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The exchange of mobile genetic elements (MGEs) facilitates the spread

of functional traits including antimicrobial resistance within bacterial
communities. Tools to spatially map MGEs and identify their bacterial
hosts in complex microbial communities are currently lacking, limiting
our understanding of this process. Here we combined single-molecule
DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal
RNA-FISH to enable simultaneous visualization of both MGEs and bacterial
taxa. We spatially mapped bacteriophage and antimicrobial resistance
(AMR) plasmids and identified their host taxa in human oral biofilms.
Thisrevealed distinct clusters of AMR plasmids and prophage, coinciding
with densely packed regions of host bacteria. Our data suggest spatial
heterogeneity in bacterial taxaresults in heterogeneous MGE distribution
within the community, with MGE clusters resulting from horizontal gene
transfer hotspots or expansion of MGE-carrying strains. Our approach can
help advance the study of AMR and phage ecology in biofilms.

Understanding the complex biology of mobile genetic elements (MGEs)
iscrucial for manipulating microbiomes and improving the treatment
of microbiome-associated diseases. MGEs carried on plasmids can
confer adaptive traits, including antimicrobial resistance (AMR) and
virulence, to host bacteria, while bacteriophages can drastically alter
the structure of microbiomes' . The host range of MGEs varies widely—
some have a broad host range, while others are restricted to a single
strain or species. This host range is consequential; for example, the
host range of bacteriophages can impact their utility for precision
microbiome manipulation or infection treatment*. Similarly, the host
range of AMR plasmids may inform the extent to which a microbiome
can act as areservoir for AMR traits°.

Despite the centrality of MGEs in microbial ecology, basic
facts about the mechanisms of the spatial spread of MGEs within
natural communities remain unknown. This knowledge gap largely

stems from a lack of spatially resolved tools to examine the mobile
gene pool in situ and to directly establish MGE-host associations.
Sequencing-based approaches for linking MGEs with their microbial
hosts involve dissociation of the sample and do not retain spatial
information, while building reporter constructsinto MGEs is limited
to tractable systems’.

Inthis study, we introduce animaging-based approach that inte-
grates single-molecule DNA fluorescence in situ hybridization (FISH)
and highly multiplexed ribosomal (r)RNA-FISH to map MGEs and their
cognate bacterial hosts at the resolution of a single bacterial cell®’.
We show that this method allows us to study the heterogeneity in
the spatial distribution of MGEs within biofilms and establish links
between MGEs and their hosts in complex structured microbiomes.
We developed this method for confocal microscopy with spectral
detection to situate MGEs in three dimensions within dense biofilms
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andto enable simultaneous highly multiplexed identification of bacte-
rial taxa. We first assessed and optimized single-molecule DNA-FISH
techniques onthebasis of insitu signal amplificationto ensure sensitive
and specific detection of target DNA within individual bacterial cells
via confocal microscopy. Next, we developed asemi-automated image
analysis pipeline to detect MGE spots and segment bacterial cells. We
then applied this methodology to examine the spatial spread of AMR
gene-carrying plasmids and prophage in human oral plaque biofilms.
We demonstrated the ability to establish MGE-host associations, and
we found that both bacterial taxa and their MGEs exhibit intricate
spatial structure, forming clusters within plaque biofilms on the order
of 10-100 um. This spatial heterogeneity implies the existence of
limited microscale regions of horizontal gene transfer (HGT) or clonal
expansionin dense biofilms and, potentially, taxonomic and physical
barriers for the spread of MGEs.

Results

Optimization of single-molecule MGE-FISH

We used Escherichia coli transformed with pJKR-H-tetR plasmids
encoding an inducible GFP gene as a model system to assess
and optimize MGE-FISH on a confocal microscope (Fig. 1a)'°. We
designed FISH probes for the non-coding strand of the GFP gene,
used non-transformed E. coli as a negative control and tested six
different FISH protocols. Initial attempts using single and ten encod-
ing probes yielded little to no separation between the signal in the
plasmid and control samples (Fig. 1b, rows 1and 2). This was expected
given the photon noise and losses inherent in confocal microscopy
as compared with awide-field microscope'2. We next implemented
two enzyme-free amplification methods to increase the signal™*.
Branched amplification yielded a higher true positive signal, albeit
accompanied with a high background signal in the negative con-
trol (Fig. 1b, row 3). Hybridization chain reaction (HCR) similarly
enhanced the signal at the expense of a high background in the
control (Fig. 1b, row 4). To improve specificity, we adopted a ‘split’
HCR method and used heat-denatured DNA and non-fluorescent
‘helper probes’ to stabilize the DNA™', This resulted in a significant
reduction of the signal in the negative control (Fig. 1b, row 5). Last,
to address autofluorescence in oral biofilms (as detailed below), we
applied a gel embedding and clearing technique, in which nucleic
acidsinthe sample are covalently anchored to a polyacrylamide gel,
followed by clearing of proteins and lipids''®. This method led to
a high specificity of MGE detection (false positive rate <0.01) but a
relatively low sensitivity (true positive rate = 0.39). We suggest that
this limited sensitivity is a result of tight packing of the transcrip-
tionally repressed GFP gene, limiting accessibility, as detailed previ-
ously and as supported by our experiments with a phage infection
model described below” . We applied the final optimized method
in conjunction with super-resolution airyscan imaging to examine
the subcellular localization of plasmid-encoded GFPin E. coli cells.
We found that the plasmid density is -50% higher on average at the
poles compared with the centre (Extended Data Fig. 1a,b), in line
with previous reports that plasmids have limited capacity to dif-
fuse through the nucleoid at the cell centre and tend to cluster at
cell poles®?,

Visualizing phage infection

Building on the optimized MGE-FISH method (Fig. 1b, row 6),
we turned our attention to visualizing T4 phage infection of E. coli.
We staged infections at four multiplicities of infection (MOI 0, 0.01,
0.1and1) and fixed replicate cultures every 10 min over a 40-min
period (Fig. 1c and Extended Data Fig. 1c). We designed FISH probes
targeting the non-coding strand of the gp34 gene, which encodes
atail fibre protein, and quantified cells with 5 or more MGE spots,
less than 5 spots and no spots (Fig. 1c and Extended Data Fig. 1d).
For non-infected controls (MOI 0), the fraction of cells with phage
detected was 0.015 (8,800 cells, 3 fields of view), which gives the false
positive rate. No cells in the MOI O control had more than 5 spots,
which gave us confidence that the striking signal from cells with high
spot countin MOI 0.01, 0.1and 1 was specific to phage infection. We
predicted the fraction of infected cellstobe 0, 0.01, 0.10 and 0.73, for
MOI 0, 0.01, 0.1and 1, respectively (Poisson probability mass func-
tion). This was close to the observed fraction of cells with phage spots
at20 min: 0,0.02,0.23 and 0.53. Thisindicates much higher sensitivity
than what we observed in the GFP plasmid experiment (Fig. 1b, row
6). We suggest that the actively replicating gp34 gene is more acces-
sible to FISH probes than the transformed, unexpressed GFPgene in
the plasmid experiment.

