ Ry

Vi _2R1+R2+RL.

b) Select the values of R; and R, so that
R, = R = 600 Q and v, /v; = 0.6.

¢) Choose values from Appendix H that are closest
to R; and R, from part (b). Calculate the per-
cent error in the resulting values for R,, and
vy/v; if these new resistor values are used.

Figure P3.64
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—_— e —_— —
Attenuator

a) The fixed-attenuator pad shown in Fig. P3.65 is
called a bridged tee. Use a Y-to-A transforma-
tion to show that Ry, = Ry if R = Ry.

b) Show that when R = Ry, the voltage ratio v,/v;
equals 0.50.

Figure P3.65
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Fixed-attenuator pad

3.66

DESIGN
PROBLEM

3.67
PSPICE
MULTISIM

The design equations for the bridged-tee attenuator
circuit in Fig. P3.66 are

2RR?
Ry = ——,
3Rh - RL
& _ 3R — RL
Vi 3R + RL,

when R, has the value just given.

a) Design a fixed attenuator so that v; = 3.5v,
when Ry = 300 Q.

b) Assume the voltage applied to the input of the
pad designed in (a) is 42 V. Which resistor in the
pad dissipates the most power?

¢) How much power is dissipated in the resistor in
part (b)?

d) Which resistor in the pad dissipates the least
power?

e) How much power is dissipated in the resistor in
part (d)?

Figure P3.66
P T R
| A
|
|
a ! R R
}
: |
|
4 I | R
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a) For the circuit shown in Fig. P3.67 the bridge is
balanced when AR = 0. Show thatif AR << R,
the bridge output voltage is approximately

- ARR4
Vo = T 2V
(Ro + R-‘)

b) Given R, = 1kQ, R; = 500 Q, Ry = 5k, and
v, = 6 V, what is the approximate bridge out-
put voltage if AR is 3% of R,?

¢) Find the actual value of v, in part (b).

Figure P3.67




3.68 a) If percent error is defined as

approximate valu
%error=|ippo1 © e-1})(100

true value

show that the percent error in the approxima-
tion of v, in Problem 3.67 is

—(AR)R;

——F—— X 100.
(Ry + R3)Ry

% error =

b) Calculate the percent error in v, using the values
in Problem 3.67(b).

3.69 Assume the error in v, in the bridge circuit in
eI Fig. P3.67 is not to exceed 0.5%. What is the largest
percent change in R, that can be tolerated?

3.70 a) Derive Eq. 3.65.

PRACTICAL

rerseecrive b) Derive Eq. 3.68.
3.71 Derive Eq. 3.70.

PRACTICAL
PERSPECTIVE

Problems 87

3.72 Suppose the grid structure in Fig. 3.36 is 1 m wide
and the vertical displacement of the five horizontal
grid lines is 0.025 m. Specify the numerical values of
R, — Rs; and R, — R, to achieve a uniform power
dissipation of 120 W/m, using a 12 V power supply.
(Hint: Calculate o first, then Rz, Ry, R, Ry, and R,
in that order.)

3.73 Check the solution to Problem 3.72 by showing that
esierve the total power dissipated equals the power devel-
eseice oped by the 12 V source.

MULTISIM

3.74 a) Design a defroster grid in Fig. 3.36 having five
pmacncat. horizontal conductors to meet the following
oesion, specifications: The grid is to be 1.5 m wide, the
PSPICE vertical separation between conductors is to be
0.03 m, and the power dissipation is to be

200 W/m when the supply voltage is 12 V.

b) Check your solution and make sure it meets the
design specifications.

MULTISIM
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CHAPTER

CHAPTER CONTENTS So far, we have analyzed relatively simple resistive circuits

4.1 Terminology p. 90 by applymg Kirchhoff’s laws in combination with Ohm’s law. We
4.2 Introduction to the Node-Voltage - can use this approach for all circuits, but as they become struc-
Method p. 93 turally more complicated and involve more and more elements,

4.3 The Node-Voltage Method and Dependent
Sources p. 95

4.4 The Node-Voltage Method: Some Special

this direct method soon becomes cumbersome. In this chapter we
introduce two powerful techniques of circuit analysis that aid in

Cases p. 96  the analysis of complex circuit structures: the node-voltage
4.5 Introduction to the Mesh-Current method and the mesh-current method. These techniques give us
d p. : g g . o i
Method p. 99 two systematic methods of describing circuits with the minimum
4.6 The Mesh-Current Method and Dependent . .
Sources p. 102 | number of simultaneous equations.
4.7 The Mesh-Current Method: Some Special In addition to these two general analytical methods, in this
Cases p. 103

chapter we also discuss other techniques for simplifying circuits.

“8 Lheit: %z:::,:t;iihtiﬂ;oi:;rsus the ' We have already demonstrated how to use series-parallel reduc-

4.9 Source Transformations p. 109
4.10 Thévenin and Norton Equivalents p. 113 We now add source transformations and Thévenin and Norton

tions and A-to-Y transformations to simplify a circuit’s structure.

4.11 More on Deriving a Thévenin equivalent circuits to those techniques.
Equivalent p. 117

4,12 Maximum Power Transfer p. 120 | . . . .
o | analysis. One, maximum power transfer, considers the conditions
4.13 Superposition p. 122

We also consider two other topics that play a role in circuit

necessary to ensure that the power delivered to a resistive load by

a source is maximized. Thévenin equivalent circuits are used in

| establishing the maximum power transfer conditions. The final

| topic in this chapter, superposition, looks at the analysis of cir-
cuits with more than one independent source.

1 Understand and be able to use the node-voltage
method to solve a circuit.

2 Understand and be able to use the mesh-current
method to solve a circuit. ‘

3 Be able to decide whether the node-voltage i
method or the mesh-current method is the
preferred approach to solving a particular circuit. |

4 Understand source transformation and be able [
to use it to solve a circuit.

5 Understand the concept of the Thévenin and
Norton equivalent circuits and be able to
construct a Thévenin or Norton equivalent for a
circuit.

6 Know the condition for maximum power transfer
to a resistive load and be able to calculate the
value of the load resistor that satisfies this
condition.
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Practical Perspective

Cm:mts with Reahst1c Resistors
In the last chapter we began to explore the effect of imprecise
resistor values on the performance of a circuit; specifically, on
the performance of a voltage divider. Resistors are manufac-
tured for only a small number of discrete values, and any given
resistor from a batch of resistors will vary from its stated value
within some tolerance. Resistors with tighter tolerance, say
1%, are more expensive than resistors with greater tolerance,
say 10%. Therefore, in a circuit that uses many resistors, it
would be important to understand which resistor's value has
the greatest impact on the expected performance of the circuit.

‘ ) Mulnpller ]

‘ Second digit Tolerance |

First digit \ / / = |

] - .f I

‘ iy _— I

o A |
| 7 = J
~— II( 3 N ‘v‘j

‘ \ﬁnm-—\_ \w - N :.-"“‘; = l

,’,.,‘-m v N - |

N cep |

e Iy = i

In other words, we would like to predict the effect of varying
each resistor's value on the output of the circuit. If we know
that a particular resistor must be very close to its stated value
for the circuit to function correctly, we can then decide to
spend the extra money necessary to achieve a tighter tolerance
on that resistor’s value.

Exploring the effect of a circuit component’s value on the
circuit’s output is known as sensitivity analysis. Once we have
presented additional circuit analysis techniques, the topic of
sensitivity analysis will be examined.
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Figure 4.1 A (a) A planar circuit. (b) The same circuit

redrawn to verify that it is planar.

Figure 4.2 A A nonplanar circuit.

Rs R,

4.1 Terminology

To discuss the more involved methods of circuit analysis, we must define
a few basic terms. So far, all the circuits presented have been planar
circuits —that is, those circuits that can be drawn on a plane with no
crossing branches. A circuit that is drawn with crossing branches still is
considered planar if it can be redrawn with no crossover branches. For
example, the circuit shown in Fig. 4.1(a) can be redrawn as Fig. 4.1(b);
the circuits are equivalent because all the node connections have been
maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be
redrawn in such a way that all the node connections are maintained and
no branches overlap. The node-voltage method is applicable to both pla-
nar and nonplanar circuits, whereas the mesh-current method is limited
(b) to planar circuits.

Describing a Circuit—The Vocabulary

In Section 1.5 we defined an ideal basic circuit element. When basic cir-
cuit elements are interconnected to form a circuit, the resulting intercon-
nection is described in terms of nodes, paths, branches, loops, and meshes.
We defined both a node and a closed path, or loop, in Section 2.4. Here
we restate those definitions and then define the terms path, branch, and
mesh. For your convenience, all of these definitions are presented in
Table 4.1. Table 4.1 also includes examples of each definition taken from
the circuit in Fig. 4.3, which are developed in Example 4.1.

3L CE %M Identifying Node, Branch, Mesh and Loop in a Circuit

For the circuit in Fig. 4.3, identify

a) all nodes.

b) all essential nodes.

c) all branches.

d) all essential branches.

e) all meshes.

f) two paths that are not loops or essential branches.
g) two loops that are not meshes.

Solution

a) The nodes are a,b,c.d, e, f,and g.

b) The essential nodes are b, c, e, and g.

c) The branches are vy, v, Ry, Ra, R3. Ry, Rs, R,
Ry, and /.

d) The essential branches are v; — Ry, R; — Rs,
v, — Ry, Rs, R, Ry, and 1.

¢) The meshes are v — Ry — Rs — R3; — Ry,
V3 — Ry — Ry — Rg — Ry, Rs — R; — Ry, and
R, - L

Figure 4.3 A A circuit illustrating nodes, branches, meshes,
paths, and loops.

f) Ry — Rs — Ry is a path, but it is not a loop
(because it does not have the same starting and
ending nodes), nor is it an essential branch
(because it does not connect two essential nodes).
v, — R, is also a path but is neither a loop nor an
essential branch, for the same reasons.

g vy — R — Rs — Rg — Ry — v, is a loop but is
not a mesh, because there are two loops within it.
[ — Rs — Rgis also a loop but not a mesh.

NOTE: Assess your understanding of this material by trying Chapter Problems 4.1 and 4.3




TABLE 4.1 Terms for Describing Circuits

Name Definition

node A point where two or more circuit elements join

essential node A node where three or more circuit elements join

path A trace of adjoining basic elements with no
elecments included more than once

branch A path that connects two nodes

essential branch A path which connects two essential nodes without
passing through an essential node

loop A path whose last node is the same as the starting node

mesh A loop that does not enclose any other loops

planar circuit A circuit that can be drawn on a plane with no

crossing branches

Simultaneous Equations—How Many?

The number of unknown currents in a circuit equals the number of
branches, b, where the current is not known. For example, the circuit
shown in Fig. 4.3 has nine branches in which the current is unknown.
Recall that we must have b independent equations to solve a circuit with
b unknown currents. If we let n2 represent the number of nodes in the circuit,
we can derive n — 1 independent equations by applying Kirchhoff’s cur-
rent law to any set of n — 1 nodes. (Application of the current law to the
nth node does not generate an independent equation, because this equa-
tion can be derived from the previous #n — 1 equations. See Problem 4.5.)
Because we need b cquations to describe a given circuit and because we
can obtain # — 1 of these equations from Kirchhoff’s current law, we must
apply Kirchhoff’s voltage law to loops or meshes to obtain the remaining
b ~ (n — 1) equations.

Thus by counting nodes, meshes, and branches where the current
is unknown, we have established a systematic method for writing the
necessary number of equations to solve a circuit. Specifically, we apply
Kirchhoff’s current law to n — 1 nodes and Kirchhoff’s voltage law to
b — (n — 1) loops (or meshes). These observations also are valid in terms
of essential nodes and essential branches. Thus if we let #, represent the
number of essential nodes and b, the number of essential branches where
the current is unknown, we can apply Kirchhoff’s current law at n, — 1
nodes and Kirchhoff’s voltage law around b, — (1, — 1) loops or meshes.
In circuits, the number of essential nodes is less than or equal to the num-
ber of nodes, and the number of essential branches is less than or equal to
the number of branches. Thus it is often convenient to use essential nodes
and essential branches when analyzing a circuit, because they produce
fewer independent equations to solve.

A circuit may consist of disconnected parts. An example of such a cir-
cuit is examined in Problem 4.3. The statements pertaining to the number
of equations that can be derived from Kirchhoff’s current law, # — 1, and
voltage law, b — (n — 1), apply to connected circuits. If a circuit has
1 nodes and b branches and is made up of s parts, the current law can be

4.1  Terminology

Example From Fig. 4.3

a

v, — Ry — Rs — Ry
Ry

v — Ry

v — R —Rs—R¢— Ry — v,
vy - R — Rs— R3 — Ry

Fig. 4.3 is a planar circuit

Fig. 4.2 is a nonplanar circuit
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Figure 4.4 A The circuit shown in Fig. 4.3 with six
unknown branch currents defined.

applied n — s times, and the voltage law b — n + s times. Any two sepa-
rate parts can be connected by a single conductor. This connection always
causes two nodes to form one node. Moreover, no current exists in the sin-
gle conductor, so any circuit made up of s disconnected parts can always
be reduced to a connected circuit.

The Systematic Approach—An Illustration

We now illustrate this systematic approach by using the circuit shown in
Fig. 4.4. We write the equations on the basis of essential nodes and
branches. The circuit has four essential nodes and six essential branches,
denoted iy — is, for which the current is unknown.

We derive three of the six simultaneous equations needed by applying
Kirchhoff’s current law to any three of the four essential nodes. We use the
nodes b, ¢, and e to get

_i1+i2+i6_[=0,
il - i3 - is = 0,
i3 + i4 - iz = 0 (4‘1)
We derive the remaining three equations by applying Kirchhoff’s voltage
law around three meshes. Because the circuit has four meshes, we need to
dismiss one mesh. We choose R; — I, because we don’t know the voltage
across I.!
Using the other three meshes gives
Ryi; + Rsip + i3(R2 + R3) - =0,
—l.g(Rz + R3) + i4R6 + i5R4 — U = 0,
_i2R5 + i6R7 - i4R6 =0. (4.2)
Rearranging Eqs. 4.1 and 4.2 to facilitate their solution yields the set
—i; + iy + 0i5 + 0iy + 0is + i = I,
i1+0i2—i3+0i4—i5+0i(,:(),
0iy — iy + i3 + iy + 0is + 0ig = 0,
R]i] + R5i2 + (Rz + R3)i3 + 014 + Ois + Oiﬁ = v,

Oil + 012 - (R2 + R3)i3 + R6i4 + R4i5 + 016 = vy,

Oil - R5i2 + 013 - R6i4 + Olg + R7i6 =0. (43)
Note that summing the current at the nth node (g in this example) gives

1 We say more about this decision in Section 4.7.



Equation 4.4 is not independent, because we can derive it by summing
Eqgs. 4.1 and then multiplying the sum by —1. Thus Eq. 4.4 is a linear com-
bination of Eqs. 4.1 and therefore is not independent of them. We now
carry the procedure one step further. By introducing new variables, we can
describe a circuit with just # — 1 equations or just b — {n — 1) equations.
Therefore these new variables allow us to obtain a solution by manipulat-
ing fewer equations, a desirable goal even if a computer is to be used to
obtain a numerical solution.

The new variables are known as node voltages and mesh currents. The
node-voltage method enables us to describe a circuit in terms of n, — 1
equations; the mesh-current method enables us to describe a circuit in
terms of b, — (1, — 1) equations. We begin in Section 4.2 with the node-
voltage method.

NOTE: Assess your understanding of this material by trying Chapter
Problems 4.2 and 4.4

4.2 Introduction to the
Node-Voltage Method

We introduce the node-voltage method by using the essential nodes of the
circuit. The first step is to make a neat layout of the circuit so that no
branches cross over and to mark clearly the essential nodes on the circuit
diagram, as in Fig. 4.5. This circuit has three essential nodes (#, = 3); there-
fore, we need two (1, — 1) node-voltage equations to describe the circuit.
The next step is to select one of the three essential nodes as a reference node.
Although theoretically the choice is arbitrary, practically the choice for the
reference node often is obvious. For example, the node with the most
branches is usually a good choice. The optimum choice of the reference node
(if one exists) will become apparent after you have gained some experience
using this method. In the circuit shown in Fig. 4.5, the lower node connects
the most branches, so we use it as the reference node. We flag the chosen ref-
erence node with the symbol V¥, as in Fig. 4.6.

After selecting the reference node, we define the node voltages on the
circuit diagram. A node voltage is defined as the voltage rise from the ref-
erence node to a nonreference node. For this circuit, we must define two
node voltages, which are denoted »; and v, in Fig. 4.6.

We are now ready to generate the node-voltage equations. We do so by
first writing the current leaving each branch connected to a nonreference
node as a function of the node voltages and then summing these currents to
zero in accordance with Kirchhoff’s current law. For the circuit in Fig. 4.6,
the current away from node 1 through the 1 ) resistor is the voltage drop
across the resistor divided by the resistance (Ohm’s law). The voltage drop
across the resistor, in the direction of the current away from the node, is
v; — 10. Therefore the current in the 1 €2 resistor is (v; — 10)/1. Figure 4.7
depicts these observations. It shows the 10 V-1 () branch, with the appro-
priate voltages and current.

This same reasoning yields the current in every branch where the cur-
rent is unknown. Thus the current away from node 1 through the 5 Q
resistor is vy/5, and the current away from node 1 through the 2 Q) resistor
is (v; — v3)/2. The sum of the three currents leaving node 1 must equal
zero; therefore the node-voltage equation derived at node 1 is

v v — Y
+ L+ L=,

1 s 2 “3)
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10 20

10ov 50 100 2A

—9 @

Figure 4.5 A A circuit used to illustrate the node-voltage
method of circuit analysis.

10 1

10v

Figure 4.6 A The circuit shown in Fig. 4.5 with a
reference node and the node voltages.

Figure 4.7 A Computation of the branch current i.
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The node-voltage equation derived at node 2 is
——+—=-2=0. (4.6)

Note that the first term in Eq. 4.6 is the current away from node 2 through
the 2 () resistor, the second term is the current away from
node 2 through the 10 Q resistor, and the third term is the current away
from node 2 through the current source.

Equations 4.5 and 4.6 are the two simultaneous equations that
describe the circuit shown in Fig. 4.6 in terms of the node voltages v; and
v,. Solving for v; and v, yields

100

-2 _9p9v
LT

v, = % = 1091 V.

Once the node voltages are known, all the branch currents can be cal-
culated. Once these are known, the branch voltages and powers can be
calculated. Example 4.2 illustrates the use of the node-voltage method.

LN R Using the Node-Voltage Method

a) Use the node-voltage method of circuit analysis
to find the branch currents i,, i, and i in the cir-
cuit shown in Fig. 4.8.

b) Find the power associated with each source, and
state whether the source is delivering or absorb-
ing powecr.

Figure 4.8 A The circuit for Example 4.2,

Solution
50

a) We begin by noting that the circuit has two essen-

voltage expression. We select the lower node as
the reference node and define the unknown node
voltage as v,. Figure 4.9 illustrates these deci-
sions. Summing the currents away from node 1
generates the node-voltage equation

1
tial nodes; thus we need to write a single node- ' %

vy — 50 v oy
—+ —+—=-3=0.
5 10 40

Solving for v, gives
v =40 V.

Hence
. 50 — 40
ll\ — —5 =
_40 _
10
. 40
lL‘ = — =
40

2A,
4 A,

ih

1 Al

50V 13100 40 Q 3A

Figure 4.9 A The circuit shown in Fig. 4.8 with a reference
node and the unknown node voltage ».

b) The power associated with the 50 V source is

psov = —50i, = —100 W (delivering).
The power associated with the 3 A source is
paa = —3v; = —3(40) = —120 W (delivering).

We check these calculations by noting that the
total delivered power is 220 W. The total power
absorbed by the three resistors is 4(5) + 16(10)
+ 1(40), or 220 W, as we calculated and as it
must be.
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v ASSESSMENT PROBLEMS
Objective 1—Understand and be able to use the node-voltage method

4.1  a) For the circuit shown, use the node-voltage 4.2 Use the node-voltage method to find v in the
method to find vy, v, and ;. circuit shown.

b) How much power is delivered to the circuit
by the 15 A source?

Repeat (b) for the S A
c) Repeat (b) for the source 30V

5Q
& & :“(A: & +
" i Answer: 15V
15A 12600 150 20 o SA

Answer: (a) 60V,10V,10 A;
(b) 500 W,
(c) —50W.
NOTE: Also try Chapter Problems 4.8, 4.9, and 4.13.

4.3 The Node-Voltage Method
and Dependent Sources

If the circuit contains dependent sources, the node-voltage equations must
be supplemented with the constraint equations imposed by the presence
of the dependent sources. Example 4.3 illustrates the application of the
node-voltage method to a circuit containing a dependent source.

m Using the Node-Voltage Method with Dependent Sources

Use the node-voltage method to find the power dis- on the lower node, so we select it as the reference
sipated in the 5 ) resistor in the circuit shown in node. The two unknown node voltages are defined
Fig. 4.10. on the circuit shown in Fig. 4.11. Summing the cur-

rents away from node 1 generates the equation

v —-20 v v — v
+— + = 0.
2 20 5

Summing the currents away from node 2 yields

Figure 4.10 A The circuit for Example 4.3. 5 10 2

vy =V vy V2 — 8ig

As written, these two node-voltage equations con-

tain three unknowns, namely, vy, v,, and iy. To elim-

. inate i, we must express this controlling current in
Solution terms of the node voltages, or

We begin by noting that the circuit has three essen-
tial nodes. Hence we need two node-voltage equa- iy = Vi~ %
tions to describe the circuit. Four branches terminate 5
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Substituting this relationship into the node 2 equa-
tion simplifies the two node-voltage equations to

0.75v; — 0.2v, = 10,

A good exercise to build your problem-solving
intuition is to reconsider this example, using node 2
as the reference node. Does it make the analysis
easier or harder?

- + 1.6'02 = (.

Solving for v; and v, gives

v = 16V
and
v, =10 V.
Then,
) 16 — 10 Figure 4.11 A The circuit shown in Fig. 4.10, with a reference
p=—% = 12 A, node and the node voltages.

/ASSESSMENT PROBLEM

Objective 1—Understand and be able to use the node-voltage method

4.3 a) Use the node-voltage method to find the 34
power associated with each source in the
circuit shown.

b) State whether the source is delivering power
to the circuit or extracting power from the -
circuit.

S0V o o SA

Answer: (a) Psov = —150 W, P3i, = —144 W,

Psa = -80 W', & L
(b) all sources are delivering power to the
circuit.

NOTE: Also try Chapter Problems 4.17 and 4.19.

4.4 The Node-Voltage Method:
Some Special Cases

When a voltage source is the only element between two essential nodes,
the node-voltage method is simplified. As an example, look at the circuit
in Fig. 4.12. There are three essential nodes in this circuit, which means
that two simultaneous equations are needed. From these three essential
nodes, a reference node has been chosen and two other nodes have been
labeled. But the 100 V source constrains the voltage between node 1 and
the reference node to 100 V. This means that there is only one unknown

l 413\,{)' 2 node voltage (v;). Solution of this circuit thus involves only a single node-
+ + voltage equation at node 2:
100V 123250 2500 SA —" )
' 2142 5= (4.7)
10 50
I - But v; = 100 V, so Eq. 4.7 can be solved for v,:
Figure 4.12 A A circuit with a known node voltage. v, = 125V, (4.8)



4.4

Knowing v,, we can calculate the current in every branch. You should ver-
ify that the current into node 1 in the branch containing the independent
voltage source is 1.5 A.

In general, when you use the node-voltage method to solve circuits
that have voltage sources connected directly between essential nodes, the
number of unknown node voltages is reduced. The reason is that, when-
ever a voltage source connects two essential nodes, it constrains the differ-
ence between the node voltages at these nodes to equal the voltage of the
source. Taking the time to see if you can reduce the number of unknowns
in this way will simplify circuit analysis.

Suppose that the circuit shown in Fig. 4.13 is to be analyzed using the
node-voltage method. The circuit contains four essential nodes, so we
anticipate writing three node-voltage equations. However, two essential
nodes are connected by an independent voltage source, and two other
essential nodes are connected by a current-controlled dependent voltage
source. Hence, there actually is only one unknown node voltage.

Choosing which node to use as the reference node involves several
possibilities. Either node on each side of the dependent voltage source
looks attractive because, if chosen, one of the node voltages would be
known to be either +10iy4 (left node is the reference) or —10i, (right node
is the reference). The lower node looks even better because one node volt-
age is immediately known (50 V) and five branches terminate there. We
therefore opt for the lower node as the reference.

Figure 4.14 shows the redrawn circuit, with the reference node flagged
and the node voltages defined. Also, we introduce the current i because we
cannot express the current in the dependent voltage source branch as a
function of the node voltages v, and v;. Thus, at node 2

U, — 7y )

+—=+i= :
5 50 i=0, (4.9)
and at node 3
% i—4=0 4.10
10 I = 0. (4.10)

We eliminate i simply by adding Egs. 4.9 and 4.10 to get

Vy — P v v
2 1,2, 3 4= (4.11)

The Concept of a Supernode

Equation 4.11 may be written directly, without resorting to the interme-
diate step represented by Egs. 4.9 and 4.10. To do so, we consider nodes 2
and 3 to be a single node and simply sum the currents away from the
node in terms of the node voltages v, and v;. Figure 4.15 illustrates
this approach.

When a voltage source is between two essential nodes, we can com-
bine those nodes to form a supernode. Obviously, Kirchhoff’s current
law must hold for the supernode. In Fig. 4.15, starting with the 5 Q
branch and moving counterclockwise around the supernode, we gener-
ate the equation

LR L R ) (4.12)
5 50 100

The Node-Voltage Method: Some Special Cases

Figure 4.13 A A circuit with a dependent voltage
source connected between nodes.

97

Figure 4.14 A The circuit shown in Fig. 4.13. with the
selected node voltages defined.

100 ©

Figure 4.15 A Considering nodes 2 and 3 to be a
supernode.

4A



98 Techniques of Circuit Analysis

Figure 4,16 A The transistor amplifier circuit shown in
Fig. 2.24.

Figure 4.17 A The circuit shown in Fig. 4.16, with
voltages and the supernode identified.

which is identical to Eq. 4.11. Creating a supernode at nodes 2 and 3 has
made the task of analyzing this circuit easier. It is therefore always worth tak-
ing the time to look for this type of shortcut before writing any equations.

After Eq.4.12 has been derived, the next step is to reduce the expres-
sion to a single unknown node voltage. First we eliminate v, from the
equation because we know that v; = 50 V. Next we express v as a func-
tion of vy:

V3 =1y + 101'4,. (4.13)

We now express the current controlling the dependent voltage source as a
function of the node voltages:

Uy — 50

Iy = 5 . (4.14)

Using Eqs. 4.13 and 4.14 and v; = 50 V reduces Eq.4.12 to

v(i+l+L+£)—10+4+1
250 5 100 500/ ’

2,(0.25) = 15,

Uy = 60 V.
From Eqgs. 4.13 and 4.14:

60 — S0
= = 2A,

v = 60 + 20 = 80 V.

Node-Voltage Analysis of the Amplifier Circuit

Let’s use the node-voltage method to analyze the circuit first introduced
in Section 2.5 and shown again in Fig. 4.16.

When we used the branch-current method of analysis in Section 2.5,
we faced the task of writing and solving six simultaneous equations. Here
we will show how nodal analysis can simplify our task.

The circuit has four essential nodes: Nodes a and d are connected by
an independent voltage source as are nodes b and c. Therefore the prob-
lem reduces to finding a single unknown node voltage, because
(n, — 1) — 2 = 1. Using d as the reference node, combine nodes b and c
into a supernode, label the voltage drop across R; as vy, and label the volt-
age drop across Ry as v, as shown in Fig. 4.17. Then,

G

cC Ve ,
+ — — = 0. 4.15
R, R, Ry Big =0 (4.15)

We now eliminate both v, and iz from Eq. 4.15 by noting that

v = (ig + Big)RE. (4.16)
Ve = v, — Vo (4.17)



Substituting Eqs. 4.16 and 4.17 into Eq. 4.15 yields

D[L+L+ 1 }~ Vee , Vo (4.18)
LRt "Ry (1+BRg| R (1+B)Rg '
Solving Eq. 4.18 for v, yields

o = VeeRy(1 + B)Re + ViR(R,
" RRy + (1 + B)Re(R, + Ry

(4.19)

Using the node-voltage method to analyze this circuit reduces the prob-
lem from manipulating six simultaneous equations (see Problem 2.27) to
manipulating three simultaneous equations. You should verify that, when
Eq.4.19 is combined with Egs. 4.16 and 4.17, the solution for i is identical
to Eq.2.25. (Sce Problem 4.30.)

v ASSESSMENT PROBLEMS

Objective 1—Understand and be able to use the node-voltage method

4.5  Introduction to the Mesh-Current Method 99

4.4  Use the node-voltage method to find v, in the 300
circuit shown. Wy
100 200
M — —W———¢
Iy A
10V@ BLAN 1’,,%409 20y +
Answer: 24V. 4

4.5  Use the node-voltage method to find » in the
circuit shown.

Answer: 8YV.

4.6  Use the node-voltage method to find v, in the
circuit shown.

Answer: 48V.

NOTE: Also try Chapter Problems 4.24, 4.26, and 4.27.

4.5 Introduction to the
Mesh-Current Method

As stated in Section 4.1, the mesh-current method of circuit analysis enables
us to describe a circuit in terms of b, — (n, — 1) equations. Recall that a
mesh is a loop with no other loops inside it. The circuit in Fig. 4.1(b) is shown
again in Fig. 4.18, with current arrows inside each loop to distinguish it. Recall
also that the mesh-current method is applicable only to planar circuits. The

Figure 4,18 A The circuit shown in Fig. 4.1(b), with the
mesh currents defined.
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Dy i_x ; R3 (23]

Figure 4.19 A A circuit used to illustrate development
of the mesh-current method of circuit analysis.

g
¥

28] i, R3 I.h (2]

Figure 4.20 A Mesh currents i, and iy,.

circuit in Fig. 4.18 contains seven essential branches where the current is
unknown and four essential nodes. Therefore, to solve it via the mesh-current
method, we must write four [7 — (4 — 1)] mesh-current equations.

A mesh current is the current that exists only in the perimeter of a
mesh. On a circuit diagram it appears as either a closed solid line or an
almost-closed solid line that follows the perimeter of the appropriate
mesh. An arrowhead on the solid line indicates the reference direction for
the mesh current. Figure 4.18 shows the four mesh currents that describe
the circuit in Fig. 4.1(b). Note that by definition, mesh currents automati-
cally satisfy Kirchhoff’s current law. That is, at any node in the circuit, a
given mesh current both enters and leaves the node.

Figure 4.18 also shows that identifying a mesh current in terms of a
branch current is not always possible. For example, the mesh current i, is
not equal to any branch current, whereas mesh currents i, i3, and i, can be
identified with branch currents. Thus measuring a mesh current is not
always possible; note that there is no place where an ammeter can be
inserted to measure the mesh current i,. The fact that a mesh current can
be a fictitious quantity doesn’t mean that it is a useless concept. On the
contrary, the mesh-current method of circuit analysis evolves quite natu-
rally from the branch-current equations.

We can use the circuit in Fig. 4.19 to show the evolution of the mesh-
current technique. We begin by using the branch currents (ij, i;, and i3) to
formulate the set of independent equations. For this circuit, b, = 3 and
n, = 2. We can write only one independent current equation, so we need
two independent voltage equations. Applying Kirchhoff’s current law to
the upper node and Kirchhoff’s voltage law around the two meshes gener-
ates the following set of equations:

ip =i + iy, (4.20)
m = ilRl + i3R3, (421)
Uy = isz - i3R3. (422)

We reduce this set of three equations to a set of two equations by solving
Eq.4.20 for i3 and then substituting this expression into Eqs. 4.21 and 4.22:

v = (R + R3) — LR, (4.23)

-V = —i1R3 + iz(Rz + R3) (4.24)

We can solve Eqs. 4.23 and 4.24 for i; and i, to replace the solution of three
simultaneous equations with the solution of two simultaneous equations.
We derived Eqgs. 4.23 and 4.24 by substituting the n, — 1 current equations
into the b, — (1, — 1) voltage equations. The value of the mesh-current
method is that, by defining mesh currents, we automatically eliminate the
n, — 1 current equations. Thus the mesh-current method is equivalent to a
systematic substitution of the n, — 1 current equations into the
b, — (n, — 1) voltage equations. The mesh currents in Fig. 4.19 that are
equivalent to eliminating the branch current i3 from Egs. 4.21 and 4.22 are
shown in Fig. 4.20. We now apply Kirchhoff’s voltage law around the two
meshes, expressing all voltages across resistors in terms of the mesh cur-
rents, to get the equations

v = LR+ (i, — ip)Rs, (4.25)
-0 = (i, — i)R3 + i Ro. (4.26)
Collecting the coefficients of i, and i}, in Eqgs. 4.25 and 4.26 gives
v; = i ,(R; + R3) — iyRs, (4.27)
—vy = =Ry + (R, + Ry). (4.28)



Note that Egs. 4.27 and 4.28 and Eqs. 4.23 and 4.24 are identical in form,
with the mesh currents i, and i, replacing the branch currents /; and .
Note also that the branch currents shown in Fig. 4.19 can be expressed in
terms of the mesh currents shown in Fig. 4.20, or

4.5
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i =iy, (4.29)
Iy = iy, (4.30)
i3 - [a - ib' (431)

The ability to write Eqgs. 4.29—4.31 by inspection is crucial to the mesh-
current method of circuit analysis. Once you know the mesh currents, you
also know the branch currents. And once you know the branch currents,
you can compute any voltages or powers of interest.

Example 4.4 illustrates how the mesh-current method is used to find
source powers and a branch voltage.

PR Using the Mesh-Current Method

a) Use the mesh-current method to determine the
power associated with each voltage source in the
circuit shown in Fig. 4.21.

b) Calculate the voltage v, across the 8 () resistor.

Solution

a) To calculate the power associated with each
source, we need to know the current in each
source. The circuit indicates that these source
currents will be identical to mesh currents. Also,
note that the circuit has seven branches where

Figure 4.21 A The circuit for Example 4.4.

the current is unknown and five nodes. Therefore
we need three (b—(n—-1)=7-(5-1)]
mesh-current cquations to describe the circuit.
Figure 4.22 shows the three mesh currents used
to describe the circuit in Fig. 4.21. If we assume
that the voltage drops are positive, the three mesh
equations are

—40 + 2i, + 8(i, — i) = 0,
8(lb - la) + 6lh + 6(ib - Ic) =0,

6(i. — iy) + 4i. +20=0. (4.32)

Your calculator can probably solve these equa-
tions, or you can use a computer tool. Cramer’s
method is a useful tool when solving three or
more simultaneous equations by hand. You can
review this important tool in Appendix A.
Reorganizing Egs. 4.32 in anticipation of using
your calculator, a computer program, or Cramer’s
method gives

10i, — 8iy + 0, = 40;

0;

—8i, + 20i, — 6i,

0i, — 6iy, + 10,

—20. (4.33)
The three mesh currents are
i, =56A,

i, = 20 A,

—0.80 A.

lc

20 64 40

Figure 4.22 A The three mesh currents used to analyze the
circuit shown in Fig. 4.21.

The mesh current i, is identical with the branch
current in the 40 V source, so the power associ-
ated with this source 1s

Pav = _4Oia = =224 W.



102  Techniques of Circuit Analysis

The minus sign means that this source is deliver- The 20 V source also is delivering power to the
ing power to the network. The current in the network.
20 V source is identical to the mesh current i b) The branch current in the 8 € resistor in the
therefore direction of the voltage drop w, is i, — iy,
pPav = 20i, = —16 W. Therefore
v, = 8(iy — iy) = 8(3.6) = 28.8 V.

/ASSESSMENT PROBLEM

Objective 2—Understand and be able to use the mesh-current method

4.7  Use the mesh-current method to find (a) the 300
power delivered by the 80 V source to the cir- W
cuit shown and (b) the power dissipated in the 50 90 O
8 Q) resistor. ) f
sov( " 26 0 280
Answer: (a) 400W; -
(b) 50 W. .

NOTE: Also try Chapter Problems 4.33 and 4.34.

4.6 The Mesh-Current Method
and Dependent Sources

If the circuit contains dependent sources, the mesh-current equations must
be supplemented by the appropriate constraint equations. Example 4.5
illustrates the application of the mesh-current method when the circuit
includes a dependent source.

SN TEEAN Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method of circuit analysis to defined on the circuit shown in Fig. 4.24. The three
determine the power dissipated in the 4 () resistor mesh-current equations are
in the circuit shown in Fig. 4.23.

10 50 = 5(i; — i) + 20(i; — i3),

50 40

0 = 5([2 - l]) + 1[2 -+ 4(12 - i3),

50V * iy, 200 i 15,
- ! 0 = 20(i3 — iy) + 4(i3 — i) + 15iy. (4.34)

Figure 4.23 A The circuit for Example 4.5.

We now express the branch current controlling the
dependent voltage source in terms of the mesh

Solution currents as
This circuit has six branches where the current is

unknown and four nodes. Therefore we need three iy = I — I3 (4.35)
mesh currents to describe the circuit. They are




which is the supplemental equation imposed by the
presence of the dependent source. Substituting
Eq. 4.35 into Eqgs. 4.34 and collecting the coeffi-
cients of ij, i, and i3 in each equation generates

50 = 25i, — 5i — 205,
0 = —5i, + 10i, — 4is,

0 = —5[1 - 4!2 + 91;

50V 1517,

Figure 4.24 A The circuit shown in Fig. 4.23 with the three
mesh currents.

4.7 The Mesh-Current Method: Some Special Cases 103

Because we are calculating the power dissipated in
the 4 Q resistor, we compute the mesh currents i,
and i3

i =26 A,
iy = 28 A.

The current in the 4 ) resistor oriented from left
to right is i3 — i, or 2 A. Therefore the power
dissipated is

Paa = (5 — i2)%(4) = (2)*(4) = 16 W.

What if you had not been told to usc the mesh-
current method? Would you have chosen the node-
voltage method? It reduces the problem to finding
one unknown node voltage because of the presence
of two voltage sources between essential nodes. We
present more about making such choices later.

 ASSESSMENT PROBLEMS

Objective 2—Understand and be able to use the mesh-current method

4.8 a) Determine the number of mesh-current
equations needed to solve the circuit shown.

b) Use the mesh-current method to find how
much power is being delivered to the
dependent voltage source.

_:3”‘* 140
20 30

L 4
+ vy -

50
2SVC_D % 0
10V

NOTE: Also try Chapter Problems 4.38 and 4.39.

4.7 The Mesh-Current Method:
Some Special Cases

When a branch includes a current source, the mesh-current method requires
some additional manipulations. The circuit shown in Fig. 425 depicts the

nature of the problem.

We have defined the mesh currents i,, iy, and i, as well as the voltage
across the 5 A current source, to aid the discussion. Note that the circuit

Answer: (a) 3;
(b) 36 W.

4,9  Use the mesh-current method to find v, in the
circuit shown.

20
A

68 8§

Answer: 16 V.

100V

contains five essential branches where the current is unknown and four  Figure 4.25 A A circuit illustrating mesh analysis when
essential nodes. Hence we need to write two [5 — (4 — 1)] mesh-current  a branch contains an independent current source.
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) " PR ¢ Supcrmesh

60 40

Figure 4.26 A The circuit shown in Fig. 4.25, illustrat-
ing the concept of a supermesh.

equations to solve the circuit. The presence of the current source reduces
the three unknown mesh currents to two such currents, because it con-
strains the difference between /, and i, to equal 5 A. Hence, if we know i,,
we know i, and vice versa.

However, when we attempt to sum the voltages around either mesh a
or mesh ¢, we must introduce into the equations the unknown voltage
across the 5 A current source. Thus, for mesh a:

100 = 3(i, — i) + v + 6i,, (4.36)
and for mesh c:
=50 = 4i, — v + 2(i, — ip). (4.37)

We now add Eqgs. 4.36 and 4.37 to eliminate » and obtain
50 = 9i, - Siy, + 6i.. (4.38)
Summing voltages around mesh b gives
0 = 3y, — iy) + 104, + 2(i, — ic). (4.39)

We reduce Eqgs. 4.38 and 4.39 to two equations and two unknowns by using
the constraint that

ie — iy = 5. (4.40)

We leave to you the verification that, when Eq. 4.40 is combined with
Egs. 4.38 and 4.39, the solutions for the three mesh currents are

ih=175A, i, =125A, and i, =6.75A.

The Concept of a Supermesh

We can derive Eq. 4.38 without introducing the unknown voltage v by
using the concept of a supermesh. To create a supermesh, we mentally
remove the current source from the circuit by simply avoiding this branch
when writing the mesh-current equations. We express the voltages around
the supermesh in terms of the original mesh currents. Figure 4.26 illus-
trates the supermesh concept. When we sum the voltages around the
supermesh (denoted by the dashed line), we obtain the equation

=100 + 3(i, — i) + 2(i. — ip) + 50 + 4i. + 6i, = 0, (4.41)
which reduces to
50 = 9i, — Si, + 6i. (4.42)

Note that Eqs. 4.42 and 4.38 are identical. Thus the supermesh has elimi-
nated the need for introducing the unknown voltage across the current
source. Once again, taking time to look carefully at a circuit to identify a
shortcut such as this provides a big payoff in simplifying the analysis.



4.7

Mesh-Current Analysis of the Amplifier Circuit

We can use the circuit first introduced in Section 2.5 (Fig.2.24) to illustrate
how the mesh-current method works when a branch contains a dependent
current source. Figure 4.27 shows that circuit, with the three mesh currents
denoted i,, i}, and i.. This circuit has four essential nodes and five essential
branches where the current is unknown. Therefore we know that the cir-
cuit can be analyzed in terms of two [5 — (4 — 1)] mesh-current equa-
tions. Although we defined three mesh currents in Fig. 4.27, the dependent
current source forces a constraint between mesh currents i, and i, so we
have only two unknown mesh currents. Using the concept of the super-
mesh, we redraw the circuit as shown in Fig. 4.28.

We now sum the voltages around the supermesh in terms of the mesh
currents Z,, i, and i to obtain

Ryiy, + vee + Re(ic — iy) — Vo =0. (4.43)
The mesh b equation is
Ryiy, + Vg + Rp(iy, — i) = 0. (4.44)
The constraint imposed by the dependent current source is
Big = i, — i. (4.45)

The branch current controlling the dependent current source, expressed
as a function of the mesh currents, is

ig = iy — i, (4.46)
From Egs. 4.45 and 4.46,
i. = (1 + By, — Biy. (4.47)
We now use Eq. 4.47 to eliminate i, from Eqs. 4.43 and 4.44:
[Ry + (1 + B)Rglia — (1 + B)Rgi, = Vo — Ve, (4.48)
—(1 + B)Reiy + [Ry + (1 + B)Ryliy, = =V, (4.49)
You should verify that the solution of Eqs. 4.48 and 4.49 for i, and i, gives

P = VR, — VeeRy, — Viee(l + B)Rg (4.50)
: RiRy + (1 + B)Re(R, + Ry) '

i VR, — (1 + B)RV e (6.51)
"7 RRy+ (1 + B)Re(R, + Ry

We also leave you to verify that, when Egs. 4.50 and 4.51 are used to find
ig, the result is the same as that given by Eq. 2.25.
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Figure 4,27 A The circuit shown in Fig. 2.24 with the
mesh currents i,, iy, and i..

Figure 4.28 A The circuit shown in Fig. 4.27, depicting
the supermesh created by the presence of the dependent
current source.
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v ASSESSMENT PROBLEMS

Objective 2—Understand and be able to use the mesh-current method

4.10 Use the mesh-current method to find the power 30 80

dissipated in the 2  resistor in the circuit shown.
_'_
30Vd> 280 50 CD 16 A

60 40
Answer: 72W.
. 10A
4.11 Use the mesh-current method to find the mesh N\
current i, in the circuit shown. O
20 1Q
YV Y — AMA
sv( " Wy %5 Q Py 2
— . 5
Answer: 15 A. ¢
. 20
4,12 Use the mesh-current method to find the AN~
power dissipated in the 1 £} resistor in the cir- 2A
cuit shown. ' 20 .
10V (f) 20 C’) 6V
10
WA

Answer: 36W.
NOTE: Also try Chapter Problems 4.42, 4.44, 4.48, and 4.51.

4.8 The Node-Voltage Method Versus
the Mesh-Current Method

The greatest advantage of both the node-voltage and mesh-current meth-
ods is that they reduce the number of simultaneous equations that must be
manipulated. They also require the analyst to be quite systematic in terms
of organizing and writing these equations. It is natural to ask, then, “When
is the node-voltage method preferred to the mesh-current method and
vice versa?” As you might suspect, there is no clear-cut answer. Asking a
number of questions, however, may help you identify the more efficient
method before plunging into the solution process:

+ Does one of the methods result in fewer simultaneous equations
to solve?

+ Does the circuit contain supernodes? If so, using the node-voltage
method will permit you to reduce the number of equations to
be solved.
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« Does the circuit contain supermeshes? If so, using the mesh-current
method will permit you to reduce the number of equations to

be solved.

» Wil solving some portion of the circuit give the requested solution?
If so, which method is most efficient for solving just the pertinent

portion of the circuit?

Perhaps the most important observation is that, for any situation, some
time spent thinking about the problem in relation to the various analytical
approaches available is time well spent. Examples 4.6 and 4.7 illustrate the
process of deciding between the node-voltage and mesh-current methods.

6 CRXE  Understanding the Node-Voltage Method Versus Mesh-Current Method

Find the power dissipated in the 300 Q resistor in
the circuit shown in Fig. 4.29.

150 Q 100 © 2504} 500 Q)

256 V Tzao Q 400 QT 128V

@ L d &

Figure 4.29 A The circuit for Example 4.6.

Solution

To find the power dissipated in the 300  resistor,
we need to find either the current in the resistor or
the voltage across it. The mesh-current method
yields the current in the resistor; this approach
requires solving five simultaneous mesh equations,
as depicted in Fig. 4.30. In writing the five equa-
tions, we must include the constraint iy = —ij.

Before going further, let’s also look at the circuit
in terms of the node-voltage method. Note that, once
we know the node voltages, we can calculate either
the current in the 300 () resistor or the voltage across
it. The circuit has four essential nodes, and therefore
only three node-voltage equations are required to
describe the circuit. Because of the dependent volt-
age source between two essential nodes, we have to
sum the currents at only two nodes. Hence the prob-
lem is reduced to writing two node-voltage equations
and a constraint equation. Because the node-voltage
method requires only three simultaneous equations,
it is the more attractive approach.

Once the decision to use the node-voltage
method has been made, the next step is to select a
reference node. Two essential nodes in the circuit in
Fig. 4.29 merit consideration. The first is the refer-
ence node in Fig. 4.31. If this node is selected, one of
the unknown node voltages is the voltage across the

300 Q resistor, namely, v, in Fig. 4.31. Once we
know this voltage, we calculate the power in the
300 Q resistor by using the expression

P = v%/ 300.

3000 <2
-AAN

i
1500 | 1000 " 2500

2@?@ 7 ?@
i, i i

Figure 4.30 A The circuit shown in Fig. 4.29, with the five
mesh currents.

3000 <1
A

1500 | 1000702500 |r2500 0

|
140003 128V
50 iA )

256 V Tzoo Q!

Figure 4.31 A The circuit shown in Fig. 4.29, with a
reference node.

Note that, in addition to selecting the reference
node, we defined the three node voltages v, v,, and
v; and indicated that nodes 1 and 3 form a super-
node, because they are connected by a dependent
voltage source. It is understood that a node voltage is
arise from the reference node; therefore, in Fig. 4.31,
we have not placed the node voltage polarity refer-
ences on the circuit diagram.
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The second node that merits consideration as
the reference node is the lower node in the circuit,
as shown in Fig. 4.32. It is attractive because it has
the most branches connected to it, and the node-
voltage equations are thus easier to write. However,
to find either the current in the 300 {) resistor or
the voltage across it requires an additional calcula-
tion once we know the node voltages v, and v.. For
example, the current in the 300 () resistor is
(ve — v,)/300, whereas the voltage across the resis-
toris v, — v,

3000 <2
VWA

15000, 1000 " 2500 |1.5000
a b, c
256VT20OQ 50 iy ?ooa 128V

Figure 4.32 A The circuit shown in Fig. 4.29 with an
alternative reference node.

We compare these two possible reference nodes
by means of the following sets of equations. The first
set pertains to the circuit shown in Fig. 4.31, and the
second set is based on the circuit shown in Fig. 4.32.

« Set 1 (Fig 4.31)
At the supernode,

VL VTV Vs V3TV Vs (v, + 128)
100 250 200 400 500

+ vy + 256 -0
150

At (%N

Uy vz—v]+v2—v3 Uy + 128 — 1y
300 250 400 500

From the supernode, the constraint equation is

. V2
v3 = v — S0iy = vy e

- Set 2 (Fig4.32)
At v,,

U, v, — 25 v, — v, v, — v

+ + + =0.

200 150 100 300 0
At v,

R v, + 128 v, — vy, vc—va_o

400 500 250 300

From the supernode, the constraint equation is

50(v. — v Ve — P
?)bZSOiA= (;OO a)= 6 a'

You should verify that the solution of either set
leads to a power calculation of 16.57 W dissipated in
the 300 Q resistor.

Find the voltage v, in the circuit shown in Fig. 4.33.

Solution

At first glance, the node-voltage method looks
appealing, because we may define the unknown
voltage as a node voltage by choosing the lower ter-
minal of the dependent current source as the refer-
ence node. The circuit has four essential nodes and
two voltage-controlled dependent sources, so the
node-voltage method requires manipulation of
three node-voltage equations and two constraint
equations.

Let’s now turn to the mesh-current method for
finding v,. The circuit contains three meshes, and
we can use the leftmost one to calculate v,. If we

m Comparing the Node-Voltage and Mesh-Current Methods

let i, denote the leftmost mesh current, then
v, = 193 — 10i,. The presence of the two current
sources reduces the problem to manipulating a sin-
gle supermesh equation and two constraint equa-
tions. Hence the mesh-current method is the more
attractive technique here.

44 25Q 26)
Qs Qo o
6Q 7580 80

Figure 4.33 A The circuit for Example 4.7.



Figure 4.35 A The circuit shown in Fig. 4.33 with node voltages.

To help you compare the two approaches, we
summarize both methods. The mesh-current equa-
tions are based on the circuit shown in Fig. 4.34,
and the node-voltage equations are based on
the circuit shown in Fig. 4.35. The supermesh
equation is

193 = 10i, + 10i, + 10ic + 0.8v,,
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and the constraint equations are
iy — i, = 0.4v, = 0.8i;
vy = —7.5iy; and
i, — i, = 0.5.

We use the constraint equations to write the super-
mesh equation in terms of i,:

160 = 80i,, or i, = 2 A,
v, =193 — 20 = 173 V.

The node-voltage equations are

v,,—193_04v+v0—vn_0
10 A 25 T
Vo — Uy vy — (U + 0.8vp) _
Y 05 + 10 =0,
Uy v, + 0.8y — v,
=+ 05+ ——"——=0.
7.5 05 10 0

The constraint equations are

v, — (v, + 0.8vy)
Vg = —Up, VA= 10

We use the constraint equations to reduce the node-
voltage equations to three simultaneous equations
involving v,,, v,, and v,. You should verify that the
node-voltage approach also gives v, = 173 V.

v’ASSESSMENT PROBLEMS

Objective 3—Deciding between the node-voltage and mesh-current methods

4,13 Find the power delivered by the 2 A current
source in the circuit shown.

150 100
ANV 4 —AWW\

20V 2A 25V

Answer: 70W.
NOTE: Also try Chapter Problems 4.52 and 4.53.

4.9 Source Transformations

4.14 Find the power delivered by the 4 A current

source in the circuit shown.

4A

Answer: 40W.

Even though the node-voltage and mesh-current methods are powerful tech-
niques for solving circuits, we are still interested in methods that can be used
to simplify circuits. Series-parallel reductions and A-to-Y transformations are
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R
a

b

Figure 4.36 A Source transformations.

associated with the 6 V source.

Solution

b) State whether the 6 V source is absorbing or
delivering the power calculated in (a).

already on our list of simplifying techniques. We begin expanding this list
with source transformations. A source transformation, shown in Fig. 4.36,
allows a voltage source in series with a resistor to be replaced by a current
source in parallel with the same resistor or vice versa. The double-headed
arrow emphasizes that a source transformation is bilateral; that is, we can
start with either configuration and derive the other.

We need to find the relationship between v, and i, that guarantees the
two configurations in Fig. 4.36 are equivalent with respect to nodes a,b.
Equivalence is achieved if any resistor R; experiences the same current
flow, and thus the same voltage drop, whether connected between nodes
a.bin Fig. 4.36(a) or Fig. 4.36(b).

Suppose R; is connected between nodes ab in Fig. 4.36(a). Using
Ohm’s law, the current in R; is

. Uy
ip = ———.
L™ R+R,
Now suppose the same resistor R; is connected between nodes a.b in
Fig. 4.36(b). Using current division, the current in R, is
. R
i), = ——is.
PTR+RT

If the two circuits in Fig. 4.36 are equivalent, these resistor currents must be
the same. Equating the right-hand sides of Egs. 4.52 and 4.53 and simplifying,

(4.52)

(4.53)

j=2
s = E (4.54)
When Eq. 4.54 is satisfied for the circuits in Fig. 4.36, the current in Ry is
the same for both circuits in the figure for all values of R;. If the current
through R; is the same in both circuits, then the voltage drop across Ry is
the same in both circuits, and the circuits are equivalent at nodes a,b.
If the polarity of v, is reversed, the orientation of i; must be reversed
to maintain equivalence.
Example 4.8 illustrates the usefulness of making source transforma-
tions to simplify a circuit-analysis problem.

o] LYW Using Source Transformations to Solve a Circuit

a) For the circuit shown in Fig. 4.37, find the power 40 6) 50

Figure 4.37 A The circuit for Example 4.8.

a) If we study the circuit shown in Fig. 4.37, know-

ing that the power associated with the 6 V
source is of interest, several approaches come
to mind. The circuit has four essential nodes
and six essential branches where the current is
unknown. Thus we can find the current in the
branch containing the 6 V source by solving
either three (6 — (4 — 1)] mesh-current equa-
tions or three [4 — 1] node-voltage equations.
Choosing the mesh-current approach involves

solving for the mesh current that corresponds
to the branch current in the 6 V source.
Choosing the node-voltage approach involves
solving for the voltage across the 30 £} resistor,
from which the branch current in the 6 V
source can be calculated. But by focusing on
just one branch current, we can first simplify
the circuit by using source transformations.
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We must reduce the circuit in a way that pre- this branch, we can transform the 40 V source in
serves the identity of the branch containing the 6 V series with the 5 () resistor into an 8 A current
source. We have no reason to preserve the identity of source in parallel with a 5 Q resistor, as shown
the branch containing the 40 V source. Beginning with in Fig. 4.38(a).

490 6Q 4Q 6Q 4Q
6V 300 2090 5Q SA 6\/ 300 32\/
10 QO 10 Q)
— W\ —= . =AW
(a) First step (b) Second step
40 40 12Q
6V<5W 300 200 L6 A 6V 19.2V
(c) Third step (d) Fourth step
Figure 4.38 A Step-by-step simplification of the circuit shown in Fig. 4.37.
Next, we can replace the parallel combination of and the 12 ) resistor transforms into a voltage
the 20 Q) and 5 € resistors with a 4  resistor. source of 19.2 V in series with 12 ). Figure 4.38(d)
This 4 ) resistor is in parallel with the 8 A source shows the result of this last transformation. The
and therefore can be replaced with a 32 V source current in the direction of the voltage drop across
in series with a 4 Q resistor, as shown in the 6 V source is (19.2 — 6)/16, or 0.825 A.
Fig. 4.38(b). The 32 V source is in series with 20 () Therefore the power associated with the 6 V
of resistance and, hence, can be replaced by a cur- source is
rent source of 1.6 A in parallel with 20 Q, as shown
in Fig. 4.38(c). The 20 () and 30 Q) parallel resis- pev = (0.825)(6) = 495 W,
tors can be reducced to a single 12 €2 resistor. The
parallel combination of the 1.6 A current source b) The voltage source is absorbing power.

A question that arises from use of the source transformation depicted
in Fig. 4.38 is,“What happens if there is a resistance R, in parallel with the
voltage source or a resistance R; in series with the current source?” In
both cases, the resistance has no effect on the equivalent circuit that pre-
dicts behavior with respect to terminals a,b. Figure 4.39 summarizes this
observation.

The two circuits depicted in Fig. 4.39(a) are equivalent with respect to
terminals a,b because they produce the same voltage and current in any

R,
resistor R; inserted between nodes a,b. The same can be said for the cir- a a
cuits in Fig. 4.39(b). Example 4.9 illustrates an application of the equiva-
lent circuits depicted in Fig. 4.39. “ R = 0 R
b

(b)

Figure 4.39 A Equivalent circuits containing a
resistance in parallel with a voltage source or in series
with a current source.
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Pl CER W Using Special Source Transformation Techniques

a) Use source transformations to find the voltage
v, in the circuit shown in Fig. 4.40.

b) Find the power developed by the 250 V voltage
source.

c) Find the power developed by the 8 A current
source.

250 50

250V

Figure 4.40 A The circuit for Example 4.9.

Solution

a) We begin by removing the 125 € and 10 Q resis-
tors, because the 125 ) resistor is connected across
the 250 V voltage source and the 10 £} resistor is
connected in series with the 8 A current source. We
also combine the series-connected resistors into a
single resistance of 20 Q. Figure 4.41 shows the sim-
plified circuit.

250

+

250V 8A #,31000 3200

Figure 4.41 A A simplified version of the circuit shown in Fig. 4.40.

We now use a source transformation to replace
the 250 V source and 25 () resistor with a 10 A
source in parallel with the 25 () resistor, as shown in
Fig. 4.42. We can now simplify the circuit shown in
Fig. 4.42 by using Kirchhoff’s current law to com-
bine the parallel current sources into a single
source. The parallel resistors combine into a single
resistor. Figure 4.43 shows the result. Hence
v, = 20V.

b) The current supplied by the 250 V source equals the
current in the 125 Q) resistor plus the current in the
25 O resistor. Thus

. _ 250 250 — 20

+ = 11. .
Is 125 5 112 A

Therefore the power developed by the voltage source is

p25nv(developed) = (250)(112) = 2800 W.

c) To find the power developed by the 8 A current source,
we first find the voltage across the source. If we let v,
represent the voltage across the source, positive at the
upper terminal of the source, we obtain

v, + 8(10) = v, = 20, or w, = —60V,

and the power developed by the 8 A source is 480 W.
Note that the 125 ) and 10 Q resistors do not affect
the value of », but do affect the power calculations.

+

10A 3250 8A 21,1000 $200

- L 4 A

Figure 4.42 A The circuit shown in Fig. 4.41 after a source
transformation.

Figure 4.43 A The circuit shown in Fig. 4.42 after combining
sources and resistors.
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Objective 4—Understand source transformation

4.15 a) Use a series of source transformations to
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1.6Q

find the voltage v in the circuit shown.

b) How much power does the 120V source
deliver to the circuit?

(a) 48V;

200

Answer:

120V 25

60V

36A 260 v

(b) 3744 W.
NOTE: Also try Chapter Problems 4.59 and 4.60.

4.10 Thévenin and Norton Equivalents

At times in circuit analysis, we want to concentrate on what happens at
a specific pair of terminals. For example, when we plug a toaster into an
outlet, we are interested primarily in the voltage and current at the ter-
minals of the toaster. We have little or no interest in the effect that con-
necting the toaster has on voltages or currents elsewhere in the circuit
supplying the outlet. We can expand this interest in terminal behavior
to a set of appliances, each requiring a different amount of power.
We then are interested in how the voltage and current delivered at the
outlet change as we change appliances. In other words, we want to focus
on the behavior of the circuit supplying the outlet, but only at the out-
let terminals.

Thévenin and Norton equivalents are circuit simplification techniques
that focus on terminal behavior and thus are extremely valuable aids in
analysis. Although here we discuss them as they pertain to resistive cir-
cuits, Thévenin and Norton equivalent circuits may be used to represent
any circuit made up of linear elements.

We can best describe a Thévenin equivalent circuit by reference to
Fig. 4.44, which represents any circuit made up of sources (both inde-
pendent and dependent) and resistors. The letters a and b denote the
pair of terminals of interest. Figure 4.44(b) shows the Thévenin equiva-
lent. Thus, a Thévenin equivalent circuit is an independent voltage
source Vpy, in series with a resistor Ry, which replaces an interconnec-
tion of sources and resistors. This series combination of V1, and Ry, is
equivalent to the original circuit in the sense that, if we connect the
same load across the terminals a,b of each circuit, we get the same volt-
age and current at the terminals of the load. This equivalence holds for
all possible values of load resistance.

To represent the original circuit by its Thévenin equivalent, we must
be able to determine the Thévenin voltage V, and the Thévenin resist-
ance Rqy,. First, we note that if the load resistance is infinitely large, we
have an open-circuit condition. The open-circuit voltage at the terminals
a,b in the circuit shown in Fig. 4.44(b) is V'g,. By hypothesis, this must be

®a a
A resistive
network containing
independent and
dependent sources

eb b

(a) (b)

Figure 4.44 A (3) A general circuit. (b) The Thévenin
equivalent circuit.

VTh
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50 40

25V

Figure 4,45 A A circuit used to illustrate a Thévenin
equivalent.

Figure 4.46 A The circuit shown in Fig. 4.45 with
terminals a and b short-circuited.

the same as the open-circuit voltage at the terminals a,b in the original
circuit. Therefore, to calculate the Thévenin voltage V1, we simply calcu-
late the open-circuit voltage in the original circuit.

Reducing the load resistance to zero gives us a short-circuit condition.
If we place a short circuit across the terminals a,b of the Thévenin equiva-
lent circuit, the short-circuit current directed from a to b is

o = —. (4.55)

By hypothesis, this short-circuit current must be identical to the short-circuit
current that exists in a short circuit placed across the terminals a,b of the
original network. From Eq. 4.55,

Ve
Ryp = —2 (4.56)

lSC

Thus the Thévenin resistance is the ratio of the open-circuit voltage to the
short-circuit current.

Finding a Thévenin Equivalent

To find the Thévenin equivalent of the circuit shown in Fig. 4.45, we first
calculate the open-circuit voltage of v,;,. Note that when the terminals a,b
are open, there is no current in the 4 ) resistor. Therefore the open-circuit
voltage v,y is identical to the voltage across the 3 A current source, labeled
v. We find the voltage by solving a single node-voltage equation.
Choosing the lower node as the reference node, we get

vy — 25 (1
—+—=-3=0. .
< 5 =3=0 (4.57)
Solving for v; yields
v =32V. (4.58)

Hence the Thévenin voltage for the circuit is 32 V.

The next step is to place a short circuit across the terminals and calcu-
late the resulting short-circuit current. Figure 4.46 shows the circuit with
the short in place. Note that the short-circuit current is in the direction of
the open-circuit voltage drop across the terminals a,b. If the short-circuit
current is in the direction of the open-circuit voltage rise across the termi-
nals, a minus sign must be inserted in Eq. 4.56.

The short-circuit current (is.) is found easily once v, is known. Therefore
the problem reduces to finding », with the short in place. Again, if we use the
lower node as the reference node, the equation for v, becomes

vy — 25 V2 (%)

: % +, =0 (4.59)



Solving Eq. 4.59 for v, gives
v, =16 V. (4.60)
Hence, the short-circuit current is
o= —=4A. (4.61)

We now find the Thévenin resistance by substituting the numerical results
from Egs. 4.58 and 4.61 into Eq. 4.56:

RTh = l_ = =8 Q. (4.62)

Figure 4.47 shows the Thévenin equivalent for the circuit shown in Fig. 4.45.

You should verify that, if a 24 {} resistor is connected across the ter-
minals a,b in Fig. 4.45, the voltage across the resistor will be 24 V and
the current in the resistor will be 1 A, as would be the case with the
Thévenin circuit in Fig. 4.47. This same equivalence between the circuit
in Figs. 4.45 and 4.47 holds for any resistor value connected between
nodes a,b.

The Norton Equivalent

A Norton equivalent circuit consists of an independent current source
in parallel with the Norton equivalent resistance. We can derive it from
a Thévenin equivalent circuit simply by making a source transforma-
tion. Thus the Norton current equals the short-circuit current at the
terminals of interest, and the Norton resistance is identical to the
Thévenin resistance.

Using Source Transformations

Sometimes we can make effective use of source transformations to
derive a Thévenin or Norton equivalent circuit. For example, we can
derive the Thévenin and Norton equivalents of the circuit shown
in Fig. 4.45 by making the series of source transformations shown in
Fig. 4.48. This technique is most useful when the network contains only
independent sources. The presence of dependent sources requires
retaining the identity of the controlling voltages and/or currents, and
this constraint usually prohibits continued reduction of the circuit
by source transformations. We discuss the problem of finding the
Thévenin equivalent when a circuit contains dependent sources in
Example 4.10.
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80

32V

b

Figure 4.47 A The Thévenin equivalent of the circuit
shown in Fig. 4.45.

50 4Q
a
25V 2200 3A
® - e b
Step 1: l
Source transformation
40
a
SA 50 200 3A
® . * o b
Step 2:
Parallel sources and
parallel resistors combined
40
a
(Dsa 340
b
Step 3:
Source transformation; scries
resistors combined, producing
the Thévenin equivalent circuit
80
a
2V
—e b
Step 4:
Source transformation, producing
the Norton equivalent circuit ¥
v -8 a
é) 4A 80
. e b

Figure 4.48 A Step-by-step derivation of the Thévenin
and Norton equivalents of the circuit shown in Fig. 4.45.
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Syl CRR D Finding the Thévenin Equivalent of a Circuit with a Dependent Source

Find the Thévenin equivalent for the circuit con-
taining dependent sources shown in Fig. 4.49.

+ +

200 v3250 vy

® —e ob

Figure 4.49 A A circuit used to illustrate a Thévenin equivalent
when the circuit contains dependent sources.

Solution

The first step in analyzing the circuit in Fig. 4.49 is
to recognize that the current labeled i, must be
zero. (Note the absence of a return path for i, to
enter the left-hand portion of the circuit.) The
open-circuit, or Thévenin, voltage will be the volt-
age across the 25 ) resistor. With i, = 0,

VTh = Vap — (_201)(25) = —500i.

The current i is

__5_32)_5—31/'1"]1
T 72000 2000

In writing the equation for i, we recognize that the
Thévenin voltage is identical to the control voltage.
When we combine these two equations, we obtain

VTh =-5V.

To calculate the short-circuit current, we place
a short circuit across a,b. When the terminals a,b are
shorted together, the control voltage v is reduced to
zero. Therefore, with the short in place, the circuit
shown in Fig. 4.49 becomes the one shown in
Fig. 4.50. With the short circuit shunting the 25 £}
resistor, all the current from the dependent current
source appears in the short, so

i = —20i.

2kQ a
WY ‘ *
14
5V 20 50 i l
b

Figure 4.50 A The circuit shown in Fig. 4.49 with terminals a
and b short-circuited.

As the voltage controlling the dependent volt-
age source has been reduced to zero, the current
controlling the dependent current source is

Combining these two equations yields a short-circuit
current of

i = —20(2.5) = —50 mA.

From i . and Vp;, we get

1% -5
Ry = —2 = — % 10° = 100 Q.

lSC

Figure 4.51 illustrates the Thévenin equivalent
for the circuit shown in Fig. 4.49. Note that the ref-
erence polarity marks on the Thévenin voltage
source in Fig. 4.51 agree with the preceding equa-
tion for V.

100 Q2

5V

Figure 4.51 A The Thévenin equivalent for the circuit shown in
Fig. 4.49.
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4.16 Find the Thévenin equivalent circuit with respect 120
to the terminals a,b for the circuit shown. —W
5Q 80
—————e a
2V CP 200
Answer: V, =V, = 648V, Ry, = 6 1. ° ob
4,17 Find the Norton equivalent circuit with respect 20

to the terminals a,b for the circuit shown.
15A “ 120
Answer: Iy = 6 A (directed toward a), Ry = 7.5 Q. > b

4.18 A voltmeter with an internal resistance of

100 k() is used to measure the voltage vag in the
circuit shown. What is the voltmeter reading?
36V

Answer: 120V.

NOTE: Also try Chapter Problems 4.63, 4.64, and 4.71.

4.11 More on Deriving a Thévenin
Equivalent

The technique for determining Ry, that we discussed and illustrated in
Section 4.10 is not always the easiest method available. Two other meth-
ods generally are simpler to use. The first is useful if the network contains
only independent sources. To calculate Ry, for such a network, we first
deactivate all independent sources and then caiculate the resistance seen
looking into the network at the designated terminal pair. A voltage source
is deactivated by replacing it with a short circuit. A current source is deac-
tivated by replacing it with an open circuit. For example, consider the cir-
cuit shown in Fig. 4.52. Deactivating the independent sources simplifies
the circuit to the one shown in Fig. 4.53. The resistance seen looking into
the terminals a,b is denoted R,,, which consists of the 4 () resistor in series
with the parallel combinations of the 5 and 20 2 resistors. Thus,

5x20
Ry = Rrp =4+

=8 Q. (4.63)

Note that the derivation of Ry, with Eq. 4.63 is much simpler than the
same derivation with Egs. 4.574.62.

12kQ 15k
'A% L4 » A
+
18 mA 60 kQ) VAR
Y eB
50 4Q
AN—e —W—ea
25V 200 3A Uiy

1

Figure 4.52 A A circuit used to illustrate a Thévenin
equivalent.

50 40

200 - R

Figure 4.53 A The circuit shown in Fig. 4.52 after deac-
tivation of the independent sources.
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Solution

If the circuit or network contains dependent sources, an alternative
procedure for finding the Thévenin resistance Ryy, is as follows. We first
deactivate all independent sources, and we then apply either a test voltage
source or a test current source to the Thévenin terminals a,b. The Thévenin
resistance equals the ratio of the voltage across the test source to the cur-
rent delivered by the test source. Example 4.11 illustrates this alternative
procedure for finding Ry, using the same circuit as Example 4.10.

m Finding the Thévenin Equivalent Using a Test Source

Find the Thévenin resistance Ry, for the circuit in
Fig. 4.49, using the alternative method described.

