
The Contraction Mapping Theorem and
the Implicit and Inverse Function Theorems

The Contraction Mapping Theorem

Theorem (The Contraction Mapping Theorem) Let Ba =
{

~x ∈ IRd
∣

∣ ‖~x‖ < a
}

denote the open ball of radius a centred on the origin in IRd. If the function

~g : Ba → IRd

obeys

there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba(H1)

‖~g(~0)‖ < (1−G)a(H2)

then the equation

~x = ~g(~x)

has exactly one solution.

Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Con-

traction” in the name of the theorem. Because G < 1 (and it is crucial that G is strictly

smaller than 1) the distance between the images ~g(~x) and ~g(~y) of ~x and ~y is strictly smaller

than the original distance between ~x and ~y. Thus the function g contracts distances. Note

that, when the dimension d = 1 and the function g is C1,

|g(x)− g(y)| =
∣

∣

∣

∫ y

x

g′(t) dt
∣

∣

∣
≤

∣

∣

∣

∫ y

x

|g′(t)| dt
∣

∣

∣
≤

∣

∣

∣

∫ y

x

sup
t′∈Ba

|g′(t′)| dt
∣

∣

∣
= |x− y| sup

t′∈Ba

|g′(t′)|

For a once continuously differentiable function, the smallest G that one can pick and still

have |g(x)− g(y)| ≤ G|x − y| for all x, y is G = supt′∈Ba
|g′(t′)|. In this case (H1) comes

down to the requirement that there exist a constant G < 1 such that |g′(t)| ≤ G < 1 for

all t′ ∈ Ba. For dimensions d > 1, one has a whole matrix G(~x) =
[

∂gi
∂xj

(~x)
]

1≤i,j≤d
of first

partial derivatives. There is a measure of the size of this matrix, called the norm of the

matrix and denoted
∥

∥G(~x)
∥

∥ such that

‖~g(~x)− ~g(~y)‖ ≤ ‖~x− ~y‖ sup
~t∈Ba

∥

∥G(~t)
∥

∥

Once again (H1) comes down to
∥

∥G(~t)
∥

∥ ≤ G < 1 for all ~t ∈ Ba. Roughly speaking, (H1)

forces the derivative of ~g to be sufficiently small, which forces the derivative of ~x−~g(~x) to

be bounded away from zero.
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If we were to relax (H1) to G ≤ 1, the theorem would fail. For example, g(x) = x

obeys |g(x)− g(y)| = |x− y| for all x and y. So G would be one in this case. But every x

obeys g(x) = x, so the solution is certainly not unique.

Discussion of hypothesis (H2): If ~g only takes values that are outside of Ba, then

~x = ~g(~x) cannot possibly have any solutions. So there has to be a requirement that ~g(~x)

lies in Ba for at least some values of ~x ∈ Ba. Our hypotheses are actually somewhat

stronger than this:

‖~g(~x)‖ = ‖~g(~x)− ~g(~0) + ~g(~0)‖ ≤ ‖~g(~x)− ~g(~0)‖+ ‖~g(~0)‖ ≤ G‖~x−~0‖+ (1−G)a

by (H1) and (H2). So, for all ~x in Ba, that is, all ~x with ‖~x‖ < a, ‖~g(~x)‖ < Ga+(1−G)a =

a. With our hypotheses ~g : Ba → Ba. Roughly speaking, (H2) requires that ~g(~x) be

sufficiently small for at least one ~x.

If we were to relax (H2) to ‖~g(~0)‖ ≤ (1− G)a, the theorem would fail. For example,

let d = 1, pick any a > 0, 0 < G < 1 and define g : Ba → IR by g(x) = a(1− G) + Gx.

Then g′(x) = G for all x and g(0) = a(1−G). For this g,

g(x) = x ⇐⇒ a(1−G) +Gx = x ⇐⇒ a(1−G) = (1−G)x ⇐⇒ x = a

As x = a is not in the domain of definition of g, there is no solution.

Proof that there is at most one solution: Suppose that ~x∗ and ~y∗ are two solutions.