T4 phage infecting £. coli in LB medium has a reported average
latent period lasting 18 min, end of lysis at 36 min and a burst count
of 110 (ref. 24). We observed MGE-FISH spots within 10 min of phage
introduction, which indicates that we are visualizing replicated phage
genetic material before disruption of the cell membrane. At 20 min,
cells with high phage count were often physically longerinlength than
uninfected cells, suggesting bacterial growth with stalled division near
the end of the latent period. Our results match previous findings that
burstsizes for T4 phage increase withincreased bacterial growth rate
dueto large cell volumes delaying full lysis***. We observed a dramatic
increasein the fraction ofinfected cells for MO10.01and 0.1at 40 min.
This corresponds to the expected lysis time and the adsorption of new
phage to uninfected cells. At 30 and 40 min, many cells with a high
phage count had alow16S rRNA signal and increased width and length
compared with uninfected cells (Fig. 1c and Extended Data Fig. 1c).
We suggest that these cells with high phage count and low 16S rRNA
intensity have been fully lysed, meaning that MGE-FISH canbe used to
stain encapsulated phage particles, as has been suggested previously®.
Wealso observed asmall fraction of infected cells with alow 16S rRNA
signalin the centre of the cell and a high signal at the poles (Extended
Data Fig. 1d, middle), which we suggest are infected cells that experi-
ence cytoplasmic condensation due to membrane damage?. Overall,
these data and observations match the expected progression of a T4
phage infection course and show the value of MGE-FISH imaging in
generating insights even in a well-studied system.

Mapping MGEs in oral plaque biofilms at high specificity

Next, we evaluated the ability of our MGE-FISH method to visualize the
spatial distribution of MGEs in human oral plaque biofilms. Tothisend,
we collected oral plaque biofilms from two healthy volunteers (A and B)
and performed shotgun metagenomic sequencing onaportionof each
sample, reserving therest forimaging (Fig. 2a). As aninitial controlled

Fig.1|Single-molecule MGE-FISH. a, Diagram of E. coli model GFP plasmid
system used to optimize single-molecule FISH. b, (i) Diagrams of different
methods implemented. Blue cells on the left are wild type and orange cells on
theright are transformed with the plasmid. After the first row, two encoding
probes are shown to represent ten encoding probes in all cases. Magenta lines
represent the plasmid, cyan represents 16S rRNA and blue represents off-target
bindingsites. (ii) Representative images for each method alteration. Magenta
indicates a signal from MGE-FISH and cyan indicates a signal from 16S rRNA-FISH.
Scale bar, 5 pum. Images were captured for at least 1,000 cells in each condition.
(iiii) Fraction of cells with spots for control and plasmid images as a function of

signal-to-noise ratio (SNR) threshold. SNR was calculated for each spot, dividing
the spot signal by the average background signal (‘Manual spot background
filtering’ in Methods). Black vertical line indicates the selected SNR threshold.
TPR, true positive rate; FPR, false positive rate (at the threshold). (iv) Histograms
for the number of spots in each cell. Width indicates the frequency of the spot
count value. Horizontal red bars indicate mean spot count. ¢, Left: diagram of
MGE-FISH staining of E. coli infected by T4 phage. Middle: example images for
four multiplicities of infection at 20 min and 30 min after introducing phage to
the culture. Right: results of manual counting to classify cells into groups on the
basis of the number of MGE-FISH spots.
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test of the method (Fig. 1b, row 6), we stained for the GFPgene in sam-
ples that contained mixtures of plaque and GFP-transformed E. coli
(Fig.2b) and demonstrated that the specificity remained highin plaque.

Viametagenomic analysis, we identified mefE, an AMR gene encod-
ing an antibiotic efflux pump, in the plaque of volunteer A but not
volunteer B (Fig.2cand Supplementary Tables 5and 10). Our MGE-FISH
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non-random, while the spots in volunteer Bwere randomly distributed
(Moran’s/=0, P=0.259). These results showed that MGE-FISH s effec-
tive in visualizing MGEs in plaque. The spatial clustering of this AMR
plasmid within the biofilm suggests that we are probably observing
plasmid proliferation either through host replication (vertical transfer)
or conjugation (horizontal transfer)?.

Inthe plaque, we observed off-target signals as bright patches and
dispersed large spots, probably due to non-specific binding of probes
tofood particles or debris. To mitigate this issue, we implemented gel
embedding and clearing for reduced off-target binding"'®*’, To test
the efficacy of gel embedding and clearing, we used orthogonal FISH
probes, designed tonottarget any sequenceinthe plaque. We observed
adramaticreductionin off-target signal after gel embedding and clear-
ing (Extended DataFig. 2c,d) and therefore used thisin all subsequent
experiments on plaque.

We next mapped a natural lysogenic bacteriophage (prophage)
inplaque to study its spatial distribution. Involunteer B, we identified
a T7-like prophage via metagenomic analysis and developed probes
targeting its capsB gene, which encodes the minor capsid protein
(Supplementary Tables 6 and 10). In these experiments, we used two
negative controls to assess off-target binding: one with no probe and
onewithorthogonal probes. Both controls displayed minimal off-target
signal (Extended Data Fig. 3a), and we could set an area threshold on
spots to further filter out off-target signals on the basis of the spot
size. CapsB spots clustered spatially, coinciding withlong rod-shaped
bacteria. The spatial clustering of this phage is probably due to a limited
host range; in the metagenomic analysis this prophage was binned with
Corynebacterium, alongrod-shaped bacterium that forms spatial clus-
ters®. Large clusters (-100 pm) of host bacteria may resultin prophage
hotspots in a biofilm (Extended Data Fig. 3b).

To further test the robustness of MGE-FISH in plaque, we then
proceededtolabel another phage genein three different colours simul-
taneously. Weidentified a highly prevalent prophage of the class Cau-
doviriceteswithalarge terminase-encoding gene, termL, and were able
to design alarge set of FISH probes (Supplementary Tables 7 and 10).
We divided the probesinto three groups, each labelled with a different
colour. We mapped the large-scale distribution (-25 pm) of spots in
each colour and found that they formed similar patterns, as expected
(Fig.2d). We also demonstrated that different colour spots co-localized
with each other at the micronscale. Similar to the previous prophage,
this prophage also formed isolated spatial clusters, suggesting spatial
restriction of host bacteria within plaque biofilms. While dense clusters
of host cells could result in rapid transfer of a lytic phage within the
cluster, the spatial isolation of different host clusters may limit the
global spread of infection, with the intervening non-host cells acting
asabarrier to phage transfer.