The externally applied test voltage source is
denoted vy, and the current that it delivers to the
circuit is labeled ir. To find the Thévenin resistance,
we simply solve the circuit shown in Fig. 4.54 for the
ratio of the voltage to the current at the test source;
that is, Ry, = vr/iy. From Fig. 4.54,

We first deactivate the independent voltage source
from the circuit and then excite the circuit from the
terminals a,b with either a test voltage source or a
test current source. If we apply a test voltage source,
we will know the voltage of the dependent voltage
source and hence the controlling current i. Therefore
we opt for the test voltage source. Figure 4.54 shows

, Ur .
=—+ 2 .
ir 25 0i, (4.64)
—3’07‘
i = 5 mA. (4.65)

We then substitute Eq. 4.65 into Eq. 4.64 and solve
the resulting equation for the ratio vy/iy:

the circuit for computing the Thévenin resistance.

Thévenin resistance.

Figure 4.54 A An alternative method for computing the

= 2r Q7 4.66
725 7 20000 (4.66)
ir 1 6 50 1

= —— = —=—— (467

v 25 200 5000 100 (4.67)
From Eqgs. 4.66 and 4.67,
v .

Rpp = - =100 Q. (4.68)

7

Figure 4.55 A The application of a Thévenin equivalent
in circuit analysis.

In general, these computations are easier than those involved in com-
puting the short-circuit current. Moreover, in a network containing only
resistors and dependent sources, you must use the alternative method,
because the ratio of the Thévenin voltage to the short-circuit current is
indeterminate. That is, it is the ratio 0/0.

<« Using the Thévenin Equivalent in the Amplifier Circuit

At times we can use a Thévenin equivalent to reduce one portion of a cir-
cuit to greatly simplify analysis of the larger network. Let’s return to the
circuit first introduced in Section 2.5 and subsequently analyzed in
Sections 4.4 and 4.7. To aid our discussion, we redrew the circuit and iden-
tified the branch currents of interest, as shown in Fig. 4.55.

As our previous analysis has shown. /g is the key to finding the other
branch currents. We redraw the circuit as shown in Fig. 4.56 to prepare to
replace the subcircuit to the left of V), with its Thévenin equivalent. You



Figure 4.56 A A modified version of the circuit shown
in Fig. 4.55.

Figure 4.57 A The circuit shown in Fig. 4.56 modified
by a Thévenin equivalent.

v ASSESSMENT PROBLEMS

4.11  More on Deriving a Thévenin Equivalent 119

should be able to determine that this modification has no effect on the
branch currents iy, iy, i, and i.

Now we replace the circuit made up of Ve, Ry, and R, with a
Thévenin equivalent, with respect to the terminals b,d. The Thévenin volt-
age and resistance are

VecRy
= —_—" 4.69
TR+ R, (4.69)
RiR,
Ry, = ———. 4.70
™= R+ R, (4.70)

With the Thévenin equivalent, the circuit in Fig. 4.56 becomes the one
shown in Fig. 4.57.

We now derive an equation for ig simply by summing the voltages
around the left mesh. In writing this mesh equation, we recognize that
iE = (l + B)lB ThUS,

VTh = RThiB + V() + RE(]- + B)ti (471)
from which

= Vi = Vo
P Rm + (1+ B)Rg

(4.72)

When we substitute Egs. 4.69 and 4.70 into Eq. 4.72, we get the same
expression obtained in Eq. 2.25. Note that when we have incorporated the
Thévenin equivalent into the original circuit, we can obtain the solution
for iz by writing a single equation.

Objective 5—Understand Thévenin and Norton equivalents

4.19 Find the Thévenin equivalent circuit with respect 4.20 Find the Thévenin equivalent circuit with
to the terminals a,b for the circuit shown. respect to the terminals a,b for the circuit

Answer: Vo, = v, =8V, Ry, =1Q.

shown. (Hint: Define the voltage at the left-
most node as v, and write two nodal equations
with V1, as the right node voltage.)

/3<_l\> Answer: Vo, = v, = 30V, Ry, = 10 Q.
. 20 ) . 200 160 a
24v(_ aa(d) i,380 6003 4A 004008 iy
. ob l | D

NOTE: Also try Chapter Problems 4.74 and 4.77.
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ae—
Resistive network
containing R
independent and § L
dependent sources

be——-

Figure 4,58 A A circuit describing maximum power
transfer.

b

Figure 4.59 A A circuit used to determine the value of
R, for maximum power transfer.

Condition for maximum power transfer »

4.12 Maximum Power Transfer

Circuit analysis plays an important role in the analysis of systems designed
to transfer power from a source to a load. We discuss power transfer in
terms of two basic types of systems. The first emphasizes the efficiency of
the power transfer. Power utility systems are a good example of this type
because they are concerned with the generation, transmission, and distri-
bution of large quantities of electric power. If a power utility system is
inefficient, a large percentage of the power generated is lost in the trans-
mission and distribution processes, and thus wasted.

The second basic type of system emphasizes the amount of power trans-
ferred. Communication and instrumentation systems are good examples
because in the transmission of information, or data, via electric signals, the
power available at the transmitter or detector is limited. Thus, transmitting as
much of this power as possible to the receiver, or load, is desirable. In such
applications the amount of power being transferred is small, so the efficiency
of transfer is not a primary concern. We now consider maximum power
transfer in systems that can be modeled by a purely resistive circuit.

Maximum power transfer can best be described with the aid of the cir-
cuit shown in Fig. 4.58. We assume a resistive network containing independ-
ent and dependent sources and a designated pair of terminals, a,b, to which a
load, R, , is to be connected. The problem is to determine the value of R, that
permits maximum power delivery to R;. The first step in this process is to
recognize that a resistive network can always be replaced by its Thévenin
equivalent. Therefore, we redraw the circuit shown in Fig. 4.58 as the one
shown in Fig. 4.59. Replacing the original network by its Thévenin equivalent
greatly simplifies the task of finding R;. Derivation of R, requires express-
ing the power dissipated in R; as a function of the three circuit parameters
VTh: R’rh, and RL' Thus

V. 2
p=i¢R, = (—Th) R,. (4.73)

Next, we recognize that for a given circuit, V1, and Ry, will be fixed.
Therefore the power dissipated is a function of the single variable R;. To
find the value of R; that maximizes the power, we use elementary calculus.
We begin by writing an equation for the derivative of p with respect to R;:

dp _ o | (R + R)* — R.-2(Rpy + Ry)
= Vi, - ) (4.74)
dR; (Rt + Ry)
The derivative is zero and p is maximized when
(R + R.)* = 2R (Rpn + Ry)- (4.75)
Solving Eq. 4.75 yields
RL = RTh‘ (4.76)

Thus maximum power transfer occurs when the load resistance R; equals
the Thévenin resistance Ryy,. To find the maximum power delivered to R,
we simply substitute Eq. 4.76 into Eq. 4.73:

VinRL _ Vi
ax — = - 4.77
1)n\d.\ (2RL)2 4R[‘ ( )
The analysis of a circuit when the load resistor is adjusted for maximum
power transfer is illustrated in Example 4.12.
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Examble N YW Calculating the Condition for Maximum Power Transfer

a) For the circuit shown in Fig. 4.60, find the value
of R, that results in maximum power being
transferred to R;.

300 a

360V 150 R,

ce

Figure 4.60 A The circuit for Example 4.12.

b) Calculate the maximum power that can be deliv-
ered to R;.

c) When R, is adjusted for maximum power trans-
fer, what percentage of the power delivered by
the 360 V source reaches R, ?

Solution

a) The Thévenin voltage for the circuit to the left of
the terminals a,b is

150
Vi = 155(360) = 300 V.

The Thévenin resistance is

_ (150)(30)

Rpp = =25 Q.
th 180 >

Replacing the circuit to the left of the termi-
nals a,b with its Thévenin equivalent gives
us the circuit shown in Fig. 4.61, which indi-
cates that R; must equal 25 Q) for maximum
power transfer.

300V R,

b

Figure 4.61 A Reduction of the circuit shown in Fig. 4.60 by
means of a Thévenin equivalent.

b) The maximum power that can be delivered to
RL is

300

2
Pmax = (%) (25) = 900 W.

¢) When R; equals 25 (), the voltage v,, is

300
Vap = (E)(zs) =150 V.

From Fig. 4.60, when v, equals 150 V, the cur-
rent in the voltage source in the direction of the
voltage rise across the source is

- 360 - 150 _ 210 _

IR 20 30 7 A.

Therefore, the source is delivering 2520 W to the
circuit, or

ps = —i(360) = —2520 W.

The percentage of the source power delivered to
the load is

900
— X = 35.71%.
2520 100 = 35.71%
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v ASSESSMENT PROBLEMS

Objective 6—Know the condition for and calculate maximum power transfer to resistive load

4.21 a) Find the value of R that enables the circuit 4.22 Assume that the circuit in Assessment
shown to deliver maximum power to the Problem 4.21 is delivering maximum power to
terminals a,b. the load resistor R.
b) Find the maximum power delivered to R. a) How much power is the 100 V source deliv-

ering to the network?

b) Repeat (a) for the dependent voltage
source.

o

c) What percentage of the total power gener-
ated by these two sources is delivered to the
§R load resistor R?

100V

Te

Answer: (a) 3000 W,
Answer: (a) 3 (); (b) 800 W;
(b) 1.2 kW. (c) 31.58%.

NOTE: Also try Chapter Problems 4.83 and 4.87.

4.13 Superposition

A linear system obeys the principle of superposition, which states that
whenever a linear system is excited, or driven, by more than one inde-
pendent source of energy, the total response is the sum of the individual
responses. An individual response is the result of an independent source
acting alone. Becausec we are dealing with circuits made up of inter-
connected linear-circuit elements, we can apply the principle of superposi-
tion directly to the analysis of such circuits when they are driven by more
than one independent energy source. At present, we restrict the discussion
to simple resistive networks; however, the principle is applicable to any
linear system.

Superposition is applied in both the analysis and the design of circuits.
In analyzing a complex circuit with multiple independent voltage and cur-
rent sources, there are often fewer, simpler equations to solve when the
effects of the independent sources are considered one at a time. Applying
superposition can thus simplify circuit analysis. Be aware, though, that
sometimes applying superposition actually complicates the analysis, produc-
ing more equations to solve than with an alternative method. Superposition
is required only if the independent sources in a circuit are fundamentally
different. In these early chapters, all independent sources are dc sources, so
superposition is not required. We introduce superposition here in anticipa-
tion of later chapters in which circuits will require it.

Superposition is applied in design to synthesize a desired circuit
response that could not be achieved in a circuit with a single source. If the
desired circuit response can be written as a sum of two or more terms, the
response can be realized by including one independent source for each
term of the response. This approach to the design of circuits with complex
responses allows a designer to consider several simple designs instead of
one complex design.



We demonstrate the superposition principle by using it to find the
branch currents in the circuit shown in Fig. 4.62. We begin by finding the
branch currents resulting from the 120 V voltage source. We denote those
currents with a prime. Replacing the ideal current source with an open cir-
cuit deactivates it; Fig. 4.63 shows this. The branch currents in this circuit
are the result of only the voltage source.

We can easily find the branch currents in the circuit in Fig. 4.63 once
we know the node voltage across the 3 Q) resistor. Denoting this voltage
vy, We write

w10 n, n (4.78)

from which
v = 30 V. (479)

Now we can write the expressions for the branch currents /] — i directly:

120 - 30
fil=——F7—=15A, (4.80)
6
0
i = 3? =10 A, (4.81)
30
=10y = i =35 A. (4.82)

To find the component of the branch currents resulting from the current
source, we deactivate the ideal voltage source and solve the circuit shown in
Fig. 4.64. The double-prime notation for the currents indicates they are the
components of the total current resulting from the ideal current source.

We determine the branch currents in the circuit shown in Fig. 4.64 by
first solving for the node voltages across the 3 and 4 () resistors, respec-
tively. Figure 4.65 shows the two node voltages. The two node-voltage
equations that describe the circuit are

V3 V3 V3 T Uy

3ttt 5 0, (4.83)
Y4 _2- LEg % +12=0. (4.84)
Solving Eqs. 4.83 and 4.84 for v; and v,, we get
vy =—-12V, (4.85)
vy = —24 V. (4.86)

Now we can write the branch currents i{ through i} directly in terms of the
node voltages v; and v,:

== =2A, (4.87)
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12A

120V

Figure 4.63 A The circuit shown in Fig. 4.62 with the
current source deactivated.

1ZA

Figure 4.64 A The circuit shown in Fig. 4.62 with the
voltage source deactivated.

12A

Figure 4.65 A The circuit shown in Fig. 4.64 showing
the node voltages v; and v4.
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= ? = T = -4 A, (4.88)

H —

i3 =

6 A, (4.89)

o

ij=—=—=-6A. (4.90)

To find the branch currents in the original circuit, that is, the currents
i1, Iy, i3, and i, in Fig. 4.62, we simply add the currents given by
Eqs. 4.87-4.90 to the currents given by Eqgs. 4.80-4.82:

L=8+i=15+2=17A, (4.91)
L=b+i5=10-4=6A, (4.92)
hZ=bh+B=5+6=11A, (4.93)
b= +ij=5-6=-1A. (4.94)

You should verify that the currents given by Egs. 4.91-4.94 are the correct
values for the branch currents in the circuit shown in Fig. 4.62.

When applying superposition to linear circuits containing both independ-
ent and dependent sources, you must recognize that the dependent sources
are never deactivated. Example 4.13 illustrates the application of superposi-
tion when a circuit contains both dependent and independent sources.

FECEAER  Using Superposition to Solve a Circuit

Use the principle of superposition to find v, in the (=0.4v3)(10). Hence, vy must be zero, the branch
circuit shown in Fig. 4.66. containing the two dependent sources is open, and

0.4 Va . 20 ;
v, = 5:(10) =8 V.

50
<
wv (1)s
SQ U.4’UA'
<P S

Figure 4.66 A The circuit for Example 4.13. v %

Solution

We begin by finding the component of v, resulting Figure 4.67 A The circuit shown in Fig. 4.66 with the 5 A
from the 10 V source. Figure 4.67 shows the circuit. source deactivated.

With the 5 A source deactivated, v, must equal



When the 10 V source is deactivated, the circuit
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From the node a equation,

reduces to the one shown in Fig. 4.68. We have
added a reference node and the node designations
a, b, and ¢ to aid the discussion. Summing the cur-
rents away from node a yields

vﬂ ,Ul!

(2 (4]

— 4+ ——-040v =0, or 5v) - 8 =0.
20 5 A (2] A

Summing the currents away from node b gives

Vy — 2!_’&

0407 +
va 10

-5=0, or

or vy =16V.

The value of v, is the sum of v/, and v, or 24 V.

4% + vy — 2% = 50.

We now use

Figure 4.68 A The circuit shown in Fig. 4.66 with the 10 V

source deactivated.

v, = 2i3 + v

to find the value for v}. Thus,

NOTE: Assess your understanding of this material

Svi =50, or vi=10V.

Practical Perspective

Circuits with Realistic Resistors
It is not possible to fabricate identical electrical components. For example,
resistors produced from the same manufacturing process can vary in value
by as much as 20%. Therefore, in creating an electrical system the designer
must consider the impact that component variation will have on the per-
formance of the system. One way to evaluate this impact is by performing
sensitivity analysis. Sensitivity analysis permits the designer to calculate
the impact of variations in the component values on the output of the sys-
tem. We will see how this information enables a designer to specify an
acceptable component value tolerance for each of the system’s components.
Consider the circuit shown in Fig. 4.69. To illustrate sensitivity analysis,
we will investigate the sensitivity of the node voltages v; and v, to changes
in the resistor R,. Using nodal analysis we can derive the expressions for v,
and v, as functions of the circuit resistors and source currents. The results
are given in Egs. 4.95 and 4.96:

B R{R3R,I 5, — [Ry(R3 + Ry) + R3Ry]I,}
v (R; + Ry)(R; + Ry) + RyRy

. (4.95)

B R3R4[(Ry + Ry)l o — Ryl ]
(Ri + R))(Rs + Ry) + R3Ry

vy (4.96)

The sensitivity of v; with respect to R, is found by differentiating Eq. 4.95
with respect to Ry, and similarly the sensitivity of v, with respect to R, is
found by differentiating Eq. 4.96 with respect to R;. We get

dv _ [RsRs + Ry(Rs + Ry)[{RsR4l o — [R3Rs + Ry(R3 + Ry) ]}

dR, [(Ry + R)(R; + Ry) + RyR,)?

’

(4.97)

by trying Chapter Problems 4.91 and 4.96.
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dvy RiR{R3RyI g5 — [Ry(Ry + Ry) + R3R4]1,1}

R, [(R, + R)(R; + Ry) + R3R,J? (4.98)

Figure 4.69 A Circuit used to introduce sensitivity
analysis.

We now consider an example with actual component values to illustrate
the use of Egs. 4.97 and 4.98.

EXAMPLE

Assume the nominal values of the components in the circuit in Fig. 4.69 are:
R =25Q; Ry=5Q; Ry=50Q; Ry=75Q; I,y =12A and
I, = 16 A. Use sensitivity analysis to predict the values of v, and v, if
the value of R, is different by 10% from its nominal value.

Solution
From Egs. 4.95 and 4.96 we find the nominal values of v, and v,. Thus

| 25(3750(16) — [5(125) + 3750]12)
v 30(125) + 3750 -

25V (4.99)

and

_ 3750[30(16) — 25(12)]
Y27 T730(125) + 3750

=90V (4.100)

Now from Egs. 4.97 and 4.98 we can find the sensitivity of v, and v, to
changes in R;. Hence

dv, - [3750 + 5(125)] — {3750(16) — [3750 + 5(125)]12}
dR, [(30)(125) + 375012

7
=—V/Q, 4.101
o /Q (4.101)
and

dv,  3750{3750(16) — [5(125) + 3750]12}]

dR, (7500)%

= 0.5V/Q. (4.102)



How do we use the results given by Egs. 4.101 and 4.102? Assume that
Ry is 10% less than its nominal value, that is, R; = 22.5 Q. Then
AR, = —2.5  and Eq. 4.101 predicts Av; will be

7
== |(-2.5) = —1. )
Av, (12)( 5) = —1.4583V

Therefore, if R, is 10% less than its nominal value, our analysis predicts
that v; will be

v = 25 — 14583 = 23.5417 V. (4.103)

Similarly for Eq. 4.102 we have

Av, = 0.5(=2.5) = =125V,
v =90 — 1.25 = 88.75 V. (4.104)

We attempt to confirm the results in Egs. 4.103 and 4.104 by substituting
the value Ry = 22.5 Q into Egs. 4.95 and 4.96. When we do, the results are

v, = 234780V, (4.105)
v, = 88.6960 V. (4.106)

Why is there a difference between the values predicted from the sensitivity
analysis and the exact values computed by substituting for R; in the equa-
tions for v; and v,? We can see from Egs. 4.97 and 4.98 that the sensitivity
of v, and v, with respect to R, is a function of R;, because R, appears in
the denominator of both Egs. 4.97 and 4.98. This means that as R,
changes, the sensitivities change and hence we cannot expect Egs. 4.97 and
4,98 to give exact results for large changes in R;. Note that for a 10%
change in R, the percent error between the predicted and exact values of
vy and v, is small. Specifically, the percent error in v; = 0.2713% and the
percent error in v, = 0.0676%.

From this example, we can see that a tremendous amount of work is
involved if we are to determine the sensitivity of »; and v, to changes in
the remaining component values, namely R,, Rs, Ry, Iy, and I.
Fortunately, PSpice has a sensitivity function that will perform sensitivity
analysis for us. The sensitivity function in PSpice calculates two types of
sensitivity. The first is known as the one-unit sensitivity, and the second
is known as the 1% sensitivity. In the example circuit, a one-unit change
in a resistor would change its value by 1 ) and a one-unit change in a
current source would change its value by 1 A. In contrast, 1% sensitiv-
ity analysis determines the effect of changing resistors or sources by
1% of their nominal values.

The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 is
shown in Table 4.2. Because we are analyzing a linear circuit, we can use
superposition to predict values of v; and v, if more than one component’s
value changes. For example, let us assume R, decreases to 24 ) and R,
decreases to 4 (). From Table 4.2 we can combine the unit sensitivity of v,
to changes in Ry and R, to get

A, N Av,
AR, AR,

= ().5833 — 5417 = —4.8337V/Q.

Practical Perspective
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Similarly,

A'vz A'Uz
=+ = =05+65="1. .
AR, T AR, 05 +65=70V/Q
Thus if both R, and R, decreased by 1 {2 we would predict
vy =25 + 4.8227 = 29.8337 V,

9, =90-7=83V.

TABLE 4.2  PSpice Sensitivity Analysis Results

Element Element Element Sensitivity Normalized Sensitivity
Name Value (Volts/Unit) (Volts/Percent)

(a) DC Sensitivities of Node Voltage V1

R1 25 0.5833 0.1458

R2 5 -5.417 -0.2708

R3 50 0.45 0.225

R4 75 0.2 0.15

161 12 -14.58 -1.75

1G2 16 12.5 2

(b) Sensitivities of Output V2

R1 25 0.5 0.125
R2 5 6.5 0.325
R3 50 0.54 0.27
R4 75 0.24 0.18
161 12 -12.5 -1.5
1G2 16 15 2.4

If we substitute R; = 24 Q and R; = 4 ) into Eqs. 4.95 and 4.96 we get

v, = 29.793 V,
v, = 82759 V.

In both cases our predictions are within a fraction of a volt of the actual node
voltage values.

Circuit designers use the results of sensitivity analysis to determine
which component value variation has the greatest impact on the output of
the circuit. As we can see from the PSpice sensitivity analysis in Table 4.2,
the node voltages v; and v, are much more sensitive to changes in R, than
to changes in R;. Specifically, v; is (5.417/0.5833) or approximately
9 times more sensitive to changes in R, than to changes in R; and v, is
(6.5/0.5) or 13 times more sensitive to changes in R, than to changes in
R;. Hence in the example circuit, the tolerance on R, must be more strin-
gent than the tolerance on R, if it is important to keep v, and v, close to
their nominal values.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 4.105-4.107.



Summa[y

« For the topics in this chapter, mastery of some basic terms,

and the concepts they represent, is necessary. Those terms
are node, essential node, path, branch, essential branch,
mesh, and planar circuit. Table 4.1 provides definitions
and examples of these terms. (See page 91.)

Two new circuit analysis techniques were introduced in
this chapter:

« The node-voltage method works with both planar
and nonplanar circuits. A reference node is chosen
from among the essential nodes. Voltage variables
are assigned at the remaining essential nodes, and
Kirchhoff’s current law is used to write one equation
per voltage variable. The number of equations is
n, — 1, where n, is the number of essential nodes.
(See page 93.)

+ The mesh-current method works only with planar
circuits. Mesh currents are assigned to each mesh,
and Kirchhoff’s voltage law is used to write one
equation per mesh. The number of equations is
b — (n — 1), where b is the number of branches in
which the current is unknown, and » is the number of
nodes. The mesh currents are used to find the branch
currents. (See page 99.)

« Several new circuit simplification techniques were

introduced in this chapter:

+ Source transformations allow us to exchange a volt-
age source (v,) and a series resistor (R) for a current
source (i;) and a parallel resistor (R) and vice versa.
The combinations must be equivalent in terms of
their terminal voltage and current. Terminal equiva-
lence holds provided that

(See page 109.)
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+ Thévenin equivalents and Norton equivalents allow
us to simplify a circuit comprised of sources and resis-
tors into an equivalent circuit consisting of a voltage
source and a series resistor (Thévenin) or a current
source and a parallel resistor (Norton). The simplified
circuit and the original circuit must be equivalent in
terms of their terminal voltage and current. Thus
keep in mind that (1) the Thévenin voltage (V) is
the open-circuit voltage across the terminals of the
original circuit, (2) the Thévenin resistance (Ryy,) is
the ratio of the Thévenin voltage to the short-circuit
current across the terminals of the original circuit;
and (3) the Norton equivalent is obtained by per-
forming a source transformation on a Thévenin
equivalent. (See page 113.)

+ Maximum power transfer is a technique for calculating

the maximum value of p that can be delivered to a load,
R;. Maximum power transfer occurs when R; = Ry,
the Thévenin resistance as seen from the resistor R;.
The equation for the maximum power transferred is

Vi,
4R,

(See page 120.)

In a circuit with multiple independent sources,
superposition allows us to activate one source at a time
and sum the resulting voltages and currents to deter-
mine the voltages and currents that exist when all inde-
pendent sources are active. Dependent sources are
never deactivated when applying superposition. (See
page 122.)
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Problems

Section 4.1

4.1 For the circuit shown in Fig. P4.1, state the numerical
value of the number of (a) branches, (b) branches
where the current is unknown, (c) essential branches,
(d) essential branches where the current is unknown,
(e) nodes, (f) essential nodes, and (g) meshes.

Figure P4.1

40
<>
*r——" WNWN——— " WNA——¢
Rg Ry Ry
AV

— W\
&

4.2 a) If only the essential nodes and branches are
identified in the circuit in Fig. P4.1, how many
simultaneous equations are needed to describe
the circuit?

b) How many of these equations can be derived
using Kirchhoff’s current law?

¢) How many must be derived using Kirchhoff’s
voltage law?

d) What two meshes should be avoided in applying
the voltage law?
43 a) How many separate parts does the circuit in
Fig. P4.3 have?
b) How many nodes?
¢) How many branches are there?

d) Assume that the lower node in each part of the
circuit is joined by a single conductor. Repeat
the calculations in (a)-(c).

Figure P4.3
Ry

WY 8-
vxdp R, z/éks
éﬁib RJ

25,

10V iy (p

4.4 Assume the current i, in the circuit in Fig. P4.4 is

known. The resistors R; — Rjs are also known.
a) How many unknown currents are there?

b) How many independent equations can be writ-
ten using Kirchhoff’s current law (KCL)?

¢) Write an independent set of KCL equations.

d) How many independent equations can be
derived from Kirchhoff’s voltage law (KVL)?

e) Write a set of independent KVL equations.

Figure P4.4

4.5 A current leaving a node is defined as positive.

a) Sum the currents at each node in the circuit
shown in Fig. P4 .4.

b) Show that any one of the equations in (a) can be
derived from the remaining three equations.

Section 4.2

4.6 Use the node-voltage method to find v; and v, in
pseice  the circuit in Fig. P4.6.

MULTISIM

Figure P4.6

40 80 0
WV L 4 WA L 4
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144V og00 o 4)3a 350

4.7 Use the node-voltage method to find how much
e power the 2 A source extracts from the circuit in
MU Fig, P4.7.

Figure P4.7

2A 500 45V




4.8 Use the node-voltage method to find v, and v, in

rseice  the circuit shown in Fig. P4.8.
MULTISIM

Figure P4.8

80
r—W\—¢ *
+ +
6A ;2400 800 131200 1A

4.9 Use the node-voltage method to find v, in the cir-
esice  cuit in Fig. P4.9.

MULTISIM

Figure P4.9

200

24V

4.10 a) Find the power developed by the 40 mA current
PSPICE source in the circuit in Fig. P4.9.

oL b) Find the power developed by the 24 V voltage
source in the circuit in Fig. P4.9.

c) Verify that the total power developed equals the
total power dissipated.

411 A 50 Q resistor is connected in series with the
e 40 mA current source in the circuit in Fig. P4.9.
MULTISIM o
a) Find v,,.
b) Find the power developed by the 40 mA current
source.
c) Find the power developed by the 24 V voltage
source.
d) Verify that the total power developed equals the
total power dissipated.
e) What effect will any finite resistance connected
in series with the 40 mA current source have on
the value of v,?

4.12 The circuit shown in Fig. P4.12 is a dc model of a
eseice  residential power distribution circuit.
WM 2) Use the node-voltage method to find the branch
currents i; — ig.

Problems 131

b) Test your solution for the branch currents by
showing that the total power dissipated equals
the total power developed.

Figure P4.12

4.13 a) Use the node-voltage method to find the
PSPICE branch currents i, — i, in the circuit shown in
oS Fig. P4.13.

b) Find the total power developed in the circuit.

Figure P4.13

4.14 Use the node-voltage method to find the total power
eshice  dissipated in the circuit in Fig. P4.14.

MULTISIM

Figure P4.14

12Q

40V 250 40 Q
400
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4.15 a) Use the node-voltage method to find v,, v,, and

PSPICE. v3 in the circuit in Fig. P4.15.
MULTISIM
b) How much power does the 40 V voltage source

deliver to the circuit?

Figure P4.15

30 20
10 20
4.16 a) Use the node-voltage method to show that the

PSPICE output voltage v, in the circuit in Fig. P4.16 is
HuLTISIM equal to the average value of the source voltages.

b) Find v, if v, =100V, », =80V, and
V3 = —-60 V.

Figure P4.16

R R

U ]

Section 4.3

4.17 a) Use the node-voltage method to find the total

PSPICE power developed in the circuit in Fig. P4.17.
MULTISIM

b) Check your answer by finding the total power
absorbed in the circuit.
Figure P4.17
100 8§Q

25A 40 Q 160 Q 20Q 84 ia

ih

A A L

4.18 a) Use the node-voltage method to find v, in the
FePICE circuit in Fig. P4.18.

MULTISIM

b) Find the power absorbed by the dependent source.

¢) Find the total power developed by the independ-
ent sources.

Figure P4.18

200
—AMA

+ iA>
100
3A CD 2y C_) 80V

»

200 Q)
Siy

419 Use the node-voltage method to calculate the
e power delivered by the dependent voltage source in
MOTEM - the circuit in Fig. P4.19.

Figure P4.19

100 300
4'A'A% L 4 A\
160V i'21000 150,
200
® AN\~

4.20 a) Find the node voltages v, v, and v in the cir-
PSPICE cuit in Fig. P4.20.

MULTISIM
b) Find the total power dissipated in the circuit.

Figure P4.20

Section 4.4

4.21 Use the node-voltage method to find i, in the cir-
epspice  cult In Fig. P4.21.

MULTISIM

Figure P4.21
20V CD

4.22 a) Use the node-voltage method to find the
PSPICE branch currents i, i, and i3 in the circuit in
HuLmsf Fig. P4.22.

b) Check your solution for i, i, and i3 by showing
that the power dissipated in the circuit equals
the power developed.

2kQ

30kQ w 1kQ

5kQ

Figure P4,22




4.23

4.24

PSPICE
MULTISTM

4.25

PSPICE
MULTISIM

4.26

PSPICE
MULTISIM

a) Use the node-voltage method to find the power
dissipated in the 2 Q resistor in the circuit in
Fig. P4.23.

b) Find the power supplied by the 230 V source.

Figure P4.23

10
10 50

10
ZSOVQD 10 20
10 50

1Q

Use the node-voltage method to find the value of v,
in the circuit in Fig. P4.24.

Figure P4.24

4 )750 mA $200 0

Use the node-voltage method to find the value of v,
in the circuit in Fig. P4.25.

Figure P4.25

a) Use the node-voltage method to find v, and
the power delivered by the 2 A current source
in the circuit in Fig. P4.26. Use node a as the
reference node.

b) Repeat part (a), but use node b as the refer-
ence node.

c) Compare the choice of reference node in (a)
and (b). Which is better, and why?
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Figure P4.26

4.27 Use the node-voltage method to find v, in the cir-
PSPIE  cuit in Fig. P4.27.

MULTISIM

Figure P4.27

200 0,400

4.28 Use the node-voltage method to find the power devel-
i oped by the 20V source in the circuit in Fig. P4.28.

MULTISIM

Figure P4.28
35y

20

4Q

3200

40 Q T 80 Q 3.125 v,

4.29

PSPICE
MULTISIM

Assume you are a project engineer and one of your
staff is assigned to analyze the circuit shown in
Fig. P4.29. The reference node and node numbers
given on the figure were assigned by the analyst.
Her solution gives the values of v; and vy as 108 V
and 81.6 V, respectively.

Test these values by checking the total power
developed in the circuit against the total power dis-
sipated. Do you agree with the solution submitted
by the analyst?

Figure P4.29
(40/3) iy,

1.75 v,
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4.30 Show that when Eqgs. 4.16, 4.17, and 4.19 are solved
for ig, the result is identical to Eq. 2.25.

Section 4.5

4.31 Solve Problem 4.12 using the mesh-current method.
4.32 Solve Problem 4.13 using the mesh-current method.

4.33 a) Use the mesh-current method to find the branch
PSPICE currents i,, iy, and i, in the circuit in Fig. P4.33.

MULTISIM
b) Repeat (a) if the polarity of the 60 V source is
reversed.

Figure P4.33

40 20
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4.34 a) Use the mesh-current method to find the total

PSPICE power developed in the circuit in Fig. P4.34.
MULTISIM

b) Check your answer by showing that the total
power developed equals the total power
dissipated.

Figure P4.34

60
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15V
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4.35 Solve Problem 4.21 using the mesh-current method.

4.36 Solve Problem 4.23 using the mesh-current method.

Section 4.6

4.37 a) Use the mesh-current method to find v, in the
PSPICE circuit in Fig. P4.37.

MULTISIM

b) Find the power delivered by the dependent source.

Figure P4.37
100

24 Q) 780

20V i 370
\

4.38 Use the mesh-current method to find the power dissi-
pseice  pated in the 20  resistor in the circuit in Fig. P4.38.

MULTISIM

Figure P4.38

4.39
PSPICE
MULTISIM

Use the mesh-current method to find the power
delivered by the dependent voltage source in the
circuit seen in Fig. P4.39.

Figure P4.39

4.40 Use the mesh-current method to find the power
PP developed in the dependent voltage source in the
MULTISIM . o, . .

circuit in Fig. P4.40.

Figure P4,40

53 iy
+ _
30 5Q
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740 20
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Section 4.7

4.41 Solve Problem 4.8 using the mesh-current method.

442 a) Use the mesh-current method to find how much
power the 4 A current source delivers to the cir-
cuit in Fig. P4.42.

b) Find the total power delivered to the circuit.

¢) Check your calculations by showing that the
total power developed in the circuit equals the
total power dissipated



443
4.44

PSPICE
MULTISIM

4.45

PSPICE
MULTISIM

4.46

PSPICE
MULTISIM

Figure P4.42
50 40
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Solve Problem 4.20 using the mesh-current method.
a) Use the mesh-current method to solve for i, in
the circuit in Fig. P4.44.

b) Find the power delivered by the indepcndent
currcnt source.

¢) Find the power dclivered by the dependent volt-
age source.

Figure P4.44
10 kQ) 1kQ
AW ’ WA
5 mA 'Ai 5.4 kQ 150 iy
2.7k
& A

Use the mesh-current method to find the total power
devcloped in the circuit in Fig. P4.45.

Figure P4.45

n
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6.5,

a) Use the mesh-current method to determine
which sources in the circuit in Fig. P4.46 are gen-
erating power.

b) Find the total power dissipated in the circuit.

Figure P4.46
20
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4.47 Solve Problem 4.22 using the mesh-current method.

448 Use the mesh-current method to find the total
et power dissipated in the circuit in Fig. P4.48.
MULTISIM
Figure P4.48
40 90
AN~ A
20V 6A W0V
1Q 60
A * AM
449 a) Assume the 20 V source in the circuit in
Fig. P4.48 is changed to 60 V. Find the total
power dissipated in the circuit.
b) Repeat (a) if the 6 A current source is replaced
by a short circuit.
¢) Explain why the answers to (a) and (b) arc
the same.
4.50 a) Find the branch currents i, — i, for the circuit
PSPICE shown in Fig. P4.50.
MULTISIM

b) Check your answers by showing that the total
power generated equals the total power
dissipated.

Figure P4.50
4 iy
I

—ic

50 1

00
MW\ L 4 MN———9
[h l:k'
. l.‘ . -
2 iy nv@mov

a) Use the mesh-current method to find the branch
currents in i, — i, in the circuit in Fig. P4.51.

19 A 400 lz

4.51

PSPICE
MULTISIM

b) Check your solution by showing that the total
power developed in the circuit equals the total
power dissipated.

Figure P4.51




136  Techniques of Circuit Analysis

Section 4.8
4.52 a) Would you use the node-voltage or mesh-current
PSPICE method to find the power absorbed by the
HuLTIsI 20 V source in the circuit in Fig. P4.52? Explain
your choice.
b) Use the method you selected in (a) to find
the power.
Figure P4.52

0.003 v,

200 2

4.53 Assume you have been asked to find the power dis-
seice sipated in the 1k resistor in the circuit in
UM Fig, P4.53.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Use your recommended method of analysis to
find the power dissipated in the 1 k{2 resistor.

c) Would you change your recommendation if the
problem had been to find the power developed
by the 10 mA current source? Explain.

d) Find the power delivered by the 10 mA cur-
rent source.

Figure P4.53

10 mA Q)
5W&2

4.54 A 4 kQ resistor is placed in parallel with the 10 mA

rspice  current source in the circuit in Fig. P4.53. Assume

MM you have been asked to calculate the power devel-
oped by the current source.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Find the power developed by the current source.

4.55 The circuit in Fig. P4.55 is a direct-current version
e of a typical three-wire distribution system. The
UM resistors R,, Ry, and R, represent the resistances of
the three conductors that connect the three loads

Ry, R,, and Rj to the 125/250 V voltage supply. The

resistors Ry and R, represent loads connected to
the 125 V circuits, and R; represents a load con-
nected to the 250 V circuit.

a) What circuit analysis method will you use
and why?

b) Calculate v,, v,, and vs.
c¢) Calculate the power delivered to R;, R,, and R;.

d) What percentage of the total power developed
by the sources is delivered to the loads?

e) The Ry, branch represents the neutral conductor
in the distribution circuit. What adverse effect
occurs if the neutral conductor is opened? (Hint:
Calculate v; and v, and note that appliances or
loads designed for use in this circuit would have
a nominal voltage rating of 125V.)

Figure P4.55

125V

1ER;=1160

4.56 Show that whenever R; = R, in the circuit in

eseice  Fig. P4.55, the current in the neutral conductor is

WM yero. (Hint: Solve for the neutral conductor current
as a function of Ry and R».)

4.57 The variable dc voltage source in the circuit in
seice  Fig, P4.57 is adjusted so that i, is zero.
MULTISIM
a) Find the value of V.

b) Check your solution by showing the power
developed equals the power dissipated.

Figure P4.57

50 150

4.58 The variable dc current source in the circuit in
eseice  Fig. P4.58 is adjusted so that the power developed by
MU the 4 A current source is zero. Find the value of i .


http://Fig.p4.53

Figure P4.58

Section 4.9

4.59 a) Use a series of source transformations to find

PSPICE the current i, in the circuit in Fig. P4.59.
MULTISIM

b) Verify your solution by using the node-voltage

method to find i,
Figure P4.59
2.3k
—n—
o
2mA 2.7kQ 1kQ 0.6 mA

4.60 a) Use a series of source transformations to find i,
PSPICE in the circuit in Fig. P4.60.

MULTISIM
b) Verify your solution by using the mesh-current
method to find i,,.

Figure P4.60

1A

4.61 a) Find the current in the 10 k) resistor in the cir-
PSPILCE cuit in Fig. P4.61 by making a succession of
HuLTSI appropriate source transformations.

b) Using the result obtained in (a), work back
through the circuit to find the power developed
by the 100V source.

Figure P4.61

0k 3ko SkQ)
. -,
100v 380k (})12mA 360k0 i, $10k0
1kQ
W—e * ®
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4.62 a) Use source transformations to find v, in the cir-
PSPICE cuit in Fig. P4.62.

oL b) Find the power developed by the 520 V source.

c) Find the power developed by the 1 A current
source.

d) Verify that the total power developed equals the
total power dissipated.

Figure P4.62

Section 4.10

4.63 Find the Thévenin equivalent with respect to the

eseie  terminals a,b for the circuit in Fig. P4.63.
MULTISIM

Figure P4.63

10Q
AW *

2590

80V 30Q

ob

4.64 Find the Norton equivalent with respect to the ter-

rsPice minals a,b in the circuit in Fig. P4.64.
MULTISIM

Figure P4.64
15kQ

. . a
10mA Z 10kQ éﬁ)SOV ( i ;3mA %Skﬂ
* ’ S ® . eb

4.65 a) Find the Thévenin equivalent with respect to the

PSPICE terminals a,b for the circuit in Fig. P4.65 by find-

moLTIsI ing the open-circuit voltage and the short-circuit
current.

b) Solve for the Thévenin resistance by removing the
independent sources. Compare your result to the
Thévenin resistance found in (a).
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4.66

PSPICE
MULTISIM

4.67

PSPICE
MULTISIM

4.68

PSPICE
MULTISIM

Techniques of Circuit Analysis

Figure P4.65
200
A A%
18A
50
L pr———oa
ov( " 250 60 0
100
: b

Find the Thévenin equivalent with respect to the
terminals a,b for the circuit in Fig. P4.66.
Figure P4.66

10A

()

_/

30Q

MWW

80 520
L ———@ a
12Q

500V©

eb

Find the Norton equivalent with respect to the ter-
minals a,b for the circuit in Fig. P4.67.
Figure P4.67
4A
(D)
/
100 80
4 ——@ a
+
60V 40 Q)

e b

Determine i, and v, in the circuit shown in
Fig. P4.68 when R, is a resistor from Appendix H
whose value is less than 100 ().

Figure P4.68
6 Q Il)»
YW—e
+
60 Q
2400 3A v IR,
300V

4.69

4.70

4.71

PSPICE
MULTISIM

4.72

PSPICE
MULTISIM

An automobile battery, when connected to a car
radio, provides 12.5 V to the radio. When connected
to a sct of headlights, it provides 11.7 V to the head-
lights. Assume the radio can be modeled as a 6.25 ()
resistor and the headlights can be modeled as a
0.65 Q resistor. What are the Thévenin and Norton
equivalents for the battery?

A Thévenin equivalent can also be determined
from measurements made at the pair of terminals
of interest. Assume the following measurements
were made at the terminals a,b in the circuit in
Fig. P4.70.

When a 20 Q resistor is connected to the termi-
nals a,b, the voltage v,;, is measured and found to
be 100 V.

When a 50 () resistor is connected to the termi-
nals a,b, the voltage is measured and found to be
200 V.

Find the Thévenin equivalent of the network
with respect to the terminals a,b.

Figure P4.70

e

Linear — @3
resistive

network with

independent

and dependent *————® b

sources

A voltmeter with a resistance of 85.5 k{2 is used to
measure the voltage v,, in the circuit in Fig. P4.71.

a) What is the voltmeter reading?

b) What is the percentage of error in the voltmeter
reading if the percentage of error is defined as
[(measured — actual)/actual] X 100?

Figure P4.71

1kQ
. . a
5kQ
20kQ 25 mA $45k0
50V
. . ? ob

The Wheatstone bridge in the circuit shown in
Fig. P4.72 is balanced when R; equals 3000 (. If the
galvanometer has a resistance of 50 {}, how much
current will the galvanometer detect, when the
bridge is unbalanced by setting R; to 3003 £}?
(Hint: Find the Thévenin equivalent with respect to
the galvanometer terminals when R3; = 3003 ().
Note that once we have found this Thévenin equiv-
alent, it is easy to find the amount of unbalanced




current in the galvanometer branch for different
galvanometer movements.)

Figure P4.72

18V

4.73 Find the Norton equivalent with respect to the ter-

pseice  minals a,b for the circuit seen in Fig. P4.73.
MULTISIM

Figure P4.73
301,

4.74 Determine the Thévenin equivalent with respect to

rseice the terminals a,b for the circuit shown in Fig. P4.74.
MULTISIM

Figure P4.74

4.75 When a voltmeter is used to measure the voltage v,
in Fig. P4.75,it reads 5.5 V.

a) What is the resistance of the voltmeter?

PSPICE
MULTISIM

b) What is the percentage of error in the voltage
measurement?

Figure P4.75

07V 43i,

30kQ 1kQ

-

)

70kQ

1.3kQ

4.76 When an ammeter is used to measure the current i,
rseice in the circuit shown in Fig. P4.76, it reads 6 A.

MULTISIM . B
a) What is the resistance of the ammeter?

b) What is the percentage of error in the current
measurement?

Problems 139

Figure P4.76

MW\ »

Section 4.11

4.77 Find the Thévenin equivalent with respect to the
terminals a.,b in the circuit in Fig. P4.77.

Figure P4.77

60
AV
100 120
————@ 4
iy
106 (" 250
ob

4.78 Find the Norton equivalent with respect to the ter-

minals a,b for the circuit seen in Fig. P4.78.

Figure P4.78

Section 4.12

300 iy

4.79 The variable resistor in the circuit in Fig. P4.79 is
PSPt adjusted for maximum power transfer to R,,.

MULTISIM .
a) Find the value of R,,.

b) Find the maximum power that can be delivered
to R,,.

c) Find a resistor in Appendix H closest to the
value in part (a). How much power is delivered
to this resistor?

Figure P4.79

8k
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4.80

PSPICE
MULTISIM

4.81

4.82

4.83

PSPICE
MULTISIM

Techniques of Circuit Analysis

What percentage of the total power developed in
the circuit in Fig. P4.79 is delivered to R, when R,, is
set for maximum power transfer?

a) Find the value of the variable resistor R, in the
circuit in Fig. P4.81 that will result in maximum
power dissipation in the 6 resistor. (Hint:
Hasty conclusions could be hazardous to
your career.)

b) What is the maximum power that can be deliv-
ered to the 6 () resistor?

Figure P4.81

30V

260

a) Calculate the power delivered for each value of
R, used in Problem 4.68.

b) Plot the power delivered to R, versus the resist-
ance R,.

¢) At what value of R, is the power delivered to R,
a maximum?

The variable resistor (R,) in the circuit in Fig. P4.83 is

adjusted until the power dissipated in the resistor is
250 W. Find the values of R, that satisfy this condition.

Figure P4.83

)

4.84

PSPICE
MULTISIM

250
W——e

A variable resistor R, is connected across the ter-
minals a,b in the circuit in Fig. P4.73. The variable
resistor is adjusted until maximum power is trans-
ferred to R,,.

a) Find the value of R,
b) Find the maximum power delivered to R,,.

¢) Find the percentage of the total power devel-
oped in the circuit that is delivered to R,

d) Find the resistor from Appendix H closest in
value to the R,,. from part (a).

e) Find the percentage of the total power devel-
oped in the circuit that is delivered to the resis-
tor in part (d).

4085

PSPICE
MULTISIM

4.86

PSPICE
MULTISIM

4.87

PSPICE
MULTISIM

The variable resistor (R,) in the circuit in Fig. P4.85
is adjusted until it absorbs maximum power from
the circuit.

a) Find the value of R,

b) Find the maximum power.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to R,,.

Figure P4.85
20

The variable resistor (R,,) in the circuit in Fig. P4.86
is adjusted for maximum power transfer to R,
What percentage of the total power developed in
the circuit is delivered to R,,?

Figure P4.86

R(I
70
AN
20 10
L ]
3 1y -
30
440V C’) LY
- 20V 2

The variable resistor (Ry) in the circuit in Fig. P4.87
is adjusted for maximum power transfer to Ry.

a) Find the numerical value of R;.
b) Find the maximum power transferred to Rj.

Figure P4.87




4.88 The variable resistor in the circuit in Fig. P4.88 is

e adjusted for maximum power transfer to R,,.
MULTTSIM N
a) Find the numerical value of R,,.

b) Find the maximum power delivered to R,,.
¢) How much power does the 280 V source deliver

to the circuit when R, is adjusted to the value
found in (a)?

Figure P4.88
50 iy
PN

200

10Q 50

400 Q {§)0.5125 vy

?009

4.89 The variable resistor (R,) in the circuit in Fig. P4.89
eseice s adjusted for maximum power transfer to R,,.

ULTIS]
"M 2) Find the value of R,
b) Find the maximum power that can be delivered
to R,

c) If R, is selected from Appendix H, which resis-
tor value will result in the greatest amount of
power delivered to R,?

Figure P4.89

124,
P

4.90 What percentage of the total power developed in
eseice  the circuit in Fig. P4.89 is delivered to R, found in
MULTEIM - Problem 4.89(a)?

Section 4.13

491 a) Use the principle of superposition to find the
PSPICE voltage » in the circuit of Fig. P4.91.

MULTISIM

b) Find the power dissipated in the 10 € resistor.

Figure P4.91

4A

1Hov
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4.92 Use superposition to solve for i, and v, in the cir-
cuit in Fig. P4.92.

Figure P4.92

4.93 Use the principle of superposition to find the volt-
soice AgE ¥, In the circuit in Fig, P4.93.
MULTISIM

Figure P4.93

5Q 44

AW * AW

+
+

240V( v, 3200 ; 84V

70 _ 1Q

WA * MWN———9

16 A

4.94 Use the principle of superposition to find the cur-
esice  rent i, in the circuit shown in Fig. P4.94.
MULTISIM

Figure P4.94

10
ju 50
(D()A 200 10A $600 $300
5V

A \d g A4

4.95 a) In the circuit in Fig. P4.95, before the 5 mA cur-
PSPICE rent source is attached to the terminals a,b, the
MULTISI current i, is calculated and found to be 3.5 mA.
Use superposition to find the value of i, after

the current source is attached.

b) Verify your solution by finding i, when all three
sources are acting simultaneously.

Figure P4.95
S5mA

a 2kQ b
A .

p

8V 5kQ zi 6 kQ 10 mA

@ M
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4.96 Usc the principle of superposition to find the volt- 4,99 Find vy, v,. and w5 in the circuit in Fig. P4.99.
psfice  age v in the circuit of Fig. P4.96. PaPICE
MULTISIM MULTISIM
Figure P4.96 Figure P4.99
0.150 0.15Q

MWW L 4 MA 4

125\/ 1840 3184 Q
0.254Q 0250

621160

70V
125V 3844 223840

0.15Q - -

4.100 Find the power absorbed by the S A current source
4.97 Use the principle of superposition to find v, inthe  esrcc  in the circuit in Fig. P4.100.

rshice  circuit in Fig. P4.97. MULTISIH
MULTISIM
Figure P4.100
Figure P4.97 10 20
224, A —AM—
g v,
. 3Q
L
4k :
*——— WA * L l(,y
[Ad: + =
_l’_
25 VC_P 5mA Tzo kQ o, ‘
. ® . 8§Q g N 100 mA
Sections 4.1-4.13 - 90}
PS‘:;?ES Find i in the circuit in Fig. P4.98. 4.101 Assume your supervisor has asked you to determine
e the power developed by the 1 V source in the circuit in
Figure P4.98 Fig. P4.101. Before calculating the power developed
_ 1Q , by the 1V source, the supervisor asks you to submit a
proposal describing how you plan to attack the prob-
lem. Furthermore, he asks you to explain why you
10 . ) ;
20 have chosen your proposed method of solution.
§ 8 Q) a) Describe your plan of attack, explaining your
30 reasoning.
20 b) Use the method you have outlined in (a) to find
T 40 the power developed by the 1V source.
100V (_) p
i Figure P4,101
2Q
30
$80
20
10
1Q
. —AAA




4.102

4.103

PSPICE
MULTISIM

Two ideal dc voltage sources are connected by elec- 4.104
trical conductors that have a resistance of r {}/m, as JEsIe
shown in Fig. P4.102. A load having a resistance of

R © moves between the two voltage sources. Let x 4105

equal the distance between the load and the source . = -

v, and let L equal the distance between the sources. PerspecTive
PSPICE

a) Show that MULTISIM
M RL + R(v, — v))x
RL + 2rLx — 2rx*’
b) Show that the voltage v will be minimum when
L 7 4.106
x= vl[—vl £\ Joma = 5w, - vﬂ. e,
¢) Findx when L = 16 km, v; = 1000 V,», = 1200 V,
R=39 Q.,andr =5 X 107 Q/m.
d) What is the minimum value of v for the circuit of 4.107
. PRACTICAL
part (c)? PERSPECTIVE
PSPICE
Figure P4.102 e
- X - 4.108
rQ/m.. rQ/m-._ PERSPECTIVE
v -
+
+ .2 R (movable /+
v <—> v § load) (—) b2
rFQ/m -/ rQ/m 7
o ] -

Laboratory measurements on a dc voltage source
yield a terminal voltage of 75 V with no load con-
nected to the source and 60 V when loaded with a
20 © resistor.

a) What is the Thévenin equivalent with respect to
the terminals of the dc voltage source?

b) Show that the Thévenin resistance of the source is
given by the expression

Ui
R = <— — 1Ry,
vl)
where
v, = the Thévenin voltage,
v, = the terminal voltage corresponding

to the load resistance R;.

Problems 143

For the circuit in Fig. 4.69 derive the expressions for
the sensitivity of v, and v, to changes in the source
currents /4 and /.

Assume the nominal values for the components in
the circuit in Fig. 4.69 are: R; = 25Q; R, = 5();
R; =50 Ry =75 Q51 = 12 Ajand [, = 16 A.
Predict the values of v, and v, if I,, decreases to
11 A and all other components stay at their nominal
values. Check your predictions using a tool like
PSpice or MATLAB.

Repeat Problem 4.105 if /; increases to 17 A, and
all other components stay at their nominal values.
Check your predictions using a tool like PSpice or
MATLAB.

Repeat Problem 4.105 if 1 decreases to 11 A and
I, increases to 17 A. Check your predictions using
a tool like PSpice or MATLAB.

Use the results given in Table 4.2 to predict the val-
ues of v; and v, if Ry and Rj increase to 10% above
their nominal values and R, and R, decrease to
10% below their nominal values. /,; and 1 remain
at their nominal values. Compare your predicted
values of v; and v, with their actual values.
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 CHAPTER OBJECTIVES

The Operational Amplifier

The electronic circuit known as an operational amplifier has
become increasingly important. However, a detailed analysis of
this circuit requires an understanding of electronic devices such
as diodes and transistors. You may wonder, then, why we are
introducing the circuit before discussing the circuit’s electronic
components. There are several reasons. First, you can develop an
appreciation for how the operational amplifier can be used as a
circuit building block by focusing on its terminal behavior. At an
introductory level, you need not fully understand the operation
of the electronic components that govern terminal behavior.
Second, the circuit model of the operational amplifier requires
the use of a dependent source. Thus you have a chance to use this
type of source in a practical circuit rather than as an abstract cir-
cuit component. Third, you can combine the operational ampli-
fier with resistors to perform some very useful functions, such as
scaling, summing, sign changing, and subtracting. Finally, after
introducing inductors and capacitors in Chapter 6, we can show
you how to use the operational amplifier to design integrating
and differentiating circuits.

Our focus on the terminal behavior of the operational ampli-
fier implies taking a black box approach to its operation; that is,
we are not interested in the internal structure of the amplifier nor
in the currents and voltages that exist in this structure. The impor-
tant thing to remember is that the internal behavior of the ampli-
fier accounts for the voltage and current constraints imposed at
the terminals. (For now, we ask that you accept these constraints
on faith.)

A SRTANNES



 Practical Perspective

Strain Gages

How could you measure the amount of bending in a metal bar
such as the one shown in the figure without physically con-
tacting the bar? One method would be to use a strain gage. A
strain gage is a type of transducer. A transducer is a device
that measures a quantity by converting it into a more con-
venient form. The quantity we wish to measure in the metal
bar is the bending angle, but measuring the angle directly is
quite difficult and could even be dangerous. Instead, we
attach a strain gage (shown in the line drawing here) to the
metal bar. A strain gage is a grid of thin wires whose resist-
ance changes when the wires are lengthened or shortened:

AL
R=2R—
A '

where R is the resistance of the gage at rest, AL/L is the
fractional lengthening of the gage (which is the definition of
“strain”), the constant 2 is typical of the manufacturer’s gage
factor, and AR is the change in resistance due to the bending
of the bar. Typically, pairs of strain gages are attached to
opposite sides of a bar. When the bar is bent, the wires in one
pair of gages get longer and thinner, increasing the resist-
ance, while the wires in the other pair of gages get shorter
and thicker, decreasing the resistance.

But how can the change in resistance be measured? One
way would be to use an ohmmeter. However, the change in
resistance experienced by the strain gage is typically much
smaller than could be accurately measured by an ohmmeter.
Usually the pairs of strain gages are connected to form a
Wheatstone bridge, and the voltage difference between two
legs of the bridge is measured. In order to make an accurate

AT .\_7‘;} 4:' A
| i,&.'t ‘ﬁiﬁ !

measurement of the voltage difference, we use an operational
amplifier circuit to amplify, or increase, the voltage differ-
ence. After we introduce the operational amplifier and some
of the important circuits that employ these devices, we will
present the circuit used together with the strain gages for
measuring the amount of bending in a metal bar.

The operational amplifier circuit first came into existence
as a basic building block in analog computers. It was referred
to as operational because it was used to implement the math-
ematical operations of integration, differentiation, addition,
sign changing, and scaling. In recent years, the range of
application has broadened beyond implementing mathemati-
cal operations; however, the original name for the circuit per-
sists. Engineers and technicians have a penchant for creating
technical jargon; hence the operational amplifier is widely
known as the op amp.
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Figure 5.1 A The eight-lead DIP package (top view).

Noninverting Positive power supply

input —e+

; Output
Inverting —e— a2

input

Negative power supply

Figure 5.2 A The circuit symbol for an operational
amplifier (op amp).

+

Common node

Figure 5.4 A Terminal voltage variables.

5.1 Operational Amplifier Terminals

Because we are stressing the terminal behavior of the operational ampli-
fier (op amp), we begin by discussing the terminals on a commercially
available device. In 1968, Fairchild Semiconductor introduced an op amp
that has found widespread acceptance: the wA741. (The A prefix is used
by Fairchild to indicate a microcircuit fabrication of the amplifier.) This
amplifier is available in several different packages. For our discussion, we
assume an eight-lead DIP.! Figure 5.1 shows a top view of the package,
with the terminal designations given alongside the terminals. The termi-
nals of primary interest are

+ inverting input

+ noninverting input

* output

« positive power supply (V)
» negative power supply (V")

The remaining three terminals are of little or no concern. The offset null ter-
minals may be used in an auxiliary circuit to compensate for a degradation
in performance because of aging and imperfections. However, the degrada-
tion in most cases is negligible, so the offset terminals often are unused and
play a secondary role in circuit analysis. Terminal 8 is of no interest simply
because it is an unused terminal; NC stands for no connection, which means
that the terminal is not connected to the amplifier circuit.

Figure 5.2 shows a widely used circuit symbol for an op amp that con-
tains the five terminals of primary interest. Using word labels for the ter-
minals is inconvenient in circuit diagrams, so we simplify the terminal
designations in the following way. The noninverting input terminal is
labeled plus (+), and the inverting input terminal is labeled minus (—).
The power supply terminals, which are always drawn outside the triangle,
are marked V' and V. The terminal at the apex of the triangular box is
always understood to be the output terminal. Figure 5.3 summarizes these
simplified designations.

5.2 Terminal Voltages and Currents

We are now ready to introduce the terminal voltages and currents used to
describe the behavior of the op amp. The voltage variables are measured
from a common reference node.? Figure 5.4 shows the voltage variables
with their reference polarities.

All voltages are considered as voltage rises from the common node.
This convention is the same as that used in the node-voltage method of
analysis. A positive supply voltage (V¢¢) is connected between V™ and the
common node. A negative supply voltage (—V¢) is connected between V"~
and the common node. The voltage between the inverting input terminal
and the common node is denoted v,,. The voltage between the noninvert-
ing input terminal and the common node is designated as v,. The voltage
between the output terminal and the common node is denoted v, .

! DIP is an abbreviation for dual in-line package. This means that the terminals on cach side of
the package are in line, and that the terminals on opposite sides of the package also line up.

2 The common node is external to the op amp. It is the reference terminal of the circuit in which
the op amp is embedded.



Figure 5.5 shows the current variables with their reference directions.
Note that all the current reference directions are into the terminals of the
operational amplifier: i, is the current into the inverting input terminal; i,
is the current into the noninverting input terminal; i, is the current into
the output terminal; i, is the current into the positive power supply termi-
nal; and .- is the current into the negative power supply terminal.

The terminal behavior of the op amp as a linear circuit element is
characterized by constraints on the input voltages and the input currents.
The voltage constraint is derived from the voltage transfer characteristic
of the op amp integrated circuit and is pictured in Fig. 5.6.

The voltage transfer characteristic describes how the output voltage
varies as a function of the input voltages; that is, how voltage is transferred
from the input to the output. Note that for the op amp, the output voltage
is a function of the difference between the input voltages, v, — v,. The
equation for the voltage transfer characteristic is

= Vee Alv, —v,) < —Vee,
v, = A(’l)p - lvn) —Vee = A(vp —v,) = +Vee, (5.1)
+ V(_‘C A(v[) - ’U,,) > +VCC-

We see from Fig. 5.6 and Eq. 5.1 that the op amp has three distinct
regions of operation. When the magnitude of the input voltage difference
(lvp, = v,|) is small, the op amp behaves as a linear device, as the output
voltage is a linear function of the input voltages. Outside this linear region,
the output of the op amp saturates, and the op amp behaves as a nonlinear
device, because the output voltage is no longer a linear function of the
input voltages. When it is operating linearly, the op amp’s output voltage is
cqual to the difference in its input voltages times the multiplying constant,
or gain, A.

When we confine the op amp to its linear operating region, a con-
straint is imposed on the input voltages, v, and v,,. The constraint is based
on typical numerical values for V¢ and A in Eq. 5.1. For most op amps, the
recommended dc power supply voltages seldom exceed 20 V, and the gain.
A, is rarely less than 10,000, or 10*. We see from both Fig. 5.6 and Eq. 5.1
that in the linear region, the magnitude of the input voltage difference
(v, — v,]) must be less than 20/10*, or 2 mV.

Typically, node voltages in the circuits we study are much larger than
2 mV,so a voltage difference of less than 2 mV means the two voltages are
essentially equal. Thus, when an op amp is constrained to its linear operat-
ing region and the node voltages are much larger than 2 mV, the constraint
on the input voltages of the op amp is

Vp = U (5.2)

Note that Eq. 5.2 characterizes the relationship between the input voltages
for an ideal op amp; that is, an op amp whose value of A is infinite.

The input voltage constraint in Eq. 5.2 is called the virtual short
condition at the input of the op amp. It is natural to ask how the virtual
short is maintained at the input of the op amp when the op amp is
embedded in a circuit, thus ensuring linear operation. The answer is that
a signal is fed back from the output terminal to the inverting input ter-
minal. This configuration is known as negative feedback because the

5.2
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Figure 5.5 A Terminal current variables.

Vee

Positive saturation

/[ Lincar region

(=Vee /A)

Negative saturation

(Vf(f /A) (vp - Un)

Figure 5.6 A The voltage transfer characteristic of an

op amp.

<« Input voltage constraint for ideal op amp
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Input current constraint for ideal op amp »

signal fed back from the output subtracts from the input signal. The
negative feedback causes the input voltage difference to decrease.
Because the output voltage is proportional to the input voltage differ-
ence, the output voltage is also decreased, and the op amp operates in
its linear region.

If a circuit containing an op amp does not provide a negative feedback
path from the op amp output to the inverting input, then the op amp will
normally saturate. The difference in the input signals must be extremely
small to prevent saturation with no negative feedback. But even if the cir-
cuit provides a negative feedback path for the op amp, linear operation is
not ensured. So how do we know whether the op amp is operating in its
linear region?

The answer is, we don’t! We deal with this dilemma by assuming lin-
ear operation, performing the circuit analysis, and then checking our
results for contradictions. For example, suppose we assume that an op
amp in a circuit is operating in its linear region, and we compute the
output voltage of the op amp to be 10 V. On examining the circuit, we
discover that V¢ is 6 V, resulting in a contradiction, because the op
amp’s output voltage can be no larger than Vi¢. Thus our assumption
of linear operation was invalid, and the op amp output must be satu-
rated at 6 V.

We have identified a constraint on the input voltages that is based on
the voltage transfer characteristic of the op amp integrated circuit, the
assumption that the op amp is restricted to its linear operating region and
to typical values for V¢ and A. Equation 5.2 represents the voltage con-
straint for an ideal op amp, that is, with a value of A that is infinite.

We now turn our attention to the constraint on the input currents.
Analysis of the op amp integrated circuit reveals that the equivalent resist-
ance seen by the input terminals of the op amp is very large, typically 1 MQ
or more. Ideally, the equivalent input resistance is infinite, resulting in the
current constraint

=iy =0, (5.3)

Note that the current constraint is not based on assuming the op amp is
confined to its linear operating region as was the voltage constraint.
Together, Eqgs. 5.2 and 5.3 form the constraints on terminal behavior that
define our ideal op amp model.

From Kirchhoff’s current law we know that the sum of the currents
entering the operational amplifier is zero, or

ip iy + iy + i + i =0, (5.4)
Substituting the constraint given by Eq. 5.3 into Eq. 5.4 gives
ip = —(I.‘_.*- + ic')~ (5.5)

The significance of Eq. 5.5 is that, even though the current at the input
terminals is negligible, there may still be appreciable current at the out-
put terminal.

Before we start analyzing circuits containing op amps, let’s further sim-
plify the circuit symbol. When we know that the amplifier is operating within
its linear region, the dc voltages + V¢ do not enter into the circuit equations.



In this case, we can remove the power supply terminals from the symbol
and the dc power supplies from the circuit, as shown in Fig. 5.7. A word of
caution: Because the power supply terminals have been omitted, there is a
danger of inferring from the symbol that i, + i, + i, = 0. We have already
noted that such is not the case; that is, i, + i, + i, + i~ + i, = 0. In other
words, the ideal op amp model constraint that i, = i, = 0 does not imply
that i, = 0.

Note that the positive and negative power supply voltages do not
have to be equal in magnitude. In the linear operating region, v, must lie
between the two supply voltages. For example, if V" =15V and
V™= —10V,then —10 V = v, = 15 V. Be aware also that the value of A
is not constant under all operating conditions. For now, however, we
assume that it is. A discussion of how and why the value of A can change
must be delayed until after you have studied the electronic devices and
components used to fabricate an amplifier.

Example 5.1 illustrates the judicious application of Eqs. 5.2 and 5.3.
When we use these equations to predict the behavior of a circuit contain-
ing an op amp, in effect we are using an ideal model of the device.

m Analyzing an Op Amp Circuit

a) Calculate v, ifv, = 1 Vandv, =0 V.

b) Repeat (a) forv, = 1 Vand v, = 2 V.

¢) If v, = 1.5V, specify the range of v, that avoids
amplifier saturation.

Figure 5.8 A The circuit for Example 5.1.
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Figure 5.7 A The op amp symbol with the power supply
terminals removed.

The op amp in the circuit shown in Fig. 5.8 is ideal. From Ohm’s law,

1
i25 = (vu - 1},,)/25 = —C MA,

25

i]()() = (’UU - 7)")/100 = 7),,/100 ITIA

The current constraint requires i, = (.
Substituting the values for the three currents
fin 100 kQ into the node-voltage equation, we obtain
A
0RY 1% _y,
> L . 25 7100
o+ +
-0V Hence, v, is —4 V. Note that because v, lies

between =+ 10V, the op amp is in its linear
region of operation.

v b) Using the same process as in (a), we get

=, =9,=2V,

SOlution l._:vu—vnzl-zz 1mA
» 25 25 25
a) Because a negative feedback path exists from the
o s el ol . , Vo = Uy Vo — 2
p amp’s output to its inverting input through the oo = = mA.,
100 k€ resistor, let’s assume the op amp is con- 100 100
fined to its linear operating region. We can write iy = —ij00-
a node-voltage equation at the inverting input )
terminal. The voltage at the inverting input termi- Therefore, v, = 6 V. Again, v, lies within £10 V.
nal is 0, as v, = v, = 0 from the connected volt- ..
_ c) Asbefore,v, = v, = vy, and is = —i;g. Because
age source, and v, = v, from the voltage 0. =15V
constraint Eq. 5.2. The node-voltage equation at a D
v,, is thus
15— v, — v
fs = hgo = iy 25 100
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Solving for »,, as a function of v, gives

The Operational Amplifier

sion for vy, we

1
Vp = ;(6 + ’b‘(,).

Now, if the amplifier is to be within the linear
region of operation, —10V =y, =10V,

see that v, is limited to

-08V=9y,=32V,

Substituting these limits on v, into the expres-

v ASSESSMENT PROBLEM

Objective 1—Use voltage and current constraints in an ideal op amp

5.1

Assume that the op amp in the circuit shown
is ideal.

a) Calculate v, for the following values of v,: 16 k2

0.4,2.0,3.5,-0.6, —1.6,and —2.4 V.
b) Specify the range of v, required to avoid
amplifier saturation. Vs

Answer: (a) —2,-10,-15,3,8,and 10V,

(b) 2V =9p=<3V,

NOTE: Also try Chapter Problems 5.1-5.3.

Figure 5.9 A An inverting-amplifier circuit.

5.3 The Inverting-Amplifier Circuit

We are now ready to discuss the operation of some important op amp circuits,
using Eqgs. 5.2 and 5.3 to model the behavior of the device itself. Figure 5.9
shows an inverting-amplifier circuit. We assume that the op amp is operating
in its linear region. Note that, in addition to the op amp, the circuit consists of
two resistors (R; and R,), a voltage signal source (v;), and a short circuit con-
nected between the noninverting input terminal and the common node.

J - v We now analyze this circuit, assuming an ideal op amp. The goal is to

obtain an expression for the output voltage, v,,, as a function of the source

minal of the op amp, given as

i + i

= 1,

voltage, v,. We employ a single node-voltage equation at the inverting ter-

(5.6)

The voltage constraint of Eq. 5.2 sets the voltage at v, = 0, because the

voltage at v, = 0. Therefore,

Vg

Iy = —

R’

v(}

ip=—.
’a R

Now we invoke the constraint stated in Eq. 5.3, namely,

L, =

Substituting Eqs. 5.7-5.9 into Eq. 5.6 yields the sought-after result:

0.