Then
~x∗ = ~g(~x∗), ~y∗ = ~g(~y∗) =⇒ ‖~x∗ − ~y∗‖ = ‖~g(~x∗)− ~g(~y∗)‖

(H1)
=⇒ ‖~x∗ − ~y∗‖ ≤ G‖~x∗ − ~y∗‖

=⇒ (1−G)‖~x∗ − ~y∗‖ = 0

As G < 1, 1− G is nonzero and ‖~x∗ − ~y∗‖ must be zero. That is, ~x∗ and ~y∗ must be the

same.

Proof that there is at least one solution: Set

~x0 = 0 ~x1 = ~g(~x0) ~x2 = ~g(~x1) · · · ~xn = ~g(~xn−1) · · ·

We showed in “Significance of hypothesis (H2)” that ~g(~x) is in Ba for all ~x in Ba. So

~x0, ~x1, ~x2, · · · are all in Ba. So the definition ~xn = ~g(~xn−1) is legitimate. We shall show

that the sequence ~x0, ~x1, ~x2, · · · converges to some vector ~x∗ ∈ Ba. Since ~g is continuous,

this vector will obey

~x∗ = lim
n→∞

~xn = lim
n→∞

~g(~xn−1) = ~g
(

lim
n→∞

~xn−1

)

= ~g(~x∗)
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In other words, ~x∗ is a solution of ~x = ~g(~x).

To prove that the sequence converges, we first observe that, applying (H1) numerous

times,
‖~xm − ~xm−1‖ =

∥

∥~g(~xm−1)− ~g(~xm−2)
∥

∥

≤ G
∥

∥~xm−1 − ~xm−2

∥

∥ = G
∥

∥~g(~xm−2)− ~g(~xm−3)
∥

∥

≤ G2
∥

∥~xm−2 − ~xm−3

∥

∥ = G2
∥

∥~g(~xm−3)− ~g(~xm−4)
∥

∥

...

≤ Gm−1
∥

∥~x1 − ~x0

∥

∥ = Gm−1‖~g(~0)‖

Remember that G < 1. So the distance ‖~xm − ~xm−1‖ between the (m − 1)st and mth

entries in the sequence gets really small for m large. As

~xn = ~x0 +
(

~x1 − ~x0

)

+
(

~x2 − ~x1

)

+ · · ·+
(

~xn − ~xn−1

)

=

n
∑

m=1

(

~xm − ~xm−1

)

(recall that ~x0 = ~0) it suffices to prove that
n
∑

m=1

(

~xm − ~xm−1

)

converges as n → ∞. To do

so it suffices to prove that
n
∑

m=1

∥

∥~xm − ~xm−1

∥

∥ converges as n → ∞, which we do now.

n
∑

m=1

∥

∥~xm − ~xm−1

∥

∥ ≤
n
∑

m=1

Gm−1‖~g(~0)‖ =
1−Gn

1−G
‖~g(~0)‖

As n tends to ∞, Gn converges to zero (because 0 ≤ G < 1) and 1−Gn

1−G
‖~g(~0)‖ converges to

1
1−G

‖~g(~0)‖. Hence ~xn converges to some ~x∗ as n → ∞. As

‖~x∗‖ ≤

∞
∑

m=1

∥

∥~xm − ~xm−1

∥

∥ ≤ 1
1−G

‖~g(~0)‖ < 1
1−G

(1−G)a = a

~x∗ is in Ba.

Generalization: The same argument proves the following generalization:

Let X be a complete metric space, with metric d, and g : X → X . If there is a

constant 0 ≤ G < 1 such that

d
(

g(x), g(y)
)

≤ Gd(x, y) for all x, y ∈ X

then there exists a unique x ∈ X obeying g(x) = x.