In addition to MGEs, we also tested the possibility to visualize
genes located on bacterial genomes. Using metagenomic analysis,
we identified three non-plasmid AMR genes (Supplementary Tables 8
and 10). Genes patA and patB, which encode subunits of an antibiotic
efflux pump, were from the same metagenome-assembled genome

(MAG) and had nearly identical coverage values, so we expected them
tospatially co-localize. We found another gene encoding an antibiotic
efflux pump subunit, adeF, inadifferent MAG (Fig. 2e). At the large scale
(-25 um), patA and patB had similar density patterns, while adeFhad a
distinct pattern, as expected. At the micron scale, MGE-FISH staining
for these three genes showed that 32% of patB spots co-localized with
patA, while only 5% of patB spots co-localized with adeF. The differ-
ence in large-scale spatial distribution between patA/patB and adeF
indicates that bacteria carrying these AMR genes inhabit different
spatial structures within the biofilm. Identifying spatial patterns for
AMR genes within biofilms viaMGE-FISH can help gain understanding
of the maintenance and spread of AMR.

Combined taxonomic mapping and MGE mapping

We next overlaid MGE biofilm maps with taxonomic identity maps to
associate MGEs with their host taxa. To start, we measured the taxo-
nomic association of a highly abundant prophage of class Caudovirice-
tes, for which the metagenomic data and RefSeq alignment hinted ata
strong taxonomic association with Veillonella (Fig.3a and Supplemen-
tary Table 10)*>*. We used rRNA-FISH to stain five common oral genera,
Veillonella, Streptococcus, Corynebacterium, Lautropia and Neisseria,
each with a different fluorophore, and we used MGE-FISH to stain the
termL gene of the active prophage withasixth fluorophore (Fig. 3b). The
terml gene and Veillonella showed striking co-localization, mirroring
the prediction from metagenomic assembly (Fig. 3¢). We quantified
the fraction of termL spots that were nearest neighbours with each
species and compared the observed values to simulations of randomly
distributed spots. Veillonella displayed by a large margin the highest
spatial association considerably above random (z-score = 7.7, P< 0.01;
Fig.3d). The fraction of termL spots associated with Veillonellawas 0.39,
while the fraction of termL spots associated with each other genus was
very low (-0.01). These results demonstrated our ability to determine
MGE host taxonomy in plaque biofilms by concurrently mapping taxa
identity and MGEs. In this biofilm, we found cells classified as Veil-
lonella co-localized with termlL signal with unexpected filamentous
morphology. These cells are stained with the fluorescent barcode we
assigned to Veillonella and display large area patches of termL signal.
Whileitis possible that these filamentous cells are not Veillonella and
thus both the Veillonella16S rRNA-FISH probes and the termL probes
bind off-target, we suggest it is also possible that this large area termlL
signal reveals active phage replication and that the long filamentous
morphology is a stress response of Veillonella to infection as we have
observed in E. coli (for example, Fig. 1c, 20 min MOI 0.01 and 0.1) and
others have demonstrated with other stressors®.

Next, we sought to confirm the host of a highly abundant plasmid
discovered in the metagenomic data. We assembled contigs using
combined long- and short-read sequencing and identified a highly
abundant plasmid. Alignment of this contig to the plasmid database
(PLSDB v.2023_11_23) showed that the plasmid had previously been
observed in Prevotella nigrescens (Fig. 3e)*. We selected two genes
fromthe contig thatencode proteins with metallo-p-lactamase (MBL)

Fig.2|MGE-FISHin human oral plaque. a, Diagram of the workflow to apply
MGE-FISH in oral plaque biofilms (created with BioRender.com). b, Left: example
images of plaque, transformed E. coli expressing GFP, and the combination

of both plaque and E. coli. All samples were stained for the GFPgene using
MGE-FISH. The experiment was repeated three times with similar results. Right:
association of MGE-FISH signal with GFP cells and non-GFP cells in each sample.
¢, Left: diagram of two-volunteer control experiment. Middle: example images
of plaque samples from each volunteer stained for the mefE gene. At least three
tiled fields of view (FOVs) were collected for each sample with similar results.
Right: measurement of relative spot count for each volunteer. Spot counts for
eachimage were normalized by dividing the number of segmented spots by the
number of segmented cells (‘Semi-automated image segmentation’ in Methods).
d, Top left: diagram showing the multicolour approach used to stain the gene

termL.Bottom left: example FOV plotted as separate density maps for each
colour of termL probes. At least three tiled FOVs were collected for each sample
with similar results. Inset 1: zoomed region of the plaque overlaid with all colours
of termL stain. Inset 2: zoomed region of plaque splitinto each colour of termL
probes. Right: measurements of termL colour co-localization normalized as the
fraction of total spots. e, Top left: diagram showing the multicolour approach
used to simultaneously stain the genes patA, patB and adeF. Bottom left: example
FOV plotted as separate density maps for each gene. At least three tiled FOVs
were collected for each sample with similar results. Inset 1: zoomed region of

the plaque overlaid with all colours. Inset 2: zoomed region of plaque split by
gene. Right: measurement of co-localization of patB spots with each other gene
normalized as the fraction of patB spots co-localized.
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domains as targets for MGE-FISH (Supplementary Tables 10 and 11)*"*%,
Prevotella species are commonly resistant to f-lactam antibiotics, but
most encode serine B-lactamases such as CfxA and are therefore gener-
ally still susceptible to carbapenems®*°, However, MBLs can hydrolyse
carbapenems and can confer broad-range antibiotic resistance. We
stained both putative MBL genes (pMBL) with the same colour using
MGE-FISH and found dense clusters of pMBL at a scale of 10 pm, with
these clusters commonly spaced 20-30 um apart (Extended Data
Fig. 4). For taxonomic mapping, we broadened our target panel by
employing high-phylogenetic-resolution fluorescence in situ hybridi-
zation (HiPR-FISH), amethod that uses combinatorial spectral barcod-
ing tomap taxa. We selected atarget panel of 18 generathat are highly
abundant and prevalent in human plaque’®®. We designed a HiPR-FISH
spectral encoding using a 5-fluorophore combinatorial barcoding
scheme, whereby each fluorophore represents abinary bit, providing
31 possible barcodes (2° —1=31)%. The fluorophore for MGE-FISH was
spectrally distinct from those of HiPR-FISH, enabling simultaneous
implementation of both methods (Fig. 3f).