_Rf

Inverting-amplifier equation v, =

(5.7)

(5.8)

(5.9)

(5.10)



Note that the output voltage is an inverted, scaled replica of Lthe input. The
sign reversal from input to output is, of course, the reason for referring to the
circuit as an inverting amplifier. The scaling factor, or gain, is the ratio Ry /R,

The result given by Eq. 5.10 is valid only if the op amp shown in the
circuit in Fig. 5.9 is ideal; that is, if A is infinite and the input resistance is
infinite. For a practical op amp, Eq. 5.10 is an approximation, usually a
good one. (We say more about this later.) Equation 5.10 is important
becausc it tells us that if the op amp gain A is large, we can specify the gain
of the inverting amplifier with the external resistors Ry and R;. The upper
limit on the gain, Ry /R,, is determined by the power supply voltages and
the value of the signal voltage v,. If we assume equal power supply voltages,
thatis, V" = =V~ = V¢, we get

= Ve R =

VCC

Jv,| = Vee, v,

. (5.11)

Ty
R "

For example, if V. = 15V and v, = 10 mV, the ratio Ry /R, must be less
than 1500.

In the inverting amplifier circuit shown in Fig. 5.9, the resistor R; pro-
vides the negative feedback connection. That is, it connects the output ter-
minal to the inverting input terminal. If Ry is removed, the feedback path
is opened and the amplifier is said to be operating open loop. Figurc 5.10
shows the open-loop operation.

Opening the feedback path drastically changes the behavior of the
circuit. First, the output voltage is now

v, = —Av,, (5.12)

assuming as before that V¥ = =V~ = V¢ then |v,| < Vi /A for linear
operation. Because the inverting input current is almost zero, the voltage
drop across R, is almost zero, and the inverting input voltage nearly equals
the signal voltage, v,; thatis, v, = »,. Hence. the op amp can operate open
loop in the linear mode only if [v,| < Vi¢/A. If [v| > Vi /A, the op amp
simply saturates. In particular, if v, < ~Vg¢ /A, the op amp saturates at
+Vec. and if v, > Vi /A, the op amp saturates at —V,c. Because the
relationship shown in Eq. 5.12 occurs when there is no feedback path, the
value of A is often called the open-loop gain of the op amp.

Example 5.2 uses the inverting-amplifier equation to design an invert-
ing amplifier using realistic resistor values.

m Designing an Inverting Amplifier

a) We nced to find two resistors whose ratio is
12 from the realistic resistor values listed in

5.3 The Inverting-Amplifier Circuit 151

Figure 5.10 A An inverting amplifier aperating
open loop.

a) Design an inverting amplifier (see Fig. 5.9) with Appendix H. There are lots of different possibili-
a gain of 12. Use +15V power supplies and an ties, but let’s choose R, = 1k and R; = 12 k{).
ideal op amp. Use the inverting-amplifier equation (Eqg. 5.10)

b) What range of input voltages, v,, allows the op to verify the design:
amp in this design to remain in its lincar operat-

o Rf 12,000
ing region? V= — U, = — vy = — 12w,
R, 1000 ’

) Thus, we have an inverting-amplificr with a gain
Solution of 12. as shown in Fig, 5.11.
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Figure 5.11 A Inverting amplifier for Example 5.2.

12k
AW
1kQ +15V
o
o+ +
—-15V
vS
v

b) Solve two different versions of the inverting-
amplifier equation for w,—first using
v, = +15V and then using v, = —15V:

Il

15 = -12v; so v, = —1.25V,;

v, —15 = _120\ SO 'US = 1.25 V

Thus, if the input voltage is greater than or equal
to ~1.25 V and less than or equal to +1.25V, the
op amp in the inverting-amplifier will remain in
its linear operating region.

v ASSESSMENT PROBLEM

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.2  The source voltage v, in the circuit in

Assessment Problem 5.1 is =640 mV.

inverting amplifier to operate in its linear
The region?

80 k) feedback resistor is replaced by a vari-
able resistor R, . What range of R, allows the Answer: 0 = R, < 250kQ.

NOTE: Also try Chapter Problems 5.8 and 5.9.

v vyyYvy v

Figure 5.12 A A summing amplifier.

Inverting-summing amplifier equation »

5.4 The Summing-Amplifier Circuit

The output voltage of a summing amplifier is an inverted, scaled sum of
the voltages applied to the input of the amplifier. Figure 5.12 shows a sum-
ming amplifier with three input voltages.

We obtain the relationship between the output voltage v, and the
three input voltages, v,, vy, and v, by summing the currents away from the
inverting input terminal:

Uy — Uy — Uy UV, — U Uy — Yy .
+ + + +i, =0 5.13
Ra Rb RC Rf n ( )

Assuming an ideal op amp, we can use the voltage and current constraints
together with the ground imposed at v, by the circuit to sec that
v, = v, = 0and i, = 0. This reduces Eq.5.13 to

Ry Ry R
= —| —uv, + —v, + —, . 5.14
YV, Ravd Rb b Rc c ( )

Equation 5.14 states that the output voltage is an inverted, scaled sum of
the three input voltages.
If R, = R, = R. = R,, then Eq. 5.14 reduces to

Ry
v, = _F(’Ua + v, + V). (5.15)



Finally, if we make R; = R, the output voltage is just the inverted sum of
the input voltages. That is,

v, = —(vy + vy + V). (5.16)

Although we illustrated the summing amplifier with just three input
signals, the number of input voltages can be increased as needed. For exam-
ple, you might wish to sum 16 individually recorded audio signals to form a
single audio signal. The summing amplifier configuration in Fig. 5.12 could
include 16 different input resistor values so that each of the input audio
tracks appears in the output signal with a different amplification factor.
The summing amplifier thus plays the role of an audio mixer. As with
inverting-amplifier circuits, the scaling factors in summing-amplifier cir-
cuits are determined by the external resistors Ry, Ry, Ry, R, . .., R,,.

' ASSESSMENT PROBLEM

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.5  The Noninverting-Amplifier Circuit

5.3 a) Find v, in the circuit shown if v, = 0.1 V (c) 05V,
and vp = 0.25 V. (d) —2.5,0.25,and 2 V.
b) If v, = 0.25 V, how large can v, be before
the op amp saturates? 5kQ 250kQ
: S AM

c) If v, = 0.10 V, how large can v, be before
the op amp saturates?

d) Repeat (a), (b), and (c) with the polarity of
v}, reversed.

Va

Answer: (a) —7.5V;
(b) 0.15V;

NOTE: Also try Chapter Problems 5.11, 5.12, and 5.14.

5.5 The Noninverting-Amplifier Circuit

Figure 5.13 depicts a noninverting-amplifier circuit. The signal source is
represented by v, in series with the resistor R, . In deriving the expression
for the output voltage as a function of the source voltage, we assume an
ideal op amp operating within its linear region. Thus, as before, we use
Eqgs. 5.2 and 5.3 as the basis for the derivation. Because the op amp input
current is zero, we can write v, = v, and, from Eq. 5.2, v, = v, as well.
Now, because the input current is zero (i, = i, = 0), the resistors Ry and
R, form an unloaded voltage divider across v,. Therefore,

= g, = ORs 5.17
vn_vl,’_Rs_l_Rf' (‘ )

Solving Eq. 5.17 for v, gives us the sought-after expression:

R, + Ry

Vo = —R:—vg. (5.18)

Figure 5.13 A A noninverting amplifier.

<« Noninverting-amplifier equation
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Operation in the linear region requires that

R, + Ry

N
< Vee
}:S

v

g

Note again that, because of the ideal op amp assumption, we can
express the output voltage as a function of the input voltage and the exter-
nal resistors—in this case, R, and Ry.

Example 5.3 illustrates the design of a noninverting amplifier using
realistic resistor values,

a) Design a noninverting amplifier (see Fig. 5.13)
with a gain of 6. Assume the op amp is ideal.

b) Suppose we wish to amplify a voltage v,, such
that —1.5V =< v, = +15V. What are the
smallest power supply voltages that could be
used with the resistors selected in part (a) and
still have the op amp in this design remain in its
linear operating region?

Solution

a) Using the noninverting amplifier equation
(Eq.5.18),
v, =M1} = 6v, SO m=6
o R, 4 LA R,
Therefore,

R,+ R;=6R, so R;=5R,

We want two resistors whose ratio is S. Look at
the realistic resistor values listed in Appendix H.
Let’s choose Ry = 10k{}, so Ry = 2k{}. But
there is not a 2 k{} resistor in Appendix H. We can
create an equivalent 2 k{2 resistor by combining
two 1 k€) resistors in series. We can use a third
L k) resistor as the value of the resistor R,.

m Designing a Noninverting Amplifier

b) Solve two different versions of the noninvert-
ing amplifier equation for w,—first using
v, = +1.5V and then using v, = —1.5 V:

v, = 6(1.5) =9V,
v, = 6(~15) = -9 V.

Thus, if we use £9 V power supplies for the non-
inverting amplifier designed in part (a) and
-15V = v, = +1.5V, the op amp will remain
in its linear operating region. The circuit result-
ing from the analysis in parts (a) and (b) is
shown in Fig. 5.14.

1kQ  1kO
AM——AN

1 kO

v n

Figure 5.14 A The noninverting amplifier design of Example 5.3.

v ASSESSMENT PROBLEM

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.4  Assume that the op amp in the circuit shown

is ideal.

a) Find the output voltage when the variable
resistor is set to 60 k).
b) How large can R, be before the amplifier
saturates?
Answer: (a) 4.8V,
(b) 75 kQ.

NOTE: Also try Chapter Problems 5.17 and 5.18.




5.6 The Difference-Amplifier Circuit

The output voltage of a difference amplifier is proportional to the difference
between the two input voltages. To demonstrate, we analyze the difference-
amplifier circuit shown in Fig. 5.15, assuming an ideal op amp operating in its
linear region. We derive the relationship between v, and the two input volt-
ages v, and v}, by summing the currents away from the inverting input node:

= 0. (5.19)

Because the op amp is ideal, we use the voltage and current constraints to
see that

i, =1i,=0, (5.20)

__Re |
PT R AR
Combining Egs. 5.19,5.20, and 5.21 gives the desired relationship:

v, =V (5.21)

Rd(Ru + Rb) Rh
= - — UV, 5.22
vo Ra(Rc + Rd) v Ra a ( )

Equation 5.22 shows that the output voltage is proportional to the dif-
ference between a scaled replica of v, and a scaled replica of v,. In general
the scaling factor applied to v, is not the same as that applied to v,.
However, the scaling factor applied to each input voltage can be made
equal by setting

= e (5.23)

When Eq. 5.23 is satisfied, the expression for the output voltage reduces to

Ry,
Vp = R (vb - 'Ua). (5.24)
a

Equation 5.24 indicates that the output voltage can be made a scaled
replica of the difference between the input voltages v}, and v,. As in the
previous ideal amplifier circuits, the scaling is controlled by the external
resistors. Furthermore, the relationship between the output voltage and
the input voltages is not affected by connecting a nonzero load resistance
across the output of the amplifier.

Example 5.4 describes the design of a difference amplifier using real-
istic resistor values.

Designing a Difference Amplifier

5.6  The Difference-Amplifier Circuit 155

Y,

Figure 5.15 A A difference amplifier.

« Simplified difference-amplifier equation

a) Design a difference amplifier (see Fig. 5.15) that b) Suppose v, = 1V in the difference amplifier
amplifies the difference between two input volt- designed in part (a). What range of input volt-
ages by a gain of &, using an ideal op amp and ages for v, will allow the op amp to remain in its

+8 V power supplies. linear operating region?
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Solution

a) Using the simplified difference-amplifier equa-

tion (Eq. 5.24),

Ry
R,

vV, = (vp — vy) = 8(vp — v,) sO = 8.

b
Ra

We want two resistors whose ratio is 8. Look at
the realistic resistor values listed in Appendix H.
Let’s choose R}, = 12k{), so R, = 1.5k(},
although there are many other possibilities.
Note that the simplified difference-amplifier
equation requires that

R, R

Ry, Ry’

A simple choice for R, and Ry is
R.= R, =15kQ and Ry = R, = 12k{}. The
resulting circuit is shown in Fig. 5.16.

12 kQ
1.5kQ W
Wi +8V
v 1.5kQ - o
] e + +
-8V
Up 12kQ Yo

Figure 5.16 A The difference amplifier designed in Example 5.4.

b) Solve two different versions of the simplified
difference-amplifier equation for v, in terms of
vp—first using v, = +8V and then using
v, = —8V:

v,=8v,—1)=8V sovy, =2V,
v, =8, —1)= -8V sovy,=0V.

Thus, if v, = 1V in the difference amplifier
from part (a), the op amp will remain in its lin-
ear region of operation if 0V = v, = +2 V.

 ASSESSMENT PROBLEM

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.5 a) In the difference amplifier shown,

vy, = 4.0 V. What range of values for v, will

result in linear operation?

b) Repeat (a) with the 20 k( resistor
decreased to 8 k().

Answer: (a)2V =9,=6V,

NOTE: Also try Chapter Probiems 5.25, 5.26, and 5.28.

)12 V=9,=52V.

50 kQ
10kQ W
1 10V
¥ 4kQ - e
Yal _ o+ +
-0V
Vp 20kQ Yo

The Difference Amplifier—Another Perspective

We can examine the behavior of a difference amplifier more closely if we

redefine its inputs in terms of two other voltages. The first is the

differential mode input, which is the difference between the two input

voltages in Fig. 5.15:

The second is the common mode input, which is the average of the two

Vam = Vb ~ Va (5.25)

input voltages in Fig. 5.15:

Vem = (U, + vp)/2. (5.26)



Using Eqgs. 5.25 and 5.26, we can now represent the original input voltages,
v, and v, in terms of the differential mode and common mode voltages,
Vam and vy

1

Uy = U — Evdmr (5.27)
1

Vp = Ve + _z_vdm' (5.28)

Substituting Eqs. 5.27 and 5.28 into Eq. 5.22 gives the output of the differ-
ence amplifier in terms of the differential mode and common mode voltages:

_ RaRd - Rth
% 7| Ry(R. + Ry) |™"

Rd(Ra + Rb) + Rb(Rc + Rd) 529
2R,(R. + Ry) dm (5.29)
= AcnVem + AimVam (5.30)

where Ag, is the common mode gain and Ay, is the differential mode
gain. Now, substitute R, = R, and Ry = R,, which are possible values for
R. and Ry that satisfy Eq. 5.23, into Eq. 5.29:

R,

Vo = (O)vcm + (&)vdm- (5~31)
Thus, an ideal difference amplifier has A, = 0, amplifies only the differ-
ential mode portion of the input voltage, and eliminates the common
mode portion of the input voltage. Figure 5.17 shows a difference-
amplifier circuit with differential mode and common mode input voltages
in place of v, and vy,

Equation 5.30 provides an important perspective on the function of the
difference amplifier, since in many applications it is the differential mode
signal that contains the information of interest, whereas the common mode
signal is the noise found in all electric signals. For example, an clectrocardio-
graph electrode measures the voltages produced by your body to regulate
your heartbeat. These voltages have very small magnitudes compared with
the electrical noise that the electrode picks up from sources such as lights
and electrical equipment. The noise appears as the common mode portion
of the measured voltage, whereas the heart rate voltages comprise the dif-
ferential mode portion. Thus an ideal difference amplifier would amplify
only the voltage of interest and would suppress the noise.

Measuring Difference-Amplifier Performance—
The Common Mode Rejection Ratio

An ideal difference amplifier has zero common mode gain and nonzero
(and usually large) differential mode gain. Two factors have an influence
on the ideal common mode gain—resistance mismatches (that is, Eq. [3.23]
is not satisfied) or a nonideal op amp (that is, Eq. [5.20] is not satisfied). We
focus here on the effect of resistance mismatches on the performance of a
difference amplifier.

5.6  The Difference-Amplifier Circuit

Figure 5.17 A A difference amplifier with common
mode and differential mode input voltages.
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Suppose that resistor values are chosen that do not precisely satisfy
Eq.5.23. Instead, the relationship among the resistors R,. Ry, R., and Ry is

&—(1_ )&
GRd<

Ry,
SO
R,=(1 —€)R. and Ry = Ry, (5.32)
or
Ry= (1 — €)R, and R, = R, (5.33)

where € is a very small number. We can see the effect of this resistance
mismatch on the common mode gain of the difference amplifier by substi-
tuting Eq. 5.33 into Eq. 5.29 and simplifying the cxpression for Ag,:

Ra(l B E)Rb - RaRb

A = 5.34
R{R, + (1 = ORy] 539

_ ;Rh 5.35

Rn + (1 - e)Rb (5.23)

~ ;Rl’ 5.36
TR, ‘R, (5.36)

We can make the approximation to give Eq. 5.36 because € is very small,
and therefore (1 — €) is approximately 1 in the denominator of Eq. 5.35.
Note that, when the resistors in the difference amplificer satisfy Eq. 5.23,
e = 0 and Eq. 5.36 gives A, = 0.

Now calculate the effect of the resistance mismatch on the differential
mode gain by substituting Eq. 5.33 into Eq. 5.29 and simplifying the
expression for A,

(l - e)Rh(Rﬂ + Rh) + Rb[Ril + (1 - E)Rb]

Aam = 2R[R, + (1 - OR] 7
- ﬁ_ _ ____(e/Z)R“ (5.38)
Ril_ R, + (1 = €)Ry '
R (e/2)R,
~ 2 - "1 5.39
R:\_l Rzl + Rb ( )

We usc the same rationale for the approximation in Eq. 5.39 as in the com-
putation of A, When the resistors in the difference amplifier satisfy
Eq.5.23,e = 0 and Eq. 5.39 gives Ay, = Ry/ R,

The common mode rejection ratio (CMRR) can be used to measure
how nearly ideal a difference amplifier is. It is defined as the ratio of the
differential mode gain to the common mode gain:

Adm

CMRR = .
Acm

(5.40)
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The higher the CMRR, the more nearly ideal the difference amplifier. We
can see the effect of resistance mismatch on the CMRR by substituting
Eqs. 5.36 and 5.39 into Eq. 5.40:

R
1= (Re/2)/(Ry + Ry)]
CMRR =~ —RIR TR (5.41)
R:-l(l - 6/2) + Ry,
~ — (5.42)
1 + Ry/R,
~ —%/' (5.43)

From Eq. 5.43, if the resistors in the difference amplifier are matched,
€ = 0 and CMRR = co. Even if the resistors are mismatched, we can
minimize the impact of the mismatch by making the differential mode
gain (R,/R,) very large, thereby making the CMRR large.

We said at the outset that another reason for nonzero common mode
gain is a nonideal op amp. Note that the op amp is itself a difference
amplifier, because in the linear operating region, its output is proportional
to the difference of its inputs; that is, v, = A(v, — v,). The output of a
nonideal op amp is not strictly proportional to the difference between the
inputs (the differential mode input) but also is comprised of a common
mode signal. Internal mismatches in the components of the integrated cir-
cuit make the behavior of the op amp nonideal, in the same way that the
resistor mismatches in the difference-amplifier circuit make its behavior
nonideal. Even though a discussion of nonideal op amps is beyond the
scope of this text, you may note that the CMRR is often used in assessing
how nearly ideal an op amp’s behavior is. In fact, it is one of the main ways
of rating op amps in practice.

NOTE: Assess your understanding of this material by trying Chapter
Problems 5.33 and 5.34.

5.7 A More Realistic Model for the
Operational Amplifier

We now consider a more realistic model that predicts the performance of
an op amp in its linear region of operation. Such a model includes three
modifications to the ideal op amp: (1) a finite input resistance, R;; (2) a
finite open-loop gain, A; and (3) a nonzero output resistance, R,,. The cir-
cuit shown in Fig. 5.18 illustrates the more realistic model.

Whenever we use the equivalent circuit shown in Fig. 5.18, we disre-
gard the assumptions that v, = v, (Eq. 5.2) and i, = i, = 0 (Eq. 5.3).
Furthermore, Eq. 5.1 is no longer valid because of the presence of the
nonzero output resistance, R,. Another way to understand the circuit
shown in Fig. 5.18 is to reverse our thought process. That is, we can see that
the circuit reduces to the ideal model when R; — o0, A — o0, and R, — 0.
For the wA741 op amp, the typical values of R;, A, and R, are 2 MQ, 10°,
and 75 (2, respectively.

Although the presence of R; and R, makes the analysis of circuits con-
taining op amps more cumbersome, such analysis remains straightforward.

A More Realistic Model for the Operational Amplifier ~ 159
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Figure 5.18 A An equivalent circuit for an operational
amplifier.
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al -

Ru b

A (7)’, - Un)

Figure 5.19 A An inverting-amplifier circuit.

Figure 5.20 A A noninverting-amplifier circuit.

To illustrate, we analyze both an inverting and a noninverting amplifier,
using the equivalent circuit shown in Fig. 5.18. We begin with the invert-
ing amplifier.

Analysis of an Inverting-Amplifier Circuit Using
the More Realistic Op Amp Model

If we use the op amp circuit shown in Fig. 5.18, the circuit for the inverting
amplifier is the one depicted in Fig. 5.19. As before, our goal is to express
the output voltage, v,, as a function of the source voltage, v,. We obtain
the desired expression by writing the two node-voltage cquations that
describe the circuit and then solving the resulting set of equations for v,,.
In Fig. 5.19, the two nodes are labeled a and b. Also note that v, = 0 by
virtue of the external short-circuit connection at the noninverting input
terminal. The two node-voltage equations are as follows:

Up — Vs Un Vp — 0,

+ =+
R; R; Ry

node a: =0, (5.44)
Vy — Uy Uy — A(‘—U") -

R R,

node b: 0. (5.45)

We rearrange Eqgs. 5.44 and 5.45 so that the solution for v, by Cramer’s
method becomes apparent:

—1+L+—l ) lv 11) (5.46)
R, R Rf)" R * RV ’
A 1 1 1
— - + | =+ =0 5.
< R Rf>”" < R, R(,) o (5.47)
Solving for v, yields
—A+ (R,/Ry)
Vs (5.48)

’U() =
R“1+A+R" +&+1 + R
R, R R, Ry

Note that Eq. 5.48 reduces to Eq.5.10 as R,— 0, R; — o0, and A — 0.

If the inverting amplifier shown in Fig. 5.19 were loaded at its output
terminals with a load resistance of R; ohmis, the relationship between v,
and v, would become

—A + (R,/Ry)
V, =
) R’1+A+&+& + 1+& 1+B—’ o B
R; R, R, R, R) Ry

Analysis of a Noninverting-Amplifier Circuit Using
the More Realistic Op Amp Model

When we use the equivalent circuit shown in Fig. 5.18 to analyze a nonin-
verting amplifier, we obtain the circuit depicted in Fig. 5.20. Here, the volt-
age source v, in series with the resistance R,, represents the signal
source. The resistor R, denotes the load on the amplifier. Our analysis

V. (5.49)
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consists of deriving an expression for v, as a function of »,. We do so by
writing the node-voltage equations at nodes a and b. At node a,

v Uy — Vg UV, — U
=+ + =0, (5.50)
R, Rg + R; Rf

and at node b,

Vo — Uy Vo Vo — A('Up = Up)

— + (5.51)
Ry R, R,
Because the current in R, is the same as in R;, we have
v, —V v, — U
P g n g
(5.52)

R, R +R,

We use Eq. 5.52 to eliminate v, from Eq. 5.51, giving a pair of equations
involving the unknown voltages v,, and v,. This algebraic manipulation
leads to

AR, 1y (1 11

| R(R +R) Ry | "\R R, R,
_ AR,-__ 5.54
SRR+ Ry [ o

Solving for v, yields

[(Rf + R,) + (RR,/AR)v,

Vo = . (5.55)
R+ & LK)+ Rf R, + (Rf + R)(R; + Rg)
S+ 1+ K) iR
where
R+ R, R;+ R; R¢R, + RrR, + R,R;
K, = 8 + ! + f F 8
RI RL RZRL

Note that Eq. 5.55 reduces to Eq. 5.18 when R,—0, A— 00, and
R; — oo, For the unloaded (R; = ©0) noninverting amplifier, Eq. 5.55
simplifies to

[(Rf + Rs) + RsRo/ARi]vg

R, R, + R,
1+
R;

) .
) + ARI[Rf Ry + (R + R)(R; + Ry)]

(5.56)

Note that, in the derivation of Eq. 5.56 from Eq. 5.55, K, reduces to
(Rs + Rg)/Rl

A More Realistic Model for the Operational Amplifier
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v ASSESSMENT PROBLEM

Objective 3—Understand the more realistic model for an op amp

5.6  The inverting amplifier in the circuit shown has Answer: (a) —19.9985;
an input resistance of 500 k{}, an output resist- (b) 69.995 wV;
ance of 5 k{2, and an open-loop gain of 300,000. (c) 5000.35 Q-’

Assume that the amplifier is operating in its

linear region. (d) =20,0 uV, 5kQ.

a) Calculate the voltage gain (v, /v,) of the 19\9\/1\('0
amplifier. 5 KO

b) Calculate the value of v, in microvolts when W
v, =1V,

c) Calculate the resistance seen by the signal v

source (v,).
d) Repeat (a)—(c) using the ideal model for the
op amp. v v

NOTE: Also try Chapter Problems 5.43 and 5.45.

Practical Perspective

Strain Gages

Changes in the shape of elastic solids are of great importance to engineers
who design structures that twist, stretch, or bend when subjected to exter-
nal forces. An aircraft frame is a prime example of a structure in which engi-
neers must take into consideration elastic strain. The intelligent application
of strain gages requires information about the physical structure of the
gage, methods of bonding the gage to the surface of the structure, and the
orientation of the gage relative to the forces exerted on the structure. Our
purpose here is to point out that strain gage measurements are important in
engineering applications, and a knowledge of electric circuits is germane to
their proper use.

The circuit shown in Fig. 5.21 provides one way to measure the change
in resistance experienced by strain gages in applications like the one

R - AR R+ AR

Vret

R + AR R — AR

Figure 5.21 A An op amp circuit used for measuring the change in strain gage
resistance.

described in the beginning of this chapter. As we will see, this circuit is the
familiar difference amplifier, with the strain gage bridge providing the two
voltages whose difference is amplified. The pair of strain gages that are
lengthened once the bar is bent have the values R + AR in the bridge



feeding the difference amplifier, whereas the pair of strain gages that are
shortened have the values R — AR. We will analyze this circuit to discover
the relationship between the output voltage, v, and the change in resist-
ance, AR experienced by the strain gages.

To begin, assume that the op amp is ideal. Writing the KCL equations at
the inverting and noninverting input terminals of the op amp we see

Ve — Up Up Vy — Vo
= + s 5.57
R+AR R-AR R (5.57)

Vret — Vp vp +&
R—AR R+AR Ry’

(5.58)

Now rearrange Eq. 5.58 to get an expression for the voltage at the nonin-
verting terminal of the op amp:

v o
v, = ret ) (5.59)

? 1 1 1
(R AR)(R + AR R - AR Rf>

As usual, we will assume that the op amp is operating in its linear region, so
v, = v, and the expression for v, in Eq. 5.59 must also be the expression
for v,,. We can thus substitute the right-hand side of Eg. 5.59 in place of v,
in Eq. 5.57 and solve for v,. After some algebraic manipulation,

R/(2AR)

er. (5.60)

Uy =

Because the change in resistance experienced by strain gages is very small,
(AR)?> << R? so R* — (AR)? ~ R? and Eq. 5.60 becomes

Rs
v, = ?281)“,} , (5.61)

where 8 = AR/R.

NOTE: Assess your understanding of this Practical Perspective by
trying Chapter Problem 5.49.

Practical Perspective
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Summary

+ The equation that defines the voltage transfer charac-
teristic of an ideal op amp is

—Vee. Ay ~ v) < Ve
Vo = A('Up —v,), Voo = A(‘Up —v,) = + Vee,
+ Ve, A(v, — v,) > + Ve

where A is a proportionality constant known as the
open-loop gain, and V¢ represents the power supply
voltages. (See page 147.)

» A feedback path between an op amp’s output and
its inverting input can constrain the op amp to its
linear operating region where v, = A(v, — v,). (See
page 147.)

» A voltage constraint exists when the op amp is con-
fined to its linear operating region due to typical val-
ues of Ve and A. If the ideal modeling assumptions
are made —meaning A is assumed to be infinite —the
ideal op amp model is characterized by the volt-
age constraint

(See page 147.)

« A current constraint further characterizes the ideal op
amp model, because the ideal input resistance of the op
amp integrated circuit is infinite. This current constraint
is given by

ip=i,=0.

(See page 148.)

»  We considered both a simple, ideal op amp model and a
more realistic model in this chapter. The differences
between the two models are as follows:

Simplified Model More Realistic Model
Infinite input resistance Finite input resistance
Infinite open-loop gain Finite open-loop gain
Zero output resistance Nonzero output resistance

(See page 159.)

An inverting amplifier is an op amp circuit producing
an output voltage that is an inverted, scaled replica of
the input. (See page 150.)

A summing amplifier is an op amp circuit producing an
output voltage that is a scaled sum of the input voltages.
(See page 152.)

A noninverting amplifier is an op amp circuit producing
an output voltage that is a scaled replica of the input
voltage. (See page 153.)

A difference amplifier is an op amp circuit producing an
output voltage that is a scaled replica of the input volt-
age difference. (See page 155.)

The two voltage inputs to a difference amplifier can be
used to calculate the common mode and difference
mode voltage inputs, v, and vy, The output from the
difference amplifier can be written in the form

Vo = AmVem + AdmVdm

where Agy is the common mode gain, and Ay, 1S the
differential mode gain. (See page 157.)

In an ideal difference amplifier, A, = 0. To measure
how nearly ideal a difference amplifier is, we use the
common mode rejection ratio:

Adm

CMRR = :
ACl'l’l

An ideal difference amplifier has an infinite CMRR.
(See page 159.)



Problems

Sections 5.1-5.2

51

PSPICE
MULTISIM

5.2

PSPICE
MULTISIM

53

PSPICE
MULTISIM

The op amp in the circuit in Fig. P5.1 is ideal.
a) Label the five op amp terminals with their names.

b) What ideal op amp constraint determines the
value of i,,? What is this value?

¢) What ideal op amp constraint determines the
value of (v, — v,)? What is this value?

d) Calculate v,

Figure P5.1

3V vy u
2l

Find i, in the circuit in Fig. P5.2 if the op amp is ideal.

Figure P5.2
10 kQ)
A

0.5mA 25k0$5kQ

v

The op amp in the circuit in Fig. P5.3 is ideal.
a) Calculate v,ifv, =4Vandvy, =0V,

b) Calculate v, ifv, =2V andvy, = 0V.

¢) Calculate v,ifv, =2 Vandv, = 1V.
1Vandy, =2V.
15Vandy, = 4 V.

f) If v, = 1.6V, specify the range of v, such that
the amplifier does not saturate.

d) Calculate v, if v, =
e) Calculate v, if v, =

Figure P5.3

100 kQ
20 kQ) 15V
o+ +
40 kQ -15V
Va Vh 1,350 kO

Problems 165

5.4 Find {; (in microamperes) in the circuit in Fig. P5.4.
PSPICE
MULTISIM - Figure P5.4

10k

6 kQ

3k iL“ 4kQ

5.5

PSPICE
MULTISIM

A voltmeter with a full-scale reading of 10 V is used
to measure the output voltage in the circuit in
Fig. P5.5. What is the reading of the voltmeter?
Assume the op amp is ideal.

Figure P5.5

22MQ
MWV

J{AY

35 uA

\4

5.6 The op amp in the circuit in Fig. P5.6 is ideal.
eseice  Calculate the following:
MULTISIM
a) v
b) ‘Ut)
C) iz
d) il)

Figure P5.6

2 k)

5.7 A circuit designer claims the circuit in Fig. P5.7 will
reacical produce an output voltage that will vary between
PERSPECTIVE .

e +£5 as v, varies between 0 and 5 V. Assume the op

MULTISIM  amp is ideal.

a) Draw a graph of the output voltage v, as a func-
tion of the input voltage v, for0 = v, = 5V.

b) Do you agree with the designer’s claim?
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Figure P5.7

25V Yo

Section 5.3

5.8 a) Design an inverting amplifier using an ideal op
DLsta amp that has a gain of 3. Use a set of identical
resistors from Appendix H.

b) If you wish to amplify a S V input signal using
the circuit you designed in part (a), what are the
smallest power supply signals you can use?

5.9 The op amp in the circuit in Fig. P5.9 is ideal.

PSPICE

wise  8) FInd the range of values for ¢ in which the op

amp does not saturate.
b) Find i, (in microamperes) when o = 0.272.

Figure P5.9

12kQ
(r5()£(‘l
50k
Lok
+
250 mVv 6.4 k) o, $10kQ

A4

5.10 a) The op amp in the circuit shown in Fig. P5.10 is
PSPICE ideal. The adjustable resistor R, has a maxi-
HoLTIs mum value of 100 k€, and « is restricted to the
range of 0.2 = a =< 1. Calculate the range of

v, if v, = 40 mV.

b) If « is not restricted, at what value of « will the
op amp saturate?

Figure P5.10
50 k)
(XR__\ { RA
2k 7V
+
-7V
Ve
! v, 10kQ
v -
Section 5.4

5.11 Refer to the circuit in Fig. 5.12, where the op amp
e 1s assumed to be ideal. Given that R, = 4k,
MM Ry = 5kQ, R, = 20kQ, v, = 200mV,
v, = 150 mV, v, =400 mV, and V¢ = £6 V, spec-
ify the range of R; for which the op amp operates
within its linear region.
5.12 The op amp in Fig. P5.12 is ideal.

PSPICE

i a) What circuit configuration is shown in this figure?

b) Find v, 1V, v, 1.5V, and
v.=—4V,
¢) The voltages v, and v, remain at 1 V and —4 V,

respectively. What are the limits on v, if the op
amp operates within its linear region?

if v,

Figure P5.12
220 k2
44 kQ A
+ 27.5k() 10V
*—— WA

+ 80 kQ)
*—"VWA—4

< |
<

v

5.13 Design an inverting-summing amplifier so that

DESIGN
PROBLEM

PSPICE
munsiv Start by choosing a feedback resistor (Ry) from

Appendix H. Then choose single resistors from
Appendix H or construct resistor neworks from resis-
tors in Appendix H to satisfy the design values for R,,
Ry, R, and Ry. Draw your final circuit diagram.

v, = —(3v, + Su, + dv, + 2vy).



5.14 a) The op amp in Fig. P5.14 is ideal. Find v, if
PSPICE ,=4V, 9, =9V.v.=13V,and vy =8 V.
MULTISIM
b) Assume v, v, and vy retain their values as given
in (a). Specify the range of v, such that the op
amp opcrates within its linear region.

Figure P5.14

220 k)

40 kQ
+ 22 kQ
—wW\
T 100 k)
— W —

I&IN .
" 352 K0 10k

vvy
5.15

PSPICE
MULTISIM

The 220k{} fcedback resistor in the circuit in
Fig. P5.14 is replaced by a variable resistor Ry. The
voltages v,— vy have the samc values as given in
Problem 5.14(a).

a) What value of R, will cause the op amp to satu-
rate? Note that 0 = R, < oo.

b) When R, has the value found in (a), what is the

current (in microamperes) into the output ter-
minal of the op amp?

Section 5.5
5.16 The op amp in the circuit of Fig. P5.16 is ideal.

PSPICE
MULTISIM
b) Calculate v,,.

a) What op amp circuit configuration is this?

Figure P5.16

40k
WA

KAY o

5.17 The op amp in the circuit of Fig. P5.17 is ideal.
a) What op amp circuit configuration is this?
b) Find v, in terms of v,.

¢) Find the range of values for v, such that v, does
not saturate and the op amp remains in its lincar
region of operation.

Problems 167

Figure P5,17

30kQ

10 k€

5.18 The op amp in the circuit shown in Fig. P5.18 is idcal.

PSPICE
MULTISIM

a) Calculate v, when v, equals 4 V.

b) Specify the range of values of v, so that the op
amp operates in a linear mode.

c) Assume that v, equals 2 V and that the 63 k()
resistor is replaced with a variable resistor. What
valuc of the variable resistor will causc the op
amp to saturate?

Figure P5.18

30kQ

12 k)

5.19 a) Design a non-inverting amplifier with a gain of

4. Use resistors from Appendix H. You might
need to combine resistors in series and in par-
allel to get the desired resistance. Draw your
final circuit.

b) If youuse £12 V power supplies for the op amp,
what range of input values will allow the op amp
to stay in its linear operating region?

5.20 The op amp in the circuit of Fig. P5.20 is ideal.

PSPICE
MULTISIM

a) What op amp circuit configuration is this?
b) Find v, in terms of v, .
c) Find the range of values for v, such that v, does

not saturate and the op amp remains in its linear
region of operation.

Figure P5.20

20kQ
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5.21
PSPICE
MULTISIM

5.22

DESIGN
PROBLEM

PSPICE
MULTISIM

5.23
PSPICE
MULTISIM

The Operational Amplifier

The op amp in the circuit shown in Fig. P5.21 is
ideal. The signal voltages v, and vy, are 800 mV and
400 mV, respectively.

a) What circuit configuration is shown in the figure?
b) Calculate v,, in volts.
c¢) Find i, and i}, in microamperes.

d) What are the weighting factors associated with
v, and v,,?

Figure P5.21

110 k2
WA~
11 k€
l W’
+
iy
A v, 347kQ
b F
27kQ -
("‘.X +
O
v v

The circuit in Fig. P5.22 is a noninverting summing
amplifier. Assume the op amp is ideal. Design the
circuit so that

v, = v, + 20, + 3v..
a) Specify the numerical values of R, and R..

b) Calculate i,, i, and i, (in microamperes) when
v, =07V,y, =04V, andv, = 1.1 V.

Figure P5.22

100 kO
ANV
20 k) 5V
+
-5V
R, . v, 3 4.7 kQ)
*-—NWA——4
: o
Ry =15kQ" -
* — \VN—9
+ I
2, R
O —WW—

The op amp in the noninverting summing amplifier
of Fig. P5.23 is ideal.

a) Specify the values of Ry, Ry, and R, so that

v, = 6v, + 3v, + du..

b) Using the values found in part (a) for Ry, Ry, and
Re, find (in microamperes) iy, iy, i, iy, and i
whenv, =05V, v, =25V,andv. = 1V.

Figure P5.23

Section 5.6

5.24 a) Use the principle of superposition to derive

5.25

PSPICE
MULTISIM

Eq.5.22.
b) Derive Egs. 5.23 and 5.24.

The resistors in the difference amplifier shown
in Fig. 5.15 are R,=24kQ, R,=75kQ,
R, = 130k and Ry = 120 k(). The signal volt-
ages v, and v, are 8 and 5 V, respectively, and
VCC = 420V.

a) Find v,,.

b) What is the resistance seen by the signal
source v,?

c) What is the resistance seen by the signal
source v,?

The op amp in the circuit of Fig. P5.26 is ideal. What
value of Ry will give the equation

v, = 5 — 4v,,
for this circuit?

Figure P5.26

vi\




5.27

DESIGN
PROBLEM

PSPICE
MULTISIM

5.28

PSPICE
MULTISIM

5.29

DESIGN
PROBLEM

PSPICE
MULTISIM

Design the difference-amplifier circuit in Fig. P5.27
so that v, = 10(v, — v,), and the voltage source v,
sees an input resistance of 220 k€. Specify the val-
ues of R,,Ry,. and R; using single resistors or com-
binations of resistors from Appendix H. Use the
ideal model for the op amp.

Figure P5.27

Va

The op amp in the adder-subtracter circuit shown in
Fig. P5.28 is ideal.

a) Find v, whenv, =1V,y,=2V, v, =3V, and
Vg = 4V.

b) If v,, vy, and v, are held constant, what values of
v, will not saturate the op amp?
Figure P5.28

20k 180 k)

47kQ

Select the values of R, and R; in the circuit in
Fig. P5.29 so that

v, = 5000(;, = i,).
Use single resistors or combinations of resistors
from Appendix H. The op amp is ideal.

Figure P5.29

Ry
AN

ib 1 kQ Co

5.30

DESIGN
PROBLEM

PSPICE
MULTISIM

5.31

5.32

Problems 169

Design a difference amplifier (Fig. 5.15) to meet
the following criteria: v, = 3v, — 4v,. The resist-
ance seen by the signal source vy is 470 k{2, and
the resistance seen by the signal source v, is
22 kQ when the output voltage v, is zero. Specify
the values of R,, R,,, R., and Ry using single
resistors or combinations of resistors from
Appendix H.

The resistor R; in the circuit in Fig. P5.31 is
adjusted until the ideal op amp saturates. Specify
R, in kilohms.

Figure P5.31

1.6 kQ

18V

1L.5kQ 5.6kQ

The op amp in the circuit of Fig. P5.32 is ideal.

a) Plot v, versus @ when R; = 4R; and v, = 2 V.
Use increments of (.1 and note by hypothesis
that0 = o = 1.0.

b) Write an equation for the straight line you plot-
ted in (a). How are the slope and inter-
cept of the line related to v, and the ratio R;/R,?

c) Using the results from (b), choose values for v,
and the ratio R;/R| such that v, = —6a + 4.

Figure P5.32
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5.33

5.34

The Operational Amplifier

In the difference amplifier shown in Fig. P5.33, what
range of values of R, yields a CMRR = 1000?

Figure P5.33
20 k()
Uy R,
vy 50 kQ Pa

In the difference amplifier shown in Fig. P5.34,
compute (a) the differential mode gain, (b) the
common mode gain, and (c) the CMRR.

Figure P5.34

25kQ
A
1kQ 10V
- —o
o+ +
Uy 1kQ =10V

U 24 kO "
v

Sections 5.1-5.6

5.35

5.36
PSPICE
MULTISIM

Assume that the ideal op amp in the circuit seen in
Fig. P5.35 is operating in its linear region.

a) Show that v, = [(R; + Ry)/R]v,.
b) What happens if R; — o0 and R, — 07

c) Explain why this circuit is referred to as a volt-
age follower when Ry = 0 and R, = 0.

Figure P5.35

R,

AW
R, o
R] o+ +
v e,
v

The voltage v, shown in Fig. P5.36(a) is applied to
the inverting amplifier shown in Fig. P5.36(b).
Sketch v, versus f, assuming the op amp is ideal.

Figure P5.36

vH
05V -
ete.
! | [
05 18 15 2o 25 3. 0 ¢(s)
-05V |-
(a)
120 kQ
AM
75k 5V
AN
'U,Q
v
(b)
5.37 The signal voltage v, in the circuit shown in Fig. P5.37

PSPICE
MULTISIM

5.38

is described by the following equations:
v, = 0,
vy = 10sin(w/3)t V,

t =0,

0=t = o,

Sketch v, versus ¢, assuming the op amp is ideal.

Figure P5.37
15kQ 75 kQ)
AW
2.4kQ
+
v 1,2 6.8k

a) Show that when the ideal op amp in Fig. P5.38 is
operating in its linear region,

3vg

i = —=

¢l R N
b) Show that the ideal op amp will saturate when

R(£Vee — 20,)

a
3vg
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Figure P5.38 5.40 The circuitinside the shaded area in Fig. P540 is a con-
R rseice  stant current source for a limited range of values of R; .

W "™ 2) Find the value of i, for R, = 4kQ.
Vee b) Find the maximum value for R; for which /, will
.- have the value in (a).
o+ ¢) Assume that R; = 16 k(). Explain the operation
R § Ve §R of the circuit. Ygu can assume that i, = i, = 0
under all operating conditions.
d) Sketchi; versus R; for0 = R; = 16kQ.

Figure P5.40

S0k

5.39 Assume that the ideal op amp in the circuit in
eseice Fig. P5.39 is operating in its linear region.

"M a) Calculate the power delivered to the 16k
resistor.

b) Repeat (a) with the op amp removed from the
circuit, that is, with the 16 kQ resistor connected

in the series with the voltage source and the 5.41 The two op amps in the circuit in Fig. P5.41 are

48 k@ resistor. rseice  1deal. Calculate v, and v,,.
¢) Find the ratio of the power found in (a) to that = muusim

found in (b). Figure P5.41
d) Does the insertion of the op amp between the 15Ve

source and the load serve a useful purpose?

Explain.

Figure P5.39

10Ve———
48 kQ
1kQ
320 mv 16k
Source Load 5.42 The op amps in the circuit in Fig. P5.42 are ideal.

PRI a) Find i,
MULTISIM

b) Find the value of the left source voltage for

which i, = 0.
Figure P5.42
47 k) 220 kQ
AMN— A
10 kQ 6V i 6V 33k

<
<
<

b AAA—
1kQ
-6V -6V
1V 150 mV
y
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Section 5.7

5.43 Repeat Assessment Problem 5.6, given that the

e inverting amplifier is loaded with a 500 £ resistor.
MULTISIM

5.44 Assume the input resistance of the op amp in

estice  Fig. P5.44 is infinite and its output resistance is zero.
MULTISIM . .
a) Find v, as a function of v, and the open-loop

gain A.
b) What is the value of v, if v, = 1 Vand A = 150?
c) What is the value of v, if v, = 1Vand A = 00?

d) How large does A have to be so that v, is 99% of
its value in (c)?

Figure P5.44

2kQ

5.45

PSPICE
MULTISIM

The op amp in the noninverting amplifier circuit of

Fig. P5.45 has an input resistance of 560 k{2, an out-

put resistance of 8 k), and an open-loop gain of

50,000. Assume that the op amp is operating in its

linear region.

a) Calculate the voltage gain (v, /v,).

b) Find the inverting and noninverting input volt-
ages v, and v, (in millivolts) if v, = 1 V.

c) Calculate the difference (v, — v,) in microvolts
when v, = 1V.

d) Find the current drain in picoamperes on the
signal source v, when v, = 1 V.

e) Repeat (a)-(d) assuming an ideal op amp.

Figure P5.45

200 kQ
A
16 kQ) 15V
ANA—
l 240 kO

5.46

PSPICE
MULTISIM

a) Find the Thévenin equivalent circuit with
respect to the output terminals a,b for the
inverting amplifier of Fig. P5.46. The dc signal
source has a value of 880 mV. The op amp has
an input resistance of S500k{}, an output
resistance of 2k{) and an open-loop gain
of 100,000.

b) What is the output resistance of the inverting
amplifier?
c) What is the resistance (in ohms) seen by the sig-

nal source v, when the load at the terminals a,b
is 330 Q°?

Figure P5.46

5.47 Repeat Problem 5.46 assuming an ideal op amp.
PSPICE
MULTISIM

5.48 Derive Eq.5.60.

Sections 5.1-5.7

5.49 Suppose the strain gages in the bridge in Fig. 5.21
gl have the value 120 Q + 1%. The power supplies
to the op amp are =+15V, and the refer-

ence voltage, v,y is taken from the positive

power supply.

a) Calculate the value of Ry so that when the strain
gage that is lengthening reaches its maximum
length, the output voltage is 5 V.

b) Suppose that we can accurately measure
50 mV changes in the output voltage. What
change in strain gage resistance can be
detected in milliohms?



5.50 a) For the circuit shown in Fig. P5.50, show that if
PRACTICAL AR << R, the output voltage of the op amp is

PERSPECTIVE .
PSPICE approximately

MULTISIM

R (R+ R

VN R T 2R[)(—AR)%-

b) Find v, if Ry = 470kQ, R = 10k, AR =95 Q,
and v, = 15V.

c) Find the actual value of v, in (b).

Figure P5.50

Ry
AW

R + AR R

+é

5.51 a) If percent error is defined as

PRACTICAL
PERSPECTIVE

PSPICE
MULTISIM

approximate value ]:| % 100,

% error =
true value

5.52

PRACTICAL
PERSPECTIVE

PSPICE
MULTISIM

5.53

PRACTICAL
PERSPECTIVE
PSPICE

MULTISIM

Problems 173

show that the percent error in the approxima-
tion of v, in Problem 5.50 is

AR R+ R) o

9/0 = .
COT = "R (R + 2Ry)

b) Calculate the percent error in v, for Problem 5.50.

Assume the percent error in the approximation of
v, in the circuit in Fig. P5.50 is not to exceed 1%.
What is the largest percent change in R that can be
tolerated?

Assume the resistor in the variable branch of the
bridge circuit in Fig. P5.50 is R — AR instead of
R + AR.

a) What is the expression for v, if AR << R?

b) What is the expression for the percent error in
v, as a function of R, Ry, and AR?

¢) Assume the resistance in the variable arm of
the bridge circuit in Fig. P5.50 is 9810 () and the
values of R, R;, and v, are the same as in
Problem 5.50(b). What is the approximate value
of v,?

d) What is the percent error in the approximation

of v, when the variable arm resistance is
9810 Q?
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 CHAPTER OBJECTIVES

1

4

Know and be able to use the equations for
voltage, current, power, and energy in an
inductor; understand how an inductor behaves
in the presence of constant current, and the
requirement that the current be continuous in
an inductor.

Know and be able to use the equations for
voltage, current, power, and energy in a
capacitor; understand how a capacitor behaves
in the presence of constant voltage, and the

requirement that the voltage be continuous in a

capacitor.

Be able to combine inductors with initial
conditions in series and in parallel to form a
single equivalent inductor with an initial
condition; be able to combine capacitors with
initial conditions in series and in parallel to
form a single equivalent capacitor with an
initial condition.

Understand the basic concept of mutual
inductance and be able to write mesh-current
equations for a circuit containing magnetically
coupled coils using the dot convention
correctly.
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}

Inductance, Capacitance,
and Mutual Inductance

We begin this chapter by introducing the last two ideal circuit
elements mentioned in Chapter 2, namely, inductors and capaci-
tors. Be assured that the circuit analysis techniques introduced in
Chapters 3 and 4 apply to circuits containing inductors and capac-
itors. Therefore, once you understand the terminal behavior of
these elements in terms of current and voltage, you can use
Kirchhoff’s laws to describe any interconnections with the other
basic elements. Like other components, inductors and capacitors
are easier to describe in terms of circuit variables rather than
electromagnetic field variables. However, before we focus on the
circuit descriptions, a brief review of the field concepts under-
lying these basic elements is in order.

An inductor is an electrical component that opposes any
change in electrical current. It is composed of a coil of wire
wound around a supporting core whose material may be mag-
netic or nonmagnetic. The behavior of inductors is based on phe-
nomena associated with magnetic fields. The source of the
magnetic field is charge in motion, or current. If the current is
varying with time, the magnetic field is varying with time. A time-
varying magnetic field induces a voltage in any conductor linked
by the field. The circuit parameter of inductance relates the
induced voltage to the current. We discuss this quantitative rela-
tionship in Section 6.1.

A capacitor is an electrical component that consists of two
conductors separated by an insulator or dielectric material. The
capacitor is the only device other than a battery that can store
electrical charge. The behavior of capacitors is based on phenom-
ena associated with electric fields. The source of the electric field
is separation of charge, or voltage. If the voltage is varying with
time, the electric field is varying with time. A time-varying electric
field produces a displacement current in the space occupied by
the field. The circuit parameter of capacitance relates the dis-
placement current to the voltage, where the displacement current
is equal to the conduction current at the terminals of the capaci-
tor. We discuss this quantitative relationship in Section 6.2.

A SRR N



Practfiﬂcal Persﬁpfective

Proximity Switches
The electrical devices we use in our daily lives contain many
switches. Most switches are mechanical, such as the one used
in the flashlight introduced in Chapter 2. Mechanical switches
use an actuator that is pushed, pulled, slid, or rotated, caus-
ing two pieces of conducting metal to touch and create a
short circuit. Sometimes designers prefer to use switches
without moving parts, to increase the safety, reliability, con-
venience, or novelty of their products. Such switches are
called proximity switches. Proximity switches can employ a
variety of sensor technologies. For example, some elevator
doors stay open whenever a light beam is obstructed.
Another sensor technology used in proximity switches
detects people by responding to the disruption they cause in
electric fields. This type of proximity switch is used in some
desk lamps that turn on and off when touched and in elevator
buttons with no moving parts (as shown in the figure). The
switch is based on a capacitor. As you are about to discover in
this chapter, a capacitor is a circuit element whose terminal
characteristics are determined by electric fields. When you
touch a capacitive proximity switch, you produce a change in

the value of a capacitor, causing a voltage change, which acti-
vates the switch. The design of a capacitive touch-sensitive
switch is the topic of the Practical Perspective example at the
end of this chapter.

175
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The inductor v — i equation

._fY‘l;'Y'\_.
(a)

L
—YY Y —gp@
AR

[

(b)

Figure 6.1 A (a) The graphic symbol for an inductor
with an inductance of L henrys. (b) Assigning reference
voltage and current to the inductor, following the pas-
sive sign convention.

Section 6.3 describes techniques used to simplify circuits with series or
parallel combinations of capacitors or inductors.

Energy can be stored in both magnetic and electric fields. Hence you
should not be too surprised to learn that inductors and capacitors are
capable of storing energy. For example, energy can be stored in an induc-
tor and then released to fire a spark plug. Energy can be stored in a capac-
itor and then released to fire a flashbulb. In ideal inductors and capacitors,
only as much energy can be extracted as has been stored. Because induc-
tors and capacitors cannot generate energy, they are classified as passive
elements.

In Sections 6.4 and 6.5 we consider the situation in which two circuits
are linked by a magnetic field and thus are said to be magnetically cou-
pled. In this case, the voltage induced in the second circuit can be related
to the time-varying current in the first circuit by a parameter known as
mutual inductance. The practical significance of magnetic coupling
unfolds as we study the relationships between current, voltage, power, and
several new parameters specific to mutual inductance. We introduce these
relationships here and then describe their utility in a device called a trans-
former in Chapters 9 and 10.

6.1 The Inductor

Inductance is the circuit parameter used to describe an inductor. Inductance
is symbolized by the letter L, is measured in henrys (H), and is represented
graphically as a coiled wire—a reminder that inductance is a consequence
of a conductor linking a magnetic field. Figure 6.1(a) shows an inductor.
Assigning the reference direction of the current in the direction of the volt-
age drop across the terminals of the inductor, as shown in Fig. 6.1(b), yields

v=L— (6.1)

where v is measured in volts, L in henrys, { in amperes, and ¢ in seconds.
Equation 6.1 reflects the passive sign convention shown in Fig. 6.1(b); that
is, the current reference is in the direction of the voltage drop across the
inductor. If the current reference is in the direction of the voltage rise,
Eq. 6.1 is written with a minus sign.

Note from Eq. 6.1 that the voltage across the terminals of an inductor
is proportional to the time rate of change of the current in the inductor.
We can make two important observations here. First, if the current is con-
stant, the voltage across the ideal inductor is zero. Thus the inductor
behaves as a short circuit in the presence of a constant, or dc, current.
Second, current cannot change instantaneously in an inductor; that is, the
current cannot change by a finite amount in zero time. Equation 6.1 tells
us that this change would require an infinite voltage, and infinite voltages
are not possible. For example, when someone opens the switch on an
inductive circuit in an actual system, the current initially continues to flow
in the air across the switch, a phenomenon called arcing. The arc across
the switch prevents the current from dropping to zero instantaneously.
Switching inductive circuits is an important engineering problem, because
arcing and voltage surges must be controlled to prevent equipment dam-
age. The first step to understanding the nature of this problem is to master
the introductory material presented in this and the following two chapters.
Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit.
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eI N Determining the Voltage, Given the Current, at the Terminals of an Inductor

The independent current source in the circuit
shown in Fig. 6.2 generates zero current for t+ < 0
and a pulse 10te A, for t > 0.

i=10te™¥A, t>0

Figure 6.2 A The circuit for Example 6.1.

a) Sketch the current waveform.
b) At what instant of time is the current maximum?

c) Express the voltage across the terminals of the
100 mH inductor as a function of time.

d) Sketch the voltage waveform.

e) Are the voltage and the current at a maximum at
the same time?

f) At what instant of time does the voltage change
polarity?

g) Is there ever an instantaneous change in voltage
across the inductor? If so, at what time?

c) v = Ldi/dt = (0.1)10e™3(1 — 5t) = ™™
(1-56)V,t > 0;v=0,t <0.

d) Figure 6.4 shows the voltage waveform.

e) No; the voltage is proportional to di/dt, not i.

f) At 0.2 s, which corresponds to the moment when
di/dt is passing through zero and changing sign.

g) Yes, at t = 0. Note that the voltage can change
instantaneously across the terminals of an
inductor.

0! : I(S)

Figure 6.3 A The current waveform for Example 6.1.

b) di/dt = 10(—5te™ + ™) = 10e™™
(1- 5t) A/s; di/dt = O whent = 1s. (See Fig. 6.3.)

v (V)
1.0
Solution
a) Figure 6.3 shows the current waveform. , | £(s)
0' 0.6 s

Figure 6.4 A The voltage waveform for Example 6.1.

Current in an Inductor in Terms of the Voltage

Across the Inductor

Equation 6.1 expresses the voltage across the terminals of an inductor as a
function of the current in the inductor. Also desirable is the ability to

express the current as a function of the voltage. To find / as a function of v,
we start by multiplying both sides of Eq. 6.1 by a differential time dt:

di
vdf = L (E) dt. (6.2)

Multiplying the rate at which i varies with ¢ by a differential change in time
generates a differential change in /, so we write Eq. 6.2 as

vdt = Ldi. (6.3)
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We next integrate both sides of Eq. 6.3. For convenience, we interchange
the two sides of the equation and write

i(t) {
L/ dx = /'v dr. (6.4)
Ji(ty) o ly

Note that we use x and 7 as the variables of integration, whereas i and ¢
become limits on the integrals. Then, from Eq. 6.4,

1
The inductor i — v equation » i(r) = —i— vdr + i(ty), (6.5)

iy

where i(¢) is the current corresponding to ¢, and i(¢,) is the value of the
inductor current when we initiate the integration, namely, #,. In many
practical applications, ¢, is zero and Eq. 6.5 becomes

i(t) = %Av dr + i(0). (6.6)

Equations 6.1 and 6.5 both give the relationship between the voltage
and current at the terminals of an inductor. Equation 6.1 expresses the
voltage as a function of current, whereas Eq. 6.5 expresses the current as a
function of voltage. In both equations the reference direction for the cur-
rent is in the direction of the voltage drop across the terminals. Note that
i(ty) carries its own algebraic sign. If the initial current is in the same direc-
tion as the reference direction for i, it is a positive quantity. If the initial
current is in the opposite direction, it is a negative quantity. Example 6.2
illustrates the application of Eq. 6.5.

NN Determining the Current, Given the Voltage, at the Terminals of an Inductor

The voltage pulse applied to the 100 mH inductor b) The current in the inductor is 0 at ¢ = 0.
shown in Fig. 6.5 is 0 for 1 < 0 and is given by the Therefore, the current for ¢t > 0 is
expression
] !
_ — 101 i=— [ 20re " dr + 0

U(t) 20te A\ 0.1 Jo

forr > 0. Also assume i = 0 fort < 0. 10 )
— T

a) Sketch the voltage as a function of time. 200[ 100 (107 D:l ’(,’
b) Find the inductor current as a function of time. =2(1 - 10te™ 19 — e-l"t) A, t > 0.
c) Sketch the current as a function of time. c) Figure 6.7 shows the current as a function of time.

v =0, <0

Solution

v=20e""V, >0

a) The voltage as a function of time is shown in
Fig. 6.6. Figure 6.5 A The circuit for Example 6.2.
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i(A)

2

1

t(s
) | J ! {(s)
0 0.1 0.2 0.3
Figure 6.6 A The voltage waveform for Example 6.2.
Figure 6.7 A The current waveform for Example 6.2.

Note in Example 6.2 that i approaches a constant value of 2 A as ¢
increases. We say more about this result after discussing the energy stored
in an inductor.

Power and Energy in the Inductor

The power and energy relationships for an inductor can be derived
directly from the current and voltage relationships. If the current refer-
ence is in the direction of the voltage drop across the terminals of the
inductor, the power is

p = vi (6.7)

Remember that power is in watts, voltage is in volts, and current is in
amperes. If we express the inductor voltage as a function of the inductor
current, Eq. 6.7 becomes

p=Li % (6.8) <« Power in an inductor

We can also express the current in terms of the voltage:

p=v |:—I}:,/t(; vdr + E(t(,):|. (6.9)

Equation 6.8 is useful in expressing the energy stored in the inductor.
Power is the time rate of expending energy, so

dw di
=—=Li—. 1
p dt Li dt (6.10)

Multiplying both sides of Eq. 6.10 by a differential time gives the differen-
tial relationship

dw = Lidi. (6.11)

Both sides of Eq. 6.11 are integrated with the understanding that the ref-
erence for zero energy corresponds to zero current in the inductor. Thus

w i
/ dx =1L / ydy.
0 J0

1,
w = ELI . (6.12) < Energy in an inductor
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As before, we use different symbols of integration to avoid confusion
with the limits placed on the integrals. In Eq. 6.12, the energy is in joules,
inductance is in henrys, and current is in amperes. To illustrate the appli-
cation of Eqs. 6.7 and 6.12, we return to Examples 6.1 and 6.2 by means of
Example 6.3.

el KRN Determining the Current, Voltage, Power, and Energy for an Inductor

a) For Example 6.1, plot i, v, p, and w versus time. e) From Example 6.1,
Line up the plots vertically to allow easy assess- . s s
ment of each variable’s behavior. i=10e A and =l =5) V.

b) In what time interval is energy being stored in Therefore,
the inductor? p = vi = 10671 — 50277 W,

c) In what time interval is energy being extracted
from the inductor?

d) What is the maximum energy stored in the
inductor?

e) Evaluate the integrals

0.2 20
/ pdt and / p dt,
0 Jo2

t(s)
and comment on their significance.
f) Repeat (a)-(c) for Example 6.2. 10
g) In Example 6.2, why is there a sustained current 05 L
in the inductor as the voltage approaches zero? -
| | | |
t(s
0 0.2 - : 0.8 1.0 ©
—-0.5 +
Solution p (mW)
a) The plots of i, v, p, and w follow directly from the 200
expressions for i and v obtained in Example 6.1
and are shown in Fig. 6.8. In particular, p = vi, 100
and w = (3)Li%
b) An increasing energy curve indicates that energy 5 0 0' 2 : 0l8 IIO 1(s)
is being stored. Thus energy is being stored in the ) ’ :
time interval 0 to 0.2 s. Note that this corre-
sponds to the interval when p > 0. w (mJ)
¢) A decreasing energy curve indicates that energy 30k
is being extracted. Thus energy is being extracted
in the time interval 0.2 s to c©. Note that this cor- 15 -
responds to the interval when p < 0. ) N 1 |
d) From Eq. 6.12 we see that energy isata 'maximum 0 02 04 06 08 10 1(s)
when current is at a maximum; glancing at the
graphs confirms this. From Example 6.1, maximum Figure 6.8 A The variables i, v, p, and w versus ¢ for

current = (0.736 A. Therefore, wp,x = 27.07 mJ. Example 6.1.
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Thus g) The application of the voltage pulse stores
energy in the inductor. Because the inductor is
ideal, this energy cannot dissipate after the volt-

/ 02 i ml:e‘“" (—101 U:' 0.2 age subsides to zero. Therefore, a sustained cur-

p = —_ J—

0

100 rent circulates in the circuit. A lossless inductor
obviously is an ideal circuit element. Practical
inductors require a resistor in the circuit model.
(More about this later.)

0

tze—mr 2 e—l()r 0.2
- 50 + = (—10r — 1
{ -10 10[ 100 ) 0

=0.2¢? =27.07 mJ,

/°° |:e—l(h‘ :loo
ndt = 10 —10¢t - 1
oz ! 100°¢ ) oz

v (V)

p t(s)
2,10 —10¢ 0 .
te 21 e
- 50 + — (-10t — 1
{ ~10 10[ 100 )}}m i(A)
20+
= —02¢7 = =27.07 m). 10 -
| 1 l | | L (s)
0 01 02 03 04 05 06
Based on the definition of p, the area under p (mW)
the plot of p versus ¢ represents the energy 600 -
expended over the interval of integration.
Hence the integration of the power between 300 -
0 and 0.2 s represents the energy stored in the )
inductor during this time interval. The integral | | | | ‘
of p over the interval 0.2s — 00 is the energy 0 01 02 03 04 05 06 £Gs)

extracted. Note that in this time interval, all
the energy originally stored is removed; that is,
after the current peak has passed, no energy is
stored in the inductor.

f) The plots of v, i, p, and w follow directly from
the expressions for » and i given in Example

|
6.2 and are shown in Fig. 6.9. Note that in this 0 01 02 03 04 05 06 £(s)
case the power is always positive, and hence
energy is always being stored during the volt- Figure 6.9 A The variables v, i, p, and 10 versus ¢ for

age pulse. Example 6.2.
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v ASSESSMENT PROBLEM

Objective 1—Know and be able to use the equations for voltage, current, power, and energy in an inductor

6.1  The current source in the circuit shown gener- +

ates the current pulse

ig <4 mH

ig(r) = 0, t <0, -
lg(t) — 86—3()01 - 86_1200’ A, r=0.
‘ Answer: (a) 28.8V;
Find (a) v(0); (b) the instant of time, greater (b) 1.54 ms;
than zero, when the voltage » passes through (c) —76.8¢780% + 38471500
zero; (c) the expression for the power delivered = 30727 W, = (;
to the inductor; (d) the instant when the power (d) 411.05 ps;
delivered to the inductor is maximum; (e) the :
maximum power; (f) the instant of time when (e) 32.72W;
the stored energy is maximum; and (g) the max- (f) 1.54 ms;
imum energy stored in the inductor. (g) 28.57 mJ.

NOTE: Also try Chapter Problems 6.1 and 6.4.

.——'CH.
(a)
-
+ ]V —_—
i.-
(b)
Figure 6.10 A (a) The circuit symbol for a capacitor.

(b) Assigning reference voltage and current to the
capacitor, following the passive sign convention.

Capacitor i — v equation »

6.2 The Capacitor

The circuit parameter of capacitance is represented by the letter C. is
measured in farads (F), and is symbolized graphically by two short paral-
le] conductive plates, as shown in Fig. 6.10(a). Because the farad is an
extremely large quantity of capacitance, practical capacitor values usually
lie in the picofarad (pF) to microfarad (uF) range.

The graphic symbol for a capacitor is a reminder that capacitance
occurs whenever electrical conductors are separated by a dielectric, or
insulating, material. This condition implies that electric charge is not
transported through the capacitor. Although applying a voltage to the
terminals of the capacitor cannot move a charge through the dielectric, it
can displace a charge within the dielectric. As the voltage varies with
time, the displacement of charge also varies with time, causing what is
known as the displacement current.

At the terminals, the displacement current is indistinguishable from a
conduction current. The current is proportional to the rate at which the
voltage across the capacitor varies with time, or, mathematically,

i= CE, (6.13)

where i is measured in amperes, C in farads, » in volts, and ¢ in seconds.

Equation 6.13 reflects the passive sign convention shown in Fig. 6.10(b);
that is, the current reference is in the direction of the voltage drop across the
capacitor. If the current reference is in the direction of the voltage rise,
Eq. 6.13 is written with a minus sign.



Two important observations follow from Eg. 6.13. First, voltage cannot
change instantaneously across the terminals of a capacitor. Equation 6.13
indicates that such a change would produce infinite current, a physical
impossibility. Second, if the voltage across the terminals is constant, the
capacitor current is zero. The reason is that a conduction current cannot be
cstablished in the dielectric material of the capacitor. Only a time-varying
voltage can produce a displacement current. Thus a capacitor behaves as an
open circuit in the presence of a constant voltage.

Equation 6.13 gives the capacitor current as a function of the capaci-
tor voltage. Expressing the voltage as a function of the current is also use-
ful. To do so, we multiply both sides of Eq. 6.13 by a differential time dr
and then integrate the resulting differentials:

#(1) 1 t
idi =Cdv or / dx = —/idT.
#(ty) C ty

Carrying out the integration of the left-hand side of the second equa-
tion gives

t
o) = é— / i dr + (). (6.14)

Sy

In many practical applications of Eq. 6.14, the initial time is zcro; that is,
ty = 0. Thus Eq. 6.14 becomes

ou(t) = %Aid‘— + v(0). (6.15)

We can easily derive the power and energy relationships for the capacitor.
From the definition of power,

p=uvi-= Cv;, (6.16)

or

t
p= i|:é/idf + 'v(to)il. (6.17)
fa

6.2  The Capacitor

<« Capacitor v — i equation

<« Capacitor power equation

183
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Combining the definition of energy with Eq. 6.16 yields

from which

or

Capacitor energy equation »>

dw = Cvdv,

Ww (2
/ dx = C/ ydy.
0 0

1

w= Ecvz‘ (6.18)

In the derivation of Eq. 6.18, the reference for zero energy corresponds to
zero voltage.

Examples 6.4 and 6.5 illustrate the application of the current, voltage,
power, and energy relationships for a capacitor.

SEL NN Determining Current, Voltage, Power, and Energy for a Capacitor

The voltage pulse described by the following equa-
tions is impressed across the terminals of a 0.5 uF
capacitor:

0, t=0s;
v(t) = § 4V, Os<¢t=<1ls;
de”-VVY, =15,

a) Derive the expressions for the capacitor current,
power, and energy.

b) Sketch the voltage, current, power, and energy as
functions of time. Line up the plots vertically.

c) Specify the interval of time when energy is being
stored in the capacitor.

d) Specify the interval of time when energy is being
delivered by the capacitor.

e) Evaluate the integrals

1 O
/ pdt and / pdt
0 i

and comment on their significance.

Solution

a) From Eq. 6.13,

(0.5 X 107%)(0) = 0, t < 0s;
i=1< (0.5 X 107%(4) = 2 nA, 0s <t <Tls;
(0.5 X 1070 (—4e™ ") = =27 DA > 1s.

The expression for the power is derived from
Eq.6.16:

0, t <0s;
p =1 (40)(2) = 8 uW, Os=<t<ls;
(4 (—2e7 Ny = B2 VW, 1> 1.