Aliases: The “contraction mapping theorem” is also known as the “Banach fixed point

theorem” and the “contraction mapping principle”.
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The Implicit Function Theorem

As an application of the contraction mapping theorem, we now prove the implicit

function theorem. Consider some C∞ function ~f(~x, ~y) with ~x running over IRn, ~y running

over IRd and ~f taking values in IRd. Suppose that we have one point (~x0, ~y0) on the surface
~f(~x, ~y) = 0. In other words, suppose that ~f(~x0, ~y0) = 0. And suppose that we wish to

solve ~f(~x, ~y) = 0 for ~y as a function of ~x near (~x0, ~y0). First observe that for each fixed ~x,
~f(~x, ~y) = 0 is a system of d equations in d unknowns. So at least the number of unknowns

matches the number of equations. By way of motivation, let’s expand the equations in

powers of ~x− ~x0 and ~y − ~y0. The ith equation (with 1 ≤ i ≤ d) is then

0 = fi(~x, ~y) = fi(~x0, ~y0) +
n
∑

j=1

∂fi
∂xj

(~x0, ~y0)(~x− ~x0)j +
d

∑

j=1

∂fi
∂yj

(~x0, ~y0)(~y − ~y0)j + h.o.

where h.o. denotes terms of degree at least two. Equivalently

A(~y − ~y0) = ~b

where A denotes the d× d matrix
[

∂fi
∂yj

(~x0, ~y0)
]

1≤i,j≤d
of first partial ~y derivatives of ~f at

(~x0, ~y0) and

bi = −
n
∑

j=1

∂fi
∂xj

(~x0, ~y0)(~x− ~x0)j − h.o.

For (~x, ~y) very close to (~x0, ~y0) the higher order contributions h.o. will be very small. If we

approximate by dropping h.o. completely, then the right hand side ~b becomes a constant

(remember that are trying to solve for ~y when ~x is viewed as a constant) and there is a

unique solution if and only if A has an inverse. The unique solution is then ~y = ~y0+A−1~b.

Now return to the problem of solving ~f(~x, ~y) = 0, without making any approximations.

Assume that the matrix A exists and has an inverse. When d = 1, A is invertible if and

only if ∂f
∂y

(x0, ~y0) 6= 0. For d > 1, A is invertible if and only if 0 is not an eigenvalue of A

or, equivalently, if and only if detA 6= 0. In any event, assuming that A−1 exists,

~f(~x, ~y) = 0 ⇐⇒ A−1 ~f(~x, ~y) = 0 ⇐⇒ ~y − ~y0 = ~y − ~y0 − A−1 ~f(~x, ~y)

(If you expand in powers of ~x−~x0 and ~y−~y0, you’ll see that the right hand side is exactly

A−1~b, including the higer order contributions.) This re-expresses our equation in a form

to which we may apply the contraction mapping theorem. Precisely, rename ~y − ~y0 = ~z

and define ~g(~x, ~z) = ~z −A−1 ~f(~x, ~z + ~y0). Then

~f(~x, ~y) = 0 ⇐⇒ ~y = ~y0 + ~z and ~g(~x, ~z) = ~z
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Fix any ~x sufficiently near ~x0. Then ~g(~x, ~z) is a function of ~z only and one may apply the

contraction mapping theorem to it.

We must of course check that the hypotheses are satisfied. Observe first, that when

~z = ~0 and ~x = ~x0, the matrix
[

∂gi
∂zj

(~x0,~0)
]

1≤i,j≤d
of first derivatives of ~g is exactly 1l−A−1A,

where 1l is the identity matrix. The identity 1l arises from differentiating the term ~z in

~g(~x0, ~z) = ~z−A−1 ~f(~x0, ~z+ ~y0) and −A−1A arises from differentiating −A−1 ~f(~x0, ~z+ ~y0).

So
[

∂gi
∂zj

(~x0,~0)
]

1≤i,j≤d
is exactly the zero matrix. For (~x, ~z) sufficiently close to (~x0,~0), the

matrix
[

∂gi
∂zj

(~x, ~z)
]