Usingintegrated HiPR-FISH and MGE mapping, we observed spa-
tial association of pMBL with Prevotella as predicted (z-score =4.6,
P<0.01;Fig.3g,h). Further, 56% of pMBL spots were nearest neighbours
with a Prevotella cell. The visually and quantitatively prominent asso-
ciation of pMBL with Prevotella suggests that Prevotella is the host for
the pMBL plasmid. Inaddition, we observed association between pMBL
and Streptococcus (z-score =11.1, P < 0.01). While only 20% of spots
associated with Streptococcus, 13% of all Streptococcus cells associated
with pMBL spots. This association of Streptococcus with pMBL could
be an artefact of Streptococcus co-localizing with the plasmid carry-
ing Prevotella. It is also possible that this measurement reveals HGT
between Prevotella and Streptococcus. All in all, these experiments
constitute a demonstration of the use of DNA-FISH and rRNA-FISH to
measure associations between host cellsand MGEs and to uncover the
spatial context of MGEs in dense biofilms.

Next, we investigated the taxonomic association of an unknown
plasmid within a plaque biofilm of a patient diagnosed with stage
3 periodontitis. We combined long- and short-read sequencing to
identify acomplete plasmid with minimal homology to any sequence
inthe RefSeq database (v.220; Fig. 4a,b and Supplementary Table 10)*.
The plasmid carried several predicted genes for mobilization and
toxin-antitoxin systems. In the short-read data, there was a region
with a dip in coverage, to zero in some bases, which we attribute to
stretches of Gand Chomopolymers, which are disfavoured by lllumina
sequencers (Extended Data Fig. 5). However, we achieved complete
coverage of the plasmid with the nanopore sequencing data, which
allowed assembly of the full plasmid sequence (Fig. 4b). We designed
MGE-FISH probes for the plasmid and combined this MGE-FISH stain
with an 18-genera HiPR-FISH panel (Supplementary Table 12). We
found that the plasmid was spatially associated with Streptococcus

(z-score =26.7, P < 0.01) and that Streptococcus formed small clusters
within large patches of non-biofilm material (Fig. 4c,d). This mate-
rialincluded host tissue, calculus and blood. We found that samples
from the periodontitis patient contained considerably more of this
kind of material than the healthy plaque samples. We measured 44%
of plasmid spots associated with Streptococcus. We suggest that this
plasmid is hosted by a Streptococcus species that is successful in the
periodontitis environment.

Discussion

Here we introduced a method for mapping MGEs in bacterial bio-
films at the resolution of single cells. We optimized this method by
systematically evaluating single-molecule FISH techniques toincrease
signal-to-noise ratio and reduce off-target binding. The resulting high
sensitivity and high specificity method allowed us to map MGEs in vitro
and in human oral plaque biofilm samples using confocal microscopy.
Inaddition, weintegrated our method with HiPR-FISH, atechnique we
previously created for bacterial taxon mapping in biofilms, allowing us
to directly associate MGEs with their host bacteria and reveal correla-
tions between local community structure and MGE spatial distribution.
This versatile pipeline will be a valuable tool to generate and evaluate
questions in microbial ecology.

Using this method, we were able to make unique observations
about MGE distributions across spatial scales in model bacteria and
human oral plaque biofilms. At the subcellular level, in vitro, we found
that high-copy plasmids without partition systems show fewer puncta
than expected and localize to the poles of the cells, which supports
theideathat these plasmids bunchtogether withinthe celland do not
diffusereadily in the nucleoid. We also showed that there are dramatic
changesin cell shape and ribosome density associated with the number
of copies of areplicating phage in E. coli, providing unexpected insight
into the physical response of cells toinfection. At the 10-100 pm scale
inplaque biofilms, we demonstrated that AMR genes on plasmids and
chromosomes canform clusters. We further observed clustering of two
prophages at the same scale in plaque biofilms, with clusters of host
cells isolated from each other by intervening non-host cells. Spatial
clusters of prophages and AMR genes result from either short-range
MGE exchange in dense clusters of host cells or clonal expansion of
MGE host cells, but we cannot distinguish between these two possibili-
ties with MGE-FISH. We suggest that long-range (>100 pm) horizontal
transfer of MGEs between clusters of host cells is limited by the need
for MGEs to diffuse through the non-host biofilm. Although the lit-
eraturereportsthat HGT is often higher in biofilms thanin planktonic
culture, we suggest that this observation is dependent on commu-
nity spatial structure, with large variations in the local rate of HGT
for a given MGE***>*3, Most importantly, we demonstrated the abil-
ity of our imaging-based approach to link MGEs with their bacterial
hosts, including in a scenario where metagenomic sequencing could

Fig.3| Combined MGE and taxonomic mapping. a, Workflow for prophage
host association predictions via metagenomic sequencing assembly, binning
and phage gene prediction. b, Diagram showing simultaneous single-colour
rRNA stain for taxon mapping and HCR staining for prophage mapping. ¢, Top:
bacterial genera classified by rRNA-FISH overlaid with the raw signal from MGE-
FISH on termL prophage gene. Bottom left: zoomed region of rRNA-FISH overlaid
with MGE-FISH. Bottom right: zoomed region showing only Veillonella (blue)

and termL (magenta and yellow) in colour, while all other cells are greyscale. The
arrows indicate examples of termL signal co-localized with Veillonellain magenta
and termL signal co-localized with another genusin yellow. d, Left: z-scores for
the number of associations between termL and each genus (circles) compared to
simulation where the termL spots are randomly assigned to cells (boxplots, 1,000
simulations). The bounds of the boxes show the first quartile to the third quartile,
the centre shows the median and the whiskers show the farthest data point lying
within 1.5 the IQR. Right: fraction of termL spots associated with each taxon.
Association between a cell and a spot is defined as the nearest neighbour cell to

the spot. e, Workflow for plasmid host association prediction via metagenomic
sequencing assembly, plasmid prediction and alignment to a reference database.
f, Diagram showing simultaneous multicolour HiPR-FISH rRNA staining for

taxon mapping and HCR staining for plasmid mapping. g, Top: bacterial genera
classified by HiPR-FISH overlaid with raw signal from MGE-FISH on pMBL genes.
Bottom: two zoomed regions of HiPR-FISH overlayed with MGE-FISH. For

all MGE-FISH spot association measurements, we filtered large non-circular
signal as shown at the bottom right in Leptotrichia cells. h, Left: z-scores for the
number of associations between pMBL and each genus (circles) compared to
simulation where the pMBL spots are randomly assigned to cells (boxplots, 1,000
simulations). The bounds of the boxes show the first quartile to the third quartile,
the centre shows the median and the whiskers show the farthest data point lying
within 1.5x the IQR. Right: fraction of pMBL spots associated with each taxon.
Association between a celland aspot is defined as the nearest neighbour cell to
the spot.
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a, Diagramillustrating sample collection from a patient with stage 3 periodontitis
followed by DNA extraction for long-read Nanopore sequencing and short-read
Illumina sequencing (created with BioRender.com). The same sample was then
used for simultaneous HiPR-FISH and MGE-FISH staining. b, Diagram of a plasmid
assembled from long- and short-read sequencing. The inner axes plot Illumina
short-read alignment as reads per base and the middle axes do the same for
Nanopore long reads. The outer bars plot the locations and names of predicted
genes, where arrows and ‘+/-" at the start of the names indicate gene orientation.
Pink barsindicate the locations of encoding probes for HCR staining, while light
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grey barsindicate the locations of non-fluorescently stained helper probes.