The energy expression follows directly from
Eq.6.18:

) t<0s;
w = (05167 = 4Cul, Os=<t=<1s;
3(0.5)16e72071) = 472071 ],
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b) Figure 6.11 shows the voltage, current, power, v (V)
and energy as functions of time.

c) Energy is being stored in the capacitor whenever
the power is positive. Hence energy is being 9
stored in the interval 0—1s.

d) Energy is being delivered by the capacitor when- | L ' L L1 (s)
ever the power is negative. Thus energy is being 0 1 2 3 4 3 6
delivered for all ¢ greater than 1 s. i (wA)

e) The integral of p dt is the energy associated with
the time interval corresponding to the limits on 2
the integral. Thus the first integral represents the (1) B J [ | L1,
energy stored in the capacitor between 0 and 1 s, e 1/2/, 4
whereas the second integral represents the ol !
energy returned, or delivered, by the capacitor in
the interval 1 s to 00: P (uW)

8 -
4+-/1

1 L | | ) ]
(s
s 6 (s)

=4ul, 0 34
0 M _Z__ 1;/

o1 1
/pa’t = /8tdt=4t2
0 [§]

w (ud)
o o0 efz(ff[) [¢3}
/ pdt = / (—8e 2" V)dr = (-8) = —4ul. 4~
1 1 -2 |
2 L
. . | | L1 1
The volt.age.apphed to.the capacitor returns to 0 \ 5 3 4 5 6 L(s)
zero as time increases without limit, so the energy
returned by this ideal capacitor must equal the Figure 6.11 A The variables v, i, p, and w versus ¢ for
energy stored. Example 6.4.

SEl AR Finding v, p, and w Induced by a Triangular Current Pulse for a Capacitor

An uncharged 0.2 uF capacitor is driven by a trian- Solution
gular current pulse. The current pulse is described by

a) Fort = 0,v, p,and w all are zero.
0, (<0 For0 = ¢t = 20 us,
i) = 5000r A, 0=1r=<20us; o 0
0.2 — 5000t A, 20 < ¢ =< 40 us; v =5 X 10 ‘/0‘ (50007)dr + 0 = 12.5 X 10"V,
0, t = 40 us.

p = wvi =625 X 10 W,

a) Derive the expressions for the capacitor voltage, ]
power, and energy for each of the four time inter- w = —Cv* = 15625 X 10" .
vals needed to describe the current. 2

b) .P!ot i: v, p,and W Versus t. Align the plots as spec- For 20us =< t < 40 us,
ified in the previous examples. ,

c) Why does a voltage remain on the capacitor after »=35X10° / (0.2 = 50007)dr + 5.
the current returns to zero? 20us
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(Note that 5V is the voltage on the capacitor at i (mA)
the end of the preceding interval.) Then, 100
v = (10% — 12.5 X 10°2 ~ 10) V, 50
p = vi, | L | l 1 Ly
00 10 20 30 40 s0 6o
= (62.5 X 102 - 7.5 X 10° + 2.5 X 10°% — 2) W, (V)
1 10
w = ~Cv?,
2
5
= 12,4 _ 9.3 : 0.2
(15.625 X 10™¢* — 2.5 X 10°r" + 0.125 X 10 | i | Ly L (o)
2+ 1077 0' 10 20 30 40 50 60
p (mW)
Fort = 40 us, 500
v=10V, 400
. 300
p=vi=0, 200
1 100 L L
2
v =—Cpv = . I (s
w=5Cv =104 0 10 20 30 40 s0 e ¢
b) The excitation current and the resulting voltage, w ()
power, and energy are plotted in Fig. 6.12. 0
c) Note that the power is always positive for the 8
duration of the current pulse, which means that 6
energy is continuously being stored in the capac- 4
itor. When the current returns to zero, the stored 2
energy is trapped because the ideal capacitor } ' ' ' L L (us)
offers no means for dissipating energy. Thus a 0 1020 30 40 50 60
voltage remains on the capacitor after i returns Figure 6.12 A The variables i, v, p, and w versus ¢ for
to zero. Example 6.5.

v ASSESSMENT PROBLEMS

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor

6.2  The voltage at the terminals of the 0.6 uF Answer: (a) 0.72 A;
capacitor shown in the figure is 0 for < 0 and (b) —649.2 mW:
40> sin 30,000¢ V for ¢ = 0. Find (a) i(0); (©) 126.13 puJ
(b) the power delivered to the capacitor at ©) O M

= 7/80 ms; and (c) the energy stored in the 6.3  The current in the capacitor of Assessment
capacitor at t = 7/80 ms. Problem 6.2 is 0 for t < 0 and 3 cos 50,000 A
for ¢ = 0. Find (a) v(z); (b) the maximum power
0.6 uF delivered to the capacitor at any one instant of
o | ( o time; and (c) the maximum energy stored in the
+ p = capacitor at any one instant of time.

! Answer: (a) 100 sin 50,000 V, ¢ = 0;

b) 150 W: (c) 3 mJ.
NOTE: Also try Chapter Problems 6.16 and 6.17. (®) (¢)3m
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6.3 Series-Parallel Combinations
of Inductance and Capacitance

Just as series-paralle] combinations of resistors can be reduced to a single
equivalent resistor, series-parallel combinations of inductors or capacitors
can be reduced to a single inductor or capacitor. Figure 6.13 shows induc-
tors in series. Here, the inductors are forced to carry the same current; thus
we define only one current for the series combination. The voltage drops
across the individual inductors are

di di di
S Vo = Ly, and v3 = L;—.
dr

vl:ler 2

~

The voltage across the series connection is

di
'0='01+U2+U3=(L1+L2+L3)F;,

from which it should be apparent that the equivalent inductance of series-
connected inductors is the sum of the individual inductances. For # induc-
tors in series,

Leq = L] + L2 + L3 + -+ Ln. (619)

If the original inductors carry an initial current of i(t,), the equivalent
inductor carries the same initial current. Figure 6.14 shows the equivalent
circuit for series inductors carrying an initial current.

Inductors in parallel have the same terminal voltage. In the equivalent
circuit, the current in each inductor is a function of the terminal voltage
and the initial current in the inductor. For the three inductors in parallel
shown in Fig. 6.15, the currents for the individual inductors are

1
vdr + §(t),

o

iy
Ly
]

. 1 .
I = — vdr + 12([()),
2Jrn

i (6.20)

1 /[
f‘/ vdr + i3(t()).
fo

3

The current at the terminals of the three parallel inductors is the sum of
the inductor currents:

i = il + i2 + lg (5,21)

Substituting Eq. 6.20 into Eq. 6.21 yields

1 1 1 il
=\t LTn dr + i(ty) + ixto) + is(ty). (6.2
l (Ll Ly L3)./n, vdr + ii(tg) + ip(to) + iz(t).  (6.22)

187

Figure 6.13 A Inductors in series.

<« Combining inductors in series

L, L, Ls
._fmf\_.__NW\_._fWY\_'
,F i —_
i{t)

i
ch=L1+ L2+L3
._NY‘Y\_.

A
+ —_

i(t)

Figure 6.14 A An equivalent circuit for inductors in
series carrying an initial current i(z).
i

-
°- e

+ @

i i is

L, |51(f0) Ly 31i(ty) Lz _<1is(r)
147 \J ]

Figure 6.15 A Three inductors in parallel.
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1 1 1 |
T EI ST
- ch Ll LZ L3

ity) = i (t) + ix(ty) + i3(k0)
# i(‘())l ch

Figure 6.16 A An equivalent circuit for three inductors
in parallel.

Combining inductors in parallel »

Equivalent inductance initial current »

Combining capacitors in series p

Equivalent capacitance initial voltage >

Combining capacitors in parallel >

Now we can interpret Eq. 6.22 in terms of a single inductor; that is,

1 ¢
i = f'U dr + i(f()). (6.23)
Leq ty
Comparing Eq. 6.23 with (6.22) yields
RIS .
Leq Ll Lz L_':, ( ' )
i(ty) = i1(tg) + ia(t) + is(to). (6.25)

Figure 6.16 shows the equivalent circuit for the three parallel inductors in
Fig. 6.15.

The results expressed in Egs. 6.24 and 6.25 can be extended to
n inductors in parallel:

1 =L+l+...+_1_ (6.26)
Leq Ll 2 Ln .
i(to) = i1(to) + ia(to) + -+ + iu(to). (6.27)

Capacitors connected in series can be reduced to a single equivalent
capacitor. The reciprocal of the equivalent capacitance is equal to the sum
of the reciprocals of the individual capacitances. If each capacitor carries
its own initial voltage, the initial voltage on the equivalent capacitor is the
algebraic sum of the initial voltages on the individual capacitors. Figure 6.17
and the following equations summarize these observations:

IS D oo
Ceq CI CZ Cn’ .
v(te) = vi(tg) + vate) + -+ + vu(to). (6.29)

We leave the derivation of the equivalent circuit for series-connected
capacitors as an exercise. (See Problem 6.32.)

The equivalent capacitance of capacitors connected in parallel is sim-
ply the sum of the capacitances of the individual capacitors, as Fig. 6.18
and the following equation show:

Coqq=C+C+ -+ +C, (6.30)

Capacitors connected in parallel must carry the same voltage. Therefore, if
there is an initial voltage across the original parallel capacitors, this same
initial voltage appears across the equivalent capacitance C.,. The deriva-
tion of the equivalent circuit for parallel capacitors is left as an exercise.
(See Problem 6.33.)

We say more about series-parallel equivalent circuits of inductors and
capacitors in Chapter 7, where we interpret results based on their use.



—
-+ ]
i +
C, =< (1)
- !
—
*
+
+ +
v Cy =2 (t) v Coq =~ v ()
- |
+
1 _ 1,1, ;1
(J:’Un () Cq G + G toet C,
-— v(to) = vi(ty) + valty) + - + v,(8)
(a) (b)

Figure 6.17 A An equivalent circuit for capacitors connected in
series. (a) The series capacitors. (b) The equivalent circuit.

' ASSESSMENT PROBLEMS

Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equivalent inductor

6.4

NOTE:

6.4

The initial values of i; and i, in the circuit
shown are + 3 A and —5 A, respectively. The
voltage at the terminals of the parallel induc-
tors for t = 0is —30e™> mV.

a) If the parallel inductors are replaced by a
single inductor, what is its inductance?

b) What is the initial current and its reference
direction in the equivalent inductor?

c) Use the equivalent inductor to find i(t).

d) Find i;(¢) and i(¢). Verify that the solutions
for iy(2), iy(1), and i(¢) satisfy Kirchhoff’s
current law.

)

+e

(0,360 mH (1)} 3240 mH

<

Mutual Inductance

6

v ~Ceq

.4 Mutual Inductance

189

ch = Cl + C'YZ +oet Cn

(b)

Figure 6.18 A An equivalent circuit for capacitors connected in
parallel. {a) Capacitors in parallel. (b) The equivalent circuit.

9A,t =0,

i»(t) = 0.025¢™> — 5.025 A, t = 0.

Answer: (a) 48 mH;
(b) 2A, up;
(c) 0.125¢™™ — 2.125 At = 0;
(d) iy(r) = 0.1 + 2

6.5 The current at the termin

Answer:

Also try Chapter Problems 6.21, 6.25, 6.26, and 6.31.

tors shown is 240¢™ " u A

als of the two capaci-
for t = 0. The initial

values of v; and v, are —10 Vand =5V,
respectively. Calculate the total energy trapped
in the capacitors as ¢ — co. (Hint: Don’t com-
bine the capacitors in series—find the energy

trapped in each, and then

[
-

e

2 uF

add.)

SuF ~u

o—

20 pd.

The magnetic field we considered in our study of inductors in Section 6.1
was restricted to a single circuit. We said that inductance is the parameter
that relates a voltage to a time-varying current in the same circuit; thus,

inductance is more precisely referred to as self-inductance.

We now consider the situation in which two circuits are linked by a
magnetic field. In this case, the voltage induced in the second circuit can
be related to the time-varying current in the first circuit by a parameter
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R
s ML
v‘g. L, R,

Figure 6.19 A Two magnetically coupled coils.

I)g C

Figure 6.20 A Coil currents i, and i, used to describe
the circuit shown in Fig. 6.19.

Figure 6.21 A The circuit of Fig. 6.20 with dots added
to the coils indicating the polarity of the mutually
induced voltages.

Dot convention for mutually coupled coils »

Dot convention for mutually coupled coils
(alternate) »

known as mutual inductance. The circuit shown in Fig. 6.19 represents two
magnetically coupled coils. The self-inductances of the two coils arc
labeled L; and L,. and the mutual inductance is labeled M. The double-
headed arrow adjacent to M indicates the pair of coils with this value of
mutual inductance. This notation is needed particularly in circuits contain-
ing more than onc pair of magnetically coupled coils.

The easiest way to analyze circuits containing mutual inductance is
to use mesh currents. The problem is to write the circuit equations that
describe the circuit in terms of the coil currents. First, choose the refer-
ence dircction for each coil current. Figure 6.20 shows arbitrarily
sclected reference currents. After choosing the reference directions for
iy and 5, sum the voltages around each closed path. Because of the
mutual inductance M, there will be two voltages across each coil,
namely, a self-induced voltage and a mutually induced voltage. The self-
induced voltage is the product of the self-inductance of the coil and the
first derivative of the current in that coil. The mutually induced voltage
is the product of the mutual inductance of the coils and the first deriva-
tive of the current in the other coil. Consider the coil on the left in
Fig. 6.20 whose seclf-inductance has the value L,. The self-induced
voltage across this coil is L(di;/dt) and the mutually induced voltage
across this coil is M(di,/dt). But what about the polarities of these
two voltages?

Using the passive sign convention, the seif-induced voltage is a voltage
drop in the direction of the current producing the voltage. But the polarity
of the mutually induced voltage depends on the way the coils are wound in
relation to the reference direction of coil currents. In general, showing the
details of mutually coupled windings is very cumbersome. Instead, we keep
track of the polarities by a method known as the dot convention, in which a
dot is placed on one terminal of cach winding, as shown in Fig. 6.21. These
dots carry the sign information and allow us to draw the coils schematically
rather than showing how they wrap around a core structure.

The rule for using the dot convention to determine the polarity of
mutually induced voltage can be summarized as follows:

When the reference direction for a current enters the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is positive at its dotted terminal.

Or, stated alternatively,

When the reference direction for a current leaves the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is negative at its dotted terminal.

For the most part, dot markings will be provided for you in the circuit
diagrams in this text. The important skill is to be able to write the appro-
priate circuit equations given your understanding of mutual inductance
and the dot convention. Figuring out where to place the polarity dots if
they are not given may be possible by examining the physical configura-
tion of an actual circuit or by testing it in the laboratory. We will discuss
these procedures after we discuss the use of dot markings.

In Fig. 6.21, the dot convention rule indicates that the reference polar-
ity for the voltage induced in coil 1 by the current i, is negative at the dot-
ted terminal of coil 1. This voltage (Mdi,/dr) is a voltage rise with respect
to /;. The voltage induced in coil 2 by the current /; is Mdi;/d¢, and its ref-
erence polarity is positive at the dotted terminal of coil 2. This voltage is a
voltage rise in the direction of /. Figure 6.22 shows the self- and mutually
induced voltages across coils 1 and 2 along with their polarity marks.



Figure 6.22 A The self- and mutually induced voltages appearing
across the coils shown in Fig. 6.21.

Now let’s look at the sum of the voltages around each closed loop. In
Egs. 6.31 and 6.32, voltage rises in the reference direction of a current
are negative:

, diy di,

— + LRy + LIE — !Wd—[ =0, (6.31)
d[": (“1

[ o} — - M—=0. 6.32

bR+ Ly dt dt (6.32)

The Procedure for Determining Dot Markings

We shift now to two methods of determining dot markings. The first
assumes that we know the physical arrangement of the two coils and the
mode of each winding in a magnetically coupled circuit. The following six
steps, applied here to Fig. 6.23, determine a set of dot markings:

a) Arbitrarily select one terminal—say, the D terminal—of one coil and
mark it with a dot.

b) Assign a current into the dotted terminal and label it ip.

¢) Use the right-hand rule' to determine the direction of the magnetic
field established by ip, inside the coupled coils and label this field ¢.

d) Arbitrarily pick one terminal of the second coil —say, terminal A —and
assign a current into this terminal, showing the current as i4.

¢) Use the right-hand rule to determine the direction of the flux estab-
lished by /4 inside the coupled coils and label this flux ¢,.

f) Compare the directions of the two fluxes ¢p and ¢,. If the fluxes
have the same reference direction, place a dot on the terminal of the
second coil where the test current (i) enters. (In Fig. 6.23, the fluxes
¢p and ¢, have the same reference direction, and therefore a dot
goes on terminal A.) If the fluxes have different reference direc-
tions, place a dot on the terminal of the second coil where the test
current leaves.

The relative polarities of magnetically coupled coils can also be deter-
mined experimentally. This capability is important because in some situations,
determining how the coils are wound on the core is impossible. One experi-
mental method is to connect a dc voltage source, a resistor, a switch, and a de
voltmeter to the pair of coils, as shown in Fig. 6.24. The shaded box covering
the coils implies that physical inspection of the coils is not possible. The resis-
tor R limits the magnitude of the current supplied by the dc voltage source.

The coil terminal connected to the positive terminal of the dc source
via the switch and limiting resistor receives a polarity mark. as shown in
Fig. 6.24. When the switch is closed, the voltmeter deflection is observed. If
the momentary deflection is upscale, the coil terminal connected to the
positive terminal of the voltmeter receives the polarity mark. If the

I See discussion of Faraday's law on page 193.
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) (step?)

- wo _  Arbitrarily
’7’\\1 dotted
V4 _— e' D terminal
B{ (Step- (Step 1)

Figure 6.23 A A set of coils showing a method for
determining a set of dot markings.

Switch ° +

== V dc
— &8 voltmeter

Figure 6.24 A An experimental setup for determining
polarity marks.
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deflection is downscale, the coil terminal connected to the negative termi-
nal of the voltmeter receives the polarity mark.

Example 6.6 shows how to use the dot markings to formulate a set of
circuit equations in a circuit containing magnetically coupled coils.

eyl XNl Finding Mesh-Current Equations for a Circuit with Magnetically Coupled Coils

a) Write a set of mesh-current equations that
describe the circuit in Fig. 6.25 in terms of the
currents iy and i,.

b) Verify that if there is no energy stored in the cir-
cuit at £ = 0 and if i, = 16 — 16¢™ A, the solu-
tions for i; and i, are

i =4 + 64 — 68e7 A,

ih=1-152+ 51" A,

e 4H
N
50 8H 200
, " VY
L4
SO I6H | i, 6003

Figure 6.25 A The circuit for Example 6.6.

Solution

a) Summing the voltages around the ; mesh yields

di d,. , . : ; ;
450+ 820y = i) + 200 — ) + S(iy = ig) = 0.

The i, mesh equation is

, di
20(i, — i) + 60i; + 16%(1‘2 —i,) — 8d_t1 =0.
Note that the voltage across the 4 H coil due to
the current (i, — i,), that is, 8d(i, — i,)/dt, is a
voltage drop in the direction of i;. The voltage
induced in the 16 H coil by the current i, that is,
8di/dt, is a voltage rise in the direction of i,.

b) To check the validity of /| and i,, we begin by
testing the initial and final values of i; and i,. We
know by hypothesis that i,(0) = i,(0) = 0, From
the given solutions we have

i(0) = 4 + 64 — 68 = 0,

i(0) =1 — 52+ 51 =0.

Now we observe that as ¢ approaches infinity the
source current (i,) approaches a constant value
of 16 A, and therefore the magnetically coupled
coils behave as short circuits. Hence at ¢t = o0
the circuit reduces to that shown in Fig. 6.26.
From Fig. 6.26 we see that at ¢t = 00 the three
resistors are in parallel across the 16 A source.
The equivalent resistance is 3.75 () and thus the
voltage across the 16 A current source is 60 V. It
follows that

. 60 60

W) =20 e T A
. 60

12(00) = 5 =1A.

These values agree with the final values pre-
dicted by the solutions for /; and i,.

Finally we check the solutions by seeing if
they satisfy the differential equations derived in
(a). We will leave this final check to the reader
via Problem 6.37.

)16 13600

Figure 6.26 A The circuit of Example 6.6 when t = 0.
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 ASSESSMENT PROBLEM

Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils

6.6 a) Write a set of mesh-current equations for Answer: (a) 4(di,/dt) + 25i; + 8(diy/dt) — 20i,
the circuit in Example 6.6 if the dot on the = —5i, — 8(diy/dt)
4 H inductor is at the right-hand terminal, and ‘
the reference direction of i, is reversed, and
the 60 () resistor is increased to 780 2. 8(diy/dt) — 20i; + 16(di,/dt) + 800i,
b) Verify that if there is no energy stored in the = —16(dig/dt);

circuitat¢ = 0,and if i, = 1.96 — 1.96e™ A,
the solutions to the differential equations
derived in (a) of this Assessment Problem are

i = —04 — 11.6e7* + 127 A,
—0.01 — 0.99¢™ + ™ A,

(b) verification.

Iy

NOTE: Also try Chapter Problem 6.39.

6.5 A Closer Look at Mutual Inductance

In order to fully explain the circuit parameter mutual inductance, and to
examine the limitations and assumptions made in the qualitative discussion
presented in Section 6.4, we begin with a more quantitative description of
self-inductance than was previously provided.

A Review of Self-Inductance

The concept of inductance can be traced to Michael Faraday, who did pio-
neering work in this area in the early 1800s. Faraday postulated that a
magnetic field consists of lines of force surrounding the current-carrying
conductor. Visualize these lines of force as energy-storing elastic bands
that close on themselves. As the current increases and decreases, the elas-
tic bands (that is, the lines of force) spread and collapse about the conduc-
tor. The voltage induced in the conductor is proportional to the number of
lines that collapse into, or cut, the conductor. This image of induced volt-
age is expressed by what is called Faraday’s law; that is,

v—d—A 6.33)
dr’ (6.

where A is referred to as the flux linkage and is measured in weber-turns. i
How do we get from Faraday’s law to the definition of inductance pre-
sented in Section 6.1? We can begin to draw this connection using Fig. 6.27
as areference.
The lines threading the N turns and labeled ¢ represent the magnetic 'N turns
lines of force that make up the magnetic field. The strength of the mag- |
netic field depends on the strength of the current, and the spatial orienta- v
tion of the field depends on the direction of the current. The right-hand  Figure 6.27 A Representation of a magnetic field link-
rule relates the orientation of the field to the direction of the current: ingan N-turn coil.
When the fingers of the right hand are wrapped around the coil so that the
fingers point in the direction of the current, the thumb points in the direc-
tion of that portion of the magnetic field inside the coil. The flux linkage is
the product of the magnetic field (¢), measured in webers (Wb), and the
number of turns linked by the field (N):

C
[
| b
A

A= N¢. (6.34)
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Figure 6.28 A Two magnetically coupled coils.

The magnitude of the flux, ¢, is related to the magnitude of the coil
current by the relationship

= PN, (6.35)

where N is the number of turns on the coil, and & is the permeance of the
space occupied by the flux. Permeance is a quantity that describes the
magnetic properties of this space, and as such, a detailed discussion of per-
meance is outside the scope of this text. Here, we need only observe that,
when the space containing the flux is made up of magnetic materials (such
as iron, nickel, and cobalt), the permeance varies with the flux, giving a
nonlinear relationship between ¢ and i. But when the space containing the
flux is comprised of nonmagnetic materials, the permeance is constant,
giving a linear relationship between ¢ and i. Note from Eq. 6.35 that the
flux is also proportional to the number of turns on the coil.

Here, we assume that the core material — the space containing the flux—
is nonmagnetic. Then, substituting Egs. 6.34 and 6.35 into Eq. 6.33 yields

_dA _ d(N$)
Cdr dt

do d .
h th B th(.fPNz)

1i di
= NP = & 6.36
dt dt ( )

which shows that self-inductance is proportional to the square of the num-
ber of turns on the coil. We make use of this observation later.

The polarity of the induced voltage in the circuit in Fig. 6.27 reflects the
reaction of the field to the current creating the field. For example, when i is
increasing, di/dt is positive and v is positive. Thus energy is required to
establish the magnetic field. The product vi gives the rate at which energy is
stored in the field. When the field collapses, di/dt is negative, and again the
polarity of the induced voltage is in opposition to the change. As the field
collapses about the coil, energy is returned to the circuit.

Keeping in mind this further insight into the concept of self-inductance,
we now turn back to mutual inductance.

The Concept of Mutual Inductance

Figure 6.28 shows two magnetically coupled coils. You should verify that
the dot markings on the two coils agree with the direction of the coil wind-
ings and currents shown. The number of turns on each coil are Ny and N,,
respectively. Coil 1 is energized by a time-varying current source that
establishes the current i; in the N, turns. Coil 2 is not energized and is
open. The coils are wound on a nonmagnetic core. The flux produced by
the current #; can be divided into two components, labeled ¢;; and ¢;,.
The flux component ¢y, is the flux produced by i, that links only the N,
turns. The component ¢, is the flux produced by i that links the N, turns
and the N, turns. The first digit in the subscript to the flux gives the coil
number, and the second digit refers to the coil current. Thus ¢, is a flux
linking coil 1 and produced by a current in coil 1, whereas ¢, is a flux link-
ing coil 2 and produced by a current in coil 1.



The total flux linking coil 1 is ¢, the sum of ¢; and ¢,;:

b1 =1 + by (6.37)

The flux ¢, and its components ¢y, and ¢, are related to the coil current
i1 as follows:

(1)1 = gP[Nlil, (6.38)
é11 = PuNiiy, (6.39)
a1 = Py Ny, (6.40)

where P, is the permeance of the space occupied by the flux ¢y, &y, is the
permeance of the space occupied by the flux ¢y, and %, is the permeance
of the space occupied by the flux ¢,;. Substituting Egs. 6.38, 6.39, and 6.40
into Eq. 6.37 yields the relationship between the permeance of the space
occupied by the total flux ¢; and the permeances of the spaces occupied
by its components ¢ and ¢,;:

P = 97)11 + @21. (6.41)
We use Faraday’s law to derive expressions for v; and v-:

dA d(N¢ i
a _ AN Ny (i + do)

7
= N}(® +gp)d1=N2@‘ﬁ=Ldi (6.42)
711 21 Jdt 1t ldt 1(1[ . .
and
dr,  d(Naday) d ; .
= = = _ ='°"7 = ”— 5 N
V2= dt Na g (PuNiiy)
i
= Nle%,(—_l—'. (6.43)
dr

The coefficient of di;/dt in Eq. 6.42 is the self-inductance of coil 1. The
coefficient of di;/dt in Eq. 6.43 is the mutual inductance between coils
1 and 2. Thus

MQ] = NZngPZI' (6.44)

The subscript on M specifies an inductance that relates the voltage induced
in coil 2 to the current in coil 1.
The coefficient of mutual inductance gives

di,

vy = vt
2 21 At

(6.45)

Note that the dot convention is used to assign the polarity reference to v,
in Fig. 6.28.

For the coupled coils in Fig. 6.28, exciting coil 2 from a time-varying cur-
rent source (i) and leaving coil 1 open produces the circuit arrangement

6.5

A Closer Look at Mutual Inductance
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Figure 6.29 A The magnetically coupled coils of
Fig. 6.28, with coil 2 excited and coil 1 open.

shown in Fig. 6.29. Again, the polarity reference assigned to v, is based on
the dot convention.
The total flux linking coil 2 is

b = b + dpa (6.46)

The flux ¢, and its components ¢», and ¢, are related to the coil current
i as follows:

(/)2 = g’gNziz, (647)
b0 = PN, (6.48)
b12 = P1aNaiy. (6.49)
The voltages v; and v are
_dyy, L diy  dip

V=g T N = Ly (6.50)

_dh d _ diy
v T dt(N1¢12) = NiN;P e (6.51)

The coefficient of mutual inductance that relates the voltage induced in coil
1 to the time-varying current in coil 2 is the coefficient of di,/dt in Eq. 6.51:

M]g = N]Nzgpn. (6.52)

For nonmagnetic materials, the permeances %, and P, are equal,
and therefore

MlZ = M2| =M. (6.53)

Hence for linear circuits with just two magnetically coupled coils, attach-
ing subscripts to the coefficient of mutual inductance is not necessary.

Mutual Inductance in Terms of Self-Inductance

The value of mutual inductance is a function of the self-inductances. We
derive this relationship as follows. From Eqs. 6.42 and 6.50,

L= NiPy, (6.54)
L, = N3P, (6.55)

respectively. From Egs. 6.54 and 6.55,
L,L, = NIN3PP,. (6.56)


file:///j2/rZc

6.5

We now use Eq. 6.41 and the corresponding expression for %, to write
LiLy = NIN3(®Py, + P0) (P + Ppa). (6.57)

But for a linear system, %,; = Py;, so Eq. 6.57 becomes

P P
- g1+ 20\ + 22
L\L, = (N\N,21,) ( 1 @12)(1 7.

- \j)

2 a11 22

— 2 . .
=M (1 + @12) (l + 9 ]2> (6 58)

Replacing the two terms involving permeances by a single constant
expresses Eq. 6.58 in a more meaningful form:

1 P P
=+ 2 4 22). 6.59
K ( 9’12> ( 9’12> (6:59)

Substituting Eq. 6.59 into Eq. 6.58 yields

M? = k*L,L,
or
M= kVLL,, (6.60) <« Relating self-inductances and mutual

A Closer Look at Mutual Inductance

inductance using coupling coefficient

where the constant & is called the coefficient of coupling. According to
Eq.6.59, 1/k* must be greater than 1, which means that k must be less than 1.
In fact, the coefficient of coupling must lie between 0 and 1, or

O0=k=1 (6.61)

The coefficient of coupling is 0 when the two coils have no common
flux; that is, when ¢, = ¢,; = 0. This condition implies that %, = 0, and
Eq. 6.59 indicates that 1/k* = oo, or k = 0. If there is no flux linkage
between the coils, obviously M is 0.

The coefficient of coupling is equal to 1 when ¢, and ¢,; are 0. This
condition implies that all the flux that links coil 1 also links coil 2. In terms
of Eq. 6.59, #;; = P,; = 0, which obviously represents an ideal state; in
reality, winding two coils so that they share precisely the same flux is phys-
ically impossible. Magnetic materials (such as alloys of iron, cobalt, and
nickel) create a space with high permeance and are used to establish coef-
ficients of coupling that approach unity. (We say more about this impor-
tant quality of magnetic materials in Chapter 9.)

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.48 and 6.49.

Energy Calculations

We conclude our first look at mutual inductance with a discussion of the
total energy stored in magnetically coupled coils. In doing so, we will
confirm two observations made earlier: For linear magnetic coupling,
(MO)Mp =My =M,and(2) M = kVL,L,,where0 = k =< 1.

197
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I L] Lz b

Figure 6.30 A The circuit used to derive the basic
energy relationships.

We use the circuit shown in Fig. 6.30 to derive the expression for the
total energy stored in the magnetic fields associated with a pair of linearly
coupled coils. We begin by assuming that the currents i; and i, are zero
and that this zero-current state corresponds to zero energy stored in the
coils. Then we let /| increase from zero to some arbitrary value I, and com-
pute the energy stored when i, = J|. Because i, = 0, the total power
input into the pair of coils is vy/;, and the energy stored is

‘V[ /]
/ dw = L,/ idiy,
0 Jo

1

W1=5

L.13. (6.62)

Now we hold i, constant at /; and increase /, from zero to some arbitrary
value 7I». During this time interval, the voltage induced in coil 2 by i; is
zero because [, is constant. The voltage induced in coil 1 by i is M»diy/dt.
Therefore, the power input to the pair of coils is

di
P = IlM]z_Z + ig'b'z.
di

The total energy stored in the pair of coils when i, = 7, is

W o1 s
/ dw / [lMIZdiZ + / inz(liz,
Jw, Jo Jo

or

1

W = WI + IIIZMIZ + ELZI%‘

1 1
= ELII% + ELZI% + ]]]2M12. (6.63)

If we reverse the procedure—that is, if we first increase i, from zero to /,
and then increase | from zero to /|, —the total energy stored is

1 5
= L7} +

1

2LZI§ + I11,My,. (6.64)

Equations 6.63 and 6.64 express the total energy stored in a pair of lin-
early coupled coils as a function of the coil currents, the self-inductances,
and the mutual inductance. Note that the only difference between these
equations is the coefficient of the current product /,/,. We use Eq. 6.63 if
i; is established first and Eq. 6.64 if i, is established first.

When the coupling medium is linear, the total energy stored is the
same regardless of the order used to establish /; and /,. The reason is that



in a linear coupling, the resultant magnetic flux depends only on the final
values of {; and i, not on how the currents reached their final values. If the
resultant flux is the same, the stored energy is the same. Therefore, for lin-
ear coupling, M, = M,,. Also, because /; and I, are arbitrary values of i,
and i, respectively, we represent the coil currents by their instantaneous
values /; and i,. Thus, at any instant of time, the total energy stored in the
coupled cotls is

1 2 ..
’lU(f) = ELll% + Lzl'z' + Ml]lz. (665)

We derived Eq. 6.65 by assuming that both coil currents entered
polarity-marked terminals. We leave it to you to verify that, if one current
enters a polarity-marked terminal while the other leaves such a terminal,
the algebraic sign of the term Miyi, reverses. Thus, in general,

1 1
w(t) = ELli% + Ein% + Miji,. (6.66)

We use Eq. 6.66 to show that M cannot exceed V' L,L,. The magneti-
cally coupled coils are passive clements, so the total energy stored can
never be negative. If w(t) can never be negative, Eq. 6.66 indicates that the
quantity

1., ) ..
ELIII + Lzl‘j - Ml|12

must be greater than or equal to zero when {, and i, are either both posi-
tive or both negative. The limiting value of M corresponds to setting the
quantity equal to zero:

1, 1 . .
ELII% + ELzl% - Ml]lz = 0. (667)

To find the limiting value of M we add and subtract the term
i1, V'L L, to the left-hand side of Eq. 6.67. Doing so generates a term that
is a perfect square:

Ll. LZ. 2 ‘s
. "2_11 - 712 + 1315 VLng - Mi=0. (6.68)

The squared term in Eq. 6.68 can never be negative, but it can be zero.
Therefore w(t) = 0 only if

VL,L, = M, (6.69)
which is another way of saying that

M’:k\/L|L2 (05,(51)

We derived Eq. 6.69 by assuming that i; and i, are either both positive or
both negative. However, we get the same result if /; and i; are of opposite

6.5 A Closer Look at Mutual Inductance

<« Energy stored in magnetically-coupled
coils
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sign, because in this case we obtain the limiting value of M by selecting the
plus sign in Eq. 6.66.

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.44 and 6.45.

Practical Perspective

Proximity Switches

At the beginning of this chapter we introduced the capacitive proximity
switch. There are two forms of this switch. The one used in table lamps
is based on a single-electrode switch. It is left to your investigation in
Problem 6.52. In the example here, we consider the two-electrode switch
used in elevator call buttons.

EXAMPLE

The elevator call button is a small cup into which the finger is inserted,
as shown in Fig. 6.31. The cup is made of a metal ring electrode and a
circular plate electrode that are insulated from each other, Sometimes
two concentric rings embedded in insulating plastic are used instead. The
electrodes are covered with an insulating layer to prevent direct contact
with the metal. The resulting device can be modeled as a capacitor, as
shown in Fig. 6.32.

G

ool Lirly

Figure 6.32 A A capacitor model of the two-electrode

Figure 6.31 A An elevator call button. (a) Front view. (b) Side view. proximity switch used in elevator call buttons,
G
I/ Unlike most capacitors, the capacitive proximity switch permits you to
I insert an object, such as a finger, between the electrodes. Because your fin-
G G ger is much more conductive than the insulating covering surrounding the
H»—|(—I—{ (oo electrodes, the circuit responds as though another electrode, connected to
ground, has been added. The result is a three-terminal circuit containing

three capacitors, as shown in Fig. 6.33.
Figure 6.33 A A circuit model of a capacitive The actual values of the capacitors in Figs. 6.32 and 6.33 are in the
proximity switch activated by finger touch. range of 10 to 50 pF, depending on the exact geometry of the switch, how



the finger is inserted, whether the person is wearing gloves, and so forth.
For the following problems, assume that all capacitors have the same value
of 25 pF. Also assume the elevator call button is placed in the capacitive
equivalent of a voltage-divider circuit, as shown in Fig. 6.34.

a) Calculate the output voltage with no finger present.
b) Calculate the output voltage when a finger touches the button.

Solution

a) Begin by redrawing the circuit in Fig. 6.34 with the call button replaced
by its capacitive model from Fig. 6.32. The resulting circuit is shown in
Fig. 6.35. Write the current equation at the single node:

A =v) o, . (6.70)

G dt

Rearrange this equation to produce a differential equation for the output
voltage v(?):

dv C1 ﬂ

—_— = . 6.71
dt  C; + C, dt (6.71)
Finally, integrate Eq. 6.71 to find the output voltage:
G
o(t) = - CZUS(t) + v(0). (6.72)

The result in Eq. 6.72 shows that the series capacitor circuit in Fig. 6.35
forms a voltage divider just as the series resistor circuit did in Chapter 3.
In both voltage-divider circuits, the output voltage does not depend on
the component values but only on their ratio. Here, C; = C, = 25 pF,
so the capacitor ratio is Cy/C, = 1. Thus the output voltage is

v(t) = 0.5v,(t) + v(0). (6.73)

The constant term in Eq. 6.73 is due to the initial charge on the capacitor.
We can assume that v(0) = 0V, because the circuit that senses the out-
put voltage eliminates the effect of the initial capacitor charge. Therefore,
the sensed output voltage is

v(t) = 0.5v,(¢). (6.74)
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Button

+
ot (") Fixed

capacitor

v

Figure 6.34 A An elevator call button circuit.

Button — C

v,(1) Fixed *
1xed, G o)
capacitor

Figure 6.35 A A model of the elevator call button
circuit with no finger present.
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b) Now we replace the call button of Fig. 6.34 with the model of the acti-
vated switch in Fig. 6.33. The result is shown in Fig. 6.36. Again, we cal-
culate the currents leaving the output node:

+ CZE + C3— =0. (6.75)

Rearranging to write a differential equation for v(¢) results in

dv Cq dv,
e (6.76)
dt Ci+Cy+ Cyodt
Finally, solving the differential equation in Eq. 6.76, we see
u(t) = —Cl———v () + v(0) 6.77
Ci+C+C3° ) (6.77)
I‘FCI = C2 = C3 = 25pF,
v(t) = 0.333v,(r) + v(0). (6.78)

As before, the sensing circuit eliminates v(0), so the sensed output
voltage is

v(t) = 0.333v,(¢). (6.79)

Comparing Eqs. 6.74 and 6.79, we see that when the button is pushed,
the output is one third of the input voltage. When the button is not
pushed, the output voltage is one half of the input voltage. Any drop in
output voltage is detected by the elevator’s control computer and ulti-
mately results in the elevator arriving at the appropriate floor.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 6.51 and 6.53.

o Button
C; G
w® H
C (1)

Fixed
capacitor

Figure 6.36 A A model of the elevator call button circuit when
activated by finger touch.



Summary

Inductance is a linear circuit parameter that relates the
voltage induced by a time-varying magnetic field to the
current producing the field. (See page 176.)

Capacitance is a linear circuit parameter that relates the
current induced by a time-varying electric field to the
voltage producing the field. (See page 182.)

Inductors and capacitors are passive elements; they can
store and release energy, but they cannot generate or
dissipate energy. (Sec page 176.)

The instantaneous power at the terminals of an inductor
or capacitor can be positive or negative, depending on
whether energy is being delivered to or extracted from
the element.

An inductor:

+ does not permit an instantaneous change in its termi-
nal current

- does permit an instantaneous change in its teminal
voltage

+ behaves as a short circuit in the presence of a constant
terminal current (See page 188.)

A capacitor:

+ does not permit an instantaneous change in its termi-
nal voltage

+ does permit an instantaneous change in its terminal
current

+ behaves as an open circuit in the presence of a con-
stant terminal voltage (See page 183.)

Equations for voltage, current, power, and energy in
ideal inductors and capacitors are given in Table 6.1.

Inductors in series or in parallel can be replaced by an
cquivalent inductor. Capacitors in series or in parallel
can be replaced by an equivalent capacitor. The equa-
tions are summarized in Table 6.2. See Section 6.3 for a
discussion on how to handle the initial conditions for
series and parallel equivalent circuits involving induc-
tors and capacitors.

Summary

TABLE 6.1 Terminal Equations for Ideal Inductors
and Capacitors

Inductors
v=LY% V)
o
i= ,l/ vdr + i(ty) (A)
o
p == L'% (W)
w = _,%LiZ @)
Capacitors
ol
v=¢ / idr + v(ty) (V)
Sty
i=Cq A)
p=vi= Cv% W)
w = 3Cv* ()

TABLE 6.2 Equations for Series- and Parallel-Connected
Inductors and Capacitors

Series-Connected
ch = LI + L.2+ e

IS I B
=EtE T +

Parallel-Connected

L1 41 . 1
ch - l-l + I-Z + + Ln

Coq=Ci+Cot
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Mutual inductance, A, is the circuit parameter relating
the voltage induced in one circuit to a time-varying cur-

rent in another circuit. Specifically,

. dil dlz

v = L]E 127
diy di

vy = lez + 25
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where ») and {; are the voltage and current in circuit 1,
and v, and i, are the voltage and current in circuit 2. For
coils wound on nonmagnetic cores, M, = My = M
(See page 190.)

The dot convention establishes the polarity of mutually
induced voltages:

When the reference direction for a current enters
the dotted terminal of a coil, the reference polar-
ity of the voltage that it induces in the other coil
is positive at its dotted terminal.

Or, alternatively,

When the reference direction for a current leaves
the dotted terminal of a coil, the reference polar-
ity of the voltage that it induces in the other coil
is negative at its dotted terminal.

(See page 190.)

The relationship between the self-inductance of each
winding and the mutual inductance between windings is

M = k VL1L2.

The coefficient of coupling, &, is a measure of the degree
of magnetic coupling. By definition, 0 < k = 1. (See
page 197.)

The energy stored in magnetically coupled coils in a lin-
car medium is related to the coil currents and induc-
tances by the relationship

1., 1 . .
w = ELIx% + ELZZ% + Miji,.

(See page 199.)

Problems

Section 6.1 6.3 The voltage at the terminals of the 200 xH inductor

6.1 The current in the 2.5 mH inductor in Fig. P6.1 is MZS:::M 111111*;1g. Ffig(lfrzgirsnhto:véleuzl l:f.f(f)’6}3(<b)(.)The inductor
known to be 1 A for t < 0. The inductor voltage for curren ] © re==
¢ = (is given by the expression a) Derive the expressions for i for r = 0.

v (t) = U mV, 0t <f=2s b) Sketchiversustfor0 = ¢t = o,

v(t) = -3¢ mV, 2s=r< Figure P6.3
Sketch v, (¢t) and i, (¢) for 0 < t < 0. i s (mV)
Figure P6.1 5
ir(t) Vs O 200 uH
0 2 t(ms)
(") 2.5mH (a) (b)

6.4 The triangular current pulse shown in Fig. P6.4 is

rsrice  applied to a 20 mH inductor.
MULTISIM
a) Write the expressions that describe i(¢) in

the four intervals <0, 0<¢=<35 ms,
Sms <t < 10ms,and ¢ > 10 ms.

b) Derive the expressions for the inductor volt-
age, power, and energy. Use the passive sign

6.2 The current in a 50 #H inductor is known to be

PSPICE . N
MULTISIM ip = 18¢e 0 A for r = 0.

a) Find the voltage across the inductor for ¢ > 0.
(Assume the passive sign convention.)

b) Find the power (in microwatts) at the terminals

. convention.
of the inductor when ¢ = 200 ms.
c) Is the inductor absorbing or delivering power at Figure P6.4
200 ms? i (mA)
d) Find the energy (in microjoules) stored in the 250
inductor at 200 ms.
e) Find the maximum energy (in microjoules)
stored in the inductor and the time (in milli- I
seconds) when it occurs. 0 5 10 t (ms)
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The current in and the voltage across a 5 H inductor
are known to be zero for ¢ = 0. The voltage across
the inductor is given by the graph in Fig. P6.5
fort = 0.

a) Derive the expression for the current as a
function of time in the intervals 0 <t < Is,
s =t =383s=t=<35s,5s=t=6s,and
6s =t < 0.

b) For ¢t > 0, what is the current in the inductor
when the voltage is zero?

c) Sketchiversussfor(Q < ¢ < oo.

Figure P6.5

v (V)

—100

6.6

6.7

6.8

PSPICE
MULTISIM

6.9

PSPICE
MULTISIM

The current in a 20 mH inductor is known to be

i =40mA, t =0,

i = A]e~l().()()()l + Aze_4()'000'A, t=0.

The voltage across the inductor (passive sign con-
vention) is 28V at ¢ = 0.

a) Find the expression for the voltage across the
inductor for t > 0.

b) Find the time, greater than zero, when the power
at the terminals of the inductor is zero.

Assume in Problem 6.6 that the value of the voltage

across the inductor at t = 0is —68 V instead of 28 V.

a) Find the numerical expressions for i and » for
t=0.

b) Specify the time intervals when the inductor is

storing energy and the time intervals when the
inductor is delivering energy.

c) Show that the total energy extracted from the
inductor is equal to the total energy stored.

The current in a 25 mH inductor is known to be

—10 A for ¢ = 0 and —(10 cos 400t — 5 sin 400¢)e 2" A

for t = 0. Assume the passive sign convention.

a) At what instant of time is the voltage across the
inductor maximum?

b) What is the maximum voltage?
a) Find the inductor current in the circuit in

Fig. P69 if v = —50sin250¢V,L = 20 mH,
and i(0) = 10 A.

t(s)

6.10

6.11

6.12

6.13

Problems 205

b) Sketch v, i, p, and w versus t. In making these
sketches, use the format used in Fig. 6.8. Plot over
one complete cycle of the voltage waveform.

Describe the subintervals in the time interval
between 0 and 87 ms when power is being
absorbed by the inductor. Repeat for the
subintervals when power is being delivered by
the inductor.

c)

Figure P6.9

The current in a 4 H inductor is

i=10A4, =0

i = (B;cos4t+ Bysind)e™ A, t=0.

The voltage across the inductor (passive sign con-
vention) is 60 V at ¢t = 0. Calculate the power at the
terminals of the inductor at ¢t = 1s. State whether
the inductor is absorbing or delivering power.

Evaluate the integral

/ pdt
Jo

for Example 6.2. Comment on the significance of
the result.

The expressions for voltage, power, and energy
derived in Example 6.5 involved both integration
and manipulation of algebraic expressions. As an
engineer, you cannot accept such results on faith
alone. That is, you should develop the habit of ask-
ing yourself, “Do these results make sense in terms
of the known behavior of the circuit they purport to
describe?” With these thoughts in mind, test the
expressions of Example 6.5 by performing the fol-
lowing checks:

a) Check the expressions to see whether the volt-
age is continuous in passing from one time inter-
val to the next.

b) Check the power expression in each interval
by selecting a time within the interval and see-
ing whether it gives the same result as the cor-
responding product of » and i. For example,
test at 10 and 30 us.

Check the energy expression within each interval
by selecting a time within the interval and seeing
whether the energy equation gives the same
result as 5 Cv°. Use 10 and 30 us as test points.

Initially there was no energy stored in the 5 H
inductor in the circuit in Fig. P6.13 when it was
placed across the terminals of the voltmeter. At
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t = 0 the inductor was switched instantaneously to
position b where it remained for 1.6 s before returning

6.16 The rectangular-shaped current pulse shown in

PSPICE

Fig. P6.16 is applied to a 0.1 uF capacitor. The ini-

instantaneously to position a. The d’Arsonval volt- "™ tial voltage on the capacitor is a 15 V drop in the
meter has a full-scale reading of 20 V and a sensitivity reference direction of the current. Derive the
of 1000 Q2/V. What will the reading of the voltmeter expression for the capacitor voltage for the time
be at the instant the switch returns to position a if the intervals in (a)-(d).
inertia of the d’Arsonval movement is negligible? a) 0=t =10 pus;
Figure P6.13 b) 10 us < t = 20 us;
c) 0us =t =<40us
b d) d0us =t <0
¢) Sketch v(r) over the interval —10 us < r = 50 us.
3mV SH @ Voltmeter
Figure P6.16
- i (mA)
160 |—
Section 6.2
6.14 The current shown in Fig. P6.14 is applied to a 100~
esrice ()25 uF capacitor. The initial voltage on the capaci-
MBI tor is zero.
a) Find the charge on the capacitor at ¢ = 15 us. 0 10 2'0 3'0 10 t(ps)
b) Find the voltage on the capacitor at = 30 us. ~50
¢) How much energy is stored in the capacitor by
this current?
Figure P6.14
i (mA)
400~ 6.17 A 20 uF capacitor is subjected to a voltage pulse
: having a duration of 1 s. The pulse is described by
| the following cquations:
| l 1 | £ ()
0| 5 10 20 30 50
306V, 0=<t=05s;
—300-————- : v(t) = 30(t — 1°V, 05s=t=1s;
0 elsewhere.
Sketch the current pulse that exists in the capacitor
6.15 The initial voltage on the 0.5 uF capacitor shown in during the 1's interval
e Fig, P6.15(a) is —20 V. The capacitor current has 6.18 The voltage across the terminals of a 0.2 uF capaci-

MULTISIM

the waveform shown in Fig. P6.15(b).

a) How much energy, in microjoules, is stored in

PSPICE
MULTISIM

tor is

the capacitor at t = 500 us? _Jov, t=0;

b) Repeat (a) fort = 00 (Alte—ﬁll()(]t + Aze—S()()()t) V, t = 0.

Figure P6.15 i (mA)
50 50" mA =0

0.5 uF
0'—' g—* 25 —\\

—20V | | L1 |  (us)
* v - 0 100 200 300 400 500

l s

(a) (b)
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The initial current in the capacitor is 250 mA.
Assume the passive sign convention.

a) What is the initial energy stored in the capacitor?
b) Evaluate the coefficients A; and A,.
¢) What is the expression for the capacitor current?

The voltage at the terminals of the capacitor in
Fig. 6.10 is known to be

-20V,
100 — 40e72%%(3 c0s1000¢ + sin 1000¢) V

t =0
t = 0.
Assume C = 4 uF.

a) Find the current in the capacitor for r < 0.

b) Find the current in the capacitor for ¢t > 0.

¢) Is there an instantaneous change in the voltage
across the capacitor at t = 07

d) Is there an instantaneous change in the current
in the capacitor at t = 0?

e) How much energy (in millijoules) is stored in
the capacitor at t = 00?

Section 6.3

6.20

PSPICE
MULTISIM

6.21

6.22

Assume that the initial energy stored in the induc-
tors of Fig. P6.20 is zero. Find the equivalent induc-
tance with respect to the terminals a,b.

Figure P6.20

SH 14 H
ne—— Yy Py Y °
60 H 30 HS20 H
b 10 H S§H

Assume that the initial energy stored in the induc-
tors of Fig. P6.21 is zero. Find the equivalent induc-
tance with respect to the terminals a,b.

Figure P6.21

Use realistic inductor values from Appendix H to con-
struct series and parallel combinations of inductors to
yield the equivalent inductances specified below. Try
to minimize the number of inductors used. Assume
that no initial energy is stored in any of the inductors.

a) 3mH
b) 250 uH
c) 60 uH

6.23

PSPICE
MULTISIM

6.24

6.25
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The three inductors in the circuit in Fig. P6.23 are con-
nected across the terminals of a black box at ¢ = 0.
The resulting voltage for + > 0 is known to be

v, = 2000710 v,

Ifi,(0) = —6 A and i,(0) = 1 A, find
a) i,(0);
b) i,(t),t = 0;

¢) (1), t =0

d) ir(t),t = 0:

e) the initial energy stored in the three inductors;
f) the total energy delivered to the black box; and
g) the energy trapped in the ideal inductors.

Figure P6.23

Black
box

For the circuit shown in Fig. P6.23, how many milli-
seconds after the switch is opened is the energy
delivered to the black box 80% of the total energy
delivered?

The two parallel inductors in Fig. P6.25 are con-

nected across the terminals of a black box at ¢ = 0.

The resulting voltage v for + > 0 is known to be

64¢™¥ V. It is also known that i;(0) = —10 A and

i(0) =5 A.

a) Replace the original inductors with an equiva-
lent inductor and find i(¢) for ¢ = 0.

b) Find /i(¢) for ¢t = 0.

¢) Find i5(¢) fort = 0.

d) How much energy is delivered to the black box
in the time interval 0 < ¢ < 00?

e) How much energy was initially stored in the par-
allel inductors?

f) How much energy is trapped in the ideal inductors?

¢) Show that your solutions for i; and i, agree with
the answer obtained in (f).

Figure P6.25

)

.(I

Black
box

._.
2N
Z
=

o+




208

6.26

6.27

6.28

6.29

Inductance, Capacitance, and Mutual Inductance

Find the equivalent capacitance with respect to the
terminals a,b for the circuit shown in Fig. P6.26.

Figure P6.26

5 uF 30 uF
,._ll' . |
a \ |
+ 5V — + 10V —
3uF N
10 uF 16 uF =<20V
+
4 uF 48 uF /|\
{ |{
be—{ A
- 30V + - 0V +

Find the equivalent capacitance with respect to the
terminals a,b for the circuit shown in Fig. P6.27.

Figure P6.27
8 uF
i~
“wov’
16 uF , 15V
 e—— I/ I L
a \ I\

SuF

Use realistic capacitor values from Appendix H to
construct series and parallel combinations of capac-
itors to yield the equivalent capacitances specified
below. Try to minimize the number of capacitors
used. Assume that no initial energy is stored in any
of the capacitors.

a) 330 uF
b) 750 nF
c) 150 pF
The four capacitors in the circuit in Fig. P6.29 are con-

nected across the terminals of a black box at £ = 0.
The resulting current i, for t > 0 is known to be

ip= —5¢ " mA.

If  20)= -20V, wv(0)=-30V, and
v4(0) = 250 V, find the following for t = 0: (a) v,(¢),
(b) v(1). (€) v(¢), (d) v4(t), (€) i1(2), and (£) i(¥).

Figure P6.29

+ Uy - i/,
| ( e
L
SuE =9
1. ol
zooan'\T‘I vy i <800 nF ) Black
box
+
- .+ 3
Yi _
I\ *
1.25 uF

6‘30

6.31

6.32

6.33

For the circuit in Fig. P6.29, calculate

a) the initial energy stored in the capacitors;
b) the final energy stored in the capacitors;

c) the total energy delivered to the black box;

d) the percentage of the initial energy stored that is
delivered to the black box; and

e) the time, in milliseconds, it takes to deliver
7.5 mJ to the black box.

The two series-connected capacitors in Fig. P6.31
are connected to the terminals of a black box at
t = 0. The resulting current i(¢) for ¢ > 0 is known
to be 800e™ > wA.

a) Replace the original capacitors with an equiva-
lent capacitor and find v,(¢t) for t = 0.

b) Find v(¢) for¢t = 0.
c¢) Find vy(¢) fort = 0.

d) How much energy is delivered to the black box
in the time interval 0 < ¢ < c0?

e) How much energy was initially stored in the
series capacitors?

f) How much energyis trapped inthe ideal capacitors?
g) Show that the solutions for v; and v, agree with
the answer obtained in (f).

Figure P6.31

“
_ _ 1 -
t=20
SVZX2uF vy

* " » | Black

+ — v box
25VZI8uF 2

- + +

Derive the equivalent circuit for a series connection
of ideal capacitors. Assume that each capacitor has
its own initial voltage. Denote these initial voltages
as v;(ty), v2(¢y), and so on. (Hinr: Sum the voltages
across the string of capacitors, recognizing that the
series connection forces the current in each capaci-
tor to be the same.)

Derive the equivalent circuit for a parallel connec-
tion of ideal capacitors. Assume that the initial volt-
age across the paralleled capacitors is v(ty). (Hint:
Sum the currents into the string of capacitors, rec-
ognizing that the parallel connection forces the
voltage across each capacitor to be the same.)

Sections 6.1-6.3

6.34 The current in the circuit in Fig. P6.34 is known to be

i, = 5¢7™(2 cos 4000+ + sin 4000¢) A
for t = 0*. Find v;(07) and v,(0").



Figure P6.34

6.35 Att = (), a series-connected capacitor and induc-
tor are placed across the terminals of a black box,
as shown in Fig. P6.35. For ¢ > 0, it is known that

io — 1.56—]6’000’ _ 0.58—40()0' A.

If v.(0) = =50 V find v, for ¢t = 0.

Figure P6.35
25 mH )%_'
Y P
+ +
N r=0 Black
Ui~ 625 nF ty box
Section 6.4

6.36 a) Show that the differential equations derived in
(a) of Example 6.6 can be rearranged as follows:
di

8.
dt’

di] . dlz ) .
— + - 8— - = —
4 7 25 — 8 7 20, = 5i, — 8

Sdi 20§, + 16@ + 80i, = 16&
dar T g TR T
b) Show that the solutions for ij, and i, given in
(b) of Example 6.6 satisfy the differential
equations given in part (a) of this problem.

6.37 Let v, represent the voltage across the 16 H
inductor in the circuit in Fig. 6.25. Assume v, is
positive at the dot. As in Example 6.6,
ig = 16 — 16e™ A.

a) Can you find v, without having to differenti-
ate the expressions for the currents? Explain.

b) Derive the expression for v,,.
¢) Check your answer in (b) using the appropri-
ate current derivatives and inductances.

6.38 Let v, represent the voltage across the current
source in the circuit in Fig. 6.25. The reference for
v, is positive at the upper terminal of the current
source.

a) Find v, as a function of time when
ip =16 — 16e™ A.
b) What is the initial value of v,?

o 955 uF /> v:?lo mH

Problems 209

c) Find the expression for the power developed by
the current source.

d) How much power is the current source develop-
ing when ¢ is infinite?

e) Calculate the power dissipated in each resistor
when ¢ is infinite.

6.39 There is no energy stored in the circuit in Fig. P6.39
at the time the switch is opened.

a) Derive the differential equation that governs
the behavior of i, if Ly =4H, L, =16H,
M =2H,and R, = 32 ().

b) Show that when i, = 8 — 8¢ 'A, t = 0, the dif-
ferential equation derived in (a) is satisfied
wheni, = e — e At = 0.

¢) Find the expression for the voltage v, across the
current source.

d) What is the initial value of v;? Does this make
sense in terms of known circuit behavior?

Figure P6.39

t=20

6.40 a) Show that the two coupled coils in Fig. P6.40 can
be replaced by a single coil having an inductance
of Ly, =L, + L, + 2M. (Hint: Express v, as a
function of i,,.)
b) Show that if the connections to the terminals
of the «coil labeled L, are reversed,
Lab = Ll + L2 - 2M.

Figure P6.40

M

¥\ b
—rr e g
a‘L, I,

6.41 a) Show that the two magnetically coupled coils in
Fig. P6.41 (see page 210) can be replaced by a
single coil having an inductance of

L\L, — M?

L., = PR
L +L,-2M

(Hint: Let i; and i, be clockwise mesh currents in
the left and right “windows” of Fig. P6.41, respec-
tively. Sum the voltages around the two meshes.
In mesh 1 let vy, be the unspecified applied volt-
age. Solve for di;/dt as a function of v,;.)

b) Show that if the magnetic polarity of coil 2 is
reversed, then

L[, — M?

Ly =——%
L+ L+ 2M
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Figure P6.41

ae

L3=—-M--3L,

be *

The polarity markings on two coils are to be deter-
mined experimentally. The experimental setup is
shown in Fig. P6.42. Assume that the terminal con-
nected to the negative terminal of the battery has
been given a polarity mark as shown. When the
switch 1s operied, the dc voltmeter kicks upscale.
Where should the polarity mark be placed on the
coil connected to the voltmeter?

Figure P6.42

.+.

de
voltmeter

—
L

r‘«

The physical construction of four pairs of magneti-
cally coupled coils is shown in Fig. P6.43. (See
page 211.) Assume that the magnetic flux is confined
to the core material in each structure. Show two possi-
ble locations for the dot markings on each pair of coils.

Section 6.5

6.44

6.45

6.46

6.47

The self-inductances of the coils in Fig. 6.30 are
L, = 18 mH and L, = 32 mH. If the coefficient of
coupling is 0.85, calculate the energy stored in the
system in millijoules when (a) iy = 6 A, i, = 9 A;
(b)i; = —6A. i, = —9A:(c)i; = —6A, i, = 9A;
and (d)i; = 6 A, i = —9A.

The coefficient of coupling in Problem 6.44 is
increased to 1.0.

a) If i; equals 6 A, what value of i, results in zero
stored energy?

b) Is there any physically realizable value of i, that
can make the stored energy negative?

Two magnetically coupled coils have self-inductances
of 60 mH and 9.6 mH, respectively. The mutual induc-
tance between the coils is 22.8 mH.

a) What is the coefficient of coupling?

b) For these two coils, what is the largest value that
M can have?

c) Assume that the physical structure of these cou-
pled coils is such that ; = %,. What is the turns
ratio N /N, if N is the number of turns on the
60 mH coil?

The self-inductances of two magnetically coupled
coils are 72 mH and 40.5 mH, respectively. The 72 mH
coil has 250 turns, and the coefficient of coupling

6.48

6.49

between the coils is %. The coupling medium is non-
magnetic. When coil 1 is excited with coil
2 open, the flux linking only coil 1is 0.2 as large as the
flux linking coil 2.

a) How many turns does coil 2 have?

b) What is the value of %, in nanowebers per
ampere?

c) What is the value of Py, in nanowebers per
ampere?

d) What is the ratio (¢p/b13)?

Two magnetically coupled coils are wound on a
nonmagnetic core. The self-inductance of coil 1 is
288 mH, the mutual inductance is 90 mH, the coeffi-
cient of coupling is 0.75, and the physical structure
of the coils is such that P = Py,.

a) Find L, and the turns ratio N,/N,.
b) If N| = 1200, what is the value of | and %,?

The self-inductances of two magnetically coupled coils
arc L = 180 uH and L, = 500 uH. The coupling
medium is nonmagnetic. If coil 1 has 300 turns and
coil 2 has 500 turns, find %, and %,, (in nanowebers
per ampere) when the coefficient of coupling is 0.6.

6.50 a) Starting with Eq. 6.59, show that the coefficient

of coupling can also be expressed as

k=] @ @
d J\ #2 )
b) On the basis of the fractions ¢,1/¢; and @5/ P,
explain why & is less than 1.0.

Sections 6.1-6.5

6.51 Rework the Practical Perspective example, except

PRACTICAL
PERSPECTIVE

that this time, put the button on the bottom of the
divider circuit, as shown in Fig. P6.51. Calculate the
output voltage v(t) when a finger is present.

Figure P6.51
>
leed. =25 pF
capacitor
vy(1)
Button

6.52 Some lamps arc made to turn on or off when the

Sracrical base is touched. These use a one-terminal variation

of the capacitive switch circuit discussed in the
Practical Perspective. Figure P6.52 shows a circuit
model of such a lamp. Calculate the change in the
voltage v(¢) when a person touches the lamp.
Assume all capacitors are initially discharged.



Figure P6.43

6.53

PRACTICAL
PERSPECTIVE

Figure P6.52

10 pF Lamp Person 10pF
10 pF (1) 100 pF /4~

vs(l) *

v

In the Practical Perspective example, we calculated
the output voltage when the elevator button is the
upper capacitor in a voltage divider. In
Problem 6.51, we calculated the voltage when the
button is the bottom capacitor in the divider, and we
got the same result! You may wonder if this will be
true for all such voltage dividers. Calculate the volt-
age difference (finger versus no finger) for the cir-
cuits in Figs. P6.53 (a) and (b), which use two
identical voltage sources.

Problems 211

Figure P6.53

w0 ()
w0 ()

125PF Eixed

capacitor
25pF +

v(r) No finger

ButtonT
(a)

_25PF  Fixed
25pF 25pF capacitor
E 25pF +
Fi
w0 () BmmnT 0) Finger

(b)




Response of First-Order
RL and RC Circuits

In Chapter 6, we noted that an important attribute of inductors
and capacitors is their ability to store energy. We are now in a

P,

CONTENTS

CHAPTER

7.1 The Natural Response of an RL Circuit p. 214

7.2 The Natural Response of an RC Circuit p. 220
7.3 The Step Response of RL and energy is either released or acquired by an inductor or capacitor

RC Cireuits p. 224 in response to an abrupt change in a dc voltage or current source.

7.4 A General Solution for Step and Natural
Responses p. 231

7.5 Sequential Switching p. 236
7.6 Unbounded Response p. 240  tors. For brevity, such configurations are called RL (resistor-

position to determine the currents and voltages that arise when

In this chapter, we will focus on circuits that consist only of
sources, resistors, and either (but not both) inductors or capaci-

7.7 The Integrating Amplifier p. 241 ‘ inductor) and RC (resistor-capacitor) circuits.
Our analysis of RL and RC circuits will be divided into three

v/CHAPTER OBJECTIVES phases. In the first phase, we consider the currents and voltages

|
R e p— that arise when stored energy in an inductor or capacitor is sud-

both RL and RC circuits. . denly released to a resistive network. This happens when the

2 Be able to determine the step response of both inductor or capacitor is abruptly disconnected from its dc source.
RL and RC circuits.

3 Know how to analyze circuits with sequential o .
switching. shown in Fig. 7.1 on page 214. The currents and voltages that arise

Thus we can reduce the circuit to one of the two equivalent forms

4 Be able to analyze op amp circuits containing in this configuration are referred to as the natural response of the
resiSitanda sihgiapacion circuit, to emphasize that the nature of the circuit itself, not exter-
nal sources of excitation, determines its behavior.
In the second phase of our analysis, we consider the currents
and voltages that arise when energy is being acquired by an induc-
tor or capacitor due to the sudden application of a dc voltage or

. current source. This response is referred to as the step response.
. The process for finding both the natural and step responses is the
' same; thus, in the third phase of our analysis, we develop a general
method that can be used to find the response of RL and RC cir-
cuits to any abrupt change in a dc voltage or current source.
Figure 7.2 on page 214 shows the four possibilities for the gen-
eral configuration of RL and RC circuits. Note that when there

are no independent sources in the circuit, the Thévenin voltage or

Norton current is zero, and the circuit reduces to one of those
shown in Fig. 7.1; that is, we have a natural-response problem.

RL and RC circuits are also known as first-order circuits,
because their voltages and currents are described by first-order
differential equations. No matter how complex a circuit may

212



~ Practical Perspective

A Flashing Light Circuit
You can probably think of many different applications that
require a flashing light. A still camera used to take pictures in
low light conditions employs a bright flash of light to illumi-
nate the scene for just long enough to record the image on
film. Generally, the camera cannot take another picture until
the circuit that creates the flash of light has “re-charged.”
Other applications use flashing lights as warning for haz-
ards, such as tall antenna towers, construction sites, and
secure areas. In designing circuits to produce a flash of light
the engineer must know the requirements of the application.
For example, the design engineer has to know whether the
flash is controlled manually by operating a switch (as in the
case of a camera) or if the flash is to repeat itself automati-
cally at a predetermined rate. The engineer also has to know if
the flashing light is a permanent fixture (as on an antenna) or

a temporary installation (as at a construction site). Another
question that has to be answered is whether a power source is
readily available.

Many of the circuits that are used today to control flashing
lights are based on electronic circuits that are beyond the
scope of this text. Nevertheless we can get a feel for the
thought process involved in designing a flashing light circuit
by analyzing a circuit consisting of a dc voltage source, a resis-
tor, a capacitor, and a lamp that is designed to discharge a
flash of light at a critical voltage. Such a circuit is shown in the
figure. We shall discuss this circuit at the end of the chapter.

213
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ch | I() ? ch Ceq —_ V() Req

(a) (®)

Figure 7.1 A The two forms of the circuits for natural
response. (a) RL circuit. (b} RC circuit.

Ry
+
O 1
(a)
. . .
V [
Th
R Liv
Ry o
(b)

(d)
Figure 7.2 A Four possible first-order circuits.
{a) An inductor connected to a Thévenin equivalent.
(b) An inductor connected to a Norton equivalent.
(c) A capacitor connected to a Thévenin equivalent.
(d) A capacitor connected to a Norton equivalent.

Figure 7.4 A The circuit shown in Fig. 7.3, for / = 0.

appear, if it can be reduced to a Thévenin or Norton equivalent connected
to the terminals of an equivalent inductor or capacitor, it is a first-order
circuit. (Note that if multiple inductors or capacitors exist in the original
circuit, they must be interconnected so that they can be replaced by a sin-
gle equivalent element.)

After introducing the techniques for analyzing the natural and step
responses of first-order circuits, we discuss some special cases of interest.
The first is that of sequential switching, involving circuits in which switching
can take place at two or more instants in time. Next is the unbounded
response. Finally, we analyze a useful circuit called the integrating amplifier.

7.1 The Natural Response
of an RL Circuit

The natural response of an RL circuit can best be described in terms of the
circuit shown in Fig. 7.3. We assume that the independent current source
generates a constant current of /; A, and that the switch has been in a
closed position for a long time. We define the phrase a long time more
accurately later in this section. For now it means that all currents and volt-
ages have reached a constant value. Thus only constant, or dc, currents can
exist in the circuit just prior to the switch’s being opened, and therefore
the inductor appears as a short circuit (Ldi/dt = 0) prior to the release of
the stored energy.

Because the inductor appears as a short circuit. the voltage across the
inductive branch is zero, and there can be no current in either R, or R.
Therefore, all the source current I, appears in the inductive branch.
Finding the natural response requires finding the voltage and current at
the terminals of the resistor after the switch has been opened, that is, after
the source has been disconnected and the inductor begins releasing
energy. If we let t+ = 0 denote the instant when the switch is opened, the
problem becomes one of finding v(¢) and i(¢) for t = 0. For t = 0, the cir-
cuit shown in Fig. 7.3 reduces to the one shown in Fig. 7.4.

Deriving the Expression for the Current

To find i(t), we use Kirchhoff’s voltage law to obtain an expression involv-
ing i, R, and L. Summing the voltages around the closed loop gives

Ld—l + Ri =0, (7.1)
dt
where we use the passive sign convention. Equation 7.1 is known as a first-
order ordinary differential equation, because it contains terms involving
the ordinary derivative of the unknown, that is, di/dt. The highest order
derivative appearing in the equation is 1; hence the term first-order.