1≤i,j≤d
will, by continuity, be small enough that (H1) is satisfied. This

is because, for any ~u, ~v ∈ IRd, and any 1 ≤ i ≤ d,

gi(~x, ~u)− gi(~x,~v) =

∫ 1

0

d
dt
gi
(

~x, t~u+ (1− t)~v
)

dt =

d
∑

j=1

∫ 1

0

(

uj − vj)
∂gi
∂zj

(

~x, t~u+ (1− t)~v
)

dt

so that
∣

∣gi(~x, ~u)− gi(~x,~v)
∣

∣ ≤ d ‖~u− ~v‖ max
0≤t≤1

1≤j≤d

∣

∣

∂gi
∂zj

(

~x, t~u+ (1− t)~v
)
∣

∣

and

∥

∥~g(~x, ~u)− ~g(~x,~v)
∥

∥ ≤ Γ‖~u− ~v‖ with Γ = d2 max
0≤t≤1

1≤j≤d

∣

∣

∂gi
∂zj

(

~x, t~u+ (1− t)~v
)
∣

∣

By continuity, we may choose a > 0 small enough that Γ ≤ 1
2 whenever ‖~x − ~x0‖, ‖~u‖

and ‖~v‖ are all smaller than a. Also observe that ~g(~x0,~0) = −A−1 ~f(~x0, ~y0) = ~0. So,

once again, by continuity, we may choose 0 < a′ < a so that
∥

∥~g(~x,~0)
∥

∥ < 1
2a whenever

‖~x− ~x0‖ < a′.

We conclude from the contraction mapping theorem that, assuming A is invertible,

there exist a, a′ > 0 such that, for each ~x obeying ‖~x− ~x0‖ < a′, the system of equations
~f(~x, ~y) = 0 has exactly one solution, ~y(~x), obeying ‖~y(~x)− ~y0‖ < a. That’s the existence

and uniqueness part of the

Theorem (Implicit Function Theorem) Let n, d ∈ IN and let U ⊂ IRn+d be an open set.

Let ~f : U → IRd be C∞ with ~f(~x0, ~y0) = 0 for some ~x0 ∈ IRn, ~y0 ∈ IRd with (~x0, ~y0) ∈ U .

Assume that det
[

∂fi
∂yj

(~x0, ~y0)
]

1≤i,j≤d
6= 0. Then there exist open sets V ⊂ IRd and W ⊂ IRn

with ~x0 ∈ W and ~y0 ∈ V such that

for each ~x ∈ W , there is a unique ~y ∈ V with ~f(~x, ~y) = 0.

If the ~y above is denoted ~Y (~x), then ~Y : W → IRd is C∞, ~Y (~x0) = ~y0 and ~f
(

~x, ~Y (~x)
)

= 0

for all ~x ∈ W . Furthermore

∂~Y
∂~x

(~x) = −
[

∂ ~f
∂~y

(

~x, ~Y (~x)
)]−1 ∂ ~f

∂~x

(

~x, ~Y (~x)
)

(1)
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where ∂~Y
∂~x

denotes the d×n matrix
[

∂Yi

∂xj

]

1≤i≤d

1≤j≤n

, ∂ ~f
∂~x

denotes the d×n matrix of first partial

derivatives of ~f with respect to ~x and ∂ ~f
∂~y

denotes the d×d matrix of first partial derivatives

of ~f with respect to ~y.

Proof: We have already proven the existence and uniqueness part of the theorem.

The rest will follow once we know that ~Y (~x) has one continuous derivative, because

then differentiating ~f
(

~x, ~Y (~x)
)

= 0 with respect to ~x gives

∂ ~f
∂~x

(

~x, ~Y (~x)
)

+ ∂ ~f
∂~y

(

~x, ~Y (~x)
)

∂~Y
∂~x

(~x) = ~0

which implies (1). (The inverse of the matrix ∂ ~f
∂~y

(

~x, ~Y (~x)
)

exists, for all ~x close enough to

~x0, because the determinant of ∂ ~f
∂~y

(~x, ~y) is nonzero for all (~x, ~y) close enough to (~x0, ~y0),

by continuity.) Once we have (1), the existence of, and formulae for, all higher derivatives

follow by repeatedly differentiating (1). For example, if we know that ~Y (~x) is C1, then

the right hand side of (1) is C1, so that ∂~Y
∂~x

(~x) is C1 and ~Y (~x) is C2.