¢, Bacterial genera classified by HiPR-FISH overlaid with the raw signal from
MGE-FISH on the previously undescribed plasmid. Grey indicates the raw signal
from autofluorescence in unstained sample material. d, Left: z-scores for the
number of associations between the plasmid and each genus (circles) compared
to simulation of random distributions of the same spots (boxplots, 1,000
simulations). The bounds of the boxes show the first quartile to the third quartile,
the centre shows the median and the whiskers show the farthest data point lying
within 1.5x the IQR. Right: fraction of plasmid spots associated with each genus.

not. Our method provides the means to study the impact of taxo-
nomic heterogeneity on the dissemination of MGEs in highly diverse
natural biofilms.

There are remaining limitations to the method presented here.
First, there is a limit to the taxonomic resolution achievable by 16S
rRNA-FISH due to low rRNA sequence divergence at the species and
strainlevel. In addition, the method relies on the availability of amicro-
scope with both spectral and Airyscan detectors. Further, we have
applied thismethod so far only to oral plaque biofilms, but we believe
it could be transferred to other microbial ecosystems such as the gut
and skin, after sample type-specific optimization. Last, the discov-
ery of MGE targets depends on initial DNA sequencing. Complete
assembly of plasmids was difficult even with high depth of coverage

fromshort-read sequencing but was greatly improved with long-read
nanopore sequencing.

Severalstudies have recently demonstrated mapping of microbial
RNAs using slide capture or imaging-based spatial transcriptomics
methods**. Compared with MGE-FISH, these approaches offer the
advantage of mapping a broader range of bacterial transcripts, but
slide capture methods have lower spatial resolution and imaging-based
methods have only been applied in single-species systems. Further,
genes acquired from HGT are often transcriptionally repressed and
therefore not detectable with transcriptomic methods*.

We suggest that MGE mapping can serve as a direct complement
for metagenomic sequencing of spatially structured microbiomes.
We envision two potential application areas. First, the methods we
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describe could be employed to investigate the processes that govern
the emergence of antibiotic resistance. Horizontal gene transfer is
considered the key mechanism by which pathogens acquire antibiotic
resistance, yet fundamental aspects of MGE ecology remain unknown
such as the relationship between the local physical environment and
the extent of MGE transfer”®*’. MGE mapping data could reveal physical
parameters that influence HGT, such as spatial structures or spatially
clustered bacterial consortia that promote or prevent the spread of
resistance elements in microbiomes. Second, MGE mapping can help
addressthe challenge of determining bacteriophage host taxa, whichis
crucial given renewed interest in phage therapy as anantibiotic alterna-
tive*. Inthis context, MGE mapping can further be used to examine the
spatialinterplay between bacteriaand phages in complex ecosystems,
revealing the effect oflocal and macro structures in biofilms on phage
spread, taxonomic barriers to phage infection, varying propagation
modes through biofilms, the contribution of phage to biofilm structure
and biofilm ‘refugia’ areas with reduced phage infectivity’**". These
findings can then serve as a platform for developing and assessing
phage therapies.

Methods

Inclusion and ethics statement

The protocol for volunteer recruitment and sample collection was
approved by the CornellInstitutional Review Board (IRB; #2102010112)
and the Harvard School of Dental Medicine IRB (IRB21-0662).

Human participants sample acquisition

At Cornell University, volunteers were enrolled for specimen collection
following informed consent and assent for the collection protocol as
approved by the Cornell University IRB (#2102010112). Volunteers
were asked to refrain from cleaning their teeth for 24 h. Volunteers
thenused the point of a plastic toothpick to scrape the plaque fromthe
surface ofatoothjust beneath the gumline onthe frontand back of the
tooth. They then scraped the gaps oneither side of the tooth by sliding
the point of the toothpick into each gap and scraping away from the
gums. After each scraping action, volunteers dipped the point of the
toothpick into a 1.5 ml sample collection tube containing 0.5 ml 50%
ethanolto deposit the plaquein theliquid. Samples were collected and
stored at -20 °C until used.

AtHarvard School of Dental Medicine, IRB approval (IRB21-0662)
was obtained for collection of patient specimens in the advanced
graduate periodontal department. The patient had complete baseline
clinical measurements (pocket depth, recession, attachment loss,
bleeding on probing and plaque index) and full-mouth x-rays (periapi-
calradiographs and bitewings) to assess periodontal disease severity
and establish adiagnosis onthe basis of the 2018 classification (staging
andgrading). Following informed consent and assent, the clinicians col-
lected supra- and subgingival plaque specimens as part of the clinical
care procedure and stored themin 70% ethanol at -20 °C.

E. colitransformation and preparation

Plasmid pJKR-H-TetR was acquired from Addgene (https://www.
addgene.org/62561/) and transformed into E. coli str. K-12 substr.
MG1655 (refs.10,52). Transformed E. coliwere streaked on LB agar Miller
modification with 100 mg I ampicillin trihydrate (MP Biomedicals,
7177-48-2) and grown overnight aerobically at 37 °C. Anisolated colony
was picked and grown overnight aerobically at 37 °C with 200 r.p.m.
shakingin5 ml of LB medium Miller modification with100 mg I ampi-
cillin trihydrate. Overnight culture (100 pl) was subcultured in 10 ml
modified LB with ampicillin and grown for 2 haerobically at 37 °C with
200 r.p.m. shaking. The culture was then split in half and one tube
received 40 pl2 pg pl ™ anhydrotetracycline (Takara, 631310) to induce
GFP expression. Cultures were mixed with 10 ml 4% formaldehyde in
PBS (pH 7.2 at 25 °C) and fixed for 90 min at room temperature. Fixed
cellswere pelleted (7,000 x g, 4 °C, 5 min), resuspendedin 500 pl cold

PBS and transferred to 1.5 ml centrifuge tubes. Cells were washed by
pelleting (10,000 x g,4 °C, 3 min), resuspended in 500 pl cold PBS and
washed again by pelleting and resuspending in 100 pl distilled water.
Absolute ethanol (100 pl) was added to each tube to create fixed cell
suspensionsin 50% v/v ethanol, which were then stored at —20 °C until
imaging. Wild-type cells were prepared in parallel, but without ampicil-
linin growth media and agar.