We can go one step further in describing this equation. The coeffi-
cients in the equation, R and L, are constants; that is, they are not func-
tions of either the dependent variable i or the independent variable ¢. Thus
the equation can also be described as an ordinary differential equation
with constant coefficients.

To solve Eq. 7.1, we divide by L, transpose the term involving i to the
right-hand side, and then multiply both sides by a differential time dt. The
result is

di R

Y= -Ziar 7.2
dtdl let (7.2)



Next, we recognize the left-hand side of Eq. 7.2 as a differential change in
the current ¢, that is, di. We now divide through by £, getting
di R
— = ——dt. 7.3
i L 7:3)
‘We obtain an explicit expression for i as a function of ¢ by integrating both
sides of Eq. 7.3. Using x and y as variables of integration yields

/ Vdx _ R ty (7.4)
—_— = - ay, .
i) X L

Sy

in which i(¢#,) is the current corresponding to time ¢y, and i(¢) is the current
corresponding to time f. Here, ¢, = (. Therefore, carrying out the indi-
cated integration gives

i) R
— = —— 7.
tn i(0) Lt (7:5)
Based on the definition of the natural logarithm,
i(r) = i(0)e RLX, (7.6)

Recall from Chapter 6 that an instantancous change of current cannot
occur in an inductor. Therefore, in the first instant after the switch has
been opened. the current in the inductor remains unchanged. If we use 0~
to denote the time just prior to switching, and 0" for the time immediately
following switching, then

i(07) = i(0%) = o,

where, as in Fig. 7.1, [ denotes the initial current in the inductor. The initial
current in the inductor is oriented in the same direction as the reference
direction of i. Hence Eq. 7.6 becomes

i(t) = Te®DI =, (1.7)

which shows that the current starts from an initial value I and decreases
exponentially toward zero as ¢ increases. Figure 7.5 shows this response.

We derive the voltage across the resistor in Fig. 7.4 from a direct appli-
cation of Ohm’s law:

v = iR = [\Re~ RN = oY, (7.8)

Note that in contrast to the expression for the current shown in Eq. 7.7,
the voltage is defined only for ¢ > 0, not at z = (. The reason is that a step
change occurs in the voltage at zero. Note that for ¢ < 0, the derivative of
the current is zero, so the voltage is also zero. (This result follows from
v = Ldi/dt = 0.) Thus

»(07) =0, (7.9)
v(0%) = IyR, (7.10)

where v(0") is obtained from Eq. 7.8 with ¢ = 0*.! With this step change at
an instant in time, the value of the voltage at ¢ = 0 is unknown. Thus we
use ¢ = 0" in defining the region of validity for these solutions.

1 We can define the expressions 0~ and 0" more formally. The expression x(07) refers 1o the
limit of the variable x as 1 — 0 from the left, or from negative time. The expression x(0°)
refers to the limit of the variable x as ¢ — 0 from the right, or from positive time.
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« Initial inductor current

<« Natural response of an RL circuit

i(t)

l(l

0

Figure 7.5 A The current response for the circuit shown
in Fig. 7.4.
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Time constant for RL circuit >

We derive the power dissipated in the resistor from any of the follow-
ing expressions:

p=vi, p=iR, o p= R (7.11)

Whichever form is used, the resulting expression can be reduced to
p = I3RURLY ¢ = (¥, (7.12)

The energy delivered to the resistor during any interval of time after the
switch has been opened is

‘ ¢
w = /pdx = /I%Re"z(R/""‘dx
0 0
1

IGR(1 — e 2R/L)y

~ 2R/L)

1 2
= ELI(-’,(I — e 2R =, (7.13)

Note from Eq. 7.13 that as r becomes infinite, the energy dissipated in the
resistor approaches the initial energy stored in the inductor.

The Significance of the Time Constant

The expressions for i(¢t) (Eq. 7.7) and »(¢) (Eq. 7.8) include a term of the
form ¢ (®/LX The coefficient of t—namely, R/L—determines the rate at
which the current or voltage approaches zero. The reciprocal of this ratio
is the time constant of the circuit, denoted

. L
T = time constant = I3 (7.14)

Using the time-constant concept, we write the expressions for current,
voltage, power, and energy as

ity =1, =0, (7.15)
o(f) = IpRe™", 1t =0, (7.16)
p = I3Re72", =0, (7.17)
w = —;—LI(Z,(I —e¥m, =0 (7.18)

The time constant is an important parameter for first-order circuits, so
mentioning several of its characteristics is worthwhile. First, it is conven-
ient to think of the time elapsed after switching in terms of integral multi-
ples of 7. Thus one time constant after the inductor has begun to release
its stored energy to the resistor, the current has been reduced to el or
approximately (.37 of its initial value.



Table 7.1 gives the value of e for integral multiples of 7 from 1 to
10. Note that when the elapsed time exceeds five time constants, the
current is less than 1% of its initial value. Thus we sometimes say that
five time constants after switching has occurred, the currents and volt-
ages have, for most practical purposes, reached their final values. For
single time-constant circuits (first-order circuits) with 1% accuracy, the
phrase a long time implies that five or more time constants have
elapsed. Thus the existence of current in the RL circuit shown in
Fig. 7.1(a) is a momentary event and is referred to as the transient
response of the circuit. The response that exists a long time after the
switching has taken place is called the steady-state response. The phrase
a long time then also means the time it takes the circuit to reach its
steady-state value.

Any first-order circuit is characterized, in part, by the value of its
time constant. If we have no method for calculating the time constant of
such a circuit (perhaps because we don’t know the values of its compo-
nents), we can determine its value from a plot of the circuit’s natural
response. That’s because another important characteristic of the time
constant is that it gives the time required for the current to reach its final
value if the current continues to change at its initial rate. To illustrate, we
evaluate di/dt at 0" and assume that the current continues to change at
this rate:

di o R, _ D
20 = —ly= -1 (7.19)

Now, if i starts as I, and decreases at a constant rate of I,/ amperes per
second, the expression for i becomes

{
i=1y— ?Oz. (7.20)

Equation 7.20 indicates that i would reach its final value of zero in
T seconds. Figure 7.6 shows how this graphic interpretation is useful in
estimating the time constant of a circuit from a plot of its natural
response. Such a plot could be generated on an oscilloscope measuring
output current. Drawing the tangent to the natural response plot at ¢ = 0
and reading the value at which the tangent intersects the time axis gives
the value of 7.

Calculating the natural response of an RL circuit can be summarized
as follows:

1. Find the initial current, /,, through the inductor.
2. Find the time constant of the circuit,7 = L/R.
3. Use Eq. 7.15, I,e™/", to generate i(t)

from I, and 7.

All other calculations of interest follow from knowing i(¢).
Examples 7.1 and 7.2 illustrate the numerical calculations associated with
the natural response of an RL circuit.

7.1 The Natural Response of an RL Circuit

TABLE 7.1 Value of ¢™*/* For ¢ Equal to

Integral Multiples of +

t et t
T 3678 % 107" 67
2r 13534 x 1070 77

3r 49787 X 1072 8
4r  1.8316 X 1072 97

el

24788 X 1073
9.1188 x 107
3.3546 x 1074
1.2341 x 107

57 6.7379 x 1073 10 4.5400 x 1073

—

i:/(|C ’

i=ly—(Iym)t

0 T

Figure 7.6 A A graphic interpretation of the time con-
stant of the RL circuit shown in Fig. 7.4.

<« Calculating the natural response

of RL circuit
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Selnh )Rl Determining the Natural Response of an RL Circuit

The switch in the circuit shown in Fig. 7.7 has
been closed for a long time before it is opened at
t = 0. Find

a) i;(t) fort = 0,
b) i () fort = 0%,
¢) v,(t) fort = 0F,

d) the percentage of the total energy stored in the
2 Hinductor that is dissipated in the 10 £ resistor.

Figure 7.7 A The circuit for Example 7.1.

Solution

a) The switch has been closed for a long time prior
to + = 0, so we know the voltage across the
inductor must be zero at + = 0”. Therefore the
initial current in the inductor is 20 A at ¢t = 0",
Hence, i; (0*) also is 20 A, because an instanta-
neous change in the current cannot occur in an
inductor. We replace the resistive circuit con-
nected to the terminals of the inductor with a
single resistor of 10 {):

Roy =2+ (40]10) = 10Q.

The time constant of the circuit is L/R., or
0.2 s, giving the expression for the inductor
current as

i(t) =20 A, t=0.

b) We find the current in the 40 () resistor most
easily by using current division; that is,

C_ .10
o= THI0 T 40

Note that this expression is valid for ¢ = 0*
because i, = Qatt = 07.The inductor behaves as
a short circuit prior to the switch being opened,
producing an instantaneous change in the current
i,. Then,

ity = —de™A, =0

c) We find the voltage v, by direct application of
Ohm’s law:

v(t) = 40i, = =160e™>V, (= 0",
d) The power dissipated in the 10 €} resistor is

VA

)
Proalt) = 1—8 = 2560e7"W, 1= (",

The total energy dissipated in the 10 Q resistor is
wipa(t) = Am2560e‘"" dt = 2561].
The initial energy stored in the 2 H inductor is
w(0) = %Liz(O) = %(2)(400) =40017.

Therefore the percentage of energy dissipated in
the 10 €} resistor is

256 o
205(100) = 64%.
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371 [l Determining the Natural Response of an RL Circuit with Parallel Inductors

In the circuit shown in Fig. 7.8, the initial currents in
inductors L; and L, have been established by
sources not shown. The switch is opened at ¢ = 0.

a) Find i, i, and i; for ¢ = 0.

b) Calculate the initial energy stored in the parallel
inductors.

c) Determine how much energy is stored in the
inductors as £ — ©0.

d) Show that the total energy delivered to the resis-
tive network equals the difference between the
results obtained in (b) and (c).

Solution

a) The key to finding currents i}, i, and i3 lies in
knowing the voltage v(¢). We can easily find v(¢)
if we reduce the circuit shown in Fig. 7.8 to the
equivalent form shown in Fig. 7.9. The parallel
inductors simplify to an equivalent inductance of
4 H, carrying an initial current of 12 A. The resis-
tive network reduces to a single resistance of
8 Q). Hence the initial value of i(¢) is 12 A and
the time constant is 4/8, or 0.5 s. Therefore

i(r) = 127 A,
Now (¢) is simply the product 8, so
o(t) = 96e™*V, =0

The circuit shows that »(¢t) = O at ¢
expression for v(¢) is valid for ¢
obtaining v(t), we can calculate i,

1 t
i == [ 9% dx — 8
5 0

1.6 — 9.6e ¥ A,

t = 0.

07, so the
0*. After

iz, and i3f

=

t=0,

N

15Q

Figure 7.8 A The circuit for Example 7.2.

—1.6 — 2.4 % A,

o) 15
10 25

t =0,

iy = =576e"* A, t=0"

Note that the expressions for the inductor currents
iy and i, are valid for t = 0, whereas the expres-
sion for the resistor current #3 is valid for 1 = 0*.

&
@

+ i

v(1)

[

12AT 4H 80

Figure 7.9 A A simplification of the circuit shown in Fig. 7.8.

b) The initial energy stored in the inductors is
1 1
w = 5(5)(64) + 5(20)(16) = 3201J.

c)As t—> 00, i —>16A and i, — —16A.
Therefore, a long time after the switch has been
opened, the energy stored in the two inductors is

w = —21—(5)(1.6)2 + %(20)(—1.6)2 =32]J.

d) We obtain the total energy delivered to the resis-
tive network by integrating the expression for
the instantaneous power from zero to infinity:

x) (o o]
w = / pdt = / 1152¢ 4t
0 0

e
=1152—2 =288

—4 0
This result is the difference between the initially
stored energy (320 J) and the energy trapped in
the parallel inductors (32 J). The equivalent
inductor for the parallel inductors (which pre-
dicts the terminal behavior of the parallel com-
bination) has an initial energy of 288 J; that is,
the energy stored in the equivalent inductor rep-
resents the amount of energy that will be deliv-
ered to the resistive network at the terminals of
the original inductors.

£100
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v ASSESSMENT PROBLEMS

Objective 1-—Be able to determine the natural response of both RL and RC circuits

7.1 The switch in the circuit shown has been closed Answer: (a) —12.5 A;
for a long time and is opened at ¢t = 0. (b) 625 mJ;
(c) 4 ms;

a) Calculate the initial value of i.

(d) —12.5¢ %At = 0;

b) Calculate the initial energy stored in the () 91.8%.
inductor.
c) What is the time constant of the circuit for 7.2 Att = 0, the switch in the circuit shown moves
t > 07 instantaneously from position a to position b.
d) What is the numerical expression for i(¢) for a) Calculate v, for ¢ = 0.
t=0? b) What percentage of the initial energy stored

in the inductor is eventually dissipated in

e) What percentage of the initial energy stored -
issipated i : th 9
has been dissipated in the 2 {) resistor 5 ms € 4 Q) resistor

after the switch has been opened?

30 60 ><

120V 300 it3smH 220

Answer: (a) —8¢7%V,t = 0;

(b) 80%.

NOTE: Also try Chapter Problems 7.4, 7.5, and 7.7.

Figure 7.11 A The circuit shown in Fig. 7.10, after
switching.

7.2 The Natural Response
of an RC Circuit

As mentioned in Section 7.1, the natural response of an RC circuit is anal-
ogous to that of an RL circuit. Consequently, we don’t treat the RC circuit
in the same detail as we did the RL circuit.

The natural response of an RC circuit is developed from the circuit
shown in Fig. 7.10. We begin by assuming that the switch has been in posi-
tion a for a long time, allowing the loop made up of the dc voltage source
V,, the resistor Ry, and the capacitor C to reach a steady-state condition.
Recall from Chapter 6 that a capacitor behaves as an open circuit in the
presence of a constant voltage. Thus the voltage source cannot sustain a
current, and so the source voltage appears across the capacitor terminals.
In Section 7.3, we will discuss how the capacitor voltage actually builds to
the steady-state value of the dc voltage source, but for now the important
point is that when the switch is moved from position a to position b (at
t = 0), the voltage on the capacitor is V;. Because there can be no instan-
taneous change in the voltage at the terminals of a capacitor, the problem
reduces to solving the circuit shown in Fig. 7.11.



Deriving the Expression for the Voltage

We can easily find the voltage v(¢) by thinking in terms of node voltages.
Using the lower junction between R and C as the reference node and sum-
ming the currents away from the upper junction between R and C gives

.

v
aw TR 0. (7.21)

Comparing Eq. 7.21 with Eq. 7.1 shows that the same mathematical tech-
niques can be used to obtain the solution for v(t). We leave it to you to
show that

(1) = v(0)e™/RE, t=0. (7.22)

As we have already noted, the initial voltage on the capacitor equals the
voltage source voltage V,, or

v(07) = v(0) = v(0%) =V, = V,, (7.23)

where V; denotes the initial voltage on the capacitor. The time constant for
the RC circuit equals the product of the resistance and capacitance,
namely,

T = RC. (7.24)
Substituting Egs. 7.23 and 7.24 into Eq. 7.22 yields
v(t) = Ve, 120, (7.25)

which indicates that the natural response of an RC circuit is an exponen-
tial decay of the initial voltage. The time constant RC governs the rate of
decay. Figure 7.12 shows the plot of Eq. 7.25 and the graphic interpreta-
tion of the time constant.

After determining v(¢), we can easily derive the expressions for i, p,
and w:

t = 0%, (7.26)

t = 0%, (7.27)

1
= 5CV6(1 — e M), t=0. (7.28)
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< Initial capacitor voltage

<« Time constant for RC circuit

<« Natural response of an RC circuit

(1)

|

o(t) = Ve 7

o(t) =V, — Yo,
T

0 T

Figure 7.12 A The natural response of an RC circuit.
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Calculating the natural response of an RC circuit can be summarized
as follows:

1. Find the initial voltage, V, across the capacitor.

Calculating the natural response of an 2. Find the time constant of the circuit,7 = RC.

RC circuit

3. Use Eq.7.25,v(f) = Ve ", to generate v(t) from V and .

All other calculations of interest follow from knowing wv(¢).
Examples 7.3 and 7.4 illustrate the numerical calculations associated with
the natural response of an RC circuit.

The switch in the circuit shown in Fig. 7.13 has been
in position x for a long time. At t = 0, the switch
moves instantancously to position y. Find

a) ve(t) fort = 0,

b) v,(¢) fort = 0%,

c) i,(t) fort = 0%, and

d) the total energy dissipated in the 60 k() resistor.

0.5 uF T

Figure 7.13 A The circuit for Example 7.3.

Solution

a) Because the switch has been in position x for a
long time, the 0.5 mF capacitor will charge to
100 V and be positive at the upper terminal. We
can replace the resistive network connected to
the capacitor at f = 0" with an equivalent resist-
ance of 80 k(). Hence the time constant of the
circuit is (0.5 X 107%)(80 x 10%) or 40 ms. Then,

ve(t) = 100e™>V, = 0.

m Determining the Natural Response of an RC Circuit

b) The easiest way to find v,(¢) is to note that the
resistive circuit forms a voltage divider across
the terminals of the capacitor. Thus

5

48 >
vy(t) = %’l)c(l) =60V, =07,

This expression for v,(f) is valid for ¢t = 0*
because v,(07) is zero. Thus we have an instanta-
ncous change in the voltage across the 240 kQ
resistor.

c) We find the current i,(f) from Ohm’s law:

v, (1 ~
i“(’) — )( ) : =¢ 251 mA’ f > O+.
60 X 10

d) The power dissipated in the 60 k() resistor is
Peoxa(t) = 2(1)(60 X 10%) = 60e ™ *mW, ¢ = 0%

The total energy dissipated is

Weoka = / 2(6)(60 X 10%)dt = 1.2 mlJ.
0
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m Determining the Natural Response of an RC Circuit with Series Capacitors

The initial voltages on capacitors C; and C; in the
circuit shown in Fig. 7.14 have been established by
sources not shown. The switch is closed at ¢ = 0.

a) Find v,(¢), vy(¢), and v(¢) for ¢+ = 0 and i(¢) for
t= 0"

b) Calculate the initial energy stored in the capaci-
tors Cy and C,.

c) Determine how much energy is stored in the
capacitors as t — 00.

d) Show that the total energy delivered to the
250 kQ resistor is the difference between the
results obtained in (b) and (¢).

Solution

a) Once we know v(f), we can obtain the current i(¢)
from Ohm’s law. After determining i(¢), we can
calculate v,(t) and v,(t) because the voltage across
a capacitor is a function of the capacitor current.
To find v(r), we replace the series-connected
capacitors with an equivalent capacitor. It has a
capacitance of 4 uF and is charged to a voltage of
20 V. Therefore, the circuit shown in Fig. 7.14
reduces to the one shown in Fig. 7.15, which
reveals that the initial value of v(¢) is 20V, and that
the time constant of the circuit is (4)(250) X 1073,
or 1 s. Thus the expression for v(¢) is

() =20e'V, t=0.
The current i(¢) is

. v(t) —f -+
1) = = A, =00
10 = 550000 = 80¢ "~
Knowing i(¢), we calculate the expressions for

(1) and v,(¢):

106 [
v, (t) s 80 X 10 %~ dx — 4
- 0

(167 = 20)V, =0,
100 [
20 J,

(4 +20) V. t=0.

]

I

I

N0 80 X 107% *dx + 24

I

b) The initial energy stored in C; is
1
w; = (5 X 107%)(16) = 40 ul.
The initial energy stored in C, is

1
W, = E(20 X 107%)(576) = 5760 uJ.

X

- RN b0
4VZZC (S uF) o)
+
(1) $ 250 k2
+ J )
24V =< C, (20 wF) va(1)

Figure 7.14 A The circuit for Example 7.4.

= ()‘+
+ ! li(r)

20V =<4 uF o()
250 kO

Figure 7.15 A A simplification of the circuit shown in Fig. 7.14.

The total energy stored in the two capacitors is
w, = 40 + 5760 = 5800 uJ.

c) Ast— 00,
v;—>-20V and v,—+20V.

Therefore the energy stored in the two capaci-
tors is

1
Woo = 5(5 + 20) X 107%(400) = 5000 uJ.

d) The total energy delivered to the 250 k€2 resistor is

" * 400e™%
= = ¢ = 800 ul.
e [, pdt A 250,000 P

Comparing the results obtained in (b) and (c)
shows that

800 uJ = (5800 — 5000) pJ.

The energy stored in the equivalent capacitor in
Fig. 7.15 is 5(4 X 107)(400), or 800 uJ. Because
this capacitor predicts the terminal behavior of
the original series-connected capacitors, the
energy stored in the equivalent capacitor is the
energy delivered to the 250 k() resistor.
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\/ASSESSMENT PROBLEMS

Objective 1—Be able to determine the natural response of both RL and RC circuits

7.3 The switch in the circuit shown has been closed 7.4 The switch in the circuit shown has been closed
for a long time and is opened at t = 0. Find for a long time before being opened at ¢ = 0.
a) the initial value of v(¢), a) Find v,(¢) fort = 0.
b) the time constant for ¢ > 0, b) What percentage of the initial energy stored
c) the numerical expression for v(f) after the in the circuit has been dissipated after the
switch has been opened, switch has been open for 60 ms?
d) the initial energy stored in the capacitor, and
e) the length of time required to dissipate 75%
of the initially stored energy. 5 uF
He
o2 ,7<=O~ - 1=0
_L 20 kQ
75mA$80kQ  04pF (1) ;’50 kQ +
1\ - b,(0) 1 uF =< 40k 3
Answer: (a) 200V, - T
(b) 20 ms;
(c) 200e% Vv, t = 0;
(d) 8 mJ; Answer: (a) 8¢ + 471V, ¢ = 0;
(e) 13.86 ms. (b) 81.05%.

NOTE: Also try Chapter Problems 7.23 and 7.26.

+_—-
Ve —_

I
t)

L {u(r)

Figure 7.16 A A circuit used to illustrate the step
response of a first-order RL circuit.

7.3 The Step Response of RL
and RC Circuits

We are now ready to discuss the problem of finding the currents and volt-
ages generated in first-order RL or RC circuits when either dc voltage or
current sources are suddenly applied. The response of a circuit to the sud-
den application of a constant voltage or current source is referred to as the
step response of the circuit. In presenting the step response, we show how
the circuit responds when energy is being stored in the inductor or capac-
itor. We begin with the step response of an RL circuit.

The Step Response of an RL Circuit

To begin, we modify the first-order circuit shown in Fig. 7.2(a) by adding a
switch. We use the resulting circuit, shown in Fig. 7.16, in developing the
step response of an RL circuit. Energy stored in the inductor at the time
the switch is closed is given in terms of a nonzero initial current i(0). The
task is to find the expressions for the current in the circuit and for the volt-
age across the inductor after the switch has been closed. The procedure is
the same as that used in Section 7.1; we use circuit analysis to derive the



differential equation that describes the circuit in terms of the variable of
interest, and then we use elementary calculus to solve the equation.

After the switch in Fig. 7.16 has been closed, Kirchhoff’s voltage law
requires that

li
V,=Ri + L, (7.29)
dt

which can be solved for the current by separating the variables i and ¢ and
then integrating. The first step in this approach is to solve Eq. 7.29 for the
derivative di/dt:

di —Ri+V, _R{i—ﬁ)

;'17 = 2 I3 \ R (7.30)

Next, we multiply both sides of Eq. 7.30 by a differential time dt. This step
reduces the left-hand side of the equation to a differential change in the

current. Thus
j — V.
d—ldt = —Ig(i - —“‘) dt, (7.31)

or

We now separate the variables in Eq.7.31 to get
di —R

— = —dt, 7.32

[~ 0B L 730

and then integrate both sides of Eq.7.32. Using x and y as variables for the
integration, we obtain

/iw dx _R/tl (7.33)
T T . & ay, .
J, X~ (Vi/R) L Jy Y

where I, is the current at ¢ = 0 and i(¢) is the current at any ¢ > (.
Performing the integration called for in Eq. 7.33 generates the expression

i) - (W/R) -R

n = t 7.34
Iy = (V/R) L (739
from which
1) =~ W/R _ e (RIL)
Iy — (V/R)
or
|4 V,
i(r) = 725 + (10 - f‘)e‘(R/L)‘. (7.35)

When the initial energy in the inductor is zero, { is zero. Thus Eq. 7.35
reduces to

V. V,
i(f) = = — = _(R/L)f‘ 7.36
i) =%~ e (.36

Equation 7.36 indicates that after the switch has been closed, the cur-
rent increases exponentially from zero to a final value of V,/R. The time
constant of the circuit, L/R, determines the rate of increase. One time

7.3 The Step Response of RL and RC Circuits

<« Step response of RL circuit
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constant after the switch has been closed, the current will have reached
approximately 63% of its final value, or

vV, V, 4
i(r) = = — e ~ 0.6321-. (7.37)
R R R

If the current were to continue to increasc at its initial rate, it would reach
its final value at ¢+ = 7; that is, because

ﬂ = __VS(—_]‘) —t/T — Vs -t
i R 4 = Le , (7.38)

the initial rate at which i(¢) increases is

di V,
E(O) = (7.39)

If the current were to continue to increase at this rate, the expression for i
would be

i=—2y (7.40)
from which,at ¢t = 7,
& 7.41
R (7.41)

i(1) Equations 7.36 and 7.40 are plotted in Fig. 7.17. The values given by
Eqs. 7.37 and 7.41 are also shown in this figure.
(=41 The voltage across an inductor is Ldi/dt, so from Eq.7.35, for t = 07,

-R V.
! ) v 1% v = L(T)(I“ - ?)e_(R/L)I = (Vv - 1(,R)e_(R/L)’. (742)
V.l — "R R

0.632 3

==
T
|

The voltage across the inductor is zero before the switch is closed.
Equation 7.42 indicates that the inductor voltage jumps to V; — [yR at
the wnstant the switch is closed and then decays exponentially to zero.

! L ! L Does the value of v at ¢ = 0" make sense? Because the initial current
0 T 2t 3 4z 5t is Iy and the inductor prevents an instantaneous change in current, the
Figure 7.17 A The step response of the RL circuit current is [, in the instant after the switch has been closed. The voltage
shown in Fig. 7.16 when I, = 0. drop across the resistor is /R, and the voltage impressed across the induc-

tor is the source voltage minus the voltage drop, thatis, V, — IyR.

v When the initial inductor current is zero, Eq. 7.42 simplifies to

!
|
I
|
I
I

v =V,e R, (7.43)

0.368 v, If the initial current is zero, the voltage across the inductor jumps to V,. We

also expect the inductor voltage to approach zero as ¢ increases, because the
current in the circuit is approaching the constant value of V;/R. Figure 7.18

0 shows the plot of Eq. 7.43 and the relationship between the time constant
Figure 7.18 A Inductor voltage versus time. and the initial rate at which the inductor voltage is decreasing.




7.3 The Step Response of RL and RC Circuits

If there is an initial current in the inductor, Eq. 7.35 gives the solution
for it. The algebraic sign of I is positive if the initial current is in the same
direction as i; otherwise, I, carries a negative sign. Example 7.5 illustrates
the application of Eq. 7.35 to a specific circuit.

m Determining the Step Response of an RL Circuit

The switch in the circuit shown in Fig. 7.19 has been
in position a for a long time. At ¢ = 0, the switch
moves from position a to position b. The switch is a
make-before-break type; that is, the connection at
position b is established before the connection at
position a is broken, so there is no interruption of
current through the inductor.

a) Find the expression for i(t) for t = 0.

b) What is the initial voltage across the inductor just
after the switch has been moved to position b?

¢) How many milliseconds after the switch has been
moved does the inductor voltage equal 24 V?

d) Does this initial voltage make sense in terms of
circuit behavior?

e) Plot both i(¢) and v(¢) versus t.

v 2200 mH 100 8A

1
T i
— Y

Figure 7.19 A The circuit for Example 7.5.

Solution

a) The switch has been in position a for a long time,
so the 200 mH inductor is a short circuit across
the 8 A current source. Therefore, the inductor
carries an initial current of 8 A. This current is
oriented opposite to the reference direction for 7;
thus I is —8 A. When the switch is in position b,
the final value of i will be 24/2, or 12 A. The time
constant of the circuit is 200/2, or 100 ms.
Substituting these values into Eq. 7.35 gives

12 + (-8 — 12)e™/

~.

12 — 207" A, t=0.

b) The voltage across the inductor is
di
dt

0.2(200e719%

=40¢7"V, = 0.

vV =

I

The initial inductor voltage is
p(07) = 40 V.

c) Yes; in the instant after the switch has been
moved to position b, the inductor sustains a cur-
rent of 8 A counterclockwise around the newly
formed closed path. This current causes a 16 V
drop across the 2 ) resistor. This voltage drop
adds to the drop across the source, producing a
40V drop across the inductor.

d) We find the time at which the inductor voltage
equals 24 V by solving the expression
24 = 4071
for ¢«
40

“10"24

51.08 x 1073
= 51.08 ms.

e) Figure 7.20 shows the graphs of i(¢) and v(¢) versus
t. Note that the instant of time when the current
equals zero corresponds to the instant of time
when the inductor voltage equals the source volt-
age of 24V, as predicted by Kirchhoff’s voltage law.

v(V)i(A)
40
32
24 12
16 8
8 4

L It(ms)
4 Z/ 100 200 300 400 500

Figure 7.20 A The current and voltage waveforms for
Example 7.5.
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v ASSESSMENT PROBLEM

Objective 2—Be able to determine the step response of both RL and RC circuits

7.5  Assume that the switch in the circuit shown in Answer: (a) 12 A;
Fig. 7.19 has been in position b for a long time, (b) —200 V;
and at¢ = 0 it moves to position a. Find (c) 20 ms;
(@) i(0%); (b) »(0%); (c) 7, ¢t > 0;(d) i(t),t = O; (d) =8 + 20e™" A, ¢t = 0;

and (e) v(¢), t = 0%,

(e) —200e™% vV, ¢t = 0*.

NOTE: Also try Chapter Problems 7.35-7.37.

We can also describe the voltage v(¢) across the inductor in Fig. 7.16
directly, not just in terms of the circuit current. We begin by noting that the
voltage across the resistor is the difference between the source voltage
and the inductor voltage. We write

i(t) = % - %, (7.44)

where V/ is a constant. Differentiating both sides with respect to time yields

di_ _1dv 7.45
dt R dt’ (7.45)

Then, if we multiply each side of Eq. 7.45 by the inductance L, we get an
expression for the voltage across the inductor on the left-hand side, or

v——£ﬂ (7.46
R dt +46)

Putting Eq. 7.46 into standard form yields

d—v+£v—0 (7.47
d L ’ -47)

You should verify (in Problem 7.38) that the solution to Eq. 7.47 is identi-
cal to that given in Eq. 7.42.

At this point, a general observation about the step response of an
RL circuit is pertinent. (This observation will prove helpful later.) When
we derived the differential equation for the inductor current, we obtained
Eq.7.29. We now rewrite Eq. 7.29 as

di + R,_% 7.48
a L' L (7.48)
Observe that Eqgs. 7.47 and 7.48 have the same form. Specifically, each
equates the sum of the first derivative of the variable and a constant times
the variable to a constant value. In Eq. 7.47, the constant on the right-hand
side happens to be zero; hence this equation takes on the same form as the
natural response equations in Section 7.1. In both Eq. 7.47 and Eq. 7.48,
the constant multiplying the dependent variable is the reciprocal of the
time constant, that is, R/L = 1/7. We encounter a similar situation in the
derivations for the step response of an RC circuit. In Section 7.4, we will
use these observations to develop a general approach to finding the natu-

ral and step responses of RL and RC circuits.



The Step Response of an RC Circuit

We can find the step response of a first-order RC circuit by analyzing the
circuit shown in Fig. 7.21. For mathematical convenience, we choose the
Norton equivalent of the network connected to the equivalent capacitor.
Summing the currents away from the top node in Fig. 7.21 generates the
differential equation

dve ¢
C—+—==1. 7.49
dt R L (7.49)

Division of Eq. 7.49 by C gives

de V¢ I.c
dr RC C (7.50)
Comparing Eq. 7.50 with Eq. 7.48 reveals that the form of the solution for
ve 1S the same as that for the current in the inductive circuit, namely,
Eq. 7.35. Therefore, by simply substituting the appropriate variables and
coefficients, we can write the solution for vc directly. The translation
requires that I, replace V,, C replace L, 1/R replace R, and V; replace 1,
We get

ve =I,R+ (Vo — I,R)e™RC, t = 0. (7.51)

A similar derivation for the current in the capacitor yields the differential
equation

—+—i=0. (7.52)

Equation 7.52 has the same form as Eq. 7.47, hence the solution for i is
obtained by using the same translations used for the solution of
Eq.7.50. Thus

%
i= <Ix - ﬁ)e“/"c, t =0, (7.53)

where V; is the initial value of vc, the voltage across the capacitor.

We obtained Egs. 7.51 and 7.53 by using a mathematical analogy to
the solution for the step response of the inductive circuit. Let’s see
whether these solutions for the RC circuit make sense in terms of
known circuit behavior. From Eq. 7.51, note that the initial voltage
across the capacitor is V), the final voltage across the capacitor is IR,
and the time constant of the circuit is RC. Also note that the solution
for v¢ is valid for ¢ = (. These observations are consistent with the
behavior of a capacitor in parallel with a resistor when driven by a con-
stant current source.

Equation 7.53 predicts that the current in the capacitor at ¢t = 0" is
I, — Vi/R. This prediction makes sense because the capacitor voltage can-
not change instantaneously, and therefore the initial current in the resistor
is Vo/R. The capacitor branch current changes instantaneously from zero
att = 0" to I; — Vy/R at ¢ = 0". The capacitor current is zero at t = ©0.
Also note that the final value of v = I(R.

Example 7.6 illustrates how to use Eqs. 7.51 and 7.53 to find the step
response of a first-order RC circuit.

7.3 The Step Response of RL and RC Circuits

t=10

1
]s R CTU('
i -

Figure 7.21 A A circuit used to illustrate the step
response of a first-order RC circuit.

<« Step response of an RC circuit
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a) v,(t) fort = 0 and
b) i,(t) for t = 0*.

Figure 7.22 A The circuit for Example 7.6.

Solution

a) The switch has been in position 1 for a long time,

so the initial value of v, is 40(60/80), or 30 V. To
take advantage of Eqs. 7.51 and 7.53, we find the
Norton equivalent with respect to the terminals
of the capacitor for ¢ = 0. To do this, we begin by
computing the open-circuit voltage, which is
given by the —75V source divided across the
40 k{2 and 160 k{2 resistors:

160 x 10°
‘/oc = =75) =
(40 + 160) x 103( )

—60 V.

Next, we calculate the Thévenin resistance, as
seen to the right of the capacitor, by shorting the
—75V source and making series and parallel
combinations of the resistors:

Ry, = 8000 + 40,000 || 160,000 = 40 kQ

2yl WRR Determining the Step Response of an RC Circuit

The switch in the circuit shown in Fig. 7.22 has been
in position 1 for a long time. At t = 0, the switch
moves to position 2. Find

The value of the Norton current source is the
ratio of the open-circuit voltage to the Thévenin
resistance, or —60/(40 X 10°) = —1.5mA. The
resulting Norton equivalent circuit is shown in
Fig. 7.23. From Fig. 7.23, I;R = —60V and
RC = 10ms. We have already noted that
v,(0) = 30 V, so the solution for v, is

—60 + [30 —_ (—60)](3_1001

<
Il

—60 + 9071V, ;= 0.

b) We write the solution for i, directly from

Eq. 7.53 by noting that I, = —1.5mA and
V,/R = (30/40) X 1073 or 0.75 mA:

i, = —225¢"mA = 0"

We check the consistency of the solutions for v,
and i, by noting that

v,
Lo — (0.25 x 107%)(—9000e 1%y

l":cdr B

—2.25¢7 10 mA.

Because dv,(07)/dt = 0, the expression for i,
clearly is valid only for 1 = 0%,

+
30v,l\0.25 uF 40k 1.5 mA

Figure 7.23 A The equivalent circuit for ¢ > 0 for the circuit
shown in Fig. 7.22.




7.4

V' ASSESSMENT PROBLEM

A General Solution for Step and Natural Responses

Objective 2—Be able to determine the step response of both RL and RC circuits

7.6 a) Find the expression for the voltage across b) Specify the interval of time for which the
the 160 k2 resistor in the circuit shown in expression obtained in (a) is valid.

Fig. 7.22. Let this voltage be denoted v 4, and

assume that the reference polarity for the

voltage is positive at the upper terminal of Answer:
the 160 k) resistor.

NOTE: Also try Chapter Problems 7.51 and 7.53.

7.4 A General Solution for Step
and Natural Responses

The general approach to finding either the natural response or the step
response of the first-order RL and RC circuits shown in Fig. 7.24 is based
on their differential equations having the same form (compare Eq. 7.48
and Eq. 7.50). To generalize the solution of these four possible circuits, we
let x(f) represent the unknown quantity, giving x(t) four possible values. It
can represent the current or voltage at the terminals of an inductor or the
current or voltage at the terminals of a capacitor. From Eqs. 7.47, 7.48,
7.50, and 7.52, we know that the differential equation describing any one
of the four circuits in Fig. 7.24 takes the form

dx x
— + = =K, 7.54
dt T (7:54)

where the value of the constant K can be zero. Because the sources in the
circuit are constant voltages and/or currents, the final value of x will be
constant; that is, the final value must satisfy Eq. 7.54, and, when x reaches
its final value, the derivative dx/dt must be zero. Hence

xp = Kr, (7.55)

where x; represents the final value of the variable.
We solve Eq.7.54 by separating the variables, beginning by solving for
the first derivative:

k= = . (7.56)

(a) —60 + 727100 v,
(b)t = 0"

(a)

‘/Th
R‘lh

Figure 7.24 A Four possible first-order circuits.

{a) An inductor connected to a Thévenin equivalent.
{b) An inductor connected to a Norton equivalent.
(c) A capacitor connected to a Thévenin equivalent.
{d) A capacitor connected to a Norton equivalent.
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General solution for natural and step
responses of RL and RC circuits P

Calculating the natural or step response of
RL or RC circuits »

In writing Eq. 7.56, we used Eq. 7.55 to substitute x for K7. We now mul-
tiply both sides of Eq. 7.56 by dt and divide by x — x; to obtain

d -1
- (7.57)
X — )Cf T

Next, we integrate Eq. 7.57. To obtain as general a solution as possible, we
use time f;, as the lower limit and ¢ as the upper limit. Time ¢, corresponds
to the time of the switching or other change. Previously we assumed that
to = 0, but this change allows the switching to take place at any time.
Using 1 and v as symbols of integration, we get

O g 1/
= — [ dv. (7.58)
x(ty) u - xf T fn

Carrying out the integration called for in Eq. 7.58 gives

x(t) = x5 + [x(to) — x; Je =, (7.59)

The importance of Eq. 7.59 becomes apparent if we write it out in words:

the unknown the final
variable as a = value of the
function of time variable
the initial the final

+| value of the — value of the | X e=l={meolsiching)] (7.60)
variable variable

In many cases, the time of switching—that is, £,—is zero.
When computing the step and natural responses of circuits, it may
help to follow these steps:

1. Identify the variable of interest for the circuit. For RC circuits, it is
most convenient to choose the capacitive voltage; for RL circuits,
it is best to choose the inductive current.

2. Determine the initial value of the variable, which is its value at f;.
Note that if you choose capacitive voltage or inductive current as
your variable of interest, it is not necessary to distinguish between
t = t; and ¢t = £§.2 This is because they both are continuous vari-
ables. If you choose another variable, you need to remember that
its initial value is defined at ¢ = fJ.

3. Calculate the final value of the variable, which is its value as ¢ — 00,

4, Calculate the time constant for the circuit.

With these quantities, you can use Eq. 7.60 to produce an equation
describing the variable of interest as a function of time. You can then find
equations for other circuit variables using the circuit analysis techniques
introduced in Chapters 3 and 4 or by repeating the preceding steps for the
other variables.

Examples 7.7-7.9 illustrate how to use Eq. 7.60 to find the step
response of an RC or RL circuit.

2 The cxpressions f and ¢ are analogous to 0~ and 07. Thus x{£5) is the limit of x(r) as 1 — ¢,
from the left, and x(¢3) is the limit of x(r) as s — 1, from the right.
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FElD WA Using the General Solution Method to Find an RC Circuit’s Step Response

The switch in the circuit shown in Fig. 7.25 has been
in position a for a long time. At ¢ = 0 the switch is
moved to position b.

a) What is the initial value of v¢?

b) What is the final value of v¢?

¢) What is the time constant of the circuit when the
switch is in position b?

d) What is the expression for vc(t) when t = 07

€) What is the expression for i(¢) when r = 0*?

f) How long after the switch is in position b does
the capacitor voltage equal zero?

g) Plot v(¢) and i(¢) versus ¢.

Solution

a) The switch has been in position a for a long time,
so the capacitor looks like an open circuit.
Therefore the voltage across the capacitor is the
voltage across the 60 £} resistor. From the voltage-
divider rule, the voltage across the 60 () resistor
is 40 X [60/(60 + 20)], or 30 V. As the refer-
ence for v¢ is positive at the upper terminal of
the capacitor, we have vc(0) = =30 V.

b) After the switch has been in position b for a long
time, the capacitor will look like an open circuit
in terms of the 90 V source. Thus the final value
of the capacitor voltage is + 90 V.

c¢) The time constant is

7 =RC
= (400 X 10*)(0.5 x 107
=02s.

d) Substituting the appropriate values for vy, v(0),
and ¢ into Eq. 7.60 yields

ve(t) = 90 + (=30 — 90)e™
=90 — 120e™V, =0.

e) Here the value for 7 doesn’t change. Thus we
need to find only the initial and final values for
the current in the capacitor. When obtaining the
initial value, we must get the value of i(0%),
because the current in the capacitor can change
instantaneously. This current is equal to the cur-
rent in the resistor, which from Ohm’s law is
[90 — (—30)]/(400 X 10*) = 300 uA. Note that
when applying Ohm’s law we recognized that the

400kQ . a 200
N\
+
4 (=0 L
=90V 40V—
T ’Al”(‘ T

Figure 7.25 A The circuit for Example 7.7.

capacitor voltage cannot change instantaneously.
The final value of i(t) = 0, so

i(t) = 0 + (300 — 0)e™
= 300e™ pnA, ¢ = 0"

We could have obtained this solution by dif-
ferentiating the solution in (d) and multiplying by
the capacitance. You may want to do so for your-
self. Note that this alternative approach to finding
i(¢) also predicts the discontinuity at ¢ = 0.

f) To find how long the switch must be in position b
before the capacitor voltage becomes zero, we
solve the equation derived in (d) for the time
when v(t) = 0O

120
1206 = 90 o =
e or e 90

L= lln (i)
5 3

= 57.54 ms.

SO

Note that when v =0, i = 225 uA and the
voltage drop across the 400 k() resistor is 90 V.

g) Figure 7.26 shows the graphs of vc(f) and i(2)
versus .

i(wA) ve (V)

300 120
250 100
200 80
150 60
100 40

50 20

t (ms)
=20

07/ 200 400 600 800
-30

Figure 7.26 A The current and voltage waveforms for
Example 7.7.




234 Response of First-Order RL and RC Circuits

el RN Using the General Solution Method with Zero Initial Conditions

The switch in the circuit shown in Fig. 7.27 has been
open for a long time. The initial charge on the
capacitor is zero. At ¢ = 0, the switch is closed. Find
the expression for

a) i(t) fort = 0" and
b) v(¢) whent = 07.

0.1 uF
=00
¥ v

75mA wwzoke Y ko

Figure 7.27 A The circuit for Example 7.8.

Solution

a) Because the initial voltage on the capacitor is
Zero, at the instant when the switch is closed the
current in the 30 k) branch will be

(7.5)(20)
50
= 3mA.

i(0%) =

The final value of the capacitor current will be
zero because the capacitor eventually will
appear as an open circuit in terms of dc current.
Thus iy = 0. The time constant of the circuit will
equal the product of the Thévenin resistance (as
seen from the capacitor) and the capacitance.

Therefore 7 = (20 + 30)10°(0.1) X 107® = 5 ms.
Substituting these values into Eq. 7.60 generates
the expression

i(t) = 0 + (3 — 0)e /3107
=320 mA, = 0"

b) To find v(t), we note from the circuit that it
equals the sum of the voltage across the capaci-
tor and the voltage across the 30 k() resistor. To
find the capacitor voltage (which is a drop in the
direction of the current), we note that its initial
value is zero and its final value is (7.5)(20), or
150 V. The time constant is the same as before, or
5 ms. Therefore we use Eq. 7.60 to write

ve(t) = 150 + (0 — 150)¢~200
150 — 150”2y v, ¢ = 0.
(

Hence the expression for the voltage v(¢) is

v(t) = 150 — 150e* + (30)(3)e™*™
(150 — 60e72y v, ¢ = 0*.

As one check on this expression, note that it pre-
dicts the initial value of the voltage across the
20 ) resistor as 150 — 60, or 90 V. The instant
the switch is closed, the current in the 20 k()
resistor is (7.5)(30/50), or 4.5 mA. This current
produces a 90 V drop across the 20 k{} resistor,
confirming the value predicted by the solution.

i IR Using the General Solution Method to Find an RL Circuit’s Step Response

The switch in the circuit shown in Fig. 7.28 has been
open for a long time. At ¢ = 0 the switch is closed.
Find the expression for

a) v(¢) when t = 0% and

b) i(t) when ¢ = 0.

10

20V 80 mH

Figure 7.28 A The circuit for Example 7.9.

Solution

a) The switch has been open for a long time, so the
initial current in the inductor is 5 A, oriented
from top to bottom. Immediately after the switch
closes, the current still is 5 A, and therefore the
initial voltage across the inductor becomes
20 — 5(1), or 15 V. The final value of the induc-
tor voltage is 0 V. With the switch closed, the time
constant is 80/1, or 80 ms. We use Eq. 7.60 to
write the expression for v(¢):

o(t) = 0 + (15 — 0)e /80x107
= 15¢712% v, t = 0.

b) We have already noted that the initial value of
the inductor current is 5 A. After the switch has



been closed for a long time, the inductor current
reaches 20/1, or 20 A. The circuit time constant is
80 ms, so the expression for i(¢) is

i(r) =20 + (5 — 20)e 12
= (20 — 15¢7 2 A, t=0.

7.4 A General Solution for Step and Natural Responses 235

We determine that the solutions for »(¢) and i(¢)
agree by noting that

di

ty =L—
v(®) Ldt

80 X 1073[15(12.5)e™'%%]

= 15¢712'v, =0

NOTE: Assess your understanding of the general solution method by trying Chapter Problems 7.55 and 7.56.

Example 7.10 shows that Eq. 7.60 can even be used to find the step

response of some circuits containing magnetically coupled coils.

S WAL Determining Step Response of a Circuit with Magnetically Coupled Coils

There is no energy stored in the circuit in Fig. 7.29
at the time the switch is closed.
a) Find the solutions for i,, v, i;, and i,.

b) Show that the solutions obtained in (a) make
sense in terms of known circuit behavior.

Solution

a) For the circuit in Fig. 7.29, the magnetically cou-
pled coils can be replaced by a single inductor
having an inductance of

L,L, — M? 45 — 36
L= =

= = = 15H.
L +L,-2M 18-12

(Sce Problem 6.41.) It follows that the circuit in
Fig. 7.29 can be simplified as shown in Fig. 7.30.
By hypothesis the initial value of i, is zero.
From Fig. 7.30 we see that the final value of i,
will be 120/7.5 or 16 A.The time constant of the
circuit is 1.5/7.5 or 0.2 s. It follows directly from

Eq.7.60 that
i =16 — 16e™' A, t=0.

l()

The voltage v, follows from Kirchhoff’s
voltage law. Thus,

v, = 120 — 7.5i,
=120V, = 0"

To find i; and i, we first note from
Fig. 7.29 that

di dip diy di,
SZ+6I=6E+1SE
or
di di
& T Tar

TSR X =i

120V "3H ; ISHS Y

Figure 7.29 A The circuit for Example 7.10.

750 ¢ -,

\r = 0 +
120V *.31.5H

Figure 7.30 A The circuit in Fig. 7.29 with the magnetically
coupled coils replaced by an equivalent coil.

It also follows from Fig. 7.29 that because
l.“ = i] + iz,

diy _diy , diy

dr dt  dt’

Therefore
80e ™ = —2@
dt’

Because i,(0) is zero we have

g
i = / —40¢ dx
0

= -8+ 8 A, =0
Using Kirchhoff’s current law we get
ip =24 — 24 A, =0,

b) First we observe that i,(0), /1(0), and i,(0) are all
zero, which is consistent with the statement that
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no energy is stored in the circuit at the instant
the switch is closed.

Next we observe v,(0*) = 120 V, which is
consistent with the fact that i,(0) = 0.

Now we observe the solutions for i; and
iy are consistent with the solution for v, by
observing

di

pron

= 360¢™ — 240

=120V, t= 0,
or

v, = 6% + 15 (;—l[z
= 720e™ — 600e™
=120V, =0

The final values of i{; and i, can be checked
using flux linkages. The flux linking the 3 H coil
(A1) must be equal to the flux linking the 15 H
coil (A,), because

L _dh
o df
dy
Codt
Now
A = 3i; + 6i; Wb-turns
and

A, = 6iy + 15i; Wb-turns.

Regardless of which expression we use, we
obtain

A = Ay = 24 — 24¢7> Wh-turns.

Note the solution for A; or A, is consistent with
the solution for v,,.

The final value of the flux linking either
coil 1 or coil 2 is 24 Wb-turns, that is,

Ay(00) = Ay(00) = 24 Wh-turns.
The final value of {; is
ij(0) =24 A
and the final value of i, is
ip(oc0) = =8 A.

The consistency between these final values
for i; and i, and the final value of the flux link-
age can be seen from the expressions:

A(00) = 3i1(00) + 6iy(00)

= 3(24) + 6(—8) = 24 Wb-turns,
A2(00) = 6i1(00) + 15i(00)

= 6(24) + 15(—8) = 24 Wb-turns.

It is worth noting that the final values of #;
and i, can only be checked via flux linkage
because at + = oo the two coils are ideal short
circuits. The division of current between ideal
short circuits cannot be found from Ohm’s law.

NOTE: Assess your understanding of this material by using the general solution method to solve Chapter
Problems 7.68 and 7.69.

7.5 Sequential Switching

Whenever switching occurs more than once in a circuit, we have sequential
switching. For example, a single, two-position switch may be switched back
and forth, or multiple switches may be opened or closed in sequence. The
time reference for all switchings cannot be ¢+ = 0. We determine the volt-
ages and currents generated by a switching sequence by using the tech-
niques described previously in this chapter. We derive the expressions for
v(t) and i(¢) for a given position of the switch or switches and then use
these solutions to determine the initial conditions for the next position of
the switch or switches.

With sequential switching problems, a premium is placed on obtaining
the initial value x(¢,). Recall that anything but inductive currents and
capacitive voltages can change instantaneously at the time of switching.
Thus solving first for inductive currents and capacitive voltages is even
more pertinent in sequential switching problems. Drawing the circuit that
pertains to each time interval in such a problem is often helpful in the
solution process.
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Examples 7.11 and 7.12 illustrate the analysis techniques for circuits
with sequential switching. The first is a natural response problem with two

switching times, and the second is a step response problem.

m Analyzing an RL Circuit that has Sequential Switching

The two switches in the circuit shown in Fig. 7.31
have been closed for a long time. At ¢ = 0, switch 1
is opened. Then, 35 ms later, switch 2 is opened.

a) Find i; (¢) for0 = ¢ = 35 ms.

b) Find i; for t = 35 ms.

c) What percentage of the initial energy stored in
the 150 mH inductor is dissipated in the 18 (2
resistor?

d) Repeat (c) for the 3  resistor.
e) Repeat (c) for the 6 Q resistor.

Figure 7.31 A The circuit for Example 7.11.

Solution

a) For ¢t < 0 both switches are closed, causing the
150 mH inductor to short-circuit the 18 £ resis-
tor. The equivalent circuit is shown in Fig. 7.32. We
determine the initial current in the inductor by
solving for i; (07) in the circuit shown in Fig. 7.32.
After making several source transformations, we
findi; (0") tobe 6 A.For ) < ¢t = 35 ms, switch 1
is open (switch 2 is closed), which disconnects the
60 V voltage source and the 4 Q) and 12 Q resis-
tors from the circuit. The inductor is no longer
behaving as a short circuit (because the dc source
is no longer in the circuit), so the 18 ) resistor is
no longer short-circuited. The equivalent circuit is
shown in Fig. 7.33. Note that the equivalent resist-
ance across the terminals of the inductor is the
parallel combination of 9 ) and 18 £, or 6 ).
The time constant of the circuit is (150/6) X 1073,
or 25 ms. Therefore the expression for i; is

ip =6e"A, 0=t=35ms.

40 30

60V 120 60 L (07)

Figure 7.32 A The circuit shown in Fig. 7.31, for ¢t < 0.

30
—A —e-?
fin
2, 3150mH 3180
'TiL(o*)=6A

Figure 7.33 A The circuit shown in Fig. 7.31, for 0 < ¢ <35 ms.

b) When ¢ = 35 ms, the value of the inductor
current is

ip = 6e7M* = 148 A.

Thus, when switch 2 is opened, the circuit
reduces to the one shown in Fig. 7.34, and the
time constant changes to (150/9) X 107, or
16.67 ms. The expression for i; becomes

iL — 1‘486—6()(1—0.035) A, ¢t = 35ms.

Note that the exponential function is shifted in
time by 35 ms.

3150 mH
ii,‘(o.oss) = [ .48A

Figure 7.34 A The circuit shown in Fig. 7.31, forz = 35 ms.

c¢) The 18 £} resistor is in the circuit only during the
first 35 ms of the switching sequence. During this
interval, the voltage across the resistor is

d
v, 0‘155(654“')

= -36e "V, 0<t<35ms.



238  Response of First-Order RL and RC Circuits

The power dissipated in the 18 {) resistor is

2
I

v
—= =72 W, 0 <t < 35ms.

P =13

Hence the energy dissipated is

0.035
w = / 72¢ 8 dy
0

72 0.033
¢

TR0

—S80¢

0
=0.9(1 — %)
= 845.27 mlJ.

The initial energy stored in the 150 mH inductor is
1
w; = ;(0.15)(36) =271J=2700ml.

Therefore (845.27/2700) X 100. or 31.31% of
the initial energy stored in the 150 mH inductor
is dissipated in the 18 () resistor.

d) For 0 < ¢ < 35 ms. the voltage across the 3 )

resistor is
v
U3 = (é>(3)

1

=TV
3 L

= —12¢7 V.

Therefore the energy dissipated in the 3 € resis-
tor in the first 35 ms is

0.035 —
144¢™%
W3 = dt
0

=0.6(1 — ¢

[ o8]

= 563.51 mJ.

For t > 35 ms, the current in the 3 ) resistor is

i = i = (6e™14)e 00003 A

Hence the energy dissipated in the 3 € resistor for
t > 35msis

o O
22
Wi = / 13() X 3dt
J0.035

i &)
= / 3(36)¢ 28 1200-0035)
Jo.03s

—120(1 —0.035) | o

= 108¢™# X
—-120 0.035
108 4
= —¢ = = 54. .
120L 73 mJ

The total energy dissipated in the 3 () resistor is

wig(total) = 563.51 + 54.73

Il

618.24 mJ.
The percentage of the initial energy stored is

618.24
2700

X 100 = 22.90%.

e) Because the 6 () resistor is in series with the 3 )
resistor, the energy dissipated and the percent-
age of the initial energy stored will be twice that
of the 3 Q resistor:

we(total) = 1236.48 mJ.
and the percentage of the initial energy stored is
45.80%. We check these calculations by observ-
ing that
1236.48 + 618.24 + 845.27 = 2699.99 mJ
and

31.31 + 22.90 + 45.80 = 100.01%.

The small discrepancies in the summations arc
the result of roundoff errors.
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FElh VA Analyzing an RC Circuit that has Sequential Switching

The uncharged capacitor in the circuit shown in
Fig. 7.35 is initially switched to terminal a of the
three-position switch. At t = 0, the switch is moved
to position b, where it remains for 15 ms. After the
15 ms delay, the switch is moved to position c, where
it remains indefinitely.

a) Derive the numerical expression for the voltage
across the capacitor.

b) Plot the capacitor voltage versus time.

¢) When will the voltage on the capacitor equal
200 V?

Solution

a) At the instant the switch is moved to position b,
the initial voltage on the capacitor is zero. If the
switch were to remain in position b, the capacitor
would eventually charge to 400 V. The time con-
stant of the circuit when the switch is in position b
is 10 ms. Therefore we can use Eq. 7.59 with
ty = 0 to write the expression for the capacitor
voltage:

v =400 + (0 — 400)e”'™

= (400 — 4007V, 0=t =1

wn

ms.

Note that, because the switch remains in posi-
tion b for only 15 ms, this expression is valid only
for the time interval from 0 to 15 ms. After the
switch has been in this position for 15 ms, the
voltage on the capacitor will be

(15 ms) = 400 — 400e7' = 310.75 V.

Therefore, when the switch is moved to position c,
the initial voltage on the capacitor is 310.75 V.
With the switch in position c, the final value of
the capacitor voltage is zero, and the time con-
stant is 5 ms. Again, we use Eq. 7.59 to write the
expression for the capacitor voltage:

=0+ (31()‘75 _ ())8—20()(1—().()15)

= 310.75¢7 20000019 v 15 ms < ¢.

o

o
100kQ b

+

400V o(0) 7= 0.1uF
50 kO N T

Figure 7.35 A The circuit for Example 7.12.

In writing the expression for », we recognized
that £y = 15 ms and that this expression is valid
only for ¢+ = 15 ms.

b) Figure 7.36 shows the plot of v versus .

c) The plot in Fig. 7.36 reveals that the capacitor
voltage will equal 200 V at two different times:
once in the interval between 0 and 15 ms and
once after 15 ms. We find the first time by solving
the expression

200 = 400 — 4001000

which yields ¢#; = 6.93 ms. We find the second
time by solving the expression

200 = 310.75¢20002=0015)

In this case,t, = 17.20 ms.

v (V)
300
200

100

n =400 — 400e7 M

“ <, X 3
o= 310.75¢ Mg 01

| { | | ] 1 | | l .
0 s 10 15 20 a5 (9

Figure 7.36 A The capacitor voltage for Example 7.12.
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o ASSESSMENT PROBLEMS

Response of First-Order RL and RC Circuits

Objective 3—Know how to analyze circuits with sequential switching

7.7

In the circuit shown, switch 1 has been closed 7.8  Switch a in the circuit shown has been open for
and switch 2 has been open for a long time. At a long time, and switch b has been closed for a
t = 0, switch 1 is opened. Then 10 ms later, long time. Switch a is closed at ¢t = 0 and, after

switch 2 is closed. Find

a) v(t)for0 =t = 0.01s,
b) v (¢) fort = 0.01s,

c) the total energy dissipated in the 25 kQ

resistor, and

remaining closed for 1 s, is opened again.
Switch b is opened simultaneously, and both
switches remain open indefinitely. Determine
the expression for the inductor current i that is
valid when (a) 0 = ¢ =< 1sand (b) ¢ = 1s.

d) the total energy dissipated in the 100 kQ

resistor.

60 kQ

t=10ms

10mA $40kQ 25kQ 1pFT (1) 100 kQ

Answer: (a) 80e™* V;

(b) 53.63¢730(~00D) v,
(c) 2.91 mJ;
(d) 0.29 mJ.

Answer: (a) (3 —3e N A 0=t=1s;
(b) (—48 + 5987156 D) A 1 > 15,

NOTE: Also try Chapter Problems 7.71 and 7.78.

7.6 Unbounded Response

A circuit response may grow, rather than decay, exponentially with time.
This type of response, called an unbounded response, is possible if the cir-
cuit contains dependent sources. In that case, the Thévenin equivalent
resistance with respect to the terminals of either an inductor or a capacitor
may be negative. This negative resistance generates a negative time con-
stant, and the resulting currents and voltages increase without limit. In an
actual circuit, the response eventually reaches a limiting value when a
component breaks down or goes into a saturation state, prohibiting fur-
ther increases in voltage or current.

When we consider unbounded responses, the concept of a final value
is confusing. Hence, rather than using the step response solution given in
Eq. 7.59, we derive the differential equation that describes the circuit con-
taining the negative resistance and then solve it using the separation of
variables technique. Example 7.13 presents an exponentially growing
response in terms of the voltage across a capacitor.
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e LW RERN Finding the Unbounded Response in an RC Circuit

a) When the switch is closed in the circuit shown in
Fig. 7.37, the voltage on the capacitor is 10 V.
Find the expression for v, for t = 0.

b) Assume that the capacitor short-circuits when

its terminal voltage reaches 150 V. How many
milliseconds elapse before the capacitor short-

circuits?
)<\‘ . .
+ LR
10VERS uF o, 10ka 3 7iy(}) is) 320k

L4 L d

Figure 7.37 A The circuit for Example 7.13.

Solution

a) To find the Thévenin equivalent resistance with
respect to the capacitor terminals, we use the test-
source method described in Chapter 4. Figure 7.38
shows the resulting circuit, where vy is the test
voltage and iy is the test current. For vy expressed
in volts, we obtain

U gry P

700 "0’ T 20
Solving for the ratio vy /iy yields the Thévenin
resistance:

mA.

vy
R'['h = —I = -5 kQ
Ir
With this Thévenin resistance, we can simplify
the circuit shown in Fig. 7.37 to the one shown in
Fig. 7.39.

10V<SuF », $-5kQ

Figure 7.39 A A simplification of the circuit shown in
Fig. 7.37.

For t = 0, the differential equation describing

the circuit shown in Fig. 7.39 is
dv v, .
5x107)—> -2 x107% =0.
( ) dt 5

Dividing by the coefficient of the first derivative
yields

dt

We now use the separation of variables technique
to find v,(2):

v,(1) = 10V, 1 =0.

— 40w, = 0.

b) v, = 150 V when ¢** = 15. Therefore, 40¢ = In 15,
and t = 67.70 ms.

NOTE: Assess your understanding of this material by trying Chapter Problems 7.85 and 7.87.

The fact that interconnected circuit elements may lead to ever-
increasing currents and voltages is important to engineers. If such inter-
connections are unintended, the resulting circuit may experience

unexpected, and potentially dangerous, component failures.

7.7 The Integrating Amplifier

Recall from the introduction to Chapter 5 that one reason for our interest in
the operational amplifier is its use as an integrating amplifier. We are now 7
ready to analyze an integrating-amplifier circuit, which is shown in Fig. 7.40. v

The purpose of such a circuit is to gencrate an output voltage proportional — |- -

to the integral of the input voltage. In Fig. 7.40, we added the branch cur-

rents if and i, along with the node voltages v, and v,, to aid our analysis. Figure 7.40 A An integrating amplifier.
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We assume that the operational amplifier is ideal. Thus we take
advantage of the constraints

ip +i, =0, (7.61)
Vy = U (7.62)
Because v, = 0,
. v\'
io=— 7.63
s R (7.63)
= dv,
iy =0Cy dr (7.64)

Hence, from Eqs. 7.61, 7.63, and 7.64,

dv, 1

7 - EE Dy (7.65)

Multiplying both sides of Eq. 7.65 by a differential time d¢ and then inte-
grating from ¢, to ¢ generates the equation

ot
(1) = — / v, dy + v,(ty). (7.66)

R‘Cf- fo

In Eq. 7.66, t; represents the instant in time when we begin the integration.
Thus v,(y) is the value of the output voltage at that time. Also, because
v, = v, = 0, v,(fy) is identical to the initial voltage on the feedback
capacitor Cy.

Equation 7.66 states that the output voltage of an integrating ampli-
fier equals the initial value of the voltage on the capacitor plus an inverted
(minus sign), scaled (1/R,Cy) replica of the integral of the input voltage. If
no energy is stored in the capacitor when integration commences, Eq. 7.66

reduces to
] !
Af) = — dy. 7.67
V(1) R“_Cf'["vx y (7.67)
v, If v, is a step change in a dc voltage level, the output voltage will vary lin-
early with time. For example, assume that the input voltage is the rectan-
Viu gular voltage pulse shown in Fig. 7.41. Assume also that the initial value of

v,(t) is zero at the instant v, steps from 0 to V,,. A direct application of
Eq.7.66 yields

1
Uy = —W Vit +0, 0=r1=y. (7.68)
V- SCr

"

Figure 7.41 A An input voltage signal. When ¢ lies between ¢, and 24,

e 1
vo="%c | (=Vidy - &TV;;II
[ f
v,(1)
I 2V <= (7.69)
RC;, RC, " " '
0 t
Figure 7.42 shows a sketch of v,(¢) versus t. Clearly, the output voltage is
Vil an inverted, scaled replica of the integral of the input voltage.
RC; The output voltage is proportional to the integral of the input voltage
only if the op amp operates within its linear range, that is, if it doesn’t sat-
Figure 7.42 A The output voltage of an integrating urate. Examples 7.14 and 7.15 further illustrate the analysis of the inte-

amplifier. grating amplifier.
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Assume that the numerical values for the signal
voltage shown in Fig. 7.41 are V,, = S0 mV and
{y = 1s. This signal voltage is applied to the
integrating-amplifier circuit shown in Fig. 7.40. The
circuit parameters of the amplifier are R, = 100 kQ},
Cy = 0.1 F, and Ve¢ = 6 V. The initial voltage on
the capacitor is zcro.

a) Calculate v,(¢).
b) Plot v,(¢) versus t.

Solution
a) ForO =t = 15,

-1

v, = ; =50 X 107 + 0
(100 x 10%(0.1 X 107%)

==V, 0=¢=ls.
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Forl =t = 25,

v, = (5t — 10) V.

b) Figure 7.43 shows a plot of v,,(t) versus t.

v.(1) (V)

0 2 1(s)

—_—— e e

—SF————= ==

Figure 7.43 A The output voltage for Example 7.14.

S ARER Analyzing an Integrating Amplifier that has Sequential Switching

At the instant the switch makes contact with termi-
nal a in the circuit shown in Fig. 7.44, the voltage on
the 0.1 uF capacitor is 5 V. The switch remains at
terminal a for 9 ms and then moves instantaneously
to terminal b. How many milliseconds after making
contact with terminal b does the operational ampli-
fier saturate?

a

100 kQ

b =9ms

8V

10V

Figure 7.44 A The circuit for Example 7.15.

Solution

The expression for the output voltage during the
time the switch is at terminal a is

1 t
-5 - — —10) d
.IO_QA( )dy
= (=5 + 10001) V.

it

v()

Thus, 9 ms after the switch makes contact with ter-
minal a, the output voltage is =5 + 9, 0or4 V.

The expression for the output voltage after the
switch moves to terminal b is

g1

1
v, = 4 — s 8d
1072 Joxi0- Y

=4 - 800(t — 9 X 107

= (11.2 — 800¢) V.

During this time interval, the voltage is decreas-
ing, and the operational amplifier eventually satu-
rates at —6 V. Therefore we set the expression for v,
equal to —6 V to obtain the saturation time ¢,

11.2 — 800, = —6,
or
t, = 21.5 ms.

Thus the integrating amplifier saturates 21.5 ms
after making contact with terminal b.
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/ASSESSMENT PROBLEMS

Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor

7.9

There is no energy stored in the capacitor at
the time the switch in the circuit makes contact
with terminal a. The switch remains at position
a for 32 ms and then moves instantaneously to
position b. How many milliseconds after mak-
ing contact with terminal a does the op amp

From the examples, we see that the integrating amplifier can perform
the integration function very well, but only within specified limits that
avoid saturating the op amp. The op amp saturates due to the accumula-
tion of charge on the feedback capacitor. We can prevent it from saturat-
ing by placing a resistor in parallel with the feedback capacitor. We
examine such a circuit in Chapter 8.

Note that we can convert the integrating amplifier to a differentiating
amplifier by interchanging the input resistance R; and the feedback capac-
itor C;. Then

dv;
S

v, = (7.70)

We leave the dertvation of Eq. 7.70 as an exercise for you. The differentiat-
ing amplifier is seldom used because in practice it is a source of unwanted
or noisy signals.

Finally, we can design both integrating- and differentiating-amplifier
circuits by using an inductor instead of a capacitor. However, fabricating
capacitors for integrated-circuit devices is much easier, so inductors are
rarely used in integrating amplifiers.

7.10 a) When the switch closes in the circuit
shown, there is no energy stored in the
capacitor. How long does it take to saturate
the op amp?

b) Repeat (a) with an initial voltage on the
capacitor of 1V, positive at the upper

saturate? terminal.
10kQ 40 kQ)
0.2 uF AW A
40 kQ a I l
160 kQ) ~ 0V
10V 90kQ :+ —e
b t =32 ms by 15V
5V i, 6.8 kQ)

v ;

Answer: (a) 1.11 ms;

Answer: 262 ms. (b) 1.76 ms.

NOTE: Also try Chapter Problems 7.95 and 7.96.



Practical Perspective
A Flashing Light Circuit

We are now ready to analyze the flashing light circuit introduced at the
start of this chapter and shown in Fig. 7.45. The lamp in this circuit
starts to conduct whenever the lamp voltage reaches a value Vj,,x. During
the time the lamp conducts, it can be modeled as a resistor whose resist-
ance is R;. The lamp will continue to conduct until the lamp voltage
drops to the value V.. When the lamp is not conducting, it behaves as
an open circuit.

Before we develop the analytical expressions that describe the behav-
ior of the circuit, let us develop a feel for how the circuit works by noting
the following. First, when the lamp behaves as an open circuit, the dc
voltage source will charge the capacitor via the resistor R toward a value
of V, volts. However, once the lamp voltage reaches V., it starts con-
ducting and the capacitor will start to discharge toward the Thévenin
voltage seen from the terminals of the capacitor. But once the capacitor
voltage reaches the cutoff voltage of the lamp (V). the lamp will act as
an open circuit and the capacitor will start to recharge. This cycle of
charging and discharging the capacitor is summarized in the sketch shown
in Fig. 7.46.