We have constructed ~Y (~x) as the limit of the sequence of approximations ~Yn(~x) de-

termined by ~Y0(~x) = ~y0 and

~Yn+1(~x) = ~Yn(~x)− A−1 ~f
(

~x, ~Yn(~x)
)

(2)

Since ~Y0(~x) is C
∞ (it’s a constant) and ~f is C∞ by hypothesis, all of the ~Yn(~x)’s are C∞

by induction and the chain rule. We could prove that ~Y (~x) is C1 by differentiating (2) to

get an inductive formula for ∂~Yn

∂~x
(~x) and then proving that the sequence

{

∂~Yn

∂~x
(~x)

}

n∈IN
of

derivatives converges uniformly.

Instead, we shall pick any unit vector ê ∈ IRn and prove that the directional derivative

of ~Y (~x) in direction ê exists and is given by formula (1) multiplying the vector ê. Since

the right hand side of (1) is continuous in ~x, this will prove that ~Y (~x) is C1. We have
~f
(

~x+ hê, ~Y (~x+ hê)
)

= 0 for all sufficiently small h ∈ IR. Hence

0 = ~f
(

~x+ hê , ~Y (~x+ hê)
)

− ~f
(

~x , ~Y (~x)
)

= ~f
(

~x+ thê , t~Y (~x+ hê) + (1− t)~Y (~x)
)

∣

∣

∣

t=1

t=0

=

∫ 1

0

d
dt
~f
(

~x+ thê , t~Y (~x+ hê) + (1− t)~Y (~x)
)

dt

= h

∫ 1

0

∂ ~f
∂~x

ê dt+

∫ 1

0

∂ ~f
∂~y

[~Y (~x+ hê)− ~Y (~x)] dt

where the arguments of both ∂ ~f
∂~x

and ∂ ~f
∂~y

are
(

~x+ thê , t~Y (~x+ hê) + (1− t)~Y (~x)
)

. Recall

that ∂ ~f
∂~x

is the d×n matrix
[

∂fi
∂xj

]

1≤i≤d

1≤j≤n

, ê is an n component column vector, ∂ ~f
∂~y

is the d×d
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matrix
[

∂fi
∂yj

]

1≤i≤d

1≤d≤n

, and ~Y is a d component column vector. Note that [~Y (~x+ hê)− ~Y (~x)]

is independent of t and hence can be factored out of the second integral. Dividing by h

gives

1
h
[~Y (~x+ hê)− ~Y (~x)] = −

[
∫ 1

0

∂ ~f
∂~y

dt

]−1 ∫ 1

0

∂ ~f
∂~x

ê dt (3)

Since

lim
h→0

(

~x+ thê , t~Y (~x+ hê) + (1− t)~Y (~x)
)

=
(

~x , ~Y (~x)
)

uniformly in t ∈ [0, 1], the right hand side of (3) — and hence the left hand side of (3) —

converges to

−
[

∂ ~f
∂~y

(

~x, ~Y (~x)
)]−1 ∂ ~f

∂~x

(

~x, ~Y (~x)
)

ê

as h → 0, as desired.
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The Inverse Function Theorem

As an application of the implicit function theorem, we now prove the inverse function

theorem.

Theorem (Inverse Function Theorem) Let d ∈ IN and let U ⊂ IRd be an open set. Let
~F : U → IRd be C∞ with det

[

∂Fi

∂yj
(~y0)

]

1≤i,j≤d
6= 0 for some ~y0 ∈ U . Then there exists an

open set V ⊂ U with ~y0 ∈ V such that the restriction ~F
∣

∣V of ~F to V maps V one–to–one

onto the open set ~F (V ) and
(

~F
∣

∣V
)−1

is C∞. Furthermore, If we denote
(

~F
∣

∣V
)−1

by ~Y ,

then
∂~Y
∂~x

(~x) =
[

∂ ~F
∂~y

(

~Y (~x)
)]−1

(2)

Proof: Apply the implicit function theorem with n = d, ~f(~x, ~y) = ~F (~y)− ~x, ~x0 = ~F (~y0)

and U replaced by IRd × U .
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