Phage stock preparation

E. colistr.K-12 substr. MG1655 was grown overnightin mod. LB medium
(25 g™ Luria-Bertani broth, 300 mg 1™ CaCl,, 2 g I b-glucose). Over-
night culture (5 ml) was subcultured in 50 mImod. LB and grown aerobi-
cally at 37 °Cwith 200 r.p.m. shaking for 30 min, then 500 pl T4 lysate
was added and allowed to infect for 5 h while shaking. Cells and cellular
debris were removed from the lysate by centrifugation (7,000 x g, 4 °C,
10 min) and filtration through a 0.2 pm SUPOR syringe filter (Pall).
Lysate titre was determined by serially diluting lysates inmod. LB and
spotting triplicate 10 pl drops of each dilution onto lawns of E. coli
plated onmod. LB agar (15 g 1" agar).

Time-course infection experiment

Replicate 7 mImod. LB aliquots were inoculated with 100 pl overnight
E. coli culture and grown to optical density at 600 nm (OD,) = 0.15
(-2x107 c.f.u.s ml™ based on growth curve analysis). High-titre T4 lysate
was diluted in mod. LB and added to each culture at a multiplicity of
infectionof 0.01, 0.10r1, with uninfected cultures serving as controls.
Cultures were grown aerobically at 37 °C with 200 r.p.m. shaking. At
the prescribed timepoints, cultures were mixed with 7 ml1 4% formalde-
hydeinPBS (pH7.2at 25 °C) and fixed for 90 min at room temperature
with continuous inversion. Fixed cells were pelleted (7,000 x g, 4 °C,
5min), resuspended in 500 pl cold PBS and transferred to 1.5 ml cen-
trifuge tubes. Cells were washed by pelleting (10,000 x g, 4 °C,3 min),
resuspended in 500 pl cold PBS and washed again by pelleting and
resuspending in 100 pl distilled water. Absolute ethanol (100 pl) was
addedtoeachtubeto create fixed cell suspensionsin 50% v/v ethanol,
which were then stored at —20 °C until imaging.

DNA-FISH split-probe design

Probes were designed using a custom Snakemake 7.18.2 pipeline with
ruleswrittenin Python 3.6.8 using numpy 1.15.4 and pandas (0.24.1)>>**.
Target gene sequences were taken as inputs along with a reference
blast database. The target was aligned to the blast database and all
significantalignments were recorded for futurefiltering (blastn 2.13.0).
Allpossible oligonucleotide probes were designed to be complemen-
tary to the coding strand of the target gene (that is, the same sense as
the mRNA) using Primer3 (v.2.3.5)*. Pairs of Probes in this pool were
identified as any probes aligningless than three base pairs distant from
eachother. These probe pairs were then blasted against the reference
database using blastn from the US National Center for Biotechnology
Information. On-target blast results were removed from the results
using thetarget gene alignment IDs. Non-significant blast results were
thenfiltered using user-defined parameters. These include maximum
continuous homology (12), GC count (7) and melting temperature
(46 °C). All blast results with values in these parameters that were less
thanthe specified thresholds were removed as ‘non-significant align-
ments’. The remaining blast results were considered ‘significant’ or
likely to produce off-target signal. Probe pairs were removed when both
probes had off-target homologies to nearby regions in the reference
database. This nearness parameter is another user-defined threshold.
Theremaining probe pairs were then sorted with favoured probes hav-
inglow levels of off-target homology. Going down the sorted list, probe
pairs were then selected to tile along the gene without overlapping.
Selected probes were then appended with appropriate flanking regions
sothat the target would be stained with theintended fluorophore (Sup-
plementary Table 1). Two base-pair spacer nucleotides between the
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flanking region and the probe were selected to minimize the off-target
homology of the full-length probes in a manner similar to how probe
pairswere sorted by blast results. The pool of selected probe pairs was
then evaluated by searching for any off-target homologies where two
probes were nearby each other. ‘Helper’ probes were then selected from
Primer3totile along the gene without overlapping the existing probes.
Thefinal probes were then submitted for oligo synthesis to Integrated
DNA Technologies (IDT) at aconcentration of 200 uM.

DNA-FISH single-probe design

Single probes were designed much as the split probes up to the Primer3
step. Then, instead of pairing probes, the probes were all blasted
against the database and the blast results were filtered as the split
probes were for ‘significant’ off-target homologies. Probes with any
significant off-target homologies were removed and the remaining
probes were tiled along the target gene to ensure no overlap. The
selected probes were then paired with flanking regions for the read-
out stain, and two base-pair spacers were added and optimized as in
the split-probe design. The resulting probes were submitted to IDT
for synthesis.

Orthogonal probe design

Probes with zero significant off-target blasts were selected from split
probe pairs for different genes. For example, if the left probe from a
pair targeting Gene A has zero off-target blasts, itis selected, then the
right probe from a pair targeting Gene Bis selected. The conceptis that
itis very unlikely for these probes to hybridize close enough to each
other to initiate HCR fluorescence amplification. Three right probes
andthree left probes were selected in this manner and pooled to create
an ‘orthogonal’ probe pool (Supplementary Table1).

Single-molecule FISH-transformed £. coli hybridization
method development protocols

Six protocols were implemented. In the first three, fixed cells sus-
pendedin50% ethanol were deposited onan Ultrastick slide (Electron
Microscopy Sciences, 63734) and allowed to dry ina monolayer. Cells
were covered in 10 mg ml™ lysozyme in 10 mM Tris-HCI pH 8.3, incu-
bated at37 °Cfor1handwashed for2 minin1x PBS. Cells were covered
with hybridization mix containing encoding probes (2x SSC, 5x Den-
hardt’s solution, 10% ethylene carbonate, 10% dextransulfate,200 nM
MGE probes, 200 nM EUB338 probes; Supplementary Tables 1and 2),
incubated for 4 h at 46 °C, then washed for 15 min at 48 °C (215 mM
NaCl, 20 mM Tris-HCI pH 7.5, 5 mM EDTA). Cells were then covered
with ahybridization mix containing fluorescent readout probes, incu-
bated for 2 h at room temperature and washed for 15 min at 48 °C.
Incubations were performed using Frame-Seal slide chambers (Bio-Rad
SLF0201) and washes were performed in coplinjars. Slides were dried
with ethanol, mountant (ThermoFisher, P36982) was deposited on
the slide, a glass coverslip was placed on top and the mountant cured
for 24 h. In the first protocol, only one encoding probe sequence was
used with standard single fluor readout probes*°. In the second, ten
encoding probeswere used. Inthethird, branched readout probes were
used”. In the fourth protocol, hybridization chain reaction readout
probes were used (prepared as previously described)™ at 60 nM, the
hybridization mix for the readout probes was altered to omit ethylene
carbonate and readout wastime reduced to 1.5 h. In thefifth protocol,
the10 encoding probes were substituted for 10 pairs of splitencoding
probes®. Inthe fifth protocol, we also added a denaturation step after
removing lysozyme from the slides. In this step, we covered the cells
with 50% ethylene carbonate, incubated them at 60 °C for 90 s, then
immersed the slide in a series of ice-cold 70% ethanol, 90% ethanol,
then100% ethanol for 5 min each. Here we also added ‘helper’ probes to
the encoding probe mix, these ‘helper’ probes being unlabelled oligos
with lower specificity than encoding probes, intended to stabilize the
double-stranded DNA inits denatured conformation.