In drawing Fig. 7.46 we have chosen ¢ = 0 at the instant the capacitor
starts to charge. The time ¢, represents the instant the lamp starts to con-
duct, and ¢, is the end of a complete cycle. We should also mention that in
constructing Fig. 7.46 we have assumed the circuit has reached the repeti-
tive stage of its operation. Our design of the flashing light circuit requires
we develop the equation for vy (¢) as a function of Viyay, Vigine Vs R, C, and
R; for the intervals 0 to ¢, and ¢, to ..

To begin the analysis, we assume that the circuit has been in operation
for a long time. Let ¢ = 0 at the instant when the lamp stops conducting.
Thus, at ¢ = 0, the lamp is modeled as an open circuit, and the voltage drop
across the lamp is Vi, as shown in Fig. 7.47.

From the circuit, we find

v (0) =V,
vL(O) = Vine
7 = RC.

Thus, when the lamp is not conducting,
vL(t) = V; + (Vmin - Vs)e—t/RC'

How long does it take before the lamp is ready to conduct? We can find this
time by setting the expression for v;(¢) equal to V;,,, and solving for z. If
we call this value t,, then

Vmin - Vs

t, = RCIn .
¢ Vmax - Vs

When the lamp begins conducting, it can be modeled as a resistance R;,
as seen in Fig. 7.48. In order to find the expression for the voltage drop
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R
+ AWV

+ /

—

Vs - C_’% vL -

~

- N\
— Lamp
Figure 7.45 A A flashing light circuit.
VL
Vmax I~
etc.
Vmin
| |
t, t. t

Figure 7.46 A Lamp voltage versus time for the
circuit in Fig. 7.45.

—~ U L

+

I

I
Y

Figure 7.47 A The flashing light circuitatz = 0,
when the lamp is not conducting.

R
A~
v 1 I
Vs‘ - C TvL R,
Figure 7.48 A The flashing light circuit at ¢ = ¢,,
when the lamp is conducting.
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across the capacitor in this circuit, we need to find the Thévenin equivalent
as seen by the capacitor. We leave to you to show, in Problem 7.106, that
when the lamp is conducting,

'UL([) = VTh + (Vmax - VTh)e_(I*(")/Tr

where
Ry
Vi = ot
™= R+ RLV‘
and
_ RR,C
TTRHR,

We can determine how long the lamp conducts by setting the above expres-
sion for v (¢) to V;;, and solving for (¢, — ¢,), giving

Vmax - VTh
Vain = V1

RR; C
(te — t,) = 5—=

_R+RL1n

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 7.103-7.105.

Summary

A first-order circuit may be reduced to a Thévenin (or
Norton) equivalent connected to either a single equiva-
lent inductor or capacitor. (See page 214.)

The natural response is the currents and voltages that
exist when stored energy is released to a circuit that
contains no independent sources. (See page 212.)

The time constant of an RL circuit equals the equiva-
lent inductance divided by the Thévenin resistance as
viewed from the terminals of the equivalent inductor.
(See page 216.)

The time constant of an RC circuit equals the equiva-
lent capacitance times the Thévenin resistance as
viewed from the terminals of the equivalent capacitor.
(See page 221.)

The step response is the currents and voltages that
result from abrupt changes in dc sources connected to a
circuit. Stored energy may or may not be present at the
time the abrupt changes take place. (See page 224.)

3

The solution for either the natural or step response of
both RL and RC circuits involves finding the initial and
final value of the current or voltage of interest and the
time constant of the circuit. Equations 7.59 and 7.60
summarize this approach. (See page 232.)

Sequential switching in first-order circuits is analyzed
by dividing the analysis into time intervals correspon-
ding to specific switch positions. Initial values for a par-
ticular interval are determined from the solution
corresponding to the immediately preceding interval.
(See page 236.)

An unbounded response occurs when the Thévenin
resistance is negative, which is possible when the
first-order circuit contains dependent sources. (See
page 240.)

An integrating amplifier consists of an ideal op amp, a
capacitor in the negative feedback branch, and a resis-
tor in series with the signal source. It outputs the inte-
gral of the signal source, within specified limits that
avoid saturating the op amp. (See page 241.)
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73

PSPICE
MULTISIM

74

PSPICE
MULTISIM

In the circuit in Fig. P7.1, the voltage and current
expressions are

v =160V, ¢ =0%
i =641 A, t=0.
Find
a) R
b) 7 (in milliseconds).
c) L.

d) the initial energy stored in the inductor.

e) the time (in milliseconds) it takes to dissipate
60% of the initial stored energy.

Figure P7.1
——

+

L ¢ g R

a) Usc component values from Appendix H to create
a first-order RL circuit (see Fig. 7.4) with a time
constant of 1 ms. Use a single inductor and a net-
work of resistors, if necessary. Draw your circuit.

b) Suppose the inductor you chose in part (a) has
an initial current of 10 mA. Write an expression
for the current through the inductor for ¢ = 0.

¢) Using your result from part (b), calculate the
time at which half of the initial energy stored in
the inductor has been dissipated by the resistor.

The switch in the circuit in Fig. P7.3 has been open
for a long time. At ¢ = 0 the switch is closed.

a) Determine i,(0%) and i,(c0).

b) Determine i,(t) fort = 0.

¢) How many milliseconds after the switch has been
closed will the current in the switch equal 3 A?

Figure P7.3

5Q 100

The switch in the circuit in Fig. P7.4 has been closed
for a long time before opening at ¢+ = 0.

a) Find {(07) and i»(07).
b) Find /,(0%) and i,(0").

7.5

7.6

PSPICE
MULTISIM
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¢) Find i (¢) fort = 0.
d) Find is(¢) fort = 0",
e) Explain why i,(07) # i,(0").

Figure P7.4

500 §) >< .

y
t=10 i\

400 mH

The switch shown in Fig. P7.5 has been open a long
time before closing at ¢t = 0.

a) Find i,(07).
b) Find i, (07).
c¢) Find i,(0%).
d) Find i, (0").
e) Find i ,(o0).
f) Find i, (00).
g) Write the expression for i;(¢) fort = 0.
h) Find v, (07).
i) Find v, (0%).

1) Find v, (o0).

k) Write the expression for v, (¢) for t = 0"
1) Write the expression for i,(¢) for t = 0",

Figure P7.5

100 40 Q

209

The switch in the circuit in Fig. P7.6 has been closed a
long time. At = 0 it is opened. Find i,(¢) for = 0.

Figure P7.6

1245 Q iy

-

40 1.50

20 10Q
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7.8

7.9

Response of First-Order RL and RC Circuits

In the circuit shown in Fig. P7.7, the switch makes
contact with position b just before breaking contact
with position a. As already mentioned, this is
known as a make-before-break switch and is
designed so that the switch does not interrupt the
current in an inductive circuit. The interval of time
between “making” and “breaking” is assumed to be
negligible. The switch has been in the a position for
along time. At ¢ = 0 the switch is thrown from posi-
tion a to position b.

a) Determine the initial current in the inductor.

b) Determine the time constant of the circuit
fort > 0.

¢) Find i, v, and v, for ¢t = 0.

d) What percentage of the initial energy stored in
the inductor is dissipated in the 72 ) resistor
15 ms after the switch is thrown from position a
to position b?

Figure P7.7
40 4

The switch in the circuit seen in Fig. P7.8 has been
in position 1 for a long time. At ¢ = 0, the switch
moves instantaneously to position 2. Find the value
of R so that 10% of the initial energy stored in the
10 mH inductor is dissipated in R in 10 us.

Figure P7.8

SA 100 ©2

In the circuit in Fig. P7.8, let [, represent the dc cur-
rent source, o represent the fraction of initial
energy stored in the inductor that is dissipated in ¢,,
seconds, and L represent the inductance.

a) Show that

oo Lin0/0 = o)
2,

b) Test the expression derived in (a) by using it to
find the value of R in Problem 7.8.

7.10

7.11

PSPICE
MULTISIM

7.12

PSPICE
MULTISIM

In the circuit in Fig. P7.10, the switch has been
closed for a long time before opening at t = 0.

a) Find the value of L so that v,(¢) equals 0.5 v,(0%)
when ¢t = 1 ms.

b) Find the percentage of the stored energy that
has been dissipated in the 10 () resistor when
t = 1ms.

Figure P7.10

+

100 v,

In the circuit shown in Fig. P7.11, the switch has
been in position a for a long time. At # = 0, it moves
instantaneously from a to b.

a) Find i,(z) fort = 0.

b) What is the total energy delivered to the 8 O
resistor?

¢) How many time constants does it take to deliver
95% of the energy found in (b)?

Figure P7.11

The switch in the circuit in Fig. P7.12 has been in
position 1 for a long time. At¢ = 0, the switch moves
instantaneously to position 2. Find v,(¢) for t = 0.

Figure P7.12

r=90 Sz !
o %

120 1 40 72 mH

Vo $40Q 100?

7.13

7.14

For the circuit of Fig. P7.12, what percentage of the
initial energy stored in the inductor is eventually
dissipated in the 40 Q) resistor?

The switch in Fig. P7.14 has been closed for a long
time before opening at ¢ = 0. Find

a) iy (t), t = 0.
b) v, (1), t = 0%,
c) ix(t), t = 0%


http://P7.ll
http://P7.ll

Figure

P7.14

40Q

]

120V 260 Q2 250 mH

7.15

7.16
PSPICE
MULTISIM

7.17

PSPICE
MULTISIM

7.18

What percentage of the initial energy stored in the
inductor in the circuit in Fig. P7.14 is dissipated by
the 60 ) resistor?

The switch in the circuit in Fig. P7.16 has been
closed for a long time before opening at ¢ = (. Find
v,(t) for t = 0*.

Figure P7.16

—® L4

The 240V, 2 £} source in the circuit in Fig. P7.17 is
inadvertently short-circuited at its terminals a,b. At
the time the fault occurs, the circuit has been in
operation for a long time.

a) What is the initial value of the current i, in the
short-circuit connection between terminals a,b?

b) What is the final value of the current i ,?

¢) How many microseconds after the short circuit
has occurred is the current in the short equal
to 114 A?

Figure P7.17

20
— AN —

[ X~

109 150

2mH 6 mH

ge

The two switches in the circuit seen in Fig. P7.18 are
synchronized. The switches have been closed for a
long time before opening at t = 0.

a) How many microseconds after the switches are
open is the energy dissipated in the 4 k() resis-
tor 10% of the initial energy stored in the 6 H
inductor?

b) At the time calculated in (a), what percentage of
the total energy stored in the inductor has been
dissipated?

Problems 249

Figure P7.18

t=10

80 k()

L4 & &

7.19 The two switches shown in the circuit in Fig. P7.19

BSPICE
MULTISIM

operate simultaneously. Prior to ¢ = 0 each switch
has been in its indicated position for a long time. At
t = 0 the two switches move instantaneously to
their new positions. Find

a) v,(t),t = 0.
b) i(t),t = 0.
Figure P7.19

7.20 For the circuit seen in Fig. P7.19, find

a) the total energy dissipated in the 7.5 k) resistor.
b) the energy trapped in the ideal inductors.

Section 7.2

7.21 In the circuit in Fig. P7.21 the voltage and current

expressions are

v=T2YV f=0;

i =9 mA, = 0%
Find
a) R
b) C.

¢) 7 (in milliseconds).

d) the initial energy stored in the capacitor.

e) how many microseconds it takes to dissipate
68% of the initial energy stored in the capacitor.

Figure P7.21
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7.23

7.24

PSPICE
MULTISIM

7.25

Response of First-Order RL and RC Circuits

a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.11) with a
time constant of 50 ms. Use a single capacitor
and a network of resistors, if necessary. Draw
your circuit.

b) Suppose the capacitor you chose in part (a) has an
initial voltage drop of 50 V. Write an expression for
the voltage drop across the capacitor for r = 0.

c) Using you result from part (b), calculate the
time at which the voltage drop across the capac-
itor has reached 10V.

The switch in the circuit in Fig. P7.23 has been in
position a for a long time and v, = 0 V. At t = 0,
the switch is thrown to position b. Calculate

a) i,v;, and v, fort = 0%,
b) the energy stored in the capacitor at ¢ = 0.

c) the energy trapped in the circuit and the total
energy dissipated in the 25 kQ resistor if the
switch remains in position b indefinitely.

Figure P7,23
33k} 45 b

40V

The switch in the circuit in Fig. P7.24 is closed at
= ( after being open for a long time.

a) Find /;(07) and i5(07).

b) Find i,(0%) and i»(0%).

c) Explain why i;(07) = ,(0%).
d) Explain why i5(07) # i,(0).
e) Find i;(¢) fort = 0.

f) Find iy(t) fort = 0*.

Figure P7.24
100 mA

In the circuit shown in Fig. P7.25, both switches
operate together; that is, they either open or close at
the same time. The switches are closed a long time
before opening at t = 0.

a) How many microjoulcs of energy have been
dissipated in the 12 kQ resistor 12 ms after the
switches open?

b) How long does it take to dissipate 75% of the
initially stored energy?

Figure P7.25
=20
1.8kQ ><
Y j_ : \
10
120V ?#FT 12k03  68kOE

7.26

PSPICE
MULTISIM

Both switches in the circuit in Fig. P7.26 have been
closed for a long time. At ¢ = 0, both switches open
simultaneously.

a) Find i (¢) for¢ = 0.
b) Find v,(f) fort = 0.

c) Calculate the energy (in microjoules) trapped in
the circuit.

Figure P7.26

it
6 kQ T 300 nF n,,Téoo nF 3kQ

7.27 After the circuit in Fig. P7.27 has been in operation
for a long time, a screwdriver is inadvertently con-
nected across the terminals a,b. Assume the resist-
ance of the screwdriver is negligible.

PSPICE
MULTISIM

a) Find the current in the screwdriver at ¢ = 0* and
t = 00,

b) Derive the expression for the current in the
screwdriver for ¢ = 0%,

Figure P7.27
a
5A CD 300
0.50Q
T
. .

7.28 The switch in the circuit seen in Fig. P7.28 has been
in position x for a long time. At ¢ = 0, the switch
moves instantaneously to position y.

a) Find « so that the time constant for z > 0 is
40 ms.

b) For the « found in (a), find v,.



7.29

7.30

PSPICE
MULTISIM

7.31

PSPICE
MULTISIM

7.32

Figure P7.28

a) In Problem 7.28, how many microjoules of
energy are generated by the dependent current
source during the time the capacitor discharges
to0V?

b) Show that for ¢+ = 0 the total energy stored and
generated in the capacitive circuit equals the
total energy dissipated.

The switch in the circuit in Fig. P7.30 has been in
position 1 for a long time before moving to posi-
tion 2 at ¢ = 0. Find i,(¢) for t = 0"

Figure P7.30

47k 1

<

At the time the switch is closed in the circuit in

Fig. P7.31, the voltage across the paralleled capaci-

tors is 50 V and the voltage on the 250 nF capacitor

is40V.

a) What percentage of the initial energy stored in
the three capacitors is dissipated in the 24 kQ)
resistor?

b) Repeat (a) for the 400 ) and 16 k(2 resistors.
c) What percentage of the initial energy is trapped
in the capacitors?
Figure P7.31
250 nF

— ']

+ 40V —

200 nF/—l-\rs(‘i\/jT 800 nF

At the time the switch is closed in the circuit shown

in Fig. P7.32, the capacitors are charged as shown.

a) Find v,(¢) fort = 0*.

b) What percentage of the total energy initially
stored in the three capacitors is dissipated in the
250 k€ resistor?

400 Q

=

24 kQ)
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¢) Find v,(¢) fort = 0.
d) Find v,(¢) fort = 0.

e) Find the energy (in millijoules) trapped in the
ideal capacitors.

Figure P7.32

)

X
+ \(
/ =

5V J‘MF o)
il

b +

"

Z‘MF% 30V

Section 7.3

7.33

7.34

7.35

PSPICE
MULTISIM

The current and voltage at the terminals of the
inductor in the circuit in Fig. 7.16 are

i) = (4 + 474 A, t=0;

t = 0"

v(r) = —80e "V,

a) Specify the numerical values of V;, R, I,, and L.

b) How many milliseconds after the switch has
been closed does the energy stored in the induc-
tor reach 9 J?

a) Use component values from Appendix H to
create a first-order RL circuit (see Fig. 7.16)
with a time constant of 8 us. Use a single induc-
tor and a network of resistors, if necessary.
Draw your circuit.

b) Suppose the inductor you chose in part (a) has
no initial stored energy. At ¢ = 0, a switch con-
nects a voltage source with a value of 25 V in
series with the inductor and equivalent resist-
ance. Write an expression for the current
through the inductor for ¢ = 0.

c) Using your result from part (b), calculate the
time at which the current through the inductor
reaches 75% of its final value.

The switch in the circuit shown in Fig. P7.35 has
been closed for a long time before opening at ¢ = 0.

a) Find the numerical expressions for i,(t) and
v,(t) fort = 0.

b) Find the numerical values of v, (0%) and v,(0%).
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Figure P7.35
40 4mH ‘o

v, 216 Q SA

7.36 After the switch in the circuit of Fig. P7.36 has been
open for a long time, it is closed at ¢ = (). Calculate
(a) the initial value of i; (b) the final value of i
(c) the time constant for ¢t = 0; and (d) the numeri-
cal expression for i(t) when t = 0.

Figure P7.36

5k 4kQ 75 mH

20kQ

7.37 The switch in the circuit shown in Fig. P7.37 has
PP been in position a for a long time. At ¢ = 0, the
MULTISIM . . ..

switch moves instantaneously to position b.

a) Find the numerical expression for i,(#) when
t = 0.

b) Find the numerical expression for w,(f) for
t= 0"

Figure P7.37

v, 240 Q 40 mH

AAAS

7.38 a) Derive Eq.7.47 by first converting the Thévenin
equivalent in Fig. 7.16 to a Norton equivalent
and then summing the currents away from the
upper node, using the inductor voltage v as the
variable of interest.

b) Use the separation of variables technique to find
the solution to Eq. 7.47. Verify that your solution
agrees with the solution given in Eq. 7.42.

7.39 The switch in the circuit shown in Fig. P7.39 has
been closed for a long time. The switch opens at
t=0.Fort = 0"

a) Find v,(t) as a function of I, R;, R,,and L.

b) Explain what happens to v,(¢) as R, gets larger
and larger.

c) Find wgw as a function of [, Ry, Ry, and L.

d) Explain what happens to vsw as R, gets larger
and larger.

Figure P7.39

7<I=()

7

R,

M
+ U — -+
Iy ¢ Rj Lyv)

7.40 The switch in the circuit in Fig. P7.40 has been
closed for a long time. A student abruptly opens the
switch and reports to her instructor that when the
switch opened, an electric arc with noticeable per-
sistence was established across the switch, and at
the same time the voltmeter placed across the coil
was damaged. On the basis of your analysis of the
circuit in Problem 7.39, can you explain to the stu-
dent why this happened?

Figure P7.40

R X}:O

1% d'Arsonval
bb
voltmeter

7.41 The switch in the circuit in Fig. P7.41 has been
PPIE open a long time before closing at ¢ = 0. Find v,(¢)

WM for t = OF,
Figure P7.41
109 50 =10 .
+ TX
20mAZ15Q v,54mH

%8 Q 9y 50 mA

7.42 The switch in the circuit in Fig. P7.42 has been open a

MZSL:‘;M long time before closing at# = 0. Find i,(¢) for ¢ = 0.

Figure P7.42

80 mH 10 20 0
— Wt
i,(1) + vy —
=1
150% 0.8, 5Q (i)&mv
280V




7.43 The switch in the circuit in Fig. P7.43 has been
e open a long time before closing at r = 0. Find v,(?)

MO for ¢ = OF.
Figure P7.43
]
t=0
20 mH 100
+ 400 CD ISA
¥, ¢ 80 mH S50V

7.44 There is no energy stored in the inductors L; and L,
at the time the switch is opened in the circuit shown
in Fig. P7.44.

a) Derive the expressions for the currents /,(¢) and
() fort = 0.

b) Use the expressions derived in (a) to find i;(00)
and i,(00).

Figure P7.44

7.45 The make-before-break switch in the circuit of
espice  Fig. P7.45 has been in position a for a long time. At
MUTEIM ¢ =, the switch moves instantaneously to posi-

tion b. Find

a) v,(t), t = 0%,
b) (1), t = 0.
c) L), t =0.

Figure P7.45

40 mH v, 3120 Q CDso mA

7.46

PSPICE
MULTISIM

The switch in the circuit in Fig. P7.46 has been in
position 1 for a long time. At t = 0 it moves instan-
taneously to position 2. How many milliseconds
after the switch operates does v, equal 100 V?

Problems 253

Figure P7.46

—2
1 /
7

10 Q

t=10

+

50V 3H 1.5H ©,$40Q

7.47 For the circuit in Fig. P7.46, find (in joules):
a) the total energy dissipated in the 40 ) resistor;
b) the energy trapped in the inductors;
c¢) the initial energy stored in the inductors.

7.48 The current and voltage at the terminals of the
capacitor in the circuit in Fig. 7.21 are

i(t) = 3e73" mA, t=0";
v(r) = (40 — 247V, = 0.

a) Specify the numerical values of /|,
and 7.

Vo, R, C,

b) How many microseconds after the switch has
been closed does the energy stored in the capac-
itor reach 81% of its final value?

7.49 a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.21) with a
time constant of 250 ms. Use a single capacitor
and a network of resistors, if necessary. Draw
your circuit.

b) Suppose the capacitor you chose in part (a) has an
initial voltage drop of 100 V.At¢ = 0,aswitch con-
nects a current source with a value of 1 mA in par-
allel with the capacitor and equivalent resistance.
Write an expression for the voltage drop across
the capacitor for ¢ = 0.

Using your result from part (b), calculate the

time at which the voltage drop across the capici-

tor reaches 50 V.

7.50 The switch in the circuit shown in Fig. P7.50 has
ek been closed a long time before opening at ¢z = 0.

MULTISIM . L. .
a) What is the initial value of i,(¢)?
b) What is the final value of i,(¢)?
¢) Whatis the time constant of the circuit for ¢t = 0?

d) What is the numerical expression for i,(t) when
t = 0%

e) What is the numerical expression for v,(¢) when
t = 0%?
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Figure P7.50

2kQ 32kQ
MA——9 W\
+ ——
(1)

[4
18kQ vo(1) “~0.8 uF

7.51 The switch in the circuit shown in Fig. P7.51 has
e been closed a long time before opening at ¢ = 0.
MULTISIM FOI‘[ > 0+, ﬁl’ld

a) v,(t).
b) i,(1).
c) i(r).
d) i) ().
e) i;(0%).

Figure P7.51
4 8KQ

»-

T
SmA (1)) 15 kQ2i.(7) | 360 KO 2,7 500 nF
t=0 ' T

7.52 The switch in the circuit seen in Fig. P7.52 has been in
pseice  position a for a long time. At¢ = 0, the switch moves
MU instantaneously to position b. For ¢ = 07, find

a) v,(t).
b) i,(¢).
) vy(1).
d) 'ug(()*).

Figure P7.52

125kQ

7.83 The circuit in Fig. P7.53 has been in operation for a

e Jong time. At ¢ = 0, the voltage source reverses

"SI polarity and the current source drops from 3 mA to
2 mA. Find v,(t) fort = 0.

Figure P7.53
10kQ

4kO

24k 2 0.05 ,U,Ij\ v,

7.54 The switch in the circuit scen in Fig. P7.54 has been

e in position a for a long time. At ¢ = 0, the switch

"M moves instantaneously to position b. Find v,(f) and
i,(t) fort = 0"

Figure P7.54

10 mA 15mA

b/ a

7.55 Assume that the switch in the circuit of Fig. P7.55
has been in position a for a long time and that at
t = 0 it is moved to position b. Find (a) v(0");
(b) ve(00); (c) 7 fort > 0; (d) i(07); () ve t = 03
and (f) i,f = 0"

Figure P7.55

400k,

50V 30V

7.56 The switch in the circuit of Fig. P7.56 has been in
position a for a long time. At ¢ = 0 the switch is
moved to position b. Calculate (a) the initial voltage
on the capacitor; (b) the final voltage on the capaci-
tor; (c) the time constant (in microseconds) for
t > 0; and (d) the length of time (in microseconds)
required for the capacitor voltage to reach zero
after the switch is moved to position b.

Figure P7.56

40 kQ Cb 1.5 mA

7.57 The switch in the circuit in Fig. P7.57 has been in
st position a for a long time. At ¢ = 0, the switch
"M moves instantaneously to position b. At the instant

the switch makes contact with terminal b, switch 2
opens. Find v,(¢) for ¢t = 0.



Figure P7.57

\
il

' $20kQ SmA /2

7.58 The switch in the circuit shown in Fig. P7.58 has
rseice  been in the OFF position for a long time. At ¢t = 0,
MU the switch moves instantaneously to the ON posi-

tion. Find v,(¢) fort = 0.

Figure P7.58

7.59 Assume that the switch in the circuit of Fig. P7.58

e has been in the ON position for a long time before

MITSIM - switching instantancously to the OFF position at
t = 0. Find v,(¢t) fort = 0.

7.60 The switch in the circuit shown in Fig. P7.60 opens at

rseice ¢ = () after being closed for a long time. How many

O milliseconds after the switch opens is the energy
stored in the capacitor 36% of its final value?

7.61 a) Derive Eq. 7.52 by first converting the Norton
equivalent circuit shown in Fig. 7.21 to a Thévenin
cquivalent and then summing the voltages around
the closed loop, using the capacitor current i as the
relevant variable.

b) Use the separation of variables technique to find
the solution to Eq. 7.52. Verify that your solution
agrees with that of Eq. 7.53.

7.62 There is no energy stored in the capacitors C; and
C, at the time the switch is closed in the circuit seen
in Fig. P7.62.

a) Derive the expressions for v,(t) and v,(¢) for
t = 0.

b) Use the expressions derived in (a) to find v,(0c0)
and v,(00).

Figure P7.60 i
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R, >St:()
A AA% 4

v (1)

¢
I %7

G, (1)
-T»

Figure P7.62

7.63 The switch in the circuit in Fig. P7.63 has been in
position x for a long time. The initial charge on the
10 nF capacitor is zero. At t = 0, the switch moves
instantaneously to position y.

a) Find v,(¢) fort = 0"
b) Find v,(?) for¢ = 0.

Figure P7.63

10 k2

7.64 The switch in the circuit of Fig. P7.64 has been in
pseice  position a for a long time. At ¢ = 0, it moves instan-
MO taneously to position b. For ¢ = 0%, find

a) v,(1).
b) i,(¢).
c) v(¥).
d) vy(2).
e) the energy trapped in the capacitors as t — 0.

Figure P7.64

22kQ A, 625kQ

80V

120 uA 33kQ

r=10

47k 2 250, 16 k2 0.25 #F%
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Section 7.4

7.65 Repeat (a) and (b) in Example 7.10 if the mutual
inductance is reduced to zero.

7.66 There is no energy stored in the circuit in Fig. P7.66
psPice gt the time the switch is closed.

MULTISIM
a) Find i(¢) fort = 0.
b) Find v;(¢) for ¢t = 0*,
¢) Find v,(t) fort = 0.

d) Do your answers make sense in terms of known
circuit behavior?

Figure P7.66

+ v (1) —
40Q X = 0 SH
\ AN +
25H
NITOH 0y(0)

7.67 Repeat Problem 7.66 if the dot on the 10 H coil is at

rsrice the top of the coil.
MULTTSIM

7.68 There is no energy stored in the circuit of Fig. P7.68
at the time the switch is closed.

a) Find i,(¢) fort = 0.
b) Find v,(t) fort = 0.
¢) Find i;(¢) fort = 0.
d) Find i»(¢) fort = 0.

e) Do your answers make sense in terms of known
circuit behavior?

Figure P7.68

2&? Xt=0_ -0
— iu * * ° / 5 H \
80V Uy ii SH 10H
1
B . [ ]

7.69 There is no energy stored in the circuit in Fig. P7.69
pseice  at the time the switch is closed.
A a) Find i, (t) for¢t = 0.
b) Find v,(¢) for ¢t = 0*.
c¢) Find i (¢) fort = 0.
d) Find i)(¢) fort = 0.
e) Do your answers make sense in terms of known
circuit behavior?

Figure P7.69

250 Q S¢r=0
A \+ o],-025H~
05H
10V v, ‘ 025 H
Y &)
— l.] °
Section 7.5

7.70 In the circuit in Fig. P7.70, switch A has been open

eseice and switch B has been closed for a long time. At

MU = 0, switch A closes. Five seconds after switch A
closes, switch B opens. Find i; (¢) for ¢t = 0.

Figure P7.70

10V

7.71 The action of the two switches in the circuit seen in

eseice  Fig. P7.71 is as follows. Fort < 0, switch 1 is in posi-

MULTSIM - tion a and switch 2 is open. This state has existed for

a long time. At ¢t = 0, switch 1 moves instanta-

neously from position a to position b, while switch 2

remains open. Ten milliseconds after switch 1 oper-

ates, switch 2 closes, remains closed for 10 ms and

then opens. Find v,(f) 25 ms after switch 1 moves to
position b.

Figure P7,71

ISA

7.72 For the circuit in Fig. P7.71, how many milliseconds
after switch 1 moves to position b is the energy
stored in the inductor 4% of its initial value?

7.73 The switch in the circuit shown in Fig. P7.73 has
rsice been in position a for a long time. At ¢ = 0, the
UM switch is moved to position b, where it remains for

1 ms. The switch is then moved to position ¢, where
it remains indefinitely. Find

a) i(0Y).

b) (200 us).
c) i(6 ms).
d) »(1” ms).
e) v(1" ms).



Figure P7.73

20A 80 mH

7.74 There is no energy stored in the capacitor in the cir-

pseice  cuit in Fig. P7.74 when switch 1 closes at £ = 0. Ten

"M microseconds later, switch 2 closes. Find v,,(1) for
t=0.

Figure P7.74

0V

7.75 The capacitor in the circuit seen in Fig. P7.75 has

e been charged to 300 V. At ¢ = 0, switch 1 closes,

MU causing the capacitor to discharge into the resistive

network. Switch 2 closes 200 us after switch 1

closes. Find the magnitude and direction of the cur-

rent in the second switch 300 us after switch 1
closes.

Figure P7.75

]
t =10
30 kQ) 60 k()
+
300V = ‘70 nF
120 kO 40k0

7.76 1In the circuit in Fig. P7.76,switch 1 has been in posi-
tion a and switch 2 has been closed for a long time.
At ¢t = 0, switch 1 moves instantaneously to posi-
tion b. Eight hundred microseconds later, switch 2
opens, remains open for 300 us, and then recloses.
Find », 1.5 ms after switch 1 makes contact with
terminal b.

Figure P7.76

0 + 800 us
I ok

7.5 mA § 3kQ
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7.77 For the circuit in Fig. P7.76, what percentage of the
eseice  initial energy stored in the 500 nF capacitor is dissi-
MM pated in the 3 k) resistor?

7.78 The switch in the circuit in Fig. P7.78 has been in
pseice  position a for a long time. At ¢ = 0, it moves instan-
WIS taneously to position b, where it remains for five
seconds before moving instantaneously to position
c.Find v, fort = 0.

Figure P7.78

SmA

7.79 The voltage waveform shown in Fig. P7.79(a) is
rseice  applied to the circuit of Fig. P7.79(b). The initial
UM current in the inductor is zero.

a) Calculate v,(t).
b) Make a sketch of v,(¢) versus ¢.
c) Findi,att = 5Sms.

Figure P7.79
v, (V)

80

0 25 ¢(ms)
(a) (b)

7.80 The current source in the circuit in Fig. P7.80(a)
esice  generates the current pulse shown in Fig. P7.80(b).
MM There is no energy stored at ¢ = 0.

a) Derive the numerical expressions for v,(¢) for
the time intervals ¢+ <0, 0 <t =< 75 us, and
TS5us =t < .

b) Calculate v, (75~ us) and v, (75" us).
c) Calculate i, (75~ us) and i, (75" us).

Figure P7.80

is (mA)
L,
- + 25
i 2kQ v, 250 mH
-~ 0 75 t(us)

(a) (®)
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7.81

PSPICE
MULTISIM

The voltage waveform shown in Fig. P7.81(a) is
applied to the circuit of Fig. P7.81(b). The initial
voltage on the capacitor is zero.

a) Calculate v,(z).
b) Make a sketch of v,(¢) versus ¢.

Figure P7.81
v (V)
50

10 nF

0 1 ¢(ms)
(a) (b)

7.82 The voltage signal source in the circuit in Fig. P7.82(a)
pseice  js generating the signal shown in Fig. P7.82(b). There is
UM no stored energy at ¢ = 0.

a) Derive the expressions for v,(t) that apply in the
intervalst < 0; 0 =t = 4ms;4ms < ¢t < 8ms;
and8ms < t <o

b) Sketch v, and v, on the same coordinate axes.

c) Repeat (a) and (b) with R reduced to 50 k€.

Figure P7.82
R =200k§)

v (V)

100

t (ms)

—100

(®)

7.83 The current source in the circuit in Fig. P7.83(a)
eseie  generates the current pulse shown in Fig. P7.83(b).
"M There is no energy stored at ¢ = 0.

a) Derive the expressions for i,(¢) and v,(¢) for the

time intervals ¢ <0; 0 <t <2ms, and
2ms < t < 00,

b) Calculate i, (07); i, (0%); i,(0.0027); and
i,(0.002%).

c) Calculate v,(07); v,(0%); ,(0.0027); and
2,(0.002%).

d) Sketch i,(¢) versus ¢ for the interval
—lms <t < 4ms.
e) Sketch w,(t) versus ¢ for the interval
—1ms <t < 4ms.
Figure P7.83
2 t(ms)

(b)

Section 7.6
7.84

PSPICE
MULTISIM

The capacitor in the circuit shown in Fig. P7.84 is
charged to 20 V at the time the switch is closed. If
the capacitor ruptures when its terminal voltage
equals or exceeds 20 kV, how long does it take to
rupture the capacitor?

Figure P7.84

12 X 105y %0 KO
AN . |
+ Y L~ w
r=10 Iy
20V <25 uF 20 kQ

7.85 The switch in the circuit in Fig. P7.85 has been
pseice  closed for a long time. The maximum voltage rating
MOTEM - of the 1.6 wF capacitor is 14.4 kV. How long after
the switch is opened does the voltage across the
capacitor reach the maximum voltage rating?

Figure P7.85
1kQ

- 8 W' & &
R SR A P o
diy 2k} T1.6;LF!;' 4kQ SmA

7.86 The inductor current in the circuit in Fig. P7.86 is

e 25 mA at the instant the switch is opened. The

UM inductor will malfunction whenever the magnitude

of the inductor current equals or exceeds 5 A. How

long after the switch is opened does the inductor
malfunction?




Figure P7.86

2k0
& w o8-
+ vy -
oHS 25mA \A " 0
‘ 2 M4 2 X1 04, 4 kO
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Figure P7.88
Push button

b

7.87 The gap in the circuit seen in Fig. P7.87 will arc over

PSPICE
MULTISIM

whenever the voltage across the gap reaches 45 kV.
The initial current in the inductor is zero. The value
of B is adjusted so the Thévenin resistance with
respect to the terminals of the inductor is —5 k().

a) What is the value of 8?

b) How many microseconds after the switch has
been closed will the gap arc over?

Figure P7.87

5kQ
Sk .

40V 20kQ 3 Bi, 200 mH ‘Gap

7.88 The circuit shown in Fig. P7.88 is used to close the

switch between a and b for a predetermined length
of time. The electric relay holds its contact arms
down as long as the voltage across the relay coil
exceeds 5 V. When the coil voltage equals 5V, the
relay contacts return to their initial position by a
mechanical spring action. The switch between a and
b is initially closed by momentarily pressing the
push button. Assume that the capacitor is fully
charged when the push button is first pushed down.
The resistance of the relay coil is 25 k{}, and the
inductance of the coil is negligible.

a) How long will the switch between a and b
remain closed?

b) Write the numerical expression for i from the
time the relay contacts first open to the time the
capacitor is completely charged.

c) How many milliseconds (after the circuit
between a and b is interrupted) does it take the

2 uF == 25kQ F—nu]

d

d

o $4k0

—

P Electric
Drelay

| ] -

Section 7.7
7.89 The voltage pulse shown in Fig. P7.89(a) is applied

to the ideal integrating amplifier shown in
Fig. P7.89(b). Derive the numerical expressions for
v,(t) when v,(0) = 0 for the time intervals

a) t <O.

b) 0 < ¢ < 250 ms.

c) 250ms = ¢ < 500 ms.
d) 500 ms =<t < 0.

Figure P7.89
vy (mV)
200 +—
0 250 500 ¢ (ms)
—200
(a)
400 nF
I{
AN
25kQ 6V
AN =
' L .
t=10 ® -+ +
-6V
Ue i
v ;
(b)

7.90 Repeat Problem 7.89 with a 5 MQ resistor placed

PsPIcE  across the 400 nF feedback capacitor.
MULTISIM

capacitor to reach 85% of its final value?
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791 The energy stored in the capacitor in the circuit
eseice  shown in Fig. P7.91 is zero at the instant the switch
AT s closed. The ideal operational amplifier reaches
saturation in 15 ms. What is the numerical value of

R in kilo-ohms?

Figure P7.91

5.1kQ

7.92 At the instant the switch is closed in the circuit of
esrice  Fig. P7.91, the capacitor is charged to 6 V, positive at
TS the right-hand terminal. If the ideal operational
amplifier saturates in 40 ms, what is the value of R?

7.93 The voltage source in the circuit in Fig. P7.93(a) is

pseice  generating the triangular waveform shown in

MM Fig. P7.93(b). Assume the energy stored in the
capacitor is zero at ¢t = () and the op amp is ideal.

a) Derive the numerical expressions for v,(t) for
the following time intervals: 0 =1 = 1 us;
lus <t =3us;and3 us =t = 4 pus.

b) Sketch the output waveform between 0 and 4 us.

c) If the triangular input voltage continues to repeat

itself for ¢t > 4 us, what would you expect the
output voltage to be? Explain.

Figure P7.93
1k}
AN
\
=10
Vg Vo
v v
(a)
v, (V)
2 L—
| | ]
0 1 2\3/1 [ (us)
_2 -

7.94 There is no energy stored in the capacitors in the
PSPICE  circuit shown in Fig. P7.94 at the instant the two
MULTISIM . [
switches close. Assume the op amp is ideal.
a) Find v, as a function of v,, v, R, and C.
b) On the basis of the result obtained in (a),
describe the operation of the circuit.
¢) How long will it take to saturate the amplifier
if v, = 40mV; », = 15mV; R = 50k,
C =10nF; and Voc = 6 V?

Figure P7.94

7.95 At the time the double-pole switch in the circuit
PSPCE - shown in Fig. P7.95 is closed, the initial voltages on
T the capacitors are 12 V and 4 V, as shown. Find the
numerical expressions for v,(¢), v2(f), and vy (¢) that
are applicable as long as the ideal op amp operates

in its linear range.

Figure P7.95

+ —
v(l) 4V
- +

vult)

50 nF
T v

At the instant the switch of Fig. P7.96 is closed, the
voltage on the capacitor is 56 V. Assume an ideal
operational amplifier. How many milliseconds
after the switch is closed will the output voltage v,
equal zero?

15V

7.96

PSPICE
MULTISIM



Figure P7.96

33 kO 47 kO
20kQ
14V )
45V 380k0

Sections 7.1-7.7

7.97 The circuit shown in Fig. P7.97 is known as a

PSPICE
MULTISIM

monostable multivibrator. The adjective monostable
is used to describe the fact that the circuit has one
stable state. That is, if left alone, the electronic
switch T, will be ON, and T, will be OFF. (The opera-
tion of the ideal transistor switch is described in
detail in Problem 7.99.) T, can be turned OFF by
momentarily closing the switch S. After S returns to
its open position, T, will return to its ON state.

a) Show that if T, is on, T is OFF and will stay OFF.

b) Explain why T, is turned OFF when § is momen-
tarily closed.

c) Show that T, will stay OFF for RC In2s.

Figure P7.97

)
Ul

Pre2

7.98 The parameter values in the circuit in Fig. P7.97

are Voe=6V; R, =50kQ;

C = 250 pF; and R = 23,083 (.

a) Sketch v, versus ¢, assuming that after S is
momentarily closed, it remains open until the
circuit has reached its stable state. Assume S is
closed at ¢+ = 0. Make your sketch for the inter-
val =5 =t < 10 us.

b) Repeat (a) for iy, versus ¢.

RL =20 kQ,
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7.99 The circuit shown in Fig. P7.99 is known as an

PSPICE
MULTISIM

astable multivibrator and finds wide application in
pulse circuits. The purpose of this problem is to
relate the charging and discharging of the capaci-
tors to the operation of the circuit. The key to ana-
lyzing the circuit is to understand the behavior of
the ideal transistor switches Ty and T. The circuit is
designed so that the switches automatically alter-
nate between ON and OFF. When T, is OFF, T, is ON
and vice versa. Thus in the analysis of this circuit, we
assume a switch is either ON or OFF. We also assume
that the ideal transistor switch can change its state
instantaneously. In other words, it can snap from
OFF to ON and vice versa. When a transistor switch is
ON, (1) the base current i, is greater than zero,
(2) the terminal voltage vy, is zero, and (3) the ter-
minal voltage v, is zero. Thus, when a transistor
switch is ON, it presents a short circuit between the
terminals b,e and c,e. When a transistor switch is
OFF, (1) the terminal voltage vy, is negative, (2) the
base current is zero, and (3) there is an open circuit
between the terminals c,e. Thus when a transistor
switch is OFF, it presents an open circuit between
the terminals b,e and c,e. Assume that T, has been
ON and has just snapped OFF, while T, has been OFF
and has just snapped ON. You may assume that at
this instance, C, is charged to the supply voltage
Ve, and the charge on Cy is zero. Also assume
C] = Cz and R] = Rz = IORL.

a) Derive the expression for vy, during the inter-

val that T, is OFF.

b) Derive the expression for v, during the inter-
val that T, is OFF.

¢) Find the length of time T, is OFF.

d) Find the value of v, at the end of the interval
that T, is OFF.

e) Derive the expression for i, during the interval
that T, is OFF.

f) Find the value of iy, at the end of the interval
that T, is OFF.

g) Sketch v, versus t during the interval that T,
iS OFF.

h) Sketch #,; versus ¢ during the interval that T,
1S OFF.
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Figure P7.99

PSPICE
MULTISIM

- 4 Ubel Uhe2 e

7.100 The component values in the circuit of Fig. P7.99
are Vo = 9V; R, =3kQ; C;, = C, =2 nF; and
R, = R, = 18 k(.
a) How long is T, in the OFF state during one cycle
of operation?

b) How long is T, in the ON state during one cycle
of operation?

c) Repeat (a) for T.

d) Repeat (b) for T;.

e) At the first instant after T; turns ON, what is the
value of ij,,?

f) At the instant just before Ty turns OFF, what is
the value of ij,;,?

g) What is the value of v, at the instant just
before T, turns ON?

7.101 Repeat Problem 7.100 with C; =3 nF and
C, = 28nF. All other component values are
unchanged.

7.102 The astable multivibrator circuit in Fig. P7.99 is to
satisfy the following criteria: (1) One transistor
switch is to be oN for 48 us and OFF for 36 us for
each cycle: (2) R, =2kQ; (3) Ve =35V;
(4) Ry = Ry; and (5) 6R; = R; = S0R;. What are
the limiting values for the capacitors C, and C,?

7.103 Suppose the circuit in Fig. 7.45 models a portable

FRACTLCAL flashing light ci.rcui.t. Assume that four 1_.5 v battc1.‘-
ies power the circuit, and that the capacitor value is
10 uF. Assume that the lamp conducts when its
voltage reaches 4 V and stops conducting when its
voltage drops below 1 V. The lamp has a resistance
of 20 k) when it is conducting and has an infinite
resistance when it is not conducting,

a) Suppose we don’t want to wait more than 10 s in
between flashes. What value of resistance R is
required to meet this time constraint?

b) For the value of resistance from (a), how long
does the flash of light last?

7.104 1In the circuit of Fig. 7.45, the lamp starts to conduct
sl whenever the lamp voltage reaches 15 V. During
pseice  the time when the lamp conducts, it can be modeled
mursiv - as a 10 k€ resistor. Once the lamp conducts, it will
continue to conduct until the lamp voltage drops to
5 V. When the lamp is not conducting, it appears as
an open circuit. ¥V, =40V; R = 800k(; and

C =25 uF.
a) How many times per minute will the lamp

turn on?

b) The 800 k() resistor is replaced with a variable
resistor R. The resistance is adjusted until the
lamp flashes 12 times per minute. What is the
value of R?

7.105 In the flashing light circuit shown in Fig. 7.45, the
[PRACTICAL lamp can be modeled as a 1.3 k{2 resistor when it is

rseice  conducting. The lamp triggers at 900 V and cuts off
musin gt 300 V.

a) If V,=1000V, R =37k, and C = 250 uF,
how many times per minute will the light flash?

b) What is the average current in milliamps deliv-
ered by the source?

c) Assume the flashing light is operated 24 hours
per day. If the cost of power is 5 cents per kilowatt-
hour, how much does it cost to operate the light
per year?

7.106 a) Show that the expression for the voltage drop

peaal - across the capacitor while the lamp is conduct-
ing in the flashing light circuit in Fig. 7.48 is
given by

DL([) =V + (Vmax - V—l—h)e_(’_’ll)/T

where
R,
Vo, = ————V.
Th R + R[_ s
_ RR,C
TTR+ R,

b) Show that the expression for the time the lamp
conducts in the flashing light circuit in Fig. 7.48
is given by

RR,C

P ) _ Vmax - VTh
[ R + RL

Vmin - Vl"h '

(t, — In
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7.107 The relay shown in Fig. P7.107 connects the 30 V dc Figure P7.107

PRACTICAL generator to the dc bus as long as the relay current +
1 greater than 0.4 A. If the relay current drops to — 30V
0.4 A or less, the spring-loaded relay immediately L O v -

connects the dc bus to the 30 V standby battery. The

resistance of the relay winding is 60 ). The induc-

tance of the relay winding is to be determined.

a) Assume the prime motor driving the 30 V dc SDCBUS
generator abruptly slows down, causing the gen- 0V d Compresﬁ
erated voltage to drop suddenly to 21 V. What de rf(l::?' é springs DC loads
value of L will assure that the standby battery gen (R. L)C

will be connected to the de bus in (.5 seconds?

b) Using the value of L determined in (a), state
how long it will take the relay to operate if the
generated voltage suddenly drops to zero.
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Natural and Step
Responses of RLC Circuits

CH A P TER CONTENTS Irl thls chapter, discussion of the natural response and step
response of circuits containing both inductors and capacitors is

8.1 Introduction to the Natural Response of a o
Parallel RLC Circuit p. 266 limited to two simple structures: the parallel RLC circuit and the

8.2 The Forms of the Natural Response of a series RLC circuit. Finding the natural response of a parallel RL.C
Parallel RLC Circuit p. 270

8.3 The Step Response of a Parallel : .
RLC Circuit p. 280 branches by the release of energy stored in the inductor or capac-

8.4 The Natural and Step Response of a Series itor or both. The task is defined in terms of the circuit shown in
RLC Circuit p. 285

8.5 A Circuit with Two Integrating
Amplifiers p. 289

circuit consists of finding the voltage created across the parallel

Fig. 8.1 on page 266. The initial voltage on the capacitor, V), repre-
sents the initial energy stored in the capacitor. The initial current
through the inductor, /), represents the initial energy stored in the

‘/ CHAPTER OBJECTIVES inductor. If the individual branch currents are of interest, you can

. find them after determining the terminal voltage.

1 Be able to determine the natural response and
the step response of parallel RLC circuits.

2 Be able to determine the natural response and Fig. 8.2 on page 266. We are interested in the voltage that appears

the step response of series RLC circuits. across the parallel branches as a result of the sudden application

We derive the step response of a parallel RLC circuit by using

of a dc current source. Energy may or may not be stored in the
circuit when the current source is applied.

Finding the natural response of a series RLC circuit consists
of finding the current generated in the seriesconnected elements
by the release of initially stored energy in the inductor, capacitor,
or both. The task is defined by the circuit shown in Fig. 8.3 on
page 266. As before, the initial inductor current, /,, and the initial
capacitor voltage, V;, represent the initially stored energy. If any
of the individual element voltages are of interest, you can find
them after determining the current.

We describe the step response of a series RLC circuit in terms
of the circuit shown in Fig. 8.4 on page 266. We are interested in
the current resulting from the sudden application of the dc volt-
age source. Energy may or may not be stored in the circuit when
the switch is closed.

If you have not studied ordinary differential equations, deri-
vation of the natural and step responses of parallel and series
RLC circuits may be a bit difficult to follow. However, the results
are important enough to warrant presentation at this time. We
begin with the natural response of a parallel RLC circuit and
cover this material over two sections: one to discuss the solution
of the differential equation that describes the circuit and one to
present the three distinct forms that the solution can take. After

264



Practical Perspective
An Ignition Circuit
In this chapter we introduce the step response of an RLC cir-
cuit. An automobile ignition circuit is based on the transient
response of an RLC circuit. In such a circuit, a switching oper-
ation causes a rapid change in the current in an inductive
winding known as an ignition coil. The ignition coil consists
of two magnetically coupled coils connected in series. This
series connection is also known as an autotransformer. The
coil connected to the battery is referred to as the primary
winding and the coil connected to the spark plug is referred
to as the secondary winding. The rapidly changing current in
the primary winding induces via magnetic coupling (mutual
inductance) a very high voltage in the secondary winding.
This voltage, which peaks at from 20 to 40 kV, is used to
ignite a spark across the gap of the spark plug. The spark
ignites the fuel-air mixture in the cylinder.

‘ Ignition coil [
(autotransformerje

Secondary

Primary

\

 Fatatatesstcd |

1|

Spark l
Battery plug
o
) Capacitor
Switch” u (condenser)

(distributor point)

A schematic diagram showing the basic components of an
ignition system is shown in the accompanying figure. In
today’s automobile, electronic (as opposed to mechanical)
switching is used to cause the rapid change in the primary
winding current. An understanding of the electronic switching
circuit requires a knowledge of electronic components that is
beyond the scope of this text. However, an analysis of the
older, conventional ignition circuit will serve as an introduc-
tion to the types of problems encountered in the design of a
useful circuit.
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¢ u_"’ f[.l l iky

L L 4

+ @

Figure 8.1 A A circuit used to illustrate the natural
response of a parallel RLC circuit.

Figure 8.2 A A circuit used to illustrate the step
response of a parallel RLC circuit.

Figure 8.3 A A circuit used to illustrate the natural
response of a series RLC circuit.

£

Figure 8.4 A A circuit used to illustrate the step
response of a series RLC circuit.

C

introducing these three forms, we show that the same forms apply
to the step response of a parallel RLC circuit as well as to the natu-
ral and step responses of series RLC circuits.

8.1 Introduction to the Natural
Response of a Parallel RLC Circuit

The first step in finding the natural response of the circuit shown in Fig. 8.1
is to derive the differential equation that the voltage v must satisfy. We
choose to find the voltage first, because it is the same for each component.
After that, a branch current can be found by using the current-voltage
relationship for the branch component. We easily obtain the differential
equation for the voltage by summing the currents away from the top node,
where each current is expressed as a function of the unknown voltage v:

v 1 ! dv
r.2 + I, + C= =0. )
i A’Ud’r Iy+C p 0 (8.1)

We eliminate the integral in Eq. 8.1 by differentiating once with respect to ¢,
and, because [ is a constant, we get

+—+

dv v d*
— — = U. 8.2
dt L ¢ dr’ 0 (®2)

1
R

We now divide through Eq. 8.2 by the capacitance C and arrange the
derivatives in descending order:

dv 1dv v ©3)
df RC dr  LC ' '

Comparing Eq. 8.3 with the differential equations derived in Chapter 7
reveals that they differ by the presence of the term involving the second
derivative. Equation 8.3 is an ordinary, second-order differential equation
with constant coefficients. Circuits in this chapter contain both inductors and
capacitors, so the differential equation describing these circuits is of the sec-
ond order. Therefore, we sometimes call such circuits second-order circuits.

The General Solution of the Second-Order Differential
Equation

We can’t solve Eq. 8.3 by separating the variables and integrating as we
were able to do with the first-order equations in Chapter 7. The classical
approach to solving Eq. 8.3 is to assume that the solution is of exponential
form, that is, to assume that the voltage is of the form

v = Ae”, (8.4)

where A and s are unknown constants.

Before showing how this assumption leads to the solution of Eq. 8.3,
we need to show that it is rational. The strongest argument we can make in
favor of Eq. 8.4 is to note from Eq. 8.3 that the second derivative of the
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solution, plus a constant times the first derivative, plus a constant times the
solution itself, must sum to zero for all values of 1. This can occur only if
higher order derivatives of the solution have the same form as the solu-
tion. The exponential function satisfies this criterion. A second argument
in favor of Eq. 8.4 is that the solutions of all the first-order equations we
derived in Chapter 7 were exponential. It seems reasonable to assume that
the solution of the second-order equation also involves the exponential
function.

If Eq. 8.4 is a solution of Eq. 8.3, it must satisfy Eq. 8.3 for all values of ¢.
Substituting Eq. 8.4 into Eq. 8.3 generates the expression

As . Ae"
‘,2 LR oSt 4 28—
As“e RCL IC 0,
or
Ae* sZJriJrL =0 (8.5)
| RC LC ’ '

which can be satisfied for all values of ¢ only if A is zero or the parentheti-
cal term is zero, because ¢* # 0 for any finite values of st&. We cannot use
A = 0 as a general solution because to do so implies that the voltage is
zero for all time —a physical impossibility if energy is stored in either the
inductor or capacitor. Therefore, in order for Eq. 8.4 to be a solution of
Eq. 8.3, the parenthetical term in Eq. 8.5 must be zero, or

£+ —+-—==0. (8.6)

Equation 8.6 is called the characteristic equation of the differential equa-
tion because the roots of this quadratic equation determine the mathe-
matical character of v(¢).

The two roots of Eq. 8.6 are

1 1V 1
= ke " <2RC) T L ®.7)

R S | S S S O -
27 TORrC 2RC LC 88)

If either root is substituted into Eq. 8.4, the assumed solution satisfies the
given differential equation, that is, Eq. 8.3. Note from Eq. 8.5 that this
result holds regardless of the value of A. Therefore, both

v = A" and

v = A

<« Characteristic equation, parallel
RLC circuit
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Neper frequency, parallel RLC circuit >

Resonant radian frequency, parallel

RLC circuit »

satisfy Eq. 8.3. Denoting these two solutions v, and v, respectively, we can
show that their sum also is a solution. Specifically, if we let

V=0 + v = A + Ay, (8.9)
then
(iv Syt 5l
[[—[ = A].S']e‘ + AzSZK y (8.10)
d*v .
7 = Astet + Apsie’. (8.11)

Substituting Egs. 8.9-8.11 into Eq. 8.3 gives

. 1 1 1 1
At (s% + }fs‘ + E) + Aze‘”'(sg + Rsz + R) =0. (8.12)

But each parenthetical term is zero because by definition s; and s, are
roots of the characteristic equation. Hence the natural response of the
parallel RLC circuit shown in Fig. 8.1 is of the form

v = A" + Ay’ (8.13)

Equation 8.13 is a repeat of the assumption made in Eq. 8.9. We have
shown that v, is a solution, v, is a solution, and »; + v, is a solution.
Therefore, the general solution of Eq. 8.3 has the form given in Eq. 8.13.
The roots of the characteristic equation (s; and s,) are determined by the
circuit parameters R, L, and C. The initial conditions determine the values
of the constants A; and A,. Note that the form of Eq. 8.13 must be modi-
fied if the two roots s; and s, are equal. We discuss this modification when
we turn to the critically damped voltage response in Section 8.2.

The behavior of v(¢) depends on the values of s; and s,. Therefore the
first step in finding the natural response is to determine the roots of the
characteristic equation. We return to Egs. 8.7 and 8.8 and rewrite them
using a notation widely used in the literature:

s = —a+ Va? — w(z), (8.14)
$=—a— Va* - o], (8.15)

where

1
o = SRC (8.16)
1
= —. 8.17
wo = = (8.17)

These results are summarized in Table 8.1.



8.1 Introduction to the Natural Response of a Parallel RLC Circuit

TABLE 8.1 Natural Response Parameters of the Parallel RLC Circuit

Value In
Parameter Terminology Natural Response
$y. 82 Characteristic roots 51 = —a + Va? — v
$ = —a — \/afz—w(’)
1
a Neper frequenc = —
l
© Resonant radian frequenc Wy = —F—
0 @ q Y 0 , ,—L c

The exponent of e must be dimensionless, so both s; and s, (and
hence @ and w,) must have the dimension of the reciprocal of time, or fre-
quency. To distinguish among the frequencies sy, s;, @, and w,, we use the
following terminology: s, and s, are referred to as complex frequencies, a
is called the neper frequency, and wy is the resonant radian frequency. The
full significance of this terminology unfolds as we move through the
remaining chapters of this book. All these frequencies have the dimen-
sion of angular frequency per time. For complex frequencies, the neper
frequency, and the resonant radian frequency, we specify values using the
unit radians per second (rad/s). The nature of the roots s, and s, depends
on the values of « and w,. There are three possible outcomes. First, if
wh < a’, both roots will be real and distinct. For reasons to be discussed
later, the voltage response is said to be overdamped in this case. Second,
if w§ > o, both s, and s, will be complex and, in addition, will be conju-
gates of each other. In this situation, the voltage response is said to be
underdamped. The third possible outcome is that wj = ?. In this case, §;
and s, will be real and equal. Here the voltage response is said to be
critically damped. As we shall see, damping affects the way the voltage
response reaches its final (or steady-state) value. We discuss each case
scparately in Section 8.2.

Example 8.1 illustrates how the numerical values of s; and s, are
determined by the values of R, L, and C.

b) Will the response be overdamped, underdamped, =
or critically damped?

¢) Repeat (a) and (b) for R = 312.5 Q.

2
w =

d) What value of R causes the response to be criti- 0

cally damped?

. . ° 5 =

l.('+ + iL l [R Yl + !
c=V% L3n R v _
§y =

Figure 8.5 A A circuit used to illustrate the natural response of
a parallel RLC circuit.

FelUEE: R Finding the Roots of the Characteristic Equation of a Parallel RLC Circuit

a) Find the roots of the characteristic equation that Solution
governs the transient behavior of the voltage
shown in Flg 85if R =200, L = 50mH, and a) For the given values of R, L,and C,
C =02 uF.
1 108

= =125 x 10%rad/s,
JRC ~ (@0y(0z) ~ 23 * 107 rad/s

1 (1010 o,
I~ G002 108 rad?/s.

From Egs. 8.14 and 8.15,

125 x 10* + V1.5625 x 108 — 10®

—12,500 + 7500 = —5000 rad/s,

-1.25 x 10* — V1.5625 x 10% — 108

269
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b) T?e vo}tage response is overdamped because
wi < a”.
c) For R = 3125 Q,
10°
* T (625)(02)
o’ = 64 X 10° = 0.64 X 10° rad?/s?.

= 8000 rad/s,

As ] remains at 10 radz/sz,
—8000 + ;6000 rad/s,

A

sy = —8000 — j6000 rad/s.
(In electrical engineering, the imaginary number

V—1 is represented by the letter j, because the
letter i represents current.)

In this case, the voltage response is under-
. 2
damped since w > o’

d) For critical damping, o = @}, s0
0

1 \? .
(—) = ~1— = 105,
2RC LC

or
l
[ ()4
2RC 10°,
and
100

=————=250Q.
2 x 10%(0.2)

v ASSESSMENT PROBLEM

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.1  The resistance and inductance of the circuit in
Fig. 8.5 are 100 £ and 20 mH, respectively.

a) Find the valuc of C that makes the voltage
response critically damped.

b) If Cis adjusted to give a neper frequency of
5 krad/s, find the value of C and the roots of
the characteristic equation.

c) If Cis adjusted to give a resonant frequency
of 20 krad/s, find the value of C and the
roots of the characteristic equation.

NOTE: Also try Chapter Problem 8.1.

Answer: (a) 500 nF;

(b) C = 1 uF,
sy = —5000 + 75000 rad/s,
—5000 — ;5000 rad/s;

52

(c) C = 125 nF,
5| = —5359 rad/s,
sy = —74,641 rad/s.

8.2 The Forms of the Natural Response
of a Parallel RLC Circuit

So far we have seen that the behavior of a second-order RLC circuit depends
on the values of s; and s,, which in turn depend on the circuit parameters R,
L, and C. Therefore, the first step in finding the natural response is to calcu-
late these values and, relatedly, determine whether the response is over-,

under-, or critically damped.

Completing the description of the natural response requires finding two
unknown coefficients, such as A and A, in Eq. 8.13. The method used to do
this is based on matching the solution for the natural response to the initial
conditions imposed by the circuit, which are the initial value of the current (or
voltage) and the initial value of the first derivative of the current (or voltage).
Note that thesc same initial conditions, plus the final value of the variable, will

also be needed when finding the step response of a second-order circuit.

In this section, we analyze the natural response form for each of the
three types of damping, beginning with the overdamped response. As we will
see, the response equations, as well as the cquations for evaluating the
unknown coefficients, are slightly different for each of the three damping
configurations. This is why we want to determinc at the outset of the problem

whether the response is over-, under-, or critically damped.
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The Overdamped Voltage Response

When the roots of the characteristic equation are real and distinct, the volt-
age response of a parallel RLC circuit is said to be overdamped. The solu-
tion for the voltage is of the form

v = Ales" + Az(:’xlt, (8.18)

where s, and s, are the roots of the characteristic equation. The constants
A and A, are determined by the initial conditions, specifically from the
values of v(0%) and dv(0%)/dt, which in turn are determined from the ini-
tial voltage on the capacitor, V), and the initial current in the inductor, /.

Next, we show how to use the initial voltage on the capacitor and the
initial current in the inductor to find A4, and A,. First we note from Eq. 8.18
that A; and A,. First we note from Eq. 8.18 that

v(0+) = A] + Az, (8.19)
dv(0")
di = S]A] + S2A2. (820)

With s; and s, known, the task of finding A; and A, reduces to finding
v(0%) and dv(0")/dt. The value of v(0%) is the initial voltage on the capac-
itor V. We get the initial value of dv/dt by first finding the current in the
capacitor branch at ¢ = 0*. Then,

dv(0")  i(0")
dt Cc

(8.21)

We use Kirchhoff’s current law to find the initial current in the capac-
itor branch. We know that the sum of the three branch currents at ¢+ = 0"
must be zero. The current in the resistive branch at ¢ = 0% is the initial
voltage ¥, divided by the resistance, and the current in the inductive
branch is /. Using the reference system depicted in Fig. 8.5, we obtain

ic(07) = — I (8.22)

After finding the numerical value of i-(07), we use Eq. 8.21 to find the ini-
tial value of dv/dt.

We can summarize the process for finding the overdamped response,
v(t), as follows:

1. Find the roots of the characteristic equation, s; and s», using the val-
uesof R. L,and C.
2. Find »(0") and dv(0")/dt using circuit analysis.

3. Find the values of A, and A, by solving Eqs. 8.23 and 8.24
simultaneously:

v(0Y) = A; + A,, (8.23)

dv(0%) _ ic(0%)
dt ~ C

= S1A] + S2A2~ (8.24)
4. Substitute the values for sy, 55, A;. and A, into Eq. 8.18 to deter-
mine the expression for v(¢) for + = 0.

Examples 8.2 and 8.3 illustrate how to find the overdamped response of a
parallel RLC circuit.

<« Voltage natural response—overdamped
parallel RLC circuit
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For the circuit in Fig. 8.6, v(0") =12V, and

i1(0%) = 30 mA.

a) Find the initial current in each branch of the
circuit.

b) Find the initial value of dv/dt.

c) Find the expression for v(¢).

d) Sketch v(¢) in the interval 0 =< ¢ < 250 ms.

Solution

a) The inductor prevents an instantaneous change
m its current, so the initial value of the inductor
current is 30 mA:

i,(07) = i,(0) = i,(0*) = 30 mA.

The capacitor holds the initial voltage across the
parallel elements to 12 V. Thus the initial current
in the resistive branch, ip(0"), is 12/200, or
60 mA. Kirchhoff’s current law requires the sum
of the currents leaving the top node to equal
zero at every instant. Hence

—ir(0%) — ig(0")
—90 mA.

ic(0%)

Note that if we assumed the inductor current and
capacitor voltage had reached their dc values at
the instant that energy begins to be released,
ic(07) = 0. In other words, there is an instanta-
neous change in the capacitor current at ¢ = 0.

b) Because ic = C(dv/dt),

o -3
do(07) _ =90 X 10_6 = —450kV/s.
dr 02 x 10

¢) The roots of the characteristic equation come
from the values of R, L, and C. For the values
specified and from Egs. 8.14 and 8.15 along with
8.16 and 8.17,

s = —1.25 x 10* + V1.5625 x 10° — 108

—12,500 + 7500 = —5000 rad/s,

—1.25 X 10* = 2 1.5625 x 10* — 10®

I

$2

—12,500 — 7500 = —20,000 rad/s.

2y R: Wl Finding the Overdamped Natural Response of a Parallel RLC Circuit

®- Py

iq‘ + iLl iRl
02 uF =< Vo 50 mH ll(, 200 Q

< + @

Figure 8.6 A The circuit for Example 8.2.

Because the roots are real and distinct, we know
that the response is overdamped and hence has
the form of Eq. 8.18. We find the co-efficients A;
and A, from Eqgs. 8.23 and 8.24. We've already
determined sy, $5, ¥(0%), and dv(0%)/dt, so

12 = A, + A,,

—450 x 10°

—5000A, — 20,0004,

We solve two equations for A; and A, to obtain
A; = —14V and A, = 26 V. Substituting these
values into Eq. 8.18 yields the overdamped volt-
age response:

'l)(t) = (_148—5000’ + 266’_20'0001 ) V, t = 0.

As a check on these calculations, we note that
the solution yields v(0) = 12V and dv(0")/dt
= —450,000 V/s.

d) Figure 8.7 shows a plot of v(t) versus ¢ over the
interval 0 = ¢ =< 250 ms.

v(6) (V)
12 4

10

0 | | | 1 ] 1 (us)
10 100 150 200 250

Figure 8.7 A The voltage response for Example 8.2.
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el Calculating Branch Currents in the Natural Response of a Parallel RLC Circuit

Derive the expressions that describe the three
branch currents i, i;, and ic in Example 8.2
(Fig. 8.6) during the time the stored energy is being
released.

Solution
We know the voltage across the three branches
from the solution in Example 8.2, namely,

?)(t) — (_14e—5()ﬂ(lr + 266—201)00!) \V4 t = 0.

The current in the resistive branch is then

v(1)

ig(t) = == = (=707 4 1302000y mA | ¢ = 0.

200

There are two ways to find the current in the induc-
tive branch. One way is to use the integral relation-
ship that exists between the current and the voltage
at the terminals of an inductor:

of
i) = %/o v (x)dx + I

A second approach is to find the current in the
capacitive branch first and then use the fact that
ig + i + ic = 0. Let’s use this approach. The cur-
rent in the capacitive branch is

o
lc(l)—cdt

= 0.2 X 1075(70,000e %" — 520,000 209 )
= (14€75000 _ 104e 20000y mA ¢ = (F

Note that i(0") = —90 mA, which agrees with the
result in Example 8.2.

Now we obtain the inductive branch current
from the relationship

i(t)

—ig(t) = ic(t)
— (568—5(11)()! _ 26e'2“‘“‘)”')mA t = 0.

We leave it to you, in Assessment Problem 8.2, to
show that the integral relation alluded to leads to
the same result. Note that the expression for i,
agrees with the initial inductor current, as it must.

 ASSESSMENT PROBLEMS

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.2  Use the integral relationship between i; and »

to find the expression for i; in Fig. 8.6.

Answer: /(1) = (567300 — 26720000y mA ¢ = 0.

8.3  The element values in the circuit shown are
R =2kQ, L =250mH, and C = 10 nF. The
initial current [, in the inductor is —4 A, and
the initial voltage on the capacitor is 0 V. The
output signal is the voltage v. Find (a) iR(0");
(b) ic(0%); (c) dv(0%)/dt; (d) Ay; (e) Ay; and
(f) v(¢) when ¢t = 0.

NOTE: Also try Chapter Problems 8.8,8.11, and 8.18.

+ o

ic‘v‘ + il,v‘ fRL
c—=V% L ll(, R »

|

L
<
*®

Answer: (a) 0;

(b)4A;

(c) 4 X 10® V/s;

(d) 13,333 V;

(e) —13,333 V;

(f) 13,333(¢ 100000 — o=40.0001y 7,

273



274

Natural and Step Responses of RLC Circuits

Damped radian frequency »

Voltage natural response—underdamped
parallel RLC circuits »

The Underdamped Voltage Response

2 o - . . .
When wjj > «, the roots of the characteristic equation are complex, and
the response is underdamped. For convenience, we express the roots s,
and s, as

51 = —a+ V—(0} — &)
—a + jVawi — o

Il

=~ + Ju, (8.25)
S = —a — Joy, (8.26)

where
wy = w(z) - o (8.27)

The term w, is called the damped radian frequency. We explain later the
reason for this terminology.
The underdamped voltage response of a parallel RLC circuit is

v(t) = Bie™™ coswgt + Bye™ sin wyt, (8.28)

which follows from Eq. 8.18. In making the transition from Eq. 8.18 to
Eq. 8.28, we usc the Euler identity:

e = cosf + jsine. (8.29)

Thus,

U(f) — A]e(*aﬂm,,)z + A_,e*((ij,,)l

A le—ulejw,,l + Aze—ﬂ'leﬁ'm‘,f

1

e_“’(Al COS wyl + ]Al sin wyt + A2 COS w,t — jAg sin (.Ul[t)

e_‘”[(Al + Az) COS wyt + ](Al - Az) sin (.U([f].

At this point in the transition from Eq. 8.18 to 8.28, replace the arbitrary
constants A; + A, and j(A; — A,) with new arbitrary constants denoted
B; and B, to get

v = ¢ (B coswyt + Bsinw,t)

Ble_“" cos wyl + Bz(?_['f sin wyt.