Inthe sixth protocol, we performed gelling and clearing. For this
protocol, cells were deposited on 40 mm round coverslips (Bioptechs,
40-1313-0319) that had been cleaned with alconox, immersed in acidic
wash (5 ml1 37% HCI, 5 ml methanol) for 30 min, washed in ethanol,
immersedinbind silane solution (9 mlethanol, 800 pl distilled water,
100 plIBind Silane (GE,17-1330-01),100 pl glacial acetic acid) for 30 min
and allowed to air dry. Cells were then prepared as above through dena-
turation, thenthe cells were covered with Label-X solution (prepared as
previously documented)”, incubated for 6 hat 37 °C, washed in 2x SSC
for 5 min, rinsed in deionized water and ethanol, and allowed to dry.
The sample was covered with 50 plice-cold gel solution (4% acrylamide
(1610154, Bio-Rad), 2x SSC, 0.2% ammonium persulfate (A3078, Sigma)
and 0.2% N,N,N’,N’-tetramethylethylenediamine (T7024, Sigma)) and
sandwiched by a coverslip functionalized by GelSlick (Lonza, 50640)".
The sample wasincubated at4 °Cinahomemade nitrogen chamber for
1h, thenfor1.5hat37°C. The coverslip was removed by lifting gently
with tweezers from the edge, the sample was incubated in digestion
buffer (0.8 M guanidine-HCI (Sigma, G3272), 50 mM Tris-HCI pH 8,
1mM EDTA, 0.5% (v/v) Triton X-100 in nuclease-free water, 1% (v/v)
proteinase K (New England Biolabs, P8107S)) at 100 r.p.m. at 37 °C for
2 h, thenwashed in 2x SSC twice for 5 min. Encoding and readout then
proceeded as in the fifth protocol. Incubations were performed by
covering samples onthe slide with100 pl hybridization mix, covering
the hybridization mix with a small parafilm square (MilliporeSigma,
HS234526B) and storing the slideina humidity chamber with the same
saltconcentration as the solution. Washes were performed individually
in Petri dishes. Before imaging, gel samples were covered for 5 minin
Slowfade mountant (ThermoFisher, S36963) and covered with asmall
parafilmsquare.

Phage infection hybridization
Phage infection cells were stained using the sixth protocol from the
preceding section (Supplementary Table 3).

Spectral and airyscanimaging

Spectral and airyscan images were recorded on aninverted Zeiss 880
confocal microscope equipped with a 32-anode spectral detector, a
Plan-Apochromat x63/1.40 oil objective and excitation lasers at 405 nm,
488 nm, 514 nm, 561 nm and 633 nm using acquisition settings listed in
Supplementary Table 4. The microscope was controlled using ZEN v.2.3.

Manual spot background filtering

Images were processed using a combination of Python scripts using
numpy (v.1.21.2)* and interactive Jupyter notebooks v.1.0.0 to itera-
tively adjust and check the results of parameter adjustments. We first
applied deconvolution and pixel reassignment to airyscan images
to return a super-resolution image using Zen 2.3 SP1 FP3 (Black)
v.14.0.28.201. Taking this as input, we then set a manual threshold
to identify the foreground. We set the threshold such that visually
distinct spots were mostly masked as separate objects. For images
with high levels of non-specific signal, ‘blobs’, we used watershed
segmentation with the background thresholded image as seed and
alow-intensity background thresholded image as a mask. We meas-
ured the foreground objects using scikit-image v.0.17.2 functions. We
then removed objects larger than the threshold area. Here we set the
threshold such that objects containing 1-3 neighbouring spots were
not removed, but objects with the continuous high signal indicative
of non-specificbinding were removed. We then filtered the remaining
objects on the basis of maximum intensity. Here we set the threshold
toremove objects with continuous low intensity but kept objects with
high-intensity peaks.

Semi-automated image segmentation
For batches of images, an example image was selected and azoom
regionwithintheimage was selected to manually adjust segmentation
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parameters. In airyscan images, segmentation parameters were set
separately for celland spot channels. Inspectralimages, the channels
were aligned using phase cross correlation to correct for drift while
switching between lasers, then the maximum projection or sum projec-
tion along the channel axis was used for segmentation. Theimage back-
ground mask was determined by applying amanual threshold, loading
amanually adjusted background mask (as insome spot segmentation),
or k-means clustering of pixel intensities. For segmentation preproc-
essing, images were optionally log normalized to enhance dim cells,
thendenoised using Chambolle total variation denoising implemented
in skimage with adjustments to the weight parameter®**. In airys-
can images, it was sometimes necessary to blur subcellular features,
so a Gaussian filter could be applied with adjustments to the sigma
parameter. If objects were densely packed and edge enhancement was
required, we applied thelocal neighbourhood enhancement algorithm
to generate an edge-enhanced mask®. In certain cases, difference of
Gaussians was also used for edge enhancement of the preprocessed
image. We then used the watershed algorithm with peak local maxima
asseeds togenerate the final segmentation. Once the parameters were
set, aSnakemake pipeline applied the segmentation parametersto all
images in the batch. Segmented objects were measured using standard
skimage functions. For spot images, local maxima were determined
using skimage functions and objects with multiple local maxima were
splitinto new objects using Pysal®® to generate a Voronoi diagram
from the maxima to set borders between the new objects. Spots were
assigned to cells on the basis of object overlap or by radial distance
between centroids.

Spot subcellular location calculation and projection onto
density map

For eachspot paired witha cell, we calculated x,y coordinates where the
xaxisisthedirectionof the cell’slongaxis, the y axisis the direction of
the short axis and the magnitude of each coordinate was normalized
to the average cell length and width.

length

average

@®

xspot = dcentroid—spot X cos (ecell—spot) X W
cell

Widthaverage

_— 2
Widthce" @

yspot = dcentroid—spot X Sin(ecell—spot) X

where deenroia-spor iS the distance between the centroid of the cell and
the spot, and 6.5y is the angle between the cell’s long axis and the
spot-centroid axis. We then created agrid of points to cover the average
cell length and width, used the scikit-learn nearest neighbours algo-
rithm to calculate the number of spots within a certain radius of each
grid point and divided this number by the area of the search to get a
density value for each point.