The constants By and B, arc real, not complex, because the voltage is a
real function. Don't be misled by the fact that B, = j(4, — A,). In this
underdamped case, A, and A, are complex conjugates, and thus B, and B,
are real. (See Problems 8.12 and 8.13.) The reason for defining the under-
damped response in terms of the coefficients By and B, is that it yields a sim-
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pler expression for the voltage, v. We determine B; and B, by the initial
energy stored in the circuit, in the same way that we found A, and A, for the
overdamped response: by evaluating » at 1 = 0* and its derivative at = 0"
As with s and $,, « and wy are fixed by the circuit parameters R, L, and C.

For the underdamped response, the two simultaneous equations that
determine By and B, are

v(0") =V, = B, (8.30)

dv(0") B i.(0%)
dt ~ C

= —aB| + w;B,. (8.31)

Let’s look at the general nature of the underdamped response. First,
the trigonometric functions indicate that this response is oscillatory; that
is, the voltage alternates between positive and negative values. The rate at
which the voltage oscillates is fixed by w,. Second, the amplitude of the
oscillation decreases exponentially. The rate at which the amplitude falls
off is determined by a. Because « determines how quickly the oscillations
subside, it is also referred to as the damping factor or damping coefficient.
That explains why w, is called the damped radian frequency. If there is no
damping, « = 0 and the frequency of oscillation is wy. Whenever there is a
dissipative element, R, in the circuit, « is not zero and the frequency of
oscillation, wy, is less than wy. Thus when « is not zero, the frequency of
oscillation is said to be damped.

The oscillatory behavior is possible because of the two types of cnergy-
storage elements in the circuit: the inductor and the capacitor. (A mechan-
ical analogy of this electric circuit is that of a mass suspended on a spring,
where oscillation is possible because energy can be stored in both the
spring and the moving mass.) We say more about the characteristics of the
underdamped response following Example 8.4, which examines a circuit
whose response is underdamped. In summary, note that the overall
process for finding the underdamped response is the same as that for the
overdamped response, although the response equations and the simulta-
neous equations used to find the constants are slightly different.

3R Finding the Underdamped Natural Response of a Parallel RLC Circuit

I, = —12.25mA.

b) Calculate v and dv/dr att = 07,
c) Calculate the voltage response for t = 0.

d) Plot o(r) versus ¢ for the time interval
0=t=<11ms.

+ @

ic + g in
Y A\ Y
0125 uF=<Vo  8H3 Iy 20k ;

I

Figure 8.8 A The circuit for Example 8.4.

In the circuit shown m Fig. 88, ¥, =0, and Solution

a) Calculate the roots of the characteristic equation. a) Because

106

*T2RC T 2(20)10%(0.125)

= 200 rad/s,

Wy =

- we have

— 106 _ 103 ad/s
=V ®)0.125) ~ 10 rad/s

2 2
wj > at.

275
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Therefore, the response is underdamped. Now,

w; = Voi — o = V10° — 4 x 10° = 100V96

979.80 rad/s,

51 = —a + jog = =200 + j979.80 rad/s,

$ = —a — jw; = —200 — j979.80 rad/s.

For the underdamped case, we do not ordinarily
solve for s; and s, because we do not use them
explicitly. However, this example emphasizes
why sy and s, are known as complex frequencies.

b) Because v is the voltage across the terminals of a
capacitor, we have

v(0) = »(0%) =V, = 0.
Because v(0*) = 0, the current in the resistive
branch is zero at t = 0". Hence the current in

the capacitor at ¢ = 0% is the negative of the
inductor current:

ie(07) = —(—1225) = 1225 mA.
Therefore the initial value of the derivative is

dv(0")  (12.25)(107%)
dt (0.125)(107)

= 98,000 V/s.

c) From Egs. 8.30 and 8.31, By = 0 and

98,000
B, =—=100V.
Wy

Substituting the numerical values of «, wy, By,
and B, into the expression for v(¢) gives

v(t) = 100e 2 sin 979.80t V, ¢ = 0.

d) Figure 8.9 shows the plot of »(¢) versus ¢ for the

first 11 ms after the stored energy is released. It
clearly indicates the damped oscillatory nature
of the underdamped response. The voltage v(z)
approaches its final value, alternating between
values that are greater than and less than the
final value. Furthermore, these swings about the
final value decrease exponentially with time.

v (V)
80
60—
40
20

| |

| | [ (I
_28_1 2 3W7 g 9~ (™)
—40

Figure 8.9 A The voltage response for Example 8.4.

Characteristics of the Underdamped Response

The underdamped response has several important characteristics. First, as
the dissipative losses in the circuit decrease, the persistence of the oscilla-
tions increases, and the frequency of the oscillations approaches w,. In
other words, as R — 00, the dissipation in the circuit in Fig. 8.8 approaches

zero because p = v’/R. As R — 00, o — 0, which tells us that w; — wj.

When a = 0, the maximum amplitude of the voltage remains constant;
thus the oscillation at wy is sustained. In Example 8.4, if R were increased

to infinity, the solution for v(¢) would become

Thus, in this case the oscillation is sustained, the maximum amplitude of

v(t) = 98sin 1000t V, ¢ = 0.

the voltage is 98 V, and the frequency of oscillation is 1000 rad/s.

We may now describe qualitatively the difference between an under-
damped and an overdamped response. In an underdamped system, the
response oscillates, or “bounces,” about its final value. This oscillation is
also referred to as ringing. In an overdamped system, the response
approaches its final value without ringing or in what is sometimes
described as a “sluggish” manner. When specifying the desired response of
a second order system, you may want to reach the final value in the short-
est time possible, and you may not be concerned with small oscillations
about that final value. If so, you would design the system components to
achieve an underdamped response. On the other hand, you may be con-
cerned that the response not exceed its final value, perhaps to ensure that
components are not damaged. In such a case, you would design the system
components to achieve an overdamped response, and you would have to

accept a relatively slow rise to the final value.
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v ASSESSMENT PROBLEM

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.4 A 10 mH inductor, a 1 uF capacitor, and a vari- ) —? —? j‘r
able resistor are connected in parallel in the tc l + ’Ll Ry
circuit shown. The resistor is adjusted so that C~WV L l«’o R v
the roots of the characteristic equation are - -
—8000 + j6000 rad/s. The initial voltage on the ¢ ¢ M
capacitor is 10 V, and the initial current in the
inductor is 80 mA. Find Answer: (a) 62.5 Q;
a) R; (b) —240,000 V/s;
b) dv(0%)/dt; (c) B, = 10V, B, = —80/3V;
¢) B and B, in the solution for v; and (d) i (¢) = 10 e—soom[g cos 6000¢
d) i (1). + (82/3) sin 6000t] mA whent = 0.
NOTE: Also try Chapter Problems 8.7 and 8.19.
The Critically Damped Voltage Response
The second-order circuit in Fig. 8.8 is critically damped when w} = o2, or
wy = a. When a circuit is critically damped, the response is on the verge of
oscillating, In addition, the two roots of the characteristic equation are
real and equal; that is,
. 8.32
Sy $2 a = 2RC . ( . )
When this occurs, the solution for the voltage no longer takes the form
of Eq. 8.18. This equation breaks down because if s; = s, = —a, it pre-
dicts that
V= (A] + Az)(,’_w = A()E_m, (8.33)
where A, is an arbitrary constant. Equation 8.33 cannot satisfy two inde-
pendent initial conditions (V}, I,) with only one arbitrary constant, A,.
Recall that the circuit parameters R and C fix a.
We can trace this dilemma back to the assumption that the solution
takes the form of Eq. 8.18. When the roots of the characteristic equation
are equal, the solution for the differential equation takes a different
form, namely
o(t) = Dyite™ + Dye™. (8.34) <« Voltage natural response—critically

damped parallel RLC circuit

Thus in the case of a repeated root, the solution involves a simple expo-
nential term plus the product of a linear and an exponential term. The jus-
tification of Eq. 8.34 is left for an introductory course in differential
equations. Finding the solution involves obtaining D, and D, by following
the same pattern set in the overdamped and underdamped cases: We use
the initial values of the voltage and the derivative of the voltage with
respect to time to writc two equations containing D, and/or D,.
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From Eq. 8.34, the two simultaneous equations needed to determine
D, and D, are

v(0") =V, = D,, (8.35)

do(0") _ ic(0) _

dt C D] - OlDz. (836)

As we can see, in the case of a critically damped response, both the
equation for v(¢) and the simultaneous equations for the constants D, and
D, differ from those for over- and underdamped responses, but the general
approach is the same. You will rarely encounter critically damped systems
in practice, largely because w, must equal a exactly. Both of these quanti-
ties depend on circuit parameters, and in a real circuit it is very difficult to
choose component values that satisfy an exact equality relationship.

Example 8.5 illustrates the approach for finding the critically damped
response of a parallel RLC circuit.

SEIGLIER N Finding the Critically Damped Natural Response of a Parallel RLC Circuit

Solution

a) From Example 8.4, we know that wj =

a) For the circuit in Example 8.4 (Fig. 8.8), find the Substituting these values for a, D, and D> into
value of R that results in a critically damped volt- Eq. 8.34 gives
age response.

b) Calculate v(¢) forr = 0.

¢) Plot v(r) versus tfor 0 < ¢ < 7 ms.

v(t) = 98,0001V ¢ = 0.

c) Figure 8.10 shows a plot of u(t) versus ¢ in the
interval 0 = ¢t < 7 ms.

2 _ 106 v (V)

Therefore for critical damping, 40 -
o 1 32+
a=10"=—:,
. 2RC 24
ot
10° 16
= ————— = 4000 ().
(2000)(0.125) 8 D |
b) From the solution of Example 8.4, we know that 0 1 2 3 4 5 6 7 f (ms)
v(0") =0 and dv(0")/dt = 98,000 V/s. From
Eqs. 8.35 and 8.36, D, = 0 and D; = 98,000 V/s. Figure 8.10 A The voltage response for Example 8.5.

v ASSESSMENT PROBLEM

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.5

The resistor in the circuit in Assessment Answer: (a) 100 ;
Problem 8.4 is adjusted for critical damping. (b) 50 V:
The inductance and capacitance values are ’
0.4 H and 10 uF, respectively. The initial energy (c) 250 mA,;

stored in the circuit is 25 mJ and is distributed
equally between the inductor and capacitor.

(d) —50,000 V/s, 50 V;

Find (a) R: (b) V; (c) Iy; (d) Dy and D, in the (e) ig(t) = (—500te™"" + 0.50e730) A,

solution for v; and (e) ig, f = 0.

t = 0",

NOTE: Also try Chapter Problems 8.9 and 8.20.



8.2 The Forms of the Natural Response of a Parallel RLC Circuit

A Summary of the Results

We conclude our discussion of the parallel RLC circuit’s natural response
with a brief summary of the results. The first step in finding the natural
response is to calculate the roots of the characteristic equation. You then
know immediately whether the response is overdamped, underdamped, or
critically damped.

If the roots are real and distinct (wf < @), the response is over-
damped and the voltage is

u(t) = A" + A,

where
o] 2
S = —a+ O — W,
A2 2
$p = T — o T Wy,
1
Q= —,
2RC
y 1
wy = I_C'

The values of A and A, are determined by solving the following simulta-
ncous equations:

v(0) = A, + A,

dv(0") B ic(0%)
i C

= SlAJ + SQAz.
If the roots are complex w§ > o the response is underdamped and
the voltage is
v(t) = Bie™™ coswyt + By ™ sinwyt.
where
Vi — &
wy = why -,

The values of By and B, are found by solving the following simultaneous
equations:

v(0") =V, = By,

dv(07)  i(0")

i c = —aB; + w B>,

If the roots of the characteristic cquation are real and equal (wf = o?),
the voltage response is

v(t) = Dite™™ + Dye™.

where « is as in the other solution forms. To determine values for the con-
stants Dy and D-, solve the following simultancous equations:

v(07) = Wy = Ds.

dv(0") B ic(07) B
a  C

D| - CYDQ_.
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Figure 8.11 A A circuit used to describe the step
respanse of a parallel RLC circuit.

8.3 The Step Response of a Parallel
RLC Circuit

Finding the step response of a parallel RLC circuit involves finding the
voltage across the parallel branches or the current in the individual
branches as a result of the sudden application of a dc current source.
There may or may not be energy stored in the circuit when the current
source is applied. The task is represented by the circuit shown in Fig. 8.11.
To develop a general approach to finding the step response of a second-
order circuit, we focus on finding the current in the inductive branch (iy).
This current is of particular interest because it does not approach zero as
t increases. Rather, after the switch has been open for a long time, the
inductor current equals the dc source current /. Because we want to focus
on the technique for finding the step response., we assume that the initial
energy stored in the circuit is zero. This assumption simplifies the calcula-
tions and doesn’t alter the basic process involved. In Example 8.10
we will see how the presence of initially stored energy enters into the
general procedure.

To find the inductor current i;, we must solve a sccond-order differ-
ential equation equated to the forcing function /, which we derive as fol-
lows. From Kirchhoff’s current law, we have

iL+iR+iC=]’

or
i+ 2ec o (8.37)
LR da '
Because
di[
=L—), 8.38
v ar (8.38)
we get
dv _ d%
—_— = -, 8.39
dt ar (8.39)
Substituting Eqgs. 8.38 and 8.39 into Eq. 8.37 gives
L dip d%;
jp + ———+ LC—F =1 8.40
"R 4 L de (8.40)
For convenience, we divide through by LC and rearrange terms:
Fiy L dip i L 6

+ .
dt* RC dt LC LC

Comparing Eq. 8.41 with Eq. 8.3 reveals that the presence of a nonzero
term on the right-hand side of the equation alters the task. Before show-
ing how to solve Eq. 8.41 directly, we obtain the solution indirectly.
When we know the solution of Eq. 8.41, explaining the direct approach
will be easier.



The Indirect Approach

We can solve for /; indirectly by first finding the voltage v. We do this with
the techniques introduced in Section 8.2, because the differential equation
that » must satisfy is identical to Eq. 8.3. To see this, we simply return to
Eq. 8.37 and express i, as a function of v; thus

1/ v dv
L/ vdr C i 1 (8.42)

Differentiating Eq. 8.42 once with respect to ¢ reduces the right-hand side
to zero because [ is a constant. Thus

vyl odv_,
L R dt dr? ’
or
2 . ;
v, Ldv v _ (8.43)

a2 TrRCcat TIC

As discussed in Section 8.2, the solution for v depends on the roots of the
characteristic equation. Thus the three possible solutions are

v = A" + Ae’, (8.44)
v = Bie ™ coswyt + Bre™ sin wyt, (8.45)
v = Dite™ + Dye ™. (8.46)

A word of caution: Because there is a source in the circuit for ¢+ > 0, you
must take into account the value of the source current atr = 0" when you
evaluate the coefficients in Egs. 8.44-8.46.

To find the three possible solutions for i, , we substitute Eqs. 8.44-8.46
into Eq. 8.37. You should be able to verify, when this has been done, that
the three solutions for i; will be

ip =1+ Aje™ + Aje™, (8.47)
ip, =1 + Bie™cosw,t + Bre ™ sinw,t, (8.48)
ip =1+ Djte™ + Dhe™, (8.49)

where A}, A, B, B,, D}, and D), are arbitrary constants.

In each case, the primed constants can be found indirectly in terms of
the arbitrary constants associated with the voltage solution. However, this
approach is cumbersome.

The Direct Approach

It is much easier to find the primed constants directly in terms of the ini-
tial values of the response function. For the circuit being discussed, we
would find the primed constants from i; (0) and di, (0)/dt.

The solution for a second-order differential equation with a constant
forcing function equals the forced response plus a response function

8.3 The Step Response of a Parallel RLC Circuit

281
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identical in form to the natural response. Thus we can always write the
solution for the step response in the form

or

. function of the same form

s 8.50
as the natural response (8:50)
function of the same form
=V + \ (8.51)
! as the natural response

where Iy and V; represent the final value of the response function. The
final value may be zero, as was, for example, the case with the voltage v in
the circuit in Fig. 8.8.

Examples 8.6-8.10 illustrate the technique of finding the step
response of a parallel RLC circuit using the direct approach.

The initial energy stored in the circuit in Fig. 8.12 is
zero. At t = 0, a dc current source of 24 mA is
applied to the circuit. The value of the resistor is
400 Q.

a) What is the initial value of i, ?

b) What is the initial value of di;/dt?

c) What are the roots of the characteristic equation?

d) What is the numerical expression for i;(¢) when
t =07

’( !/v iry
ZSnF 25mH 2R I3

Figure 8.12 A The circuit for Example 8.6.

=~ + @

Solution

a) No cnergy is stored in the circuit prior to the
application of the dc current source, so the initial
current in the inductor is zero. The inductor pro-
hibits an instantaneous change in inductor cur-
rent; therefore i;(0) = 0 immediately after the
switch has been opened.

b) The initial voltage on the capacitor is zero
before the switch has been opened; therefore it
will be zero immediately after. Now, because
v = Ldi;/dt,

(1lL(O+) =0

el R RN Finding the Overdamped Step Response of a Parallel RLC Circuit

¢) From the circuit elements, we obtain

, 1 102 ,
= — = — = X 8
© =70 T @syes) X1
9
] 10 5 x 10%rad/s,

T 2RC T (2)(400)(25)
or
o =25 x 10%

Because wj < o?, the roots of the characteristic
equation are real and distinct. Thus

s; = =5 X 10* + 3 x 10* = =20,000 rad/s,
s, = =5 X 10* = 3 x 10* = —80,000 rad/s.

d) Because the roots of the characteristic equation
are real and distinct, the inductor current response
will be overdamped. Thus i; (¢) takes the form of
Eq.8.47, namely,

ip = 1I; + Ale™ + Ay™.

» Inductor current in overdamped parallel
RLC circuit step response

Hence, from this solution, the two simultaneous
equations that determine Aj and A5 are

il(0) =1+ A} + A; =0,
%( 0) = 5147 + 54, = 0.
Solving for A} and Aj gives
Al = -32mA and A;=8mA.
The numerical solution for i, (¢) is

il ([) —= (24 _ 328—20.()001‘ + 86—80.()001 ) lTlA, 1= 0.
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SelLEE WA Finding the Underdamped Step Response of a Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is increased to 625 . Find iy (¢) for¢ = 0.

Solution

Because L and C remain fixed, o} has the same
value as in Example 8.6; that is, wj = 16 X 10%
Increasing R to 6258 decreases « to
3.2 X 10*rad/s. With @} > o, the roots of the
characteristic equation are complex. Hence

-32 X 10* + j2.4 X 10* rad/s,

S1

Il

5, = —32 X 10* — j2.4 X 10* rad/s.

The current response is now underdamped and
given by Eq. 8.48:

ir(t) = If + Bie™ coswgt + Bie ™ sin wgt.

» Inductor current in underdamped parallel
RLC circuit step response

Here, o is 32,000 rad/s, w, is 24,000 rad/s, and
If 1s 24 mA.

As in Example 8.6, B} and Bj are determined
from the initial conditions. Thus the two simultane-
ous equations are

%(O) = wyB5 — aB] = 0.
Then,
B = —24mA
and
B5 = =32 mA.

The numerical solution for i, (¢) is

i(t) = (24 — 24¢732900 ¢6524,000¢

~ 32¢732005in 24,000r) mA, t = 0.

SRR M Finding the Critically Damped Step Response of a Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is set at 500 Q. Find i, for¢ = 0.

Solution

We know that w§ remains at 16 X 10%. With R set at
500 ), a becomes 4 X 10*s™!, which corresponds
to critical damping. Therefore the solution for i; (¢)
takes the form of Eq. 8.49:

ip(t) = Iy + Dite™ + Dhe™.

» Inductor current in critically damped parallel
RLC circuit step response

Again, D} and D) are computed from initial
conditions, or

di , ,
gf(ﬂ) = D} — aD5 = 0.

Thus
Di = —960,000mA/s and D3 = —24 mA.

The numerical expression for i, (¢) is

i(t) = (24 — 960,000re™ 40000 _ 240~30000y mA |t = 0.
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SO CK: R Comparing the Three-Step Response Forms

a) Plot on a single graph, over a range from 0 to
220 us, the overdamped, underdamped, and
critically damped responses derived in
Examples 8.6-8.8.

b) Use the plots of (a) to find the time required for
i; to reach 90% of its final value.

c) On the basis of the results obtained in (b), which
response would you specify in a design that puts
a premium on reaching 90% of the final value of
the output in the shortest time?

d) Which response would you specify in a design
that must ensure that the final value of the cur-
rent is never exceeded?

Solution

a) See Fig. 8.13.

b) The final value of i; is 24 mA, so we can read the
times off the plots corresponding to i; = 21.6 mA.
Thus ¢,; = 130 us, t.q = 97 us, and t,; = 74 ps.

c) The underdamped response reaches 90% of the
final value in the fastest time, so it is the desired
response type when speed is the most important
design specification.

Underdamped (R = 625 ()

| :Ovcrdmnpcd (R = 400 Q)
| Critically damped (R = 500 ©)

FTTTTTTTTI

L L Ly (us)

Figure 8.13 A The current plots for Example 8.9.

d) From the plot, you can see that the under-
damped response overshoots the final value of
current, whereas neither the critically damped
nor the overdamped response produces currents
in excess of 24 mA. Although specifying either of
the latter two responses would meet the design
specification, it is best to use the overdamped
response. It would be impractical to require a
design to achieve the exact component values
that ensure a critically damped response.

FElLER: BN Finding Step Response of a Parallel RLC Circuit with Initial Stored Energy

Energy is stored in the circuit in Example 8.8
(Fig.8.12, with R = 500 ) at the instant the dc cur-
rent source is applied. The initial current in the
inductor is 29 mA, and the initial voltage across the
capacitor is 50 V. Find (a) i,(0); (b) di;(0)/dt;
(c) iy (t) fort = 0; (d) v(t) fort = 0.

Solution

a) There cannot be an instantaneous change of cur-
rent in an inductor, so the initial value of {; in the
first instant after the dc current source has been
applied must be 29 mA.

b) The capacitor holds the initial voltage across the
inductor to 50 V. Therefore

d'L ZE©O) = 50,

di
’L(o+) = >< 10° = 2000 A/s.

c¢) From the solution of Example 8.8, we know that
the current response is critically damped. Thus

iL(t) = Iy + Dite™ + Dhe™,

where

a = 2]12C 40,000 rad/s and Iy = 24 mA.

Notice that the effect of the nonzero initial
stored energy is on the calculations for the con-
stants D and D5, which we obtain from the ini-
tial conditions. First we use the initial value of
the inductor current:

i(0) = I + D5 = 29 mA,
from which we get

D5 =129 — 24 = SmA.
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D} = 2000 + aDj

= 2000 + (40,000)(5 x 107%)

= 2200 A/s = 2.2 X 10°mA/s.

i

Thus the numerical expression for i, (¢) is

The solution for Dj is d) We can get the expression for »(z), t = 0 by
using the relationship between the voltage and
%(0+) — DI — aDj = 2000, current in an inductor:
di;
1) = L—
or o) dt

(25 X 10"3)[(2.2 X 106)(_40*000)te'4"~““"'
+22 X 1066—4().()()0!
+ (5)(_40’000)‘3-40,()(){»] X 10—3

—292 X 106te~4().()0()1 + SOL)‘JI()‘()()()I V, t = 0.

i(t) = (24 + 2.2 X 100¢e™ 400006 To check this result, let’s verify that the initial
voltage across the inductor is 50 V:

+ 5700y mAL r=0. v(0) = ~2.2 X 10%0)(1) + 50(1) = 50 V.

o ASSESSMENT PROBLEM

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.6 In the circuit shown, R = 500 ), L = 0.64 H, Answer: (a) 80 mA;

C = 1pF,and I = —1 A. The initial voltage

drop across the capacitor is 40 V and the initial (b) ~1.58 A;
inductor current is 0.5 A. Find (a) ig(0%); (c) 62.5 A/s;
+ + . . 4 . . .
(b) lC(O )’ (C) dlL(O )/dt, (d) S1s 525 (e) lL(t) for (d) (_1000 + ]750) rad/s,

t = 0; and (f) v(¢) for ¢t = 0"

NOTE: Also try Chapter Problems 8.29-8.31.

8.4 The Natural and Step Response
of a Series RLC Circuit

The procedures for finding the natural or step responses of a series RLC
circuit are the same as those used to find the natural or step responses of a
parallel RLC circuit, because both circuits are described by differential
equations that have the same form. We begin by summing the voltages
around the closed path in the circuit shown in Fig. 8.14. Thus

di 1 ('
i+ L—+ = [ i = 0. )
Ri L(lt c i dr + V=10 (8.52)

We now differentiate Eq. 8.52 once with respect to ¢ to get

. 2 . .
di d-i i

— + +—==0, 8.53
dr dar  C (8:53)

(—1000 — j750) rad/s;

(e) [-1 + e '19%%[1.5 cos 750¢

+ 2.0833 5in 750¢] A, fort = 0;

(f) 71940 cos 750t — 2053.33 sin 750t) V,

fort = 0.
R L
MRS
D C Vi

Figure 8.14 A A circuit used to illustrate the natural
response of a series RL( circuit.
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Characteristic equation—series
RLC circuit »

Neper frequency—series RLC circuit p

Resonant radian frequency—series
RLC circuit »

Current natural response forms in series
RLC circuits F p

T

Figure 8.15 A A circuit used to illustrate the step
response of a series RLC circuit.

which we can rearrange as

Ei R

+—— 4+ —=0.
dit  Ldt 0

ic (8.54)

Comparing Eq. 8.54 with Eq. 8.3 reveals that they have the same form.
Therefore, to find the solution of Eq. 8.54, we follow the same process that
led us to the solution of Eq. 8.3.

From Eq. 8.54, the characteristic equation for the series RLC circuit is

2+ B Loy 8.55
L LC ’ (6.5%)
The roots of the characteristic equation are
so= —Raa [ R oL 8.56
oL 2L LC’ (8:36)
or
S12 7 —ax le2 - w(z,. (8.57)
The neper frequency () for the series RLC circuit is
R
a = Y rad/s, (8.58)
and the expression for the resonant radian frequency is
! rad/s (8.59)
wy = . .
" ViIc

Note that the equation for neper frequency of the series RLC circuit differs
from that of the parallel RLC circuit, but the equations for resonant and
damped radian frequencies are the same.

The current response will be overdamped, underdamped, or critically
damped according to whether w} < o, w§ > o, or wj = o?, respectively.
Thus the three possible solutions for the current are as follows:

i(t) = A + Aye®™ (overdamped), (8.60)
i(t) = Bie™ cos wqt + B¢ ™™ sin w,t (underdamped),  (8.61)
i(t) = Dyte™ + Dye™™ (critically damped). (8.62)

When you have obtained the natural current response, you can find the
natural voltage response across any circuit element.

To verify that the procedure for finding the step response of a series
RLC circuit is the same as that for a parallel RLC circuit, we show that the
differential equation that describes the capacitor voltage in Fig. 8.15 has
the same form as the differential equation that describes the inductor cur-
rent in Fig. 8.11. For convenience, we assume that zero energy is stored in
the circuit at the instant the switch 1s closed.

Applying Kirchhoff’s voltage law to the circuit shown in Fig. 8.15 gives

i
V=Ri+Lf;+vC.
[

. (8.63)
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The current (i) is related to the capacitor voltage (v¢) by the expression

dve
= C——, 8.64
! ar (8.64)
from which
di dz'l)(:
i C Rl (8.65)

Substitute Egs. 8.64 and 8.65 into Eq. 8.63 and write the resulting
expression as
dve | Rdoc  vc _ V.
dr* L dt

T o= . 8.66
LCc LC (8.66)
Equation 8.66 has the same form as Eq. 8.41; therefore the procedure for
finding v, parallels that for finding i,. The three possible solutions for v
are as follows:

ve = Vy + Ale’™ + Abe™ (overdamped), (8.67)

vc = V; + Bile “cos wgt + Bye™ sin wyt (underdamped), (8.68)

ve = Vp + Dite™ + Dye™ (critically damped), (8.69)

where V} is the final value of v¢. Hence, from the circuit shown in Fig. 8.15,
the final value of v is the dc source voltage V.

Example 8.11 and 8.12 illustrate the mechanics of finding the natural
and step responses of a series RLC circuit.

The 0.1 uF capacitor in the circuit shown in
Fig. 8.16 is charged to 100 V. At ¢ = 0 the capacitor
is discharged through a series combination of a
100 mH inductor and a 560 (2 resistor.

a) Find i(¢) fort = 0.
b) Find v (¢) for ¢ = 0.

+
00VIO01uF o D

Figure 8.16 A The circuit for Example 8.11.

287

< Capacitor voltage step response forms in
series RLC circuits

FEluEE:RGM Finding the Underdamped Natural Response of a Series RLC Circuit

Solution

a) The first step to finding i(¢) is to calculate the
roots of the characteristic equation. For the given
element values,

=
_ (10%)(10%)
~(100)(0.1)

R

O(ZEZ

560
~ 2(100)
= 2800 rad/s.

= 108,

x 103
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Next, we compare w} to o’ and note that wj > o,
because

o = 7.84 x 10°

= 0.0784 x 10°%.

At this point, we know that the response is under-
damped and that the solution for i(r) is of the form

i(t) = Bie™™ coswyt + Bre ™ sinwyt,

where a = 2800 rad/s and w,; = 9600 rad/s. The
numerical values of B; and B, come from the initial
conditions. The inductor current is zero before the
switch has been closed, and hence it is zero immedi-
ately after. Therefore

i(0) =0 = B,.

To find B,, we evaluate di(0")/dt. From the circuit, we
note that, because i(0) = 0 immediately after the
switch has been closed, there will be no voltage drop
across the resistor. Thus the initial voltage on the
capacitor appears across the terminals of the inductor,
which leads to the expression,

or
di(0")  Vy 100 _
— 2= 0 R
a L 100 N
= 1000 A/s.

Because B; = 0,

% = 400B,e” 2" (24 cos 9600r — 7 sin 9600x).
Thus
di(0*
% = 9600B,,
1000
=—— x0.1042 A.
B2 =00 = 010424

The solution for i(¢) is
i(t) = 0.1042¢ 2% 5in 9600t A, ¢ = 0.

b) To find vc(t), we can use either of the following rela-
tionships:

1 3
= —— [ idr + 100
Ve C,AldT 100 or

di
ve = iR + L=
Ve 13 dt

Whichever expression is used (the second is recom-
mended), the result is

ve(t) = (100 cos 9600 + 29.17 sin 9600r)e v, ¢ = 0.

PELHER: RV Finding the Underdamped Step Response of a Series RLC Circuit

No energy is stored in the 100 mH inductor or the
0.4 uF capacitor when the switch in the circuit
shown in Fig. 8.17 is closed. Find vc(¢) for ¢t = 0.

2800 |

0.4 /.LF/"'\ e

48V

Figure 8.17 A The circuit for Example 8.12.

Solution

The roots of the characteristic equation are

Y ___2&+\/@ e
o 0.2 0.2 (0.1)(0.4)

(—1400 + j4800) rad/s,

s; = (—1400 — j4800) rad/s.

The roots are complex, so the voltage response is
underdamped. Thus

ve(t) = 48 + Bie % cos 4800¢
+ Bhe 4% 5in 4800¢, ¢ = 0.

No energy is stored in the circuit initially, so both
v¢(0) and dvc(0%)/dt are zero. Then,

ve(0) = 0 = 48 + Bj,

M—) = 0 = 480085 — 14008;.
dt
Solving for B} and B; yields
B} = —48V,
By = —14 V.
Therefore, the solution for vc(t) is
ve(t) = (48 — 48¢7 149 cos 48001

— 14¢7 " in 48001) V, ¢ = 0.
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v ASSESSMENT PROBLEMS

Objective 2—Be able to determine the natural response and the step response of series RLC circuits

8.7  The switch in the circuit shown has been in
position a for a long time. At ¢ = 0, it moves to
position b. Find (a) i(0"); (b) vc(0");

(c) di(0%)/dt; (d) sy, s; and (e) i(z) fort = 0.

Answer: (a) 0;

(b) 50V,
(c) 10,000 A/s; 8.8 Find vc(t) for ¢t = 0 for the circuit in
(d) (—8000 + ]6000) rad/s, Assessment Problem 8.7.
(=8000 — j6000) rad/s; Answer:  [100 — e ¥%(50 cos 6000¢
(e) (1.67e7%% sin 6000¢) A for t = 0. + 66.67 sin 6000f)] V for ¢ = 0.

NOTE: Also try Chapter Problems 8.50-8.52.

8.5 A Circuit with Two Integrating
Amplifiers

A circuit containing two integrating amplifiers connected in cascade! is
also a second-order circuit: that is, the output voltage of the second inte-
grator is related to the input voltage of the first by a second-order differ-
ential equation. We begin our analysis of a circuit containing two cascaded
amplificrs with the circuit shown in Fig. 8.18.

C,

| L G,

1AY |
[N

~Vee
Figure 8.18 A Two integrating amplifiers connected in cascade.

We assume that the op amps are ideal. The task is to derive the differ-
ential equation that establishes the relationship between v, and v,. We
begin the derivation by summing the currents at the inverting input termi-
nal of the first integrator. Because the op amp is ideal,

0= cdiy_
R, ]dt(o V1) = 0. (8.70)
From Eq. 8.70,
d'U,,] 1
7 = —RIC]’Ug. (8.71)

! In a cascade conncection. the output signal of the first amplitier (v, in Fig. 8.18) is the input
signal for the second amplifier.
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Now we sum the currents away from the inverting input terminal of the
second integrating amplifier:

0— Vo1 d
— + Cy—(0 —v,) =0, 8.72
or
dv, 1 873
dt - R2C2v1)1~ ( - )
Differentiating Eq. 8.73 gives
(.iz'U(, 1 d'U,,l
= (8.74)

dr - R,Cy dt '

We find the differential equation that governs the relationship between
and v, by substituting Eq. 8.71 into Eq. 8.74:

o

dv, 1 1 !
d?  R,C, R,Cy ¥

Example 8.13 illustrates the step response of a circuit containing two cas-
caded integrating amplifiers.

(8.75)

Sl R REN Analyzing Two Cascaded Integrating Amplifiers

then,

Solution

No energy is stored in the circuit shown in Fig. 8.19
when the input voltage v, jumps instantaneously
from 0 to 25 mV.
a) Derive the expression for v,,(t) for 0 = = 1. .
b) How long is it before the circuit saturates? By

dr?

dg(r)

dt

Yo _ (40)(2)(25 X 107 = 2.

To solve for v, we let

dv,
8(0) =
=2, and dg(t) = 2dr.

1 uF
[
250 kO _ "\
500 k2 9V
_ -9V "

Figure 8.19 A The circuit for Example 8.13.

a) Figure 8.19 indicates that the amplifier scaling

factors are Hence
g(1) ‘
L0 / dy =2 / dx.
R\C,  (250)(0.1) 8l Jo
1 1000 from which
R.C,  (500)(1) g(t) — g(0) = 2.
Now. because v, = 25mV for + > 0, Eq. 875 However,
becomes d,(0)
4 =07 _ 0.
2 g(0) dr

because the energy stored in the circuit ini-
tially is zero, and the op amps are ideal. (See
Problem 8.57.) Then,

dv,

=2, and v, =1+ v,(0).
dt

But #,(0) = 0, so the experssion for v, becomes

Vo = 12~ 0=t= Lsat-
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b) The second integrating amplifier saturates when Solving for v, yields
v, recaches 9 V or ¢t = 3s. But it is possible that
- . . . pe . Vo — —.
the first integrating amplifier saturates before
t = 3 s.To explore this possibility, usc Eq.8.71 to Thus, at r = 35, v,; = —3V, and. because the power
find dv,/dt: supply voltage on the first integrating amplifier is

+5 V, the circuit reaches saturation when the second
amplificr saturates. When one of the op amps satu-
rates, we no longer can use the lincar model to predict
the behavior of the circuit.

(lv{, 1

= —40(25) X 107 = —1.
dt (25)

NOTE: Assess your understanding of this material by trying Chapter Problem 8.63.

Two Integrating Amplifiers with Feedback Resistors

Figure 8.20 depicts a variation of the circuit shown in Fig. 8.18. Recall from
Section 7.7 that the reason the op amp in the integrating amplifier satu-
rates is the feedback capacitor’s accumulation of charge. Here, a resistor is
placed in parallel with each feedback capacitor (C| and C,) to overcome
this problem. We rederive the equation for the output voltage. v,, and
determine the impact of these feedback resistors on the integrating ampli-
fiers from Example 8.13.

We begin the derivation of the second-order differential equation that
relates v, to v, by summing the currents at the inverting input node of the
first integrator:

0—v, 00—, d
=+ =+ C—(0 - = 0. :
Ril Rl Cldt(o 'U‘,]) (8 76)
We simplify Eq. 8.76 to read
d: 2 1 U
Pol £ (8.77)

dr | RGC T RC,

For convenience, we let 1p = R,C| and write Eq.8.77 as

dwv v Y
—ob g 2o : (8.78)
dt T RHC]

The next step is to sum the currents at the inverting input terminal of the
second integrator:

0 - v, N 00—,

d
+ Co—(0 — = (). .
R, R, C 2 lt( v,) =0 (8.79)

4|

Figure 8.20 A (Cascaded integrating amplifiers with feedback resistors.
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We rewrite Eq. 8.79 as

d Vo Uy Vst
+ == —" 8.80
dt T2 RhCz ( )

where 7, = R,C,. Differentiating Eq. 8.80 yields

d*v, N i@ _ 1 dv,, 881
dr* T dt R,Cy dt ’ (8:81)
From Eq. 8.78,
dvol Y1 Vg
= - s .82
dt T1 RaCI (8.82)
and from Eq. 8.80,
o1 = —R e ReCa
Vo1 = b2 dt ™ Ve (883)

We use Eqs. 8.82 and 8.83 to eliminate dv,,/dt from Eq. 8.81 and obtain
the desired relationship:

d*v, . ( 1 N 1 )dv(, N ( 1 ) Vg 8.84
— + — — |y, = ————. )
a \n " n)a T \en)* T RORG (8.84)

From Eq. 8.84, the characteristic equation is

1 1 1
st + (— + —)x + =0. (8.85)
The roots of the characteristic equation are real, namely,

.

5 = — (8.86)
-1
S = 7_—2 (8.87)

Example 8.14 illustrates the analysis of the step response of two cascaded
integrating amplifiers when the feedback capacitors are shunted with
feedback resistors.
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e KRNI Analyzing Two Cascaded Integrating Amplifiers with Feedback Resistors

The parameters for the circuit shown in Fig. 8.20
are R, =100k, R; =500k, C;=0.1uF,
Ry, =25kQ, R, = 100k, and C, = 1 uF. The
power supply voltage for each op amp is £6 V. The
signal voltage (v,) for the cascaded integrating
amplifiers jumps from 0 to 250 mV at ¢t = 0. No
energy is stored in the feedback capacitors at the
instant the signal is applied.

a) Find the numerical expression of the differential
equation for v,,.

b) Find v,(¢) for ¢t = 0.

¢) Find the numerical expression of the differential
equation for v,,;.

d) Find v,,(¢) for ¢t = 0.

Solution

a) From the numerical values of the circuit parame-
ters, we have 7, = RiC; = 0.05s; 7, = R;(,
=0.10's, and v,/R,CR,C;, = 1000 V/s’. Substi-
tuting these values into Eq. 8.84 gives

d*v, . 30dv(,
dr? dt

+ 200v, = 1000.

b) The roots of the characteristic equation are
sy = —20rad/s and s, = —10rad/s. The final
value of v, is the input voltage times the gain of
each stage, because the capacitors behave as
open circuits as ¢ — 0. Thus,

(=500) (~100) _

100 25 SV

v,(00) = (250 X 107%)

The solution for v, thus takes the form:

v, =5+ Ale™ + AL,

With v,(0) = 0 and dv,(0)/dt = 0, the numeri-
cal values of A] and A5 are A} = —10V and
A5 = 5 V. Therefore, the solution for v, is

v(t) = (5 — 107 + 5720V, 1= 0.

The solution assumes that neither op amp
saturates. We have already noted that the final
value of v, is 5V, which is less than 6 V; hence the
second op amp does not saturate. The final value
of v, is (250 X 107%)(—500/100), or —1.25 V.
Therefore, the first op amp does not saturate, and
our assumption and solution are correct.

c) Substituting the numerical values of the parame-
ters into Eq. 8.78 generates the desired differen-
tial equation:

N
dl Vo1 .

d) We have already noted the initial and final val-
ues of v,;, along with the time constant 7. Thus
we write the solution in accordance with the
technique developed in Section 7.4:

Vo1 = —1.25 + [0 — (—1.25)]e™2*

—125 4+ 12572V, 1 =0.

NOTE: Assess your understanding of this material by trying Chapter Problem 8.64.
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Figure 8.21 A The circuit diagram of the conven-
tional automobile ignition system.

Practical Perspective

An Ignition Circuit

Now let us return to the conventional ignition system introduced at the
beginning of the chapter. A circuit diagram of the system is shown in
Fig. 8.21. Consider the circuit characteristics that provide the energy to
ignite the fuel-air mixture in the cylinder. First, the maximum voltage avail-
able at the spark plug, vg,, must be high enough to ignite the fuel. Second,
the voltage across the capacitor must be limited to prevent arcing
across the switch or distributor points. Third, the current in the primary
winding of the autotransformer must cause sufficient energy to be stored in
the system to ignite the fuel-air mixture in the cylinder. Remember that the
energy stored in the circuit at the instant of switching is proportional to the
primary current squared, that is, oy = %Liz(O).

EXAMPLE

a) Find the maximum voltage at the spark plug, assuming the following val-
ues in the circuit of Fig. 8.21: V. =12V, R=40Q, L = 3mH,
C = 04 uF, and a = 100.

b) What distance must separate the switch contacts to prevent arcing at
the time the voltage at the spark plug is maximum?

Solution

a) We analyze the circuit in Fig. 8.21 to find an expression for the spark
plug voltage vg,. We limit our analysis to a study of the voltages in the
circuit prior to the firing of the spark plug. We assume that the current
in the primary winding at the time of switching has its maximum possi-
ble value V/R, where R is the total resistance in the primary circuit.
We also assume that the ratio of the secondary voltage (v,) to the pri-
mary voltage (v) is the same as the turns ratio N,/N; . We can justify
this assumption as follows. With the secondary circuit open, the voltage
induced in the secondary winding is

di
=M, .
vy 0 (8.88)
and the voltage induced in the primary winding is
di
= L—. .
7 o (8.89)
It follows from Egs. 8.88 and 8.89 that
(%) M
_= 8.90
=T (8.90)

It is reasonable to assume that the permeance is the same for the fluxes
¢y and ¢, in the iron-core autotransformer; hence Eq. 8.90 reduces to

(%) NlNz@ Nz (8 91)
T Y e / & .
v Ni®p N,

We are now ready to analyze the voltages in the ignition circuit.
The values of R, L, and C are such that when the switch is opened, the
primary coil current response is underdamped. Using the techniques



developed in Section 8.4 and assuming ¢ = 0 at the instant the switch
is opened, the expression for the primary coil current is found to be

V. «
= 9 coswyt + | — |sinwgt |, (8.92)
R W,y
where
R
a=—,
2L

o = | 2
d LC a.

(See Problem 8.66(a).) The voltage induced in the primary winding
of the autotransformer is

dl _ _Vdc

dt - wiRC e sin w,t. (8.93)

(See Problem 8.66(b).) It follows from Eq. 8.91 that

—aVy —at s
= ——¢€ SIn wgt. 8.94
W RC d (8.94)

The voltage across the capacitor can be derived either by using the
relationship

t
v = l/ idx + v,(0) (8.95)
C 0

or by summing the voltages around the mesh containing the primary
winding:
di
V.= Vg — IR — L—. 8.96
c de — ¢ dt ( )
In either case, we find

i

v, = Vy [l — €™ cos wgt + Ke

1/(1
k= (.()(,<RC - )'

(See Problem 8.66(c).) As can be seen from Fig. 8.21, the voltage
across the spark plug is

"sin w,t], (8.97)

where

'Usp = Vdc + vy

anc
- €
de &){[RC

a -l 3
= Vdc[l - wdRCe " sin w,,t]. (8.98)

—al

sin w,t

Practical Perspective

295
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b)

To find the maximum value of ¥sp, we find the smallest positive value of
time where dv,,/dt is zero and then evaluate v, at this instant. The

expression for £, is
1 )
foax = —tan ‘(—"). (8.99)
wq o

(See Problem 8.67) For the component values in the problem statement,
we have

_ R _axu0®
*T2L " 6

10°
Wy = A lﬁ — (666.67)* = 28,859.81 rad/s.

Substituting these values into Eq. 8.99 gives

= 666.67 rad/s,

and

fmax = 53.63 us.

Now use Eq. 8.98 to find the maximum spark plug voltage, vyp(fmax):

Vgp(Tmax) = —25,975.69 V.

The voltage across the capacitor at t,,,, is obtained from Eq. 8.97 as

Vtmm) = 262.15 V.

The dielectric strength of air is approximately 3 X 10° V/m, so this
result tells us that the switch contacts must be separated by
262.15/3 x 108, or 87.38, um to prevent arcing at the points at Z,ay-

In the design and testing of ignition systems, consideration must
be given to nonuniform fuel-air mixtures; the widening of the spark plug
gap over time due to the erosion of the plug electrodes; the relationship
between available spark plug voltage and engine speed; the time it takes
the primary current to build up to its initial value after the switch
is closed; and the amount of maintenance required to ensure reliable
operation.

We can use the preceding analysis of a conventional ignition system
to explain why electronic switching has replaced mechanical switching in
today's automobiles. First, the current emphasis on fuel economy and
exhaust emissions requires a spark plug with a wider gap. This, in turn,
requires a higher available spark plug voltage. These higher voltages (up
to 40 kV) cannot be achieved with mechanical switching. Electronic
switching also permits higher initial currents in the primary winding of
the autotransformer. This means the initial stored energy in the system is
larger, and hence a wider range of fuel-air mixtures and running condi-
tions can be accommodated. Finally, the electronic switching circuit elim-
inates the need for the point contacts. This means the deleterious effects
of point contact arcing can be removed from the system.

NOTE: Assess your understanding of the Practical Perspective by trying Chapter
Problems 8.68 and 8.69.
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« The characteristic equation for both the parallel and

series RLC circuits has the form
$* + 2as + wf =0,

where & = 1/2RC for the parallel circuit,« = R/2L for
the series circuit, and w§ = 1/LC for both the parallel
and series circuits. (See pages 267 and 286.)

The roots of the characteristic equation are
S12= —a t Va? - w%

(See page 268.)

The form of the natural and step responses of series
and parallel RLC circuits depends on the values of o?
and ) such responses can be overdamped,
underdamped, or critically damped. These terms
describe the impact of the dissipative element (R) on
the response. The neper frequency, o, reflects the effect
of R. (See pages 268 and 269.)

The response of a second-order circuit is overdamped,
underdamped, or critically damped as shown in
Table 8.2.

In determining the natural response of a second-order
circuit, we first determine whether it is over-, under-, or

Summary 297

critically damped, and then we solve the appropriate
equations as shown in Table 8.3.

In determining the step response of a second-order cir-
cuit, we apply the appropriate equations depending on
the damping, as shown in Table 8.4.

For each of the three forms of response, the unknown
coefficients (i.e., the As, B s, and Ds) are obtained by
evaluating the circuit to find the initial value of the
response, x(0), and the initial value of the first deriva-
tive of the response, dx(0)/dt.

When two integrating amplifiers with ideal op amps are
connected in cascade, the output voltage of the second
integrator is related to the input voltage of the first by an
ordinary, second-order differential equation. Therefore,
the techniques developed in this chapter may be used to
analyze the behavior of a cascaded integrator. (See
pages 289 and 290.)

We can overcome the limitation of a simple integrating
amplifier —the saturation of the op amp due to charge
accumulating in the feedback capacitor—by placing a
resistor in parallel with the capacitor in the feedback
path. (See page 291.)

TABLE 8.2  The Response of a Second-Order Circuit is Overdamped, Underdamped, or Critically Damped
The Cireuit is When Qualitative Nature of the Response I
Overdamped o > wh The voltage or current approaches its final value without oscillation
Underdamped o < wf The voltage or current oscillates about its final value
(ﬂ?r{iﬁtiicially damped o? = o The voltage or current is on the verge of oscillating about its final value .
TABLE 8.3  In Determining the Natural Response of a Second-Order Circuit, We First Determine Whether it is Over-, Under-,
or Critically Damped, and Then We Solve the Appropriate Equations
Damping Natural Response Equations Coefficient Equations
Overdamped (1) = A’ + Ae™ x(0) = A; + Ay;

dx/dr(0) = Ais; + Assy
Underdamped x(tf) = (Bycos wyt + By sin wgt)e ™ x(0) = By;

dX/(i[(O) = —aB; + wyB,,
where w; = Voj — o?
\(0) = Dz,

dx/di0) = D, — a D;

Critically damped x(r) = (Dt + Dy)e™™
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TABLE 8.4  In Determining the Step Response of a Second-Order Circuit, We Apply the Appropriate Equations Depending
on the Damping

Damping _Step Response Equations® Coefficient Equations
Overdamped x(t) = Xp + Al + Ay x(0) = Xy + A} + A);
dx/dt(0) = Al sy + A5 sy
Underdamped x(t) = X; + (Bicoswgt + Bj sinwyt)e™™ x(0) = Xy + By;
dx/di(0) = —aB| + w,B)
Critically damped x(t) = Xp + Djte™ + Dye x(0) = X, + Dj;

dx/di0) = D} - aD}

“ where X is the final value of x(7).

Problems

Sections 8.1-8.2

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

8.1 The resistance, inductance, and capacitance in a
parallel RLC circuit are 2000 Q, 250 mH, and

10nF, respectively. 8.6 a) Change the resistance for the circuit you

designed in Problem 8.5(a) so that the response
is underdamped. Continue to use components
from Appendix H. Calculate the roots of the

a) Calculate the roots of the characteristic equation
that describe the voltage response of the circuit.

b) Will the response be over-, under-, or critically

damped?

c) What value of R will yield a damped frequency

of 12 krad/s?

d) What are the roots of the characteristic equation

for the value of R found in (c)?

characteristic equation for this new resistance.

b) Change the resistance for the circuit you designed
in Problem 8.5(a) so that the response is over-
damped. Continue to use components from
Appendix H. Calculate the roots of the character-

. . - istic equation for thi i .
e) What value of R will result in a critically damped istic equation lor this new resistance

response? 8.7 The natural voltage response of the circuit in
8.2 The circuit elements in the circuit in Fig. 8.1 are Fig.8.1is
pseice R =200 Q, C = 200 nF, and L = 50 mH. The ini-
mumsi - tial inductor current is —45 mA, and the initial

capacitor voltage is 15 V.

v(t) = 75¢ %% (cos 6000t — 4sin 60000)V, ¢ =0,

when the inductor is 400 mH. Find (a) C; (b) R;

a) Calculate the initial current in each branch of () Vo3 (d) To; and (e) £, (1)-

the circuit. 8.8 Suppose the capacitor in the circuit shown in
b) Find v(¢) for t = 0. Fig. 8.1 has a value of 0.1 uF and an initial voltage
¢) Find i, (¢) for ¢ = 0. of 24 V. The initial current in the inductor is zero.

The resulting voltage response for ¢t = 0is
8.3 The resistance in Problem 8.2 is increased to asor 000
eseice  312.5 (). Find the expression for v(¢) for t = 0. v(r) = —8e + 32e V.

MULTISIM
8.4 The resistance in Problem 8.2 is increased to 250 €. a) Determine the numerical values of R, L, a,

rsice Find the expression for v(¢t) for t = 0. and wy.

MULTISIM . . . +
8.5 a) Design a parallel RLC circuit (see Fig. 8.1) using b) Caleulate ig(t). i, (t), and ic(f) for r = 0.

component values from Appendix H, with a res- 8.9 The voltage response for the circuit in Fig. 8.1 is
onant radian frequency of 5000 rad/s. Choose a known to be
resistor or create a resistor network so that the

R S — 7y, 4500 5001
response is critically damped. Draw your circuit. v(t) = Dyte™ + Dye™™, 1 = 0.




The initial current in the inductor (/) is —10 mA,
and the initial voltage on the capacitor (V) is 8 V.
The inductor has an inductance of 4 H.

a) Find the values of R, C, Dy, and D,.
b) Find ic(¢t) for t = 0%,
8.10 The natural response for the circuit shown in Fig. 8.1
is known to be
v(t) = —11e719% + 2040 v ¢ = 0,

If C=2uFandL = 125H,findi;(0") in milli-
amperes.

8.11 The initial value of the voltage v in the circuit in
Fig. 8.1 is zero, and the initial value of the capacitor
current, i.(0%), is 45 mA. The expression for the
capacitor current is known to be

i) = A2 4 Ay Som

when R is 250 ). Find
a) the values of «, wy, L, C, A, and A,

t = 0%,

dig0") _ —v(0) 1 ic(0")

dr dt dt L R C

( im0 _ i (0%
b) the expression for v(z),t = 0,
c) the expression for igx(t) = 0,
d) the expression for i, (t) = 0.
8.12 Assume the underdamped voltage response of the
circuit in Fig. 8.1 is written as
() = (A + Ay)e ™ coswygt + j(Ar — Ar)e ™ sin wyt
The initial value of the inductor current is I, and
the initial value of the capacitor voltage is V,. Show

that A, is the conjugate of A,. (Hint: Use the same
process as outlined in the text to find 4, and A,.)

8.13 Show that the results obtained from Problem 8.12—
that is, the expressions for A; and A,—are consistent
with Egs. 8.30 and 8.31 in the text.

8.14 In the circuit in Fig. 8.1, R =5kQ, L =8H,
M"SL”IZEM C =125nF, V=30V, and I, = 6 mA.
ULTISI
a) Find »(¢) for: = 0.

b) Find the first three values of ¢ for which dv/dt is
zero. Let these values of ¢ be denoted ¢#,, £,
and £3.

c) Showthatt; — 4, =T

d) Show thats, — 1, = T4/2.

e) Calculate v(¢,), v(t,), and v(t3).

f) Sketchv(f) versustforQ = 1 < ¢,.

8.15 a) Find »(¢) for t = 0 in the circuit in Problem 8.14

PSPICE it the 5 k() resistor is removed from the circuit.
MULTISIM

b) Calculate the frequency of v(z) in hertz.
c) Calculate the maximum amplitude of () in volts.

Problems 299

8.16 In the circuit shown in Fig. 8.1, a 2.5 H inductor is
eseice  shunted by a 100 nF capacitor, the resistor R is
MR adjusted for critical damping, Vo= —15V, and

l(] = —5mA.

a) Calculate the numerical value of R.

b) Calculate v(¢) for¢ = 0.

c¢) Find v(¢) when ic(¢) = 0.

d) What percentage of the initially stored energy

remains stored in the circuit at the instant i-(t)
is 0?7

8.17 The resistor in the circuit in Example 8.4 is changed
esPice to 3200 ().

MULTISIM ) . .
a) Find the numerical expression for v(t) when

t = 0.

b) Plot v(t) versus ¢ for the time interval
0 =r = 7ms. Compare this response with
the one in Example 84 (R =20k{}) and
Example 8.5 (R = 4 kQ). In particular, compare
peak values of v(t) and the times when these
peak values occur.

) 8.18 The two switches in the circuit seen in Fig. P8.18

rseice  operate synchronously. When switch 1 is in position

MU 3 switch 2 is in position d. When switch 1 moves to
position b, switch 2 moves to position c. Switch 1 has
been in position a for a long time. At ¢ = 0, the
switches move to their alternate positions. Find
v,(t) fort = 0.

Figure P8.18
10

6oma( | )s000g

8.19 The resistor in the circuit of Fig. P8.18 is increased
rseice from 100 Q to 200 Q. Find v,(¢) for ¢t = 0.

MULTISIM

8.20 The resistor in the circuit of Fig. P8.18 is increased
rsece  from 100 () to 125 Q. Find v,(¢) for ¢ = 0.

MULTISIM
8.21 The switch in the circuit of Fig. P8.21 has been in
pseice position a for a long time. At ¢t = 0 the switch
"ITEM moves instantaneously to position b. Find v,(t) for
t=0.

Figure P8.21

1kQ
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8.22 The inductor in the circuit of Fig. P8.21 is decreased
to 10 H. Find »,(t) for t = 0.

8.23 The inductor in the circuit of Fig. P8.21 is decreased
to 6.4 H. Find v,(¢) for ¢t = 0.

Section 8.3
8.24

PSPICE
MULTISIM
8.25
PSPICE
MULTISIM
8.26
PSPICE
MULTISIM
8.27
PSPICE
MULTISIM

For the circuit in Example 8.6, find, for ¢ = 0,
(a) v(1); (b) ir(¢); and (c) ic(2).

For the circuit in Example 8.7, find, for ¢ = 0,
(a) v(¢) and (b) i(2).

For the circuit in Example 8.8, find v(¢) for ¢t = 0.

The switch in the circuit in Fig. P8.27 has been open
a long time before closing at ¢t = (). Find

a) v,(¢t) fort = 0%,
b) iy (¢) fort = 0.
Figure P8.27

156.250

25V

8.28 Use the circuit in Fig. P8.27
MZ?:ZSM a) Find the total energy delivered to the inductor.

b) Find the total encrgy delivered to the equivalent
resistor.

c) Find the total energy delivered to the capacitor.

d) Find the total energy delivered by the equiva-
lent current source.

e) Check the results of parts (a) through (d)
against the conservation of energy principle.

Assume that at the instant the 60 mA dc current
source is applied to the circuit in Fig. P8.29, the ini-
tial current in the 50 mH inductor is —45 mA, and
the initial voltage on the capacitor is 15 V (positive
at the upper terminal). Find the expression for i; (t)
for ¢t = 01if R equals 200 ).

8.29
PSPICE
MULTISIM

Figure P8.29

60 mA i (l 50 mH %200 nF R

8.30

PSPICE
MULTISIM

8.31

PSPICE
MULTISIM

8.32

PSPICE
MULTISIM

The resistance in the circuit in Fig. P8.29 is changed
to 312.5 Q. Find i, (t) for ¢t = 0.

The resistance in the circuit in Fig. P8.29 is changed
to 250 Q. Find i;(¢) fort = 0.

The switch in the circuit in Fig. P8.32 has been
open a long time before closing at ¢ = 0. Find ()
fort = 0.

Figure P8.32

8.33

PSPICE
MULTISIM

8.34

PSPICE
MULTISIM

8.35

PSPICE
MULTISIM

8.36

PSPICE
MULTISIM

Figure P8.33

5kQ

240V

Py

Switches 1 and 2 in the circuit in Fig. P8.33 are syn-
chronized. When switch 1 is opened, switch 2 closes
and vice versa. Switch 1 has been open a long time
before closing at ¢+ = 0. Find i, (¢) for t = 0.

The switch in the circuit in Fig. P8.34 has been open
for a long time before closing at ¢ = (). Find v,(¢)
fort = 0.

Figure P8.34

400 Q o_

X
0\ +
T 1 25 uF v,

a) For the circuit in Fig. P8.34, find i, for ¢t = 0.

b) Show that your solution for i, is consistent with
the solution for v, in Problem 8.34.

1.25H

The switch in the circuit in Fig. P8.36 has been
open a long time before closing at t = 0. At the
time the switch closes, the capacitor has no stored
energy. Find v, for t = 0.

Figure P8.36
250 Q1
AW

5kQ




8.37 There is no energy stored in the circuit in Fig. P8.37

PSPICE
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8.38

PSPICE
MULTISIM

when the switch is closed at ¢ = 0. Find w,(¢)
fort = 0.

Figure P8.37

4000 > lo
Y
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12V 1.25 MFT v,91.25H

a) For the circuit in Fig. P8.37, find i, for t = 0.

b) Show that your solution for i, is consistent with
the solution for v, in Problem 8.37.

Section 8.4

8.39

8.40

841

The initial energy stored in the 31.25 nF capacitor
in the circuit in Fig. P8.39 is 9 uJ. The initial energy
stored in the inductor is zero. The roots of the char-
acteristic equation that describes the natural behav-
ior of the current i are —4000 s~ and —16,000s™!

a) Find the numerical values of R and L.

b) Find the numerical values of #(0) and di(0)/dt
immediately after the switch has been closed.

¢) Find i(z) for

d) How many microseconds after the switch closes
does the current reach its maximum value?

e) What is the maximum value of / in milliamperes?
f) Find v;(¢) for: = 0.

Figure P8.39

31.25 nF A

a) Design a series RLC circuit (see Fig. 8.3) using
component values from Appendix H, with a res-
onant radian frequency of 20 krad/s. Choose a
resistor or create a resistor network so that the
response is critically damped. Draw your circuit.

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

a) Change the resistance for the circuit you
designed in Problem 8.40(a) so that the response
is underdamped. Continue to use components
from Appendix H. Calculate the roots of the
characteristic equation for this new resistance.

Problems 301

b) Change the resistance for the circuit you
designed in Problem 8.40(a) so that the response
is overdamped. Continue to use components
from Appendix H. Calculate the roots of the
characteristic equation for this new resistance.

8.42 The current in the circuit in Fig. 8.3 is known to be
i = B¢ 2 051500 + Bre 2% sin 1500¢, ¢ = 0.

The capacitor has a value of 80 nF; the initial value
of the current is 7.5 mA; and the initial voltage on
the capacitor is =30 V. Find the values of R, L, By,
and B,.

8.43 Find the voltage across the 80 nF capacitor for the
circuit described in Problem 8.42. Assume the refer-
ence polarity for the capacitor voltage is positive at
the upper terminal.

8.44 In the circuit in Fig. P8.44, the resistor is adjusted
eseice  for critical damping. The initial capacitor voltage is
MU 15V, and the initial inductor current is 6 mA.
a) Find the numerical value of R.

b) Find the numerical values of i and di/dt immedi-
ately after the switch is closed.

¢) Find v(r) fort = 0.

Figure P8.44

R

AW
+ = (]‘ -

ve~320nF 125 mH

8.45 The switch in the circuit shown in Fig. P8.45 has
rseice  been in position a for a long time. At ¢t = 0, the
HUTSI - switch is moved instantaneously to position b. Find

i(t)fort = 0.

Figure P8.45
80 Q)

L
20Q
VWA~ a\ //b I}
t=10
<;>240v >T %wH
4mFT

8.46 The switch in the circuit in Fig. P8.46 on the next
st page has been in position a for a long time. At ¢t = 0,
"M the switch moves instantaneously to position b.

a) What is the initial value of v,?
b) What is the initial value of dv,/dt?

c) What is the numerical expression for v,(f)
fort = 0?
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Figure P8.46
1kQ

4 2kQ 3kQ

75V 400 mH

8.47 The switch in the circuit shown in Fig. P8.47 has
eseie  been closed for a long time. The switch opens at
MULTISIM = 0' Flnd

a) i,(r) fort = 0,
b) v,(¢) fort = 0.

Figure P8.47

t=20
300 Q
WA

\
500 Q3 (1) +
v,(t) Z<40 nF

Yo

2.5mH

8.48 The switch in the circuit shown in Fig. P8.48 has
been closed for a long time. The switch opens at
t = 0. Find v,(¢) fort = 0.

Figure P8.48

70Q 200

SmF v,

8.49 The circuit shown in Fig. P8.49 has been in operation
eseice for a long time. At ¢ = 0, the source voltage suddenly
MO jumps to 250 V. Find v,(t) for t = 0.

Figure P8.49

8kQ 160 mH
A% —YYY ‘—T—<
+
S0V 10 nFT v,(t)

8.50 The initial energy stored in the circuit in Fig. P8.50

pseice  is zero, Find v,(7) for 1 = 0.
MULTISIM

Figure P8.50
X 62.5 mH

YL
= ()* +
6.25 pF A< v,(1)

250 Q
WA

60V

8.51 The capacitor in the circuit shown in Fig. P8.50 is
changed to 4 uF. The initial ecnergy stored is still

zero. Find v,(¢) fort = 0.

8.52 The capacitor in the circuit shown in Fig. P8.50 is
changed to 2.56 uF. The initial energy stored is still

zero. Find v,,(¢) for ¢t = 0.

8.53

PSPICE
MULTISIM

The switch in the circuit of Fig. P8.53 has been in
position a for a long time. At ¢ = 0 the switch
moves instantancously to position b. Find

a) v,(0%)

b) dv,(07)/dt

c) v,(t) fore = 0.
Figure P8.53

500 mH

40V 781.25 HFT Uu({)

8.54 The switch in the circuit shown in Fig. P§.54 has
been closed for a long time before it is opened at
t = (). Assume that the circuit parameters are such
that the response is underdamped.

a) Derive the expression for v,() as a function of
Ve @, 04, C,and R for ¢ = 0.

b) Derive the expression for the value of + when
the magnitude of v, is maximum.

Figure P8.54

=10

8.55

PSPICE
MULTISIM

The circuit parameters in the circuit of Fig. P8.54

are R=48000, L =64mH, C =4nF, and

v, = —72V.

a) Express v,(#) numerically for 1 = 0.

b) How many microseconds after the switch opens
is the inductor voltage maximum?



¢) What is the maximum value of the inductor
voltage?
d) Repeat (a)-(c) with R reduced to 480 ().

8.56 The two switches in the circuit scen in Fig. P8.56
pice  operate synchronously. When switch 1 is in
OB position a, switch 2 is closed. When switch 1 is

in position b, switch 2 is open. Switch 1 has been in
position a for a long time. At t = 0, it moves instan-
taneously to position b. Find v.(¢) fort = 0.

Figure P8.56
40 a

)10V 20
60V

8.57 Assume that the capacitor voltage in the circuit of
Fig. 8.15 is underdamped. Also assume that no
energy is stored in the circuit clements when the
switch is closed.

a) Show that dvg/dt = (wj/ws)Ve ™ sin wyt.
b) Show that dvc/dt = 0 when ¢ = nw/w,, where

n=20,12.....

c) Let ¢, = nm/w,;, and show that v(¢,)
=V — V(—l)"e_"'m/w"_

d) Show that

a = ——In

Ty wvelts) — V7
where T; = 13 — ;.

8.58 The voltage across a 100 nF capacitor in the circuit
of Fig. 8.15 is described as follows: After the switch
has been closed for several seconds, the voltage is
constant at 100 V. The first time the voltage exceeds
100 V, it reaches a peak of 163.84 V. This occurs
/7 ms after the switch has been closed. The second
time the voltage exceeds 100V, it reaches a peak of
126.02 V. This second peak occurs 37/7 after the
switch has been closed. At the time when the switch
is closed, there is no energy stored in cither the
capacitor or the inductor. Find the numerical values
of R and L. (Hint: Work Problem 8.57 first.)

Section 8.5

8.59 Show that, if no energy is stored in the circuit
shown in Fig. 8.19 at the instant v, jumps in value.
then dv,/dt equals zero at t = 0.

8.60 a) Find the equation for v,(¢) for 0 =t =1, in
the circuit shown in Fig. 8.19if v,;(0) = 5V and
v,(0) = 8 V.

Problems 303

b) How long does the circuit take to reach
saturation?

8.61 a) Rework Example 8.14 with feedback resistors
R; and R, removed.
b) Rework Example 8.14 with v,,,(0) = —2 V and
,(0) = 4 V.

8.62 a) Derive the differential equation that rclates
the output voltage to the input voltage for the
circuit shown in Fig. P8.62.

b) Compare the result with Eq. 875 when
RC, = R,C; = RC in Fig.8.18.

c) What is the advantage of the circuit shown in
Fig. P8.62?

Figure P8.62

R R
+
v, 2C y »
l‘(’
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8.63 The voltage signal of Fig. P8.63(a) is applied to
pseice  the cascaded integrating amplifiers shown in
WS Rig P8.63(b). There is no energy stored in the

capacitors at the instant the signal is applied.

a) Derive the numerical expressions for v,(r) and
v,,(?) for the time intervals 0 < ¢ < 0.5s and
058 <t =<t

b) Compute the value of ¢,.

Figure P8.63

v, (mV)
80
' £(s)
0
—40 0.5 1
(a)
200 nF
i€
100 k
brhul 400 k€2 125V
—\W
Vg f . :
- v,
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v
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8.64

PSPICE
MULTISIM

8.65

Natural and Step Responses of RLC Circuits

The circuit in Fig. P8.63(b) is modified by adding a
1 M resistor in parallel with the 500 nF capacitor
and a 5 MQ resistor in parallel with the 200 nF
capacitor. As in Problem 8.63, there is no energy
stored in the capacitors at the time the signal is
applied. Derive the numerical expressions for v,,(t)
and v,,(t) for the time intervals 0 < ¢ = (.5s and
t=05s.

We now wish to illustrate how several op amp cir-
cuits can be interconnected to solve a differential
equation.

a) Derive the differential equation for the spring-
mass system shown in Fig. P8.65(a). Assume
that the force exerted by the spring is directly
proportional to the spring displacement, that

Figure P8.65

the mass is constant, and that the frictional
force is directly proportional to the velocity of
the moving mass.

b) Rewrite the differential equation derived in (a)

so that the highest order derivative is expressed
as a function of all the other terms in the equa-
tion. Now assume that a voltage equal to d’x/dr?
is available and by successive integrations gen-
erates dx/dt and x. We can synthesize the coeffi-
cients in the equations by scaling amplifiers, and
we can combine the terms required to generate
d’x/df* by using a summing amplifier. With
these ideas in mind, analyze the interconnection
shown in Fig. P8.65(b). In particular, describe
the purpose of each shaded area in the circuit
and describe the signal at the points labeled B,

—x(¢) —
K
M —f(0)
D
=
(a)
1
Ry
A
R, 2
ft) e—w— R R c 4
1
F Vi G
_ R [AY I{
R »——o—w\J C
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D
5
R
A
R,
~ oA
S~
6

(b)




C, D, E, and F, assuming the signal at A repre-
sents d%x/dt?. Also discuss the parameters R; R, ,
C; Ry, Cy: R, Ry Rs, Rg; and Ry, Ry in terms
of the coefficients in the differential equation.

Sections 8.1-8.5

8.66 a) Derive Eq. 8.92.
rencrecrve D) Derive Eq. 8.93.
c) Derive Eq.8.97.

8.67 Derive Eq.8.99.

PRACTICAL
PERSPECTIVE

8.68 a) Using the same numerical values used in the
gl Practical Perspective example in the text, find
the instant of time when the voltage across the

capacitor is maximum.

Problems 305

b) Find the maximum value of ..
c) Compare the values obtained in (a) and (b) with
Lmax a0d Ve(fmax)-

8.69 The values of the parameters in the circuit in
JRACTICAL Fig. 821 are R=3; L = 5mH; C = 025 uF;
Vie = 12 V; and a = 50. Assume the switch opens

when the primary winding current is 4 A.

a) How much energy is stored in the circuit at
t=0%?

b) Assume the spark plug does not fire. What is the
maximum voltage available at the spark plug?

c) What is the voltage across the capacitor when
the voltage across the spark plug is at its maxi-
mum value?

8.70 Repeat Problem 8.68 using the values given in
Problem 8.69.




Sinusoidal
Steady-State Analysis

Thus far, we have focused on circuits with constant sources; in
this chapter we are now ready to consider circuits energized by

CHAPTER CONTENTS

9.1 The Sinusoidal Source p. 308
9.2 The Sinusoidal Response p. 311
9.3 The Phasor p. 312 | ested in sources in which the value of the voltage or current varies

9.4 The Passive Circuit Elements in the . sinusoidally. Sinusoidal sources and their effect on circuit behavior
Frequency Domain p. 317

time-varying voltage or current sources. In particular, we are inter-

form an important area of study for several reasons. First, the gen-
9.5 Kirchhoff’s Laws in the Frequency

Domain p. 321 eration, transmission, distribution, and consumption of electric
9.6 Series, Parallel, and Delta-to-Wye energy occur under essentially sinusoidal steady-state conditions.
Simplifications p. 322 Second, an understanding of sinusoidal behavior makes it possible

9.7 Source Transformations and
Thévenin-Norton Equivalent Circuits p. 329

9.8 The Node-Voltage Method p. 332
9.9 The Mesh-Current Method p. 333

to predict the behavior of circuits with nonsinusoidal sources.
Third, steady-state sinusoidal behavior often simplifies the design
of electrical systems. Thus a designer can spell out specifications in

9.10 The Transformer p. 334 terms of a desired steady-state sinusoidal response and design the

9.11 The Ideal Transformer p. 338 . circuit or system to meet those characteristics. If the device satis-

Hole Phasor Diagrams: p: i44 ' fies the specifications, the designer knows that the circuit will
respond satisfactorily to nonsinusoidal inputs.

The subsequent chapters of this book are largely based on a

1 Understand phasor concepts and be able to thorough understanding of the techniques needed to analyze cir-

perform a phasor transform and an inverse cuits driven by sinusoidal sources. Fortunately, the circuit analysis

phasor transform.

2 Ba uhls o tiiehanid Erowt with a.sniseidst and simplification techniques first introduced in Chapters 1-4

source into the frequency domain using phasor work for circuits with sinusoidal as well as dc sources, so some of

L the material in this chapter will be very familiar to you. The chal-
3 Know how to use the following circuit analysis

techniques to solve a circuit in the frequency lenges in first approaching sinusoidal analysis include developing

domain: the appropriate modeling equations and working in the mathe-
* Kirchhoff's laws; matical realm of complex numbers.
« Series, parallel, and delta-to-wye

simplifications;

« Voltage and current division;

= Thévenin and Norton equivalents;
» Node-voltage method; and

*  Mesh-current method.

4 Be able to analyze circuits containing linear
transformers using phasor methods.

5 Understand the ideal transformer constraints
and be able to analyze circuits containing ideal
transformers using phasor methods.

306



Practical Perspective

A Household Distribution Circuit
Power systems that generate, transmit, and distribute electri-
cal power are designed to operate in the sinusoidal steady
state. The standard household distribution circuit used in the
United States is the three-wire, 240/120 V circuit shown in
the accompanying figure.

The transformer is used to reduce the utility distribution
voltage from 13.2 kV to 240 V. The center tap on the second-
ary winding provides the 120 V service. The operating fre-
quency of power systems in the United States is 60 Hz. Both
50 and 60 Hz systems are found outside the United States.

The voltage ratings alluded to above are rms values. The rea-
son for defining an rms value of a time-varying signal is
explained in Chapter 10.

307
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Figure 9.1 A A sinusoidal voltage.

v
e
/
A
/
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Figure 9.2 A The sinusoidal voltage from Fig. 9.1
shifted to the right when ¢ = 0.

9.1 The Sinusoidal Source

A sinusoidal voltage source (independent or dependent) produces a volt-
age that varies sinusoidally with time. A sinusoidal current source (inde-
pendent or dependent) produces a current that varies sinusoidally with
time. In reviewing the sinusoidal function, we use a voltage source, but our
observations also apply to current sources.

We can express a sinusoidally varying function with either the sine
function or the cosine function. Although either works equally well, we
cannot use both functional forms simultaneously. We will use the cosine
function throughout our discussion. Hence, we write a sinusoidally varying
voltage as

v =V, cos{wt + ¢). (9.1)

To aid discussion of the parameters in Eq. 9.1, we show the voltage
versus time plot in Fig. 9.1.

Note that the sinusoidal function repeats at regular intervals. Such a
function is called periodic. One parameter of interest is the length of time
required for the sinusoidal function to pass through all its possible values.
This time is referred to as the period of the function and is denoted 7. It is
measured in seconds. The reciprocal of T gives the number of cycles per
second, or the frequency, of the sine function and is denoted f, or

(9.2)

N

f:

A cycle per second is referred to as a hertz, abbreviated Hz. (The term
cycles per second rarely is used in contemporary technical literature.) The
coefficient of ¢ in Eq. 9.1 contains the numerical value of T or f. Omega (w)
represents the angular frequency of the sinusoidal function, or

= 27f = 2w/T (radians/second). (9.3)

Equation 9.3 is based on the fact that the cosine (or sine) function passes
through a complete set of values each time its argument, w?, passes
through 27 rad (360°). From Eq. 9.3, note that, whenever ¢ is an integral
multiple of T, the argument wt increases by an integral multiple of 27 rad.

The coefficient V,, gives the maximum amplitude of the sinusoidal
voltage. Because +1 bounds the cosine function, +V,,, bounds the ampli-
tude. Figure 9.1 shows these characteristics.

The angle ¢ in Eq. 9.1 is known as the phase angle of the sinusoidal
voltage. It determines the value of the sinusoidal function at ¢ = 0; there-
fore, it fixes the point on the periodic wave at which we start measuring
time. Changing the phase angle ¢ shifts the sinusoidal function along the
time axis but has no effect on either the amplitude (V,,,) or the angular fre-
quency (w). Note, for example, that reducing ¢ to zero shifts the sinusoidal
function shown in Fig. 9.1 ¢/w time units to the right, as shown in Fig. 9.2.
Note also that if ¢ is positive, the sinusoidal function shifts to the left,
whereas if ¢ is negative, the function shifts to the right. (See Problem 9.5.)

A comment with regard to the phase angle is in order: wf and ¢ must
carry the same units, because they are added together in the argument of
the sinusoidal function. With wt expressed in radians, you would expect ¢
to be also. However, ¢ normally is given in degrees, and wt is converted
from radians to degrees before the two quantities are added. We continue



this bias toward degrees by expressing the phase angle in degrees. Recall
from your studies of trigonometry that the conversion from radians to
degrees is given by

°

(number of degrees) = (number of radians). (9.4)

o

Another important characteristic of the sinusoidal voltage (or cur-
rent) is its rms value. The rms value of a periodic function is defined as the
square root of the mean value of the squared function. Hence, if
v =V, cos (@t + ¢), the rms value of v is

1 w7
Vims = \/T/ V2, cos Hwt + ¢)adt. (9.5)
ty

Note from Eq. 9.5 that we obtain the mean value of the squared voltage by
integrating v* over one period (that is, from ¢, to &, + T) and then dividing
by the range of integration, T. Note further that the starting point for the
integration ¢, is arbitrary.

The quantity under the radical sign in Eq. 9.5 reduces to V2,/2. (See
Problem 9.6.) Hence the rms value of v is

VI"

Vrms = \—/_5 (96)

The rms value of the sinusoidal voltage depends only on the maximum
amplitude of v, namely, V,,. The rms value is not a function of either the
frequency or the phase angle. We stress the importance of the rms value as
it relates to power calculations in Chapter 10 (see Section 10.3).

Thus, we can completely describe a specific sinusoidal signal if we know
its frequency, phase angle, and amplitude (either the maximum or the rms
value). Examples 9.1, 9.2, and 9.3 illustrate these basic properties of the
sinusoidal function. In Example 9.4, we calculate the rms value of a periodic
function, and in so doing we clarify the meaning of root mean square.

el RN Finding the Characteristics of a Sinusoidal Current

9.1  The Sinusoidal Source 309

<« rms value of a sinusoidal voltage source

A sinusoidal current has a maximum amplitude of
20 A.The current passes through one complete cycle
in 1 ms. The magnitude of the current at zero time
is 10 A.

a) What is the frequency of the current in hertz?
b) What is the frequency in radians per second?

c) Write the expression for i(¢) using the cosine
function. Express ¢ in degrees.

d) What is the rms value of the current?

Solution

a) From the statement of the problem, T = 1 ms;
hence f = 1/T = 1000 Hz.
b) w = 27 f = 20007 rad/s.

c) We have i(t) = I, cos (wt + ¢) = 20 cos(20007¢
+ ¢), but {(0) = 10 A. Therefore 10 = 20cos ¢
and ¢ = 60°. Thus the expression for i(¢) becomes

i(t) = 20 cos (20007t + 60°).

d) From the derivation of Eq. 9.6, the rms value of a
sinusoidal current is I,,/V2. Therefore the rms
value is 20/ V2, or 14.14 A.
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Felyh| Nl Finding the Characteristics of a Sinusoidal Voltage

A sinusoidal voltage is given by the expression
v = 300 cos (1207t + 30°).

a) What is the period of the voltage in milliseconds?
b) What is the frequency in hertz?
c) What is the magnitude of v at t = 2.778 ms?

d) What is the rms value of v?

Solution

a) From the expression for v, @ = 1207 rad/s.
Because @ = 27/T. T = 27m/w = g s.
or 16.667 ms.

b) The frequency is 1/T, or 60 Hz.
¢) From (a), @ = 27/16.667; thus, at ¢t = 2.778 ms,

of is nearly 1.047 rad, or 60°. Therefore,
v(2.778 ms) = 300 cos (60° + 30°) = O V.

d) Vims = 300/V2 = 212.13 V.

We can translate the sine function to the cosine
function by subtracting 90° (/2 rad) from the argu-
ment of the sine function.

a) Verify this translation by showing that

sin (wt + 6) = cos (wr + 6 — 90°%).

b) Use the result in (a) to express sin (w¢ + 30°) as
a cosine function.

3L RN Translating a Sine Expression to a Cosine Expression

Solution

a) Verification involves direct application of the
trigonometric identity

cos(a¢ — B) =cosacos B + sinasin .

We leta = wt + 6 and B = 90°. As ¢cos90° = 0 and
sin90° = 1, we have

cos(a — B) = sina = sin(wt + 0) = cos(wt + 6 — 90°).

b) From (a) we have

sin(wt + 30°) = cos(wt + 30° — 90°) = cos(wt — 60°).

SRR Calculating the rms Value of a Triangular Waveform

Calculate the rms value of the periodic triangular
current shown in Fig. 9.3. Express your answer in
terms of the peak current /.

i
I etc.
X | 1 l / ;
“T/N —T/4 T/4 T/\ 3T/4

Figure 9.3 A Periodic triangular current.

Solution

From Eq. 9.5, the rms value of i is

1 g+ T
Toms = \| = dt .
rms T/“ rde

Interpreting the integral under the radical sign as
the area under the squared function for an interval
of one period is helpful in finding the rms value.
The squared function with the area between () and
T shaded is shown in Fig. 9.4, which also indicates
that for this particular function, the area under the



squared current for an interval of one period is
equal to four times the area under the squared cur-
rent for the interval 0 to 7/4 seconds; that is,

to+ T /4
/ P2dr =4 / i2dr.
ty 0]

etc.
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The area under the squared function for one
period is

ho* T TI161; nr
/ izdt=4/ e = ——.
7 Jo T 3

The mean, or average, value of the function is
simply the area for one period divided by the
period. Thus

| | |
~TR2~T/4 Ol  T/4 TR 3T/4 T

Figure 9.4 A i versus 1.

The analytical expression for i in the interval 0 to
T/4is

41

P
j = —— <t < T/4.
i Tt, 0<¢ /

fmean = ? 3 = 51;7

The rms value of the current is the square root of
this mean value. Hence

Lims =

5

NOTE: Assess your understanding of this material by trying Chapter Problems 9.1, 9.4, 9.8.

9.2 The Sinusoidal Response

Before focusing on the steady-state response to sinusoidal sources, let’s
consider the problem in broader terms, that is, in terms of the total
response. Such an overview will help you keep the steady-state solution in
perspective. The circuit shown in Fig. 9.5 describes the general nature of
the problem. There, v, is a sinusoidal voltage, or

v, = V,,cos (0t + ¢). (9.7)

For convenience, we assume the initial current in the circuit to be zero and
measure time from the moment the switch is closed. The task is to derive
the expression for i(t) when ¢ = 0. It is similar to finding the step response
of an RL circuit, as in Chapter 7. The only difference is that the voltage
source is now a time-varying sinusoidal voltage rather than a constant, or
dc, voltage. Direct application of Kirchhoff’s voltage law to the circuit
shown in Fig. 9.5 leads to the ordinary differential equation

L% + Ri = V,,cos (wt + ¢), (9.8)
¢

the formal solution of which is discussed in an introductory course in dif-
ferential equations. We ask those of you who have not yet studied differ-
ential equations to accept that the solution for / is

. _Vm - Vm
i = —F————cos(¢ — B)e Ry ¢ — " cos (wft + ¢ — ),
VR> + w?L? VR + oL

(9.9)

Figure 9.5 A An RL circuit excited by a sinusoidal
voltage source.
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where 0 is defined as the angle whose tangent is wL/R. Thus we can easily
determine # for a circuit driven by a sinusoidal source of known frequency.

We can check the validity of Eq. 9.9 by determining that it satisfies
Eq. 9.8 for all values of + = 0; this exercise is left for your exploration in
Problem 9.10.

The first term on the right-hand side of Eq. 9.9 is referred to as the
transient component of the current because it becomes infinitesimal as
time elapses. The second term on the right-hand side is known as the
steady-state component of the solution. It exists as long as the switch
remains closed and the source continues to supply the sinusoidal voltage.
In this chapter, we develop a technique for calculating the steady-state
response directly, thus avoiding the problem of solving the differential
equation. However, in using this technique we forfeit obtaining either the
transient component or the total response, which is the sum of the tran-
sient and steady-state components.

We now focus on the steady-state portion of Eq. 9.9. It is important to
remember the following characteristics of the steady-state solution:

1. The steady-state solution is a sinusoidal function.

2. The frequency of the response signal is identical to the frequency of
the source signal. This condition is always true in a linear circuit
when the circuit parameters, R, L, and C, are constant. (If frequen-
cies in the response signals are not present in the source signals,
there is a nonlinear element in the circuit.)

3. The maximum amplitude of the steady-state response, in general,
differs from the maximum amplitude of the source. For the circuit
being discussed, the maximum amplitude of the response signal is
V,,/VR* + «’L?, and the maximum amplitude of the signal source
s V,,.

4. The phase angle of the response signal, in general, differs from the
phase angle of the source. For the circuit being discussed, the phase
angle of the current is ¢ — 6 and that of the voltage source is ¢.

These characteristics are worth remembering because they help you
understand the motivation for the phasor method, which we introduce in
Section 9.3. In particular, note that once the decision has been made to
find only the steady-state response, the task is reduced to finding the max-
imum amplitude and phase angle of the response signal. The waveform
and frequency of the response are already known.

NOTE: Assess your understanding of this material by trying Chapter
Problem 9.9.

9.3 The Phasor

The phasor is a complex number that carries the amplitude and phase
angle information of a sinusoidal function.! The phasor concept is rooted
in Euler’s identity, which relates the exponential function to the trigono-
metric function:

e’ = cos# + jsin6. (9.10)

Equation 9.10 is important here because it gives us another way of express-
ing the cosine and sine functions. We can think of the cosine function as the

L1f you feel a bit uneasy about complex numbers, peruse Appendix B.



real part of the exponential function and the sine function as the imaginary
part of the exponential function; that is,

cos = R{e?}, (9.12)
and
sinf = ${e}, (9.12)

where R means “the real part of” and ¥ means “the imaginary part of.”

Because we have already chosen to use the cosine function in analyz-
ing the sinusoidal steady state (see Section 9.1), we can apply Eq. 9.11
directly. In particular, we write the sinusoidal voltage function given by
Eq.9.1 in the form suggested by Eq. 9.11:

v = V,,cos (vt + ¢)
=V, R{e@+)
= V. R{e/"e/*}. (9.13)

We can move the coefficient V,, inside the argument of the real part of the
function without altering the result. We can also reverse the order of the
two exponential functions inside the argument and write Eq.9.13 as

v = R{V, e/}, (9.14)

In Eq. 9.14, note that the quantity V,,e/® is a complex number that carries
the amplitude and phase angle of the given sinusoidal function. This
complex number is by definition the phasor representation, or phasor
transform, of the given sinusoidal function. Thus

V =V,e?% =PV, cos(wt + d)}, (9.15)

where the notation P{V,,cos (wt + ¢)} is read “the phasor transform of
V,, cos (ot + ¢).” Thus the phasor transform transfers the sinusoidal func-
tion from the time domain to the complex-number domain, which is also
called the frequency domain, since the response depends, in general, on w.
As in Eq. 9.15, throughout this book we represent a phasor quantity by
using a boldface letter.

Equation 9.15 is the polar form of a phasor, but we also can express a
phasor in rectangular form. Thus we rewrite Eq. 9.15 as

V = V,,cos$ + jV,,sin . (9.16)

Both polar and rectangular forms are useful in circuit applications of the
phasor concept.

One additional comment regarding Eq. 9.15 is in order. The frequent
occurrence of the exponential function e/# has led to an abbreviation that
lends itself to text material. This abbreviation is the angle notation

1/4° = 1.

We use this notation extensively in the material that follows.

<« Phasor transform

9.3

The Phasor
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Inverse Phasor Transform

So far we have emphasized moving from the sinusoidal function to its pha-
sor transform. However, we may also reverse the process. That is, for a
phasor we may write the expression for the sinusoidal function. Thus for
V = 100/-26°, the expression for v is 100 cos (wf — 26°) because we
have decided to use the cosine function for all sinusoids. Observe that we
cannot deduce the value of w from the phasor. The phasor carries only
amplitude and phase information. The step of going from the phasor
transform to the time-domain expression is referred to as finding the
inverse phasor transform and is formalized by the equation

P HVne!?} = R{V, e/}, (9.17)

where the notation P~1{V,,e/*} is read as “the inverse phasor transform of
V,./.” Equation 9.17 indicates that to find the inverse phasor transform, we
multiply the phasor by e/ and then extract the real part of the product.

The phasor transform is useful in circuit analysis because it reduces
the task of finding the maximum amplitude and phase angle of the steady-
state sinusoidal response to the algebra of complex numbers. The follow-
ing observations verify this conclusion:

1. The transient component vanishes as time elapses, so the steady-
state component of the solution must also satisfy the differential
equation. (See Problem 9.10[b}.)

2. In a linear circuit driven by sinusoidal sourccs, the steady-state
response also is sinusoidal, and the frequency of the sinusoidal
response is the same as the frequency of the sinusoidal source.

3. Using the notation introduced in Eq. 9.11, we can postulate that the
steady-state solution is of the form R {Ae/Pe/'}, where A is the
maximum amplitude of the response and 8 is the phase angle of the
response.

4. When we substitute the postulated steady-state solution into the
differential equation, the exponential term e/ cancels out, leaving
the solution for A and 8 in the domain of
complex numbers.

We illustrate these observations with the circuit shown in Fig. 9.5 (see
p- 311). We know that the steady-state solution for the current : is of the form

iss(r) = ?R{Ilnejﬁejwl}, (9.18)

where the subscript “ss” emphasizes that we are dealing with the steady-
state solution. When we substitute Eq. 9.18 into Eq. 9.8, we gencrate the
expression

R{joLl,ePe} + R{RL,Pe/} = R{V,e%e"}. (9.19)

In deriving Eq. 9.19 we recognized that both differentiation and multiplica-
tion by a constant can be taken inside the real part of an operation. We also
rewrote the right-hand side of Eq. 9.8, using the notation of Eq.9.11. From



the algebra of complex numbers, we know that the sum of the real parts is the
same as the real part of the sum. Therefore we may reduce the left-hand side
of Eq.9.19 to a single term:

R{(joL + R),ePe} = R{V,e/%e/'}. (9.20)

Recall that our decision to use the cosine function in analyzing the
response of a circuit in the sinusoidal steady state results in the use of
the § operator in deriving Eq. 9.20. If instead we had chosen to use the
sine function in our sinusoidal steady-state analysis, we would have
applied Eq. 9.12 directly, in place of Eq. 9.11, and the result would be
Eq.9.21:

S{(uL + R)l,e e} = S{V,elte™}. (0:21)

Note that the complex quantities on either side of Eq. 9.21 are identical to
those on either side of Eq. 9.20. When both the real and imaginary parts of
two complex quantities are equal, then the complex quantities are them-
selves equal. Therefore, from Eqgs. 9.20 and 9.21,

(joL + R)e® =V,

or

Ve’

- .22
R + joL (9.22)

L =

Note that ¢/’ has been eliminated from the determination of the ampli-
tude (I,,) and phase angle (B) of the response. Thus, for this circuit, the
task of finding /,, and B involves the algebraic manipulation of the com-
plex quantities V,,e/® and R + joL. Note that we encountered both polar
and rectangular forms.

An important warning is in order: The phasor transform, along with
the inverse phasor transform, allows you to go back and forth between
the time domain and the frequency domain. Therefore, when you obtain
a solution, you are either in the time domain or the frequency domain.
You cannot be in both domains simultaneously. Any solution that con-
tains a mixture of time domain and phasor domain nomenclature is
nonsensical.

The phasor transform is also useful in circuit analysis because it applies
directly to the sum of sinusoidal functions. Circuit analysis involves sum-
ming currents and voltages, so the importance of this observation is obvi-
ous. We can formalize this property as follows: If

v=yptt+ oo o, (9.23)

where all the voltages on the right-hand side are sinusoidal voltages of the
same frequency, then

V=V, +V,+ - +V, (9.24)

9.3

The Phasor
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Thus the phasor representation is the sum of the phasors of the individual

terms. We discuss the development of Eq. 9.24 in Section 9.5.

Before applying the phasor transform to circuit analysis, we illus-
trate its usefulness in solving a problem with which you are already
familiar: adding sinusoidal functions via trigonometric identities.
Example 9.5 shows how the phasor transform greatly simplifies this
type of problem.

SEL KRN Adding Cosines Using Phasors

If y; = 20 cos (wt — 30°) and y, = 40 cos (wt + 60°),
express y = y; + y, as a single sinusoidal function.

a) Solve by using trigonometric identities.
b) Solve by using the phasor concept.

Solution

a) First we expand both y; and y,, using the cosine
of the sum of two angles, to get

y1 = 20 cos wt cos 30° + 20 sin w¢ sin 30°;
y, = 40 cos wt cos 60° — 40 sin wt sin 60°.

Adding y; and y,, we obtain

y = (20 cos 30 + 40 cos 60) cos w!
+ (205sin 30 — 405in 60) sin wt

= 37.32 cos wt — 24.64 sin wt.

To combine these two terms we treat the
co-efficients of the cosine and sine as sides of a right
triangle (Fig. 9.6) and then multiply and divide the
right-hand side by the hypotenuse. Our expression
for y becomes

37.32 24.64
y= 44.72<44.72 coswt — 477 sin wt)

= 44.72( cos 33.43° cos wt — sin 33.43° sin wt).

Again, we invoke the identity involving the
cosine of the sum of two angles and write

y = 44.72 cos (wt + 33.43°).

24.64

Figure 9.6 A A right triangle used in the solution for y.

b) We can solve the problem by using phasors as
follows: Because

y=yty,
then, from Eq. 9.24,
Y = Y] + Y2

=20/-30° + 40/60°

= (17.32 — j10) + (20 + j34.64)
= 37.32 + j24.64

= 4472 /33.43°.

Once we know the phasor Y, we can write the
corresponding trigonometric function for y by
taking the inverse phasor transform:

y = @—1{44.72(#33‘43} — %{44.72€j33’43€jwt}

= 44.72 cos (wt + 33.43%).

The superiority of the phasor approach for
adding sinusoidal functions should be apparent.
Note that it requires the ability to move back
and forth between the polar and rectangular
forms of complex numbers.
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V' ASSESSMENT PROBLEMS

Objective 1—Understand phasor concepts and be able to perform a phasor transform and an inverse phasor transform

9.1  Find the phasor transform of each trigonomet- (c) 11.18/-26.57" A;
ric function: (d) 339.90/61.51° mV.

a) v = 170cos (377t — 40°) V.

b) i = 10sin (1000 + 20°) A. 9.2  Find the time-domain expression correspon-

c) i = [Scos(wt + 36.87°) + 10 cos(wt

ding to each phasor:

—53.139)] A. a) V=186/-54" V.
d) » = [300 cos (20,0007t + 45°) b) I = (20 /45° — 50 /—30°) mA.
— 100 sin(20,0007r¢ + 30°)] mV. ¢) V=20 + j80 — 30 /15°) V.
Answer: (a) 170/—-40" V; Answer: (a) 18.6cos (wt — 54°) V;
(b) 10/=70° A; (b) 48.81 cos (wr + 126.68°) mA;

(c) 72.79 cos (wt + 97.08°) V.

NOTE: Also try Chapter Problem 9.11.

9.4 The Passive Circuit Elements
in the Frequency Domain

The systematic application of the phasor transform in circuit analysis
requires two steps. First, we must establish the relationship between the
phasor current and the phasor voltage at the terminals of the passive cir-
cuit elements. Second, we must develop the phasor-domain version of
Kirchhoff’s laws, which we discuss in Section 9.5. In this section, we estab-
lish the relationship between the phasor current and voltage at the termi-
nals of the resistor, inductor, and capacitor. We begin with the resistor and
use the passive sign convention in all the derivations.

The V-I Relationship for a Resistor
From Ohin’s law, if the current in a resistor varies sinusoidally with time —
thatis,if i = /,,cos (wt + 6;)—the voltage at the terminals of the resistor,
as shown in Fig. 9.7, s
v = R[I,,cos (wt + 6;)]
= Rl,[ cos (wt + 8], (9.25)

where [, is the maximum amplitude of the current in amperes and 6; is
the phase angle of the current.
The phasor transform of this voltage is

V = Rl = RIL,/6; (9.26)

But 1,/ 8, is the phasor representation of the sinusoidal current, so we can
write Eq. 9.26 as

V = RI, (9.27)

Figure 9.7 A A resistive element carrying a sinusoidal
current.

<« Relationship between phasor voltage and
phasor current for a resistor
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R
——A—e
+ v -

I

Figure 9.8 A The frequency-domain equivalent circuit of
a resistor.

~T/40

v 2]

Figure 9.9 A A plot showing that the voltage and cur-
rent at the terminals of a resistor are in phase.

Relationship between phasor voltage and »
phasor current for an inductor

jol
e— YV ¢
+ v :
I

Figure 9.10 A The frequency-domain equivalent circuit
for an inductor.

which states that the phasor voltage at the terminals of a resistor is simply
the resistance times the phasor current. Figure 9.8 shows the circuit dia-
gram for a resistor in the frequency domain.

Equations 9.25 and 9.27 both contain another important picce of
information—namely, that at the terminals of a resistor, there is no phase
shift between the current and voltage. Figure 9.9 depicts this phase rela-
tionship, where the phase angle of both the voltage and the current wave-
forms is 60°. The signals are said to be in phase because they both reach
corresponding values on their respective curves at the same time (for
examplc, they are at their positive maxima at the same instant).

The V-I Relationship for an Inductor

We derive the relationship between the phasor current and phasor voltage
at the terminals of an inductor by assuming a sinusoidal current and using
Ldi/dt to establish the corresponding voltage. Thus, for i = I, cos (wt
+ 6;), the expression for the voltage is

di

V= LE = ~wlL], sin (wt + 6;). (9.28)
We now rewritc Eq. 9.28 using the cosine function:
v = —wlLl, cos (wt + 6; — 90°). (9.29)
The phasor representation of the voltage given by Eq. 9.29 is
V = —wLl % %)
= —wLl, e
(9.30)
= jwlLl,e"
= jwLL

Note that in deriving Eq. 9.30 we used the identity
¢ = cos90° - jsin90° = —.

Equation 9.30 states that the phasor voltage at the terminals of an inductor
equals joL times the phasor current. Figure 9.10 shows the frequency-
domain equivalent circuit for the inductor. It is important to notc that the
relationship between phasor voltage and phasor current for an inductor
applies as well for the mutual inductance in one coil due to current flowing
in another mutually coupled coil. That is, the phasor voltage at the termi-
nals of one coil in a mutually coupled pair of coils cquals joM times the
phasor current in the other coil.
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We can rewrite Eq. 9.30 as
V = (oL /90°)1,./6;

(9.31)

= wLl, /(8 + 90),

which indicates that the voltage and current arc out of phase by exactly
90°. In particular, the voltage leads the current by 90°, or, equivalently, the
current lags behind the voltage by 90°. Figure 9.11 illustrates this concept
of voltage leading current or current lagging voltage. For example, the voll-
age reaches its negative peak exactly 90° before the current reaches its
negative peak. The same observation can be made with respect to the
zero-going-positive crossing or the positive peak.

We can also express the phase shift in seconds. A phase shift of 90°
corresponds to one-fourth of a period; hence the voltage leads the current
by T/4, or # second.

The V-I Relationship for a Capacitor

We obtain the relationship between the phasor current and phasor voltage
at the terminals of a capacitor from the derivation of Eq. 9.30. In other
words, if we note that for a capacitor that

and assume that
v =V, cos(wr + 0,),
then
I = jwCV.

(9.32)

Now if we solve Eq. 9.32 for the voltage as a function of the current, we get

(9.33)

Equation 9.33 demonstrates that the equivalent circuit for the capacitor in
the phasor domain is as shown in Fig. 9.12.

The voltage across the terminals of a capacitor lags behind the current
by exactly 90°. We can easily show this relationship by rewriting Eq.9.33 as

1
V= oC /—90°1,, /6]

]IM °
=7ﬂ(7, - 90) .
(O}

(9.34)
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.

- T/4R

Figure 9.11 A A plot showing the phase relationship
between the current and voltage at the terminals of an
inductor (A, = 60°).

|
T/2 T

-

90°

37/ f

<« Relationship between phasor voltage and
phasor current for a capacitor

1 /jwC
|
+ V-

1

Figure 9.12 A The frequency domain equivalent circuit
of a capacitor.
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<
<

<
<

Figure 9.13 A A plot showing the phase relationship
between the current and voltage at the terminals of a
capacitor (6; = 60°).

Definition of impedance »

TABLE 9.1 Impedance and Reactance Values

Circuit

Element Impedance Reactance
Resistor R —
Inductor joL oL
Capacitor J(—1/wC) ~1/wC

v ASSESSMENT PROBLEMS

The alternative way to express the phase relationship contained in
Eq. 9.34 is to say that the current leads the voltage by 90°. Figure 9.13
shows the phase relationship between the current and voltage at the ter-
minals of a capacitor.

Impedance and Reactance

We conclude this discussion of passive circuit elements in the frequency
domain with an important observation. When we compare Egs. 9.27, 9.30,
and 9.33, we note that they are all of the form

V = ZI, (9.35)

where Z represents the impedance of the circuit element. Solving for Z in
Eq.9.35,you can see that impedance is the ratio of a circuit element’s volt-
age phasor to its current phasor. Thus the impedance of a resistor is R, the
impedance of an inductor is jwlL, the impedance of mutual inductance is
joM, and the impedance of a capacitor is 1/jwC. In all cases, impedance
is measured in ohms. Note that, although impedance is a complex number,
itis not a phasor. Remember, a phasor is a complex number that shows up
as the coefficient of ¢/'. Thus, although all phasors are complex numbers,
not all complex numbers are phasors.

Impedance in the frequency domain is the quantity analogous to
resistance, inductance, and capacitance in the time domain. The imaginary
part of the impedance is called reactance. The values of impedance and
reactance for each of the component values are summarized in Table 9.1.

And finally, a reminder. If the reference direction for the current in a
passive circuit element is in the direction of the voltage rise across the ele-
ment, you must insert a minus sign into the equation that relates the volt-
age to the current.

Objective 2—Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor concepts

9.3  The current in the 20 mH inductor is
10 cos (10,000t + 30°) mA. Calculate (a) the
inductive reactance; (b) the impedance of the
inductor; (c) the phasor voltage V; and
(d) the steady-state expression for v(z).

20 mH

(a) 200 Q;
(b) j200 Q;

(c) 2 /120° V;
(d) 2 cos (10,000¢ + 120°) V.

Answer:

NOTE: Also try Chapter Problems 9.13 and 9.14.

9.4  The voltage across the terminals of the 5 uF
capacitor is 30 cos (4000: + 25°) V. Calculate
(a) the capacitive reactance; (b) the impedance
of the capacitor; (c) the phasor current I; and
(d) the steady-state expression for i(¢).

5 uF
v -
i
Answer: (a) —50 Q;
(b) —j50 &
(c) 0.6/115° A;

(d) 0.6 cos (4000¢ + 115°) A.



9.5 Kirchhoff’s Laws
in the Frequency Domain

We pointed out in Section 9.3, with reference to Eqgs. 9.23 and 9.24, that the
phasor transform is useful in circuit analysis because it applies to the sum
of sinusoidal functions. We illustrated this usefulness in Example 9.5. We

now formalize this observation by developing Kirchhoff’s laws in the fre-
quency domain.

Kirchhoff’s Voltage Law in the Frequency Domain
We begin by assuming that v; — v, represent voltages around a closed
path in a circuit. We also assume that the circuit is operating in a sinusoidal
steady state. Thus Kirchhoff’s voltage law requires that

nt+v+ - +v,=0, (9.36)

which in the sinusoidal steady state becomes complex

V,p cos (ot + 6y) + V,y,cos(wt + 8) + --- +V,, cos (ot +6,) =0.
(9.37)

We now use Euler’s identity to write Eq. 9.37 as
R{V,ehei} + R{V,,e/%%e/} + - + R{V,, P} (9.38)
which we rewrite as
RA{V,p e + Ve + ... + V, ellel®} = . (9.39)

Factoring the term ¢’ from each term yields
?R{(V,,,lej”‘ + ‘/','lzef“: 4o + V,,,'Iejﬂ")ei“"} =0,

or
R{V; + Vo + -+ + V)e/} = 0. (9.40)
But ¢/ # 0, so
Vi+V,+ - +V,=0, (9.41)
which is the statement of Kirchhoff’s voltage law as it applies to phasor
voltages. In other words, Eq. 9.36 applies to a set of sinusoidal voltages in

the time domain, and Eq. 9.41 is the equivalent statement in the fre-
quency domain.

Kirchhoff’s Current Law in the Frequency Domain

A similar derivation applies to a set of sinusoidal currents. Thus if

iy iyt e i, =0, (9.42)

9.5  Kirchhoff's Laws in the Frequency Domain

<« KVL in the frequency domain
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KCL in the frequency domain »

v ASSESSMENT PROBLEM

then
Il + 12 + .-+ I” = 0, (9.43)

where I, I,,---, I, are the phasor representations of the individual cur-
rents iy, iy, - -, i,.

Equations 9.35, 9.41, and 9.43 form the basis for circuit analysis in the
frequency domain. Note that Eq. 9.35 has the same algebraic form as Ohm’s
law, and that Eqs. 9.41 and 9.43 state Kirchhoff’s laws for phasor quantities.
Therefore you may use all the techniques developed for analyzing resistive
circuits to find phasor currents and voltages. You need learn no new analytic
techniques; the basic circuit analysis and simplification tools covered in
Chapters 2—4 can all be used to analyze circuits in the frequency domain.
Phasor circuit analysis consists of two fundamental tasks: (1) You must be
able to construct the frequency-domain model of a circuit; and (2) you must
be able to manipulate complex numbers and/or quantities algebraically. We
illustrate these aspects of phasor analysis in the discussion that follows,
beginning with series, parallel, and delta-to-wye simplifications.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.5 Four branches terminate at a common node. iy = 100 cos (wt + 25°) A,
The reference direction of each branch current iy = 100 cos (wt + 145°) A, and
(i1, i, i3, and iy) is toward the node. If i3 = 100 cos (wt — 95°) A, find i,.

NOTE: Also try Chapter Problem 9.15.

06— Z] Z?_ " Zn
+

V(nls !

be

Figure 9.14 A Impedances in series.

Answer: i, = 0.

9.6 Series, Parallel, and Delta-to-Wye
Simplifications

The rules for combining impedances in series or parallel and for making
delta-to-wye transformations are the same as those for resistors. The only
difference is that combining impedances involves the algebraic manipula-
tion of complex numbers.

Combining Impedances in Series and Parallel

Impedances in series can be combined into a single impedance by simply
adding the individual impedances. The circuit shown in Fig. 9.14 defines the
problem in general terms. The impedances Z,, Z,,- - -, Z,, are connected in
series between terminals a,b. When impedances are in series, they carry the
same phasor current L. From Eq. 9.35, the voltage drop across each imped-
ance is Z,1, Z,1,---, Z,1, and from Kirchhoff’s voltage law,

Vah = le + Zd+ - + an
=Z+2Z,+ - +Z)L (9.44)

The equivalent impedance between terminals a,b is

v
Zay = T“" =Z 4 Zy+ o + 2, (9.45)

Example 9.6 illustrates a numerical application of Eq. 9.45.
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A 90 Q resistor, a 32 mH inductor, and a 5 uF
capacitor are connected in series across the termi-
nals of a sinusoidal voltage source, as shown in
Fig. 9.15. The steady-state expression for the source
voltage v, is 750 cos (5000 + 30°) V.

a) Construct the frequency-domain equivalent
circuit.

b) Calculate the steady-state current i by the phasor
method.

Figure 9.15 A The circuit for Example 9.6.

Solution

a) From the expression for v, we have
w = 5000 rad/s. Therefore the impedance of the
32 mH inductor is

Z; = joL = j(5000)(32 X 107%) = j160 Q,
and the impedance of the capacitor is

=1 _108
ZC =j—=

wC -~ " ooy = A0
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The phasor transform of v, is
V, = 750 /30° V.

Figure 9.16 illustrates the frequency-domain
equivalent circuit of the circuit shown in Fig. 9.15.

b) We compute the phasor current simply by divid-
ing the voltage of the voltage source by the equiv-
alent impedance between the terminals a,b. From
Eq.9.45,

Zy, = 90 + j160 — j40
=90 + j120 = 150/53.13° Q.
Thus

. 750 /30°
150 /53.13°

We may now write the steady-state expression
for i directly:

=5/-2313" A.

i = 5cos (5000t — 23.13°) A.

a 900 1600

-

I
750/30°

v T —j40 Q

b

Figure 9.16 A The frequency-domain equivalent circuit of the
circuit shown in Fig. 9.15.

/ASSESSMENT PROBLEM

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.6  Using the values of resistance and inductance in
the circuit of Fig. 9.15,let V; = 125 /—60° V

and w = 5000 rad/s. Find

a) the value of capacitance that yields a

steady-state output current { with a phase

angle of —105°.
NOTE: Also try Chapter Problem 9.24.

b) the magnitude of the steady-state output
current £,

Answer: (a) 2.86 uF;

(b) 0.982 A.
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3 L

+ |
ZuhV Iw Zl 12" ZQ lu" ZN

b

Figure 9.17 A Impedances in parallel.

Impedances connected in parallel may be reduced to a single equiva-
lent impedance by the reciprocal relationship

L_1 1, L
Zub Zl Z.'Z Zn.

(9.46)

Figure 9.17 depicts the parallel connection of impedances. Note that when
impedances are in parallel, they have the same voltage across their termi-
nals. We derive Eq. 9.46 directly from Fig. 9.17 by simply combining
Kirchhoff’s current law with the phasor-domain version of Ohm’s law, that
is, Eq. 9.35. From Fig. 9.17,

I=Il+12+ +1

n*

or

Zuh Zl ZZ Zn' )

Canceling the common voltage term out of Eq. 9.47 reveals Eq. 9.46.
From Eq. 9.46, for the special case of just two impedances in parallel,

Ly =" 9.48

We can also express Eq. 9.46 in terms of admittance, defined as the recip-
rocal of impedance and denoted Y. Thus

1
Y = Z " G + jB (siemens). (9.49)

Admittance is, of course, a complex number, whose real part, G, is called
conductance and whose imaginary part, B, is called susceptance. Like
admittance, conductance and susceptance are measured in siemens (S).
Using Eq. 9.49 in Eq. 9.46, we get

Yo=Y, + Y+ - + Y, (9.50)

The admittance of each of the ideal passive circuit elements also is
worth noting and is summarized in Table 9.2.

Example 9.7 illustrates the application of Egs. 9.49 and 9.50 to a spe-
cific circuit.

TABLE 9.2  Admittance and Susceptance Values

Circuit Element Admittance (Y) Susceptance
Resistor G (conductance) —
Inductor j(=1/wlL) -1/l

Capacitor - joC wC
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SEL R Combining Impedances in Series and in Parallel

The sinusoidal current source in the circuit shown in
Fig. 9.18 produces the current i; = 8 cos 200,000t A.

a) Construct the frequency-domain equivalent
circuit.

b) Find the steady-state expressions for v, iy, i,
and i3.

Solution

a) The phasor transform of the current source is
8 /0°; the resistors transform directly to the fre-
quency domain as 10 and 6 ; the 40 uH
inductor has an impedance of j8 () at the given
frequency of 200,000 rad/s; and at this fre-
quency the 1 uF capacitor has an impedance of
—j5 Q. Figure 9.19 shows the frequency-domain
equivalent circuit and symbols representing the
phasor transforms of the unknowns.

b) The circuit shown in Fig. 9.19 indicates that we
can easily obtain the voltage across the current
source once we know the equivalent impedance
of the three parallel branches. Moreover, once
we know V, we can calculate the three phasor
currents Iy, I, and I; by using Eq. 9.35. To find
the equivalent impedance of the three branches,
we first find the equivalent admittance simply
by adding the admittances of each branch. The
admittance of the first branch is

1
=—=0.18,
=10
the admittance of the second branch is
1 6 — j8
Y = —3
27648 100

= 0.06 — jO.08 S,

and the admittance of the third branch is

1
Y; = — = j02S.

The admittance of the three branches is

Y=Y, +1h+ Y,
= 0.16 + j0.12
=02/3687°S.

The impedance at the current source is

1
Z = v - 5/-36.87° Q.

+

i( 4 ) 100 J,i, liz A=14F
40 pH

A A d

Figure 9.18 A The circuit for Example 9.7.

Py &

60
8&°<Dv109 I L, o=

I 2 T~ Q
HOLL Y

_I_

Figure 9.19 A The frequency-domain equivalent circuit.

The Voltage V is

V=2I=40/-3687"V.

Hence
40 /—36.87°
I, = —Ll(‘); =4,/-3687" =32 — j24A,
40/—-36.87° A .
IZ_W—4£—90 = _]4A,
and
40 /—36.87°
I;=———— =8/53.13° = 48 + j6.4 A.

5/-90°

We check the computations at this point by veri-
fying that

Il + 12 + 13 =1L
Specifically,
32— j24 - j4+ 48 + j6.4 =8 + jO.

The corresponding steady-state time-domain
expressions are

v = 40 cos (200,000t — 36.87°) V.
i; = 4cos (200,000t — 36.87°) A,
i, = 4cos (200,000t — 90°) A,

iy = 8cos (200,000¢ + 53.13°) A.
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v ASSESSMENT PROBLEMS

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.7 A 20 resistor is connected in parallel with a
5 mH inductor. This parallel combination is
connected in series with a 5 {) resistor and a
25 uF capacitor.

a) Calculate the impedance of this inter-

connection if the frequency is 2 krad/s.

b) Repeat (a) for a frequency of 8 krad/s. 9.8

c) At what finite frequency does the imped-
ance of the interconnection become purely
resistive?

d) What is the impedance at the frequency
found in (c)?

NOTE: Also try Chapter Problems 9.28, 9.29, and 9.32.

Answer: (a) 9 — j12 (;

(b)21 + j3Q;
(c) 4 krad/s;
(d) 15 Q.

The interconnection described in Assessment
Problem 9.7 is connected across the terminals
of a voltage source that is generating

v = 150 cos 4000¢ V. What is the maximum
amplitude of the current in the 5 mH inductor?

Answer: 7.07 A.

Delta-to-Wye Transformations

The A-to-Y transformation that we discussed in Section 3.7 with regard
to resistive circuits also applies to impedances. Figure 9.20 defines the
A-connected impedances along with the Y-equivalent circuit. The
Y impedances as functions of the A impedances are

7, = Lt 9.51
YUz Zy + Z (8.51)

Z, = ZeZy (9.52)
N .

¢ Zy+ Zy+ Z,
Figure 9.20 A The delta-to-wye transformation,

Zy = ZoZy (9.53)

B Z o+ Zy+ Z, '

The A-to-Y transformation also may be reversed; that is, we can start
with the Y structure and replace it with an equivalent A structure. The A
impedances as functions of the Y impedances are

Z i 9.54
: & (0:54)
Z\Zs ¥ 7272+ + Z:Z
L 243 i (9.55)
Z
Lo + ZsZs + 232
Z.= 212> * 225 * ZaZy (9.56)

Z;

The process used to derive Eqs. 9.51-9.53 or Egs. 9.54-9.56 is the same
as that used to derive the corresponding equations for pure resistive cir-
cuits. In fact, comparing Egs. 3.44-3.46 with Eqgs. 9.51-9.53, and
Egs. 3.47-3.49 with Egs. 9.54-9.56, reveals that the symbol Z has replaced
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the symbol R. You may want to review Problem 3.62 concerning the deri-
vation of the A-to-Y transformation.

Example 9.8 illustrates the usefulness of the A-to-Y transformation in
phasor circuit analysis.

SEEKR N Using a Delta-to-Wye Transform in the Frequency Domain

Use a A-to-Y impedance transformation to find I,
I,5L. I, I, L, V,, and V, in the circuit in Fig. 9.21.

Figure 9.21 A The circuit for Example 9.8.

Solution

First note that the circuit is not amenable to scries
or parallel simplification as it now stands. A A-to-Y
impedance transformation allows us to solve for all
the branch currents without resorting Lo cither the
node-voltage or the mesh-current method. If we
replace either the upper delta (abc) or the lower
delta (bcd) with its Y equivalent, we can further
simplify the resulting circuit by series-parallel com-
binations. In deciding which delta to replace, the
sum of the impedances around each delta is worth
checking because this quantity forms the denomi-
nator for the equivalent Y impedances. The sum
around the lower delta is 30 + j40, so we choose to
eliminate it from the circuit. The Y impedance con-
necting to terminal b is

(20 + j60)(10) ,
7, = TR 1y 4 4
! 30 + j40 2+ A,

the Y impedance connecting to terminal c is

_10(=j20)

= = 32— 240,
2730 + j40 j2

and the Y impedance connecting to terminal d is

_ (20 + j60)(=j20) _

8 — j24 Q.
30 + 40 j2

3

Inserting the Y-equivalent impedances into the cir-
cuit, we get the circuit shown in Fig 9.22, which we
can now simplify by scries-parallel reductions. The
impedence of the abn branch is

Zymw =12+ j4 — j4a =120,
and the impedance of the acn branch is

Zon =632 + j2.4 — j24 — 32 =60Q.

—j4Q

Cb 1200°V b

120

Figure 9.22 A The circuit shown in Fig. 9.21, with the lower
delta replaced by its equivalent wye.

Note that the abn branch is in parallel with the acn
branch. Therefore we may replace these two branches
with a single branch having an impedance of

_ (60)(12)

=100

Combining this 10 Q resistor with the impedance
between n and d reduces the circuit shown in Fig. 9.22
to the one shown in Fig. 9.23. From the latter circuit,

1202 _, /53.13° =24 + j32 A
= — = 53. »0 =24 + [ . .
0T 18— j24 24+

Once we know I, we can work back through the
equivalent circuits to find the branch currents in
the original circuit. We begin by noting that I is
the current in the branch nd of Fig. 9.22. Therefore

Voo = (8 — j24)1, = 96 — j32 V.
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We may now calculate the voltage V,, because
V=V, +Vyu
and both V and V4 are known. Thus
Vin = 120 — 96 + j32 =24 + j32 V.
We now compute the branch currents Iy, and L,:

24 + j32
4+j32_, .8

Lipn = 12 + ]3 A,
24 + j32 4 8
= = — 4 j— .
Laen 60 0 /A

In terms of the branch currents defined in Fig. 9.21,

.8
Il = Iubn =2+ ]5 A\

4 .8
Izzlacnzl_o“"]EA.

We check the calculations of I and I, by noting that

l\ + I'_) =24+ ]3.2 = I().

18Q

-j24 0

Figure 9.23 A A simplified version of the circuit shown in
Fig. 9.22.

To find the branch currents I, I, and Is, we must
first calculate the voltages V; and V,. Refering to
Fig. 9.21, we note that

2
V, =120 /0° — (—j4)I, = 33—8 + j8V,

V, =120 /0" — (632 + j2.4)I, = 96 — jl%V.

We now calculate the branch currents I, L, and Is:

vi—-v,

4 128
" = = — 4 j—
L 10 3ti A
v 2
L= 20+ 0 3 /oA
vV, 26
=—=""1 j48A.
=0 =15 T/48A

We check the calculations by noting that

2 26
14 + 15 = j&‘ + — - ]1.6 + ]4.8 =24 + ]3.2 = IO’

15
4 2 128 8
tL=-+Z+j———-jl6=2+j-=
Lt+L=c+3+j5--jle=2+j3=1L
4 4 128 8 26
+ = — — 4+ j—4+j—=—+4 j4.8 = I-.
L+h=3%% 3 5T s AR

' ASSESSMENT PROBLEM

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.9 Use a A -to-Y transformation to find the
current I in the circuit shown.

Answer: 1=14/2807° A.

NOTE: Also try Chapter Problem 9.37.

136/0° (+ O
Vv —

14 Q

— -

1

Jja0Q -~ —j15Q

400 $100




9.7

9.7 Source Transformations and
Thévenin-Norton Equivalent Circuits

The source transformations introduced in Section 4.9 and the Thévenin-
Norton equivalent circuits discussed in Section 4.10 are analytical tech-
niques that also can be applied to frequency-domain circuits. We prove
the validity of these techniques by following the same process used in
Sections 4.9 and 4.10, except that we substitute impedance (Z) for resist-
ance (R). Figure 9.24 shows a source-transformation equivalent circuit
with the nomenclature of the frequency domain.

Figure 9.25 illustrates the frequency-domain version of a Thévenin
equivalent circuit. Figure 9.26 shows the frequency-domain equivalent of
a Norton equivalent circuit. The techniques for finding the Thévenin
equivalent voltage and impedance are identical to those used for resistive
circuits, except that the frequency-domain equivalent circuit involves the
manipulation of complex quantities. The same holds for finding the
Norton equivalent cwrrent and impedance.

Example 9.9 demonstrates the application of the source-transformation
equivalent circuit to frequency-domain analysis. Example 9.10 illustrates
the details of finding a Thévenin equivalent circuit in the frequency domain.

ea ——@a
Frequency-domain
linear circuit;
may contain - Iv | Zn
both independent
and dependent
sources. ob —ob

Figure 9.26 A The frequency-domain version of a Norton
equivalent circuit.

Source Transformations and Thévenin-Norton Equivalent Circuits
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z,
L=V/z,)

V,=Z1I

“‘eb

Figure 9.24 A A source transformation in the
frequency domain.

ea
Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources. ob

Z'rh—.a

=

Figure 9.25 A The frequency-domain version of a
Thévenin equivalent circuit.

Sl XKW Performing Source Transformations in the Frequency Domain

Use the concept of source transformation to find the
phasor voltage Vj in the circuit shown in Fig. 9.27.

30 060

10

020

I

+7)40/0°
-/ VvV

& L

® |

Figure 9.27 A The circuit for Example 9.9.

Solution

We can replace the series combination of the
voltage source (40 /0°) and the impedance of
1 +j3Q with the parallel combination of a

current source and the 1 + j3 Q) impedance. The
source current is

40 40
= (1 -j3)=4-jI2A
T+ g3 ot T =AmRA

Thus we can modify the circuit shown in Fig. 9.27 to
the one shown in Fig. 9.28. Note that the polarity
reference of the 40 V source determines the refer-
ence direction for I.

Next, we combine the two parallel branches
into a single impedance,

(1 +j3)9 - j3)
h 10

=18+ j24Q,
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Wthl:l is in parallel with the current source of 180 240 o020
4 — j12 A. Another source transformation con- WA,
verts this parallel combination to a series combina- Iy

tion consisting of a voltage source in series with the
impedance of 1.8 + j2.4 Q. The voltage of the volt-

age source is C‘D 36 ;/j 12

V = (4 — j12)(1.8 + j2.4) = 36 — j12 V.

Using this source transformation, we redraw the
circuit as Fig. 9.29. Note the polarity of the voltage
source. We added the current I, to the circuit to
expedite the solution for V.

Figure 9.29 A The second step in reducing the circuit shown
in Fig. 9.27.

Also note that we have reduced the circuit to a
simple series circuit. We calculate the current I by
dividing the voltage of the source by the total series

. . 0}.&/{) j06Q impedance:
+
10 90 109 g, = 6=z 126 - j1)
12 - j16  4(3 — j4)
<D4 -j12 v
A 0 39 + j27 A
=———— =156 + j1.08 A.
30 -j3Q —j190 25
T T _ We now obtain the value of V, by multiplying I, by
d ¢ —e the impedance 10 — j19:

Figure 9.28 A The first step in reducing the circuit shown

SED] A BUN Finding a Thévenin Equivalent in the Frequency Domain

Find the Thévenin equivalent circuit with respect to Solution

terminals a,b for the circuit shown in Fig. 9.30. . ) .
& We first determine the Thévenin equivalent voltage.

This voltage is the open-circuit voltage appearing at

terminals a,b. We choose the reference for the

Thévenin voltage as positive at terminal a. We can

make two source transformations relative to the

120V, 12 2, and 60 €} circuit elements to simplify this

portion of the circuit. At the same time, these transfor-

I\ mations must preserve the identity of the controlling
voltage V, because of the dependent voltage source.

We determine the two source transformations by

1209 first replacing the series combination of the 120 V

—o source and 12 () resistor with a 10 A current source

in parallel with 12 2. Next, we replace the parallel

10V, combination of the 12 and 60 () resistors with a single

10 £ resistor. Finally, we replace the 10 A source in

o o parallel with 10 Q with a 100 V source in series with

10 . Figure 9.31 shows the resulting circuit.
We added the current I to Fig. 9.31 to aid fur-
Figure 9.30 A The circuit for Example 9.10. ther discussion. Note that once we know the current




I, we can compute the Thévenin voltage. We find I
by summing the voltages around the closed path in
the circuit shown in Fig. 9.31. Hence

100 = 101 — j40I + 1201 + 10V, = (130 — j40)I + 10V,.

—j40 Q

Figure 9.31 A A simplified version of the circuit shown
in Fig. 9.30.

We relate the controlling voltage V, to the current I
by noting from Fig. 9.31 that

V, = 100 — 10I.
Then,

—900 .
I= 3()——]_46 =18 /—126.87" A.

we now calculate V,:
V. =100 — 180 / —126.87° = 208 + j144 V.
Finally, we note from Fig. 9.31 that

Vi = 10V, + 1201
2080 + j1440 + 120(18) / —126.87°
= 784 — j288 = 83522 /—20.17° V.

To obtain the Thévenin impedance, we may
use any of the techniques previously used to find
the Thévenin resistance. We illustrate the test-
source method in this example. Recall that in
using this method. we deactivate all independent
sources from the circuit and then apply either a
test voltage source or a test current source to the
terminals of interest. The ratio of the voltage to
the current at the source is the Thévenin imped-
ance. Figure 9.32 shows the result of applying this
technique to the circuit shown in Fig. 9.30. Note
that we chose a test voltage source V. Also note
that we deactivated the independent voltage
source with an appropriate short-circuit and pre-
served the identity of V,.

Source Transformations and Thévenin-Norton Equivalent Circuits

—j40 Q
|
A

Figure 9.32 A A circuit for calculating the Thévenin equivalent
impedance.

The branch currents I, and I, have been added to
the circuit to simplify the calculation of I,. By
straightforward applications of Kirchhoff’s circuit
laws, you should be able to verify the following
relationships:

Vv

L =10 a0

v, = 101,

Vr — 10V,

I —
b 120

_ V(9 + j4)
Co12001 - j4)°

IT = Ia + lb

v (1_9+j4)
10 — j40 12

_ Y3 -j4
12(10 — j40)°
Vv,

L~ 912 - j3840Q.
Iy

Ly =

Figure 9.33 depicts the Thévenin equivalent circuit.

9120 P8 o
AN 1 C ® 2

784 — j288
\%

ob

Figure 9.33 A The Thévenin equivalent for the circuit shown
in Fig. 9.30.

331
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V ASSESSMENT PROBLEMS

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.11 Find the Thévenin equivalent with respect to
terminals a,b in the circuit shown.

9.10 Find the steady-state expression for v,(¢) in
the circuit shown by using the technique of
source transformations. The sinusoidal voltage
sources are

v; = 240 cos (4000: + 53.13°) V,
v, = 965in 4000t V.

j10Q 100

15 mH 20 Q
SNV @ 9 MA’
.+.
v 300 vo(t) Tzs [6 uF V2

Answer: Vq, =V, =10 /45° V;
Answer: 48 cos (4000t + 36.87°) V Zry =5—j50.

NOTE: Also try Chapter Problems 9.45, 9.46, and 9.49.

9.8 The Node-Voltage Method

In Sections 4.2-4.4, we introduced the basic concepts of the node-voltage
method of circuit analysis. The same concepts apply when we use the
node-voltage method to analyze frequency-domain circuits. Example 9.11
illustrates the solution of such a circuit by the node-voltage technique.
Assessment Problem 9.12 and many of the Chapter Problems give you an
opportunity to use the node-voltage method to solve for steady-state sinu-
soidal responses.

FEL I RYE Using the Node-Voltage Method in the Frequency Domain

Use the node-voltage method to find the branch 1 10 20 5 50
currents L, I, and I, in the circuit shown in Fig. 9.34.

10.6/0°
j2Q 50 A
T (D o

10.6/0° I,

Figure 9.35 A The circuit shown in Fig. 9.34, with the node
voltages defined.

Figure 9.34 A The circuit for Example 9.11.

Solution Summing the currents away from node 1 yields
We can describe the circuit in terms of two node volt- _

; ) . Vi _ Vi—-V;
ages because it contains three essential nodes. Four —-10.6 + 0 + W = 0.

branches terminate at the essential node that stretches

across the bottom of Fig. 9.34,s0 we use it as the refer-
ence node. The remaining two essential nodes are
labeled 1 and 2, and the appropriate node voltages are
designated V, and V,. Figure 9.35 reflects the choice
of reference node and the terminal labels.

Multiplying by 1 + j2 and collecting the coeffi-
cients of V; and V, generates the expression

V(L1 + j02) — V, = 10.6 + j21.2.
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Summing the currents away from node 2 gives Hence the branch currents are

V, -V, 'V, V,-20I Vi )
—= L, 2 4 2 "X I,=—=06384 — jl. .
1+2 =5 5 0 a7 = 684 - j168A
. . Vi—-V, .
The controlling current I is I, = 112 376 + j1.68 A,
J
Y-V V, — 201,
L=5 +j2° I, = —>——* s == —144 — j11.92 A,
Substituting this expression for I, into the node 2 I = v, =52+ j136A
equation, multiplying by 1 + j2, and collecting c = ’ T

coefficients of V; and V, produces the equation

—5V, + (48 + jO.6)V, = 0.

To check our work, we note that
I, + I, =6.84 ~ j1.68 + 3.76 + j1.68

The solutions for V; and V, are =106 A,
V, = 68.40 — j16.80 V, I, =1, +I.=-144 - j11.92 + 52 + j13.6
V, =68 —- j26 V. = 3.76 + j1.68 A.

v ASSESSMENT PROBLEM

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.12 Use the node-voltage method to find the steady- R o 200
state expression for v(¢) in the circuit shown. The + W
sinusoidal sources are i; = 10 cos wt A and )
v, = 100sin wt V, where @ = 50 krad/s. Is 502 () T9 uF 100 pH Vs
Answer:  v(r) = 31.62 cos(50,000¢t — 71.57°) V. — & '

NOTE: Also try Chapter Problems 9.55 and 9.59.

9.9 The Mesh-Current Method

We can also use the mesh-current method to analyze frequency-domain cir-
cuits. The procedures used in frequency-domain applications are the same
as those used in analyzing resistive circuits. In Sections 4.5-4.7, we intro-
duced the basic techniques of the mesh-current method; we demonstrate
the extension of this method to frequency-domain circuits in Example 9.12.

SEL R VE Using the Mesh-Current Method in the Frequency Domain

Use the mesh-current method to find the voltages or

V1. V,,and V;in the circuit shown in Fig. 9.36 on the

next page. 150 = (13 — j1)I, — (12 — j16)L,.

Solution Summing the voltages around mesh 2 generates the
equation

The circuit has two meshes and a dependent volt-
age source, so we must write two mesh-current

equations and a constraint equation. The reference
direction for the mesh currents I; and I, is clock-
wise, as shown in Fig. 9.37. Once we know I, and I,
we can easily find the unknown voltages. Summing
the voltages around mesh 1 gives

150 = (1 + j2)I, + (12 — j16)(1I, — L),

0= (12 — j16)X, — I) + (1 + j3), + 391,.

Figure 9.37 reveals that the controlling current I, is
the difference between I; and L,; that is, the con-
straint is

l,x = I| - Iz.
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Solving for I, and I, yields
I, = —26 — j52 A,

I

—24 — j58 A,

I,=-2+ j6A.
The three voltages are

Vi=(1+ 2 =78 — jl104 V.

Figure 9.36 A The circuit for Example 9.12. Vo = (12 = jIO)I, = 72 + j104 V,
V; = (1 + j3)I, = 150 — j130 V.

10 j2Q 10 j3Q

Also
391, = —78 + j234 V.

We check these calculations by summing the volt-
ages around closed paths:

—150 + V, + V, = =150 + 78 — jl104 + 72

~j16
i

&

il

Figure 9.37 A Mesh currents used to solve the circuit shown -V, + V; + 39, = =72 — j104 + 150 — j130

in Fig. 9.36.
— 78 + j234 =0,

Substituting this constraint into the mesh 2 cqua-

tion and simplifying the resulting cxpression gives

0= (27 + jIO), — (26 + j13)L,. — j130 — 78 + j234 = 0.

=150 + V; + V; + 391,

I

=150 + 78 — j104 + 150

v ASSESSMENT PROBLEM

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.13 Use the mesh-current method to find the pha- 10 20
sor current I'in the circuit shown. —WW—Y
I
30
+\33.8/0°
_) v . 208 075 Vx<f>
V. o<-j5 0

Answer: 1 =29 + j2 =29.07 /3.95° A. _ 1\

NOTE: Also try Chapter Problems 9.60 and 9.64.

9.10 The Transformer

A transformer is a device that is based on magnetic coupling. Transformers
are used in both communication and power circuits. In communication cir-
cuits, the transformer is used to match impedances and eliminate dc signals
from portions of the system. In power circuits, transformers are used to estab-
lish ac voltage levels that facilitate the transmission, distribution, and con-
sumption of clectrical power. A knowledge of the sinusoidal steady-state



behavior of the transformer is required in the analysis of both communication
and power systems. [n this section, we will discuss the sinusoidal steady-state
behavior of the linear transformer, which is found primarily in communica-
tion circuits. In Section 9.11, we will deal with the ideal transformer. which is
used to model the ferromagnetic transformer found in power systems.

Belore starting we make a useful observation. When analyzing circuits
containing mutual inductance use the meshor loop-current method for writ-
ing circuit equations. The node-voltage method is cumbersome to use when
mutual inductance in involved. This is because the currents in the various
coils cannot be written by inspection as functions of the node voltages.

The Analysis of a Linear Transformer Circuit

A simple transformer is formed when two coils are wound on a single core
to ensure magnetic coupling. Figure 9.38 shows the frequency-domain cir-
cuit model of a system that uses a transformer to connect a load to a
source. In discussing this circuit, we refer to the transformer winding con-
nected to the source as the primary winding and the winding connected to
the load as the secondary winding. Based on this terminology, the trans-
former circuit parameters arc

R, = the resistance of the primary winding,

R, = the resistance of the secondary winding,

L, = the self-inductance of the primary winding,
L, = the self-inductance of the secondary winding.
M = the mutual inductance.

The internal voltage of the sinusoidal source is V,, and the internal
impedance of the source is Z,. The impedance Z; represents the load con-
nected to the secondary winding of the transformer. The phasor currents
I, and I, represent the primary and secondary currents of the transformer,
respectively.

Analysis of the circuit in Fig. 9.38 consists of finding I; and I, as func-
tions of the circuit parameters V., Z,, Ry, L, Ly, R,, M, Z;, and w. We are
also interested in finding the impedance scen looking into the transformer
from the terminals a,b. To find I, and I,, we first write the two mesh-cur-
rent cquations that describe the circuit:

V\r = (ZS + Rl + ijl)Il - j(,!)Mlz, (9.57)

0

Il

"jlel + (RQ + ijfZ + ZL)IZ' (9.58)
To facilitate the algebraic manipulation of Eqgs. 9.57 and 9.58, we let
Ziw=2Z,+ R, + joL,, (9.59)

Z 2= RZ + _l(z)Lz + ZL! (960)

where Z|, is the total self-impedance of the mesh containing the primary
winding of the transformer, and Z,, is the total self-impedance of the
mesh containing the secondary winding. Based on the notation introduced
in Egs. 9.59 and 9.60, the solutions for I; and I, from Eqs. 9.57 and 9.58 are

Zn
L =-——"""—>5-V, (9.61)
ZHZZZ + w"M~-
L =—1% =27 (9.62)

“)')Vs -
Z“Zzz + w M- ZZZ
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Figure 9.38 A The frequency domain circuit model for a
transformer used to connect a load to a source.
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To the internal source voltage V,, the impedance appears as V,/I;, or

Vv, Z11Zy + 0*M? ’M?
~ =Zpyw=— 5 ——=Zy+——. 9.63
Il int Z22 11 222 ( )

The impedance at the terminals of the source is Z;,, — Z;, so

2042 2202
“’M—zy=Rl+ij1+ o M .
Zy (Ry + joL, + Z;)

Zy =2y + (9.64)

Note that the impedance Z,y, is independent of the magnetic polarity
of the transformer. The reason is that the mutual inductance appears in
Eq. 9.64 as a squared quantity. This impedance is of particular interest
because it shows how the transformer affects the impedance of the load as
seen from the source. Without the transformer, the load would be con-
nected directly to the source, and the source would see a load impedance
of Zy; with the transformer, the load is connected to the source through
the transformer, and the source sees a load impedance that is a modified
version of Z, as seen in the third term of Eq. 9.64.

Reflected Impedance

The third term in Eq. 9.64 is called the reflected impedance (Z,), because
it is the equivalent impedance of the secondary coil and load impedance
transmitted, or reflected, to the primary side of the transformer. Note that
the reflected impedance is due solely to the existence of mutual induc-
tance; that is, if the two coils are decoupled, M becomes zero, Z, becomes
zero, and Z,;, reduces to the self-impedance of the primary coil.

To consider reflected impedance in more detail, we first express the
load impedance in rectangular form:

ZL = RL + jXL, (9,65)

where the load reactance X| carries its own algebraic sign. In other words,
X\ is a positive number if the load is inductive and a negative number if
the load is capacitive. We now use Eq. 9.65 to write the reflected imped-
ance in rectangular form:

_ w*M?
Rz + RL + j(wL2 + XL)

z,

o*M*[(R, + Ry) — j(oLy + X))
(R2 + RL)Z =+ (sz + XL)2

w*M?

= Iz—lz[(Rz + Ry) — jwLy + X)) (9.66)
22

The derivation of Eq. 9.66 takes advantage of the fact that, when Z;_is
written in rectangular form, the self-impedance of the mesh containing the
secondary winding is

Zy = Ry + R + j(wL, + X1). (9.67)

Now observe from Eq. 9.66 that the self-impedance of the secondary
circuit is reflected into the primary circuit by a scaling factor of
(wM/|Z4))?, and that the sign of the reactive component (wL, + X\) is
reversed. Thus the linear transformer reflects the conjugate of the self-
impedance of the secondary circuit (Z5,) into the primary winding by a
scalar multiplier. Example 9.13 illustrates mesh current analysis for a cir-
cuit containing a linear transformer.



The parameters of a certain linear transformer are
R =2000.R,=1000,L, =9H, L, = 4H, and
k = 0.5. The transformer couples an impedance
consisting of an 800 () resistor in series with a 1 uF
capacitor to a sinusoidal voltage source. The 300 V
(rms) source has an internal impedance of
500 + j100 € and a frequency of 400 rad/s.

a) Construct a frequency-domain equivalent circuit
of the system.

b) Calculate the self-impedance of the primary
circuit.

c) Calculate the self-impedance of the secondary
circuit.

d) Calculate the impedance reflected into the pri-
mary winding.

e) Calculate the scaling factor for the reflected
impedance.

f) Calculate the impedance seen looking into the
primary terminals of the transformer.

g) Calculate the Thévenin equivalent with respect
to the terminals c,d.

Solution

a) Figure 9.39 shows the frequency-domain e