Manual cell and spot counting

Inthe 30 minand 40 mintimepoints of the phage infection, many of the
infected cells had reduced 16S rRNA signal and lysed cells had caused
clumps of cells to form, resulting in difficulties in segmentation. To
countcells and classify them by their number of phage spots, we used a
manual counting strategy where eachimage was loaded into a graphic
design tool (Affinity Designer) and cells of each type were counted
and marked by hand. We counted a minimum of 1,000 cells for each
time-MOI combination.

Prediction of phage infection rates
We used the probability mass function for a Poisson random variable
to predict the fraction of cells that would encounter at least one phage

e xx
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where xis the number of phage a cell collides with and A is the ratio of
average phage concentration to average cell concentration (multiplic-
ity of infection).

Manual seeding of transformed E. coli onto plaque samples
Fragments of plaque were aspirated in 50% ethanol storage solu-
tion using a 20 pl pipette with a cut tip with a wide bore, deposited
on a microscope slide and allowed to dry. We then deposited 2 pl of
transformed E. coli with induced GFP directly on top of the plaque
and allowed the slide to dry. We then proceeded through the finalized
MGE-FISH method.

DNA extraction

DNA was extracted from Cornell volunteer plaque samples using the
UCP pathogen mini kit (Quiagen, 50214, 19091). DNA was extracted
fromHarvard School of Dental Medicine patient plaque samples using
amodified version of an enzyme-based process®. Plaque samples
were suspendedin1ml of TE10 (10 mM Tris-HCI, 10 mM EDTA) buffer.
Lysozyme (ThermoFisher, 89833) was added at afinal concentration of
15 mg ml™and the suspension wasincubated for1 hat 37 °Cwith gentle
mixing. Purified achromopeptidase (Wako Pure Chemical) wasadded at
afinal concentration of 2,000 units ml™ and the suspensionwas further
incubated for 30 minat 37 °C. Sodium dodecyl sulfate (final concentra-
tion, 1mg ml™) and proteinase K (final concentration, 1 mg ml™; NEB,
P8107S) were added to the sample and the mixture was incubated for
1hat55°C.DNAwasextracted with phenol/chloroform/isoamyl alco-
hol (25:24:1), precipitated with isopropanol and 3 M sodium acetate,
washed with 75% ethanol and resuspended in 200 pl of TE buffer.

Sequencing

Forshort-read sequencing, the purified DNA was fragmented and pre-
pared asanllluminalibrary (Illumina, FC-131-1096) and sequenced on
anlllumina NextSeq 2K with P22x100 paired-end reads. For long-read
sequencing, the purified DNA was prepared with a Rapid PCR Barcod-
ingkit (Nanopore, SQK-RPB114.24) and sequencing was performed on
aNanopore MinlON Mk1B with an R10.4.1 flowcell.

AMR and prophage gene discovery

Raw reads were processed with PRINSEQ lite (v.0.20.4)°* and trimmo-
matic (v.0.36)% to remove optical duplicates and sequencing adapters.
Reads mapping to the human genome were discarded using BMTag-
ger (Rotmistrovsky, K. and Agarwala, R., unpublished). Clean reads
were assembled using SPAdes v.3.14.0 (paired-end mode and -meta
option)®*and reads were aligned to contigs using minimap2 (v.2.17)%.
Contigs were resolved into metagenomic bins using vamb (v.3.0.2)*
with reduced hyperparameters (-124, -n 384 384). Completeness and
contamination of bins were evaluated with checkM (v.1.1.2)*® and
taxonomies were assigned to bins using GTDB-Tk v.1.0.2 with GTDB
(release 207)**%". Read-level taxonomic relative abundance estimates
were carried out with Kraken2 (v.2.1.2)°® and Bracken (v.2.6.1). Lytic
andlysogenic phage were identified and evaluated forinduction using
VIBRANT (v.1.2.1)* and PropagAtE (v.1.0.0)*, requiring a minimum
length of 5,000 bp and at least 10 open reading frames per scaffold.
Antibiotic resistance genes were annotated on contigs and mobile
elements using Resistance Gene Identifier v.5.2.0 against the CARD
database v.3.1.0 supplemented with the Resistomes and Variants data-
set (v.3.0.8)"°.

Plasmid prediction

Long raw data was processed using Dorado v.0.4.2. Long reads were
assembled using Flye (v.2.9.2)”. Hybrid metagenomic assembly was
performed using OPERA-MS on clean short reads and Dorado duplex
outputs for long reads’. Plasmids were predicted using geNomad
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v.1.7.1and annotated with Bakta (v.1.8.1)>”*, Putative plasmids from
the hybrid assembly were identified in the long read-only assembly to
help with circularization of the sequence. Short reads were aligned to
putative plasmid assemblies using bowtie2 (v.2.5.1)”. Long reads were
aligned using bwa memv.0.7.17 with Nanopore parameters (-x ont2d)
and filtered to remove short partial alignments (identity >80%, query
coverage >80%)’. Coverage measurements were done with samtools
(v.1.18)"". GC skew was calculated as (Gsopp — Csopp)/(Gsonp + Csonp), Where
Gsovp and Csqp, are the number of G and Cbases ina 50 bp window, and
thelocation of OriC was estimated visually on the basis of GC skew plot-
ting. Thenumber of GGGG and CCCC stretchesineach 50 bp sequence
was counted as a4 bp window at each base; for example, GGGGG con-
tributes two counts.

Plaque MGE-FISH staining

Plaque samples were stained using the fifth or sixth protocol of
‘Single-molecule FISH-transformedE. coli hybridization method devel-
opment protocols’ with some modifications. Plaque was deposited
on amicroscope coverslip by aspirating 2 pl of settled plaque gently
from the bottom of a plaque sample collection tube with a wide bore
pipette tip, depositing on the slide and allowing excess liquid to dry.
Cells were then fixed by covering with 2% formaldehyde for 10 min at
room temperature, washed for 5minin 1M Tris-HCI pH 7.5 for 5 min
and washed in 10 mM Tris-HCI pH 8.0 for 2 min. Melpha X solution
(prepared as previously reported)™ was substituted for Label-X solu-
tion. Encoding was alteredto12 hat 46 °Cin adifferent hybridization
buffer (15% formamide, 5x SSC, 9 mM citricacid (pH 6.0), 0.1% Tween
20, 50 pg ml™ heparin, 1x Denhardt’s solution, 10% dextran sulfate),
20 nM encoding probes (Supplementary Tables 5-8, 11 and 12) and
200 nM EUB338 probes (Supplementary Table 1)"°. After encoding,
samples were washed for 5 min at 46 °Cin wash buffer (15% formamide,
5xSSC,9 mM citricacid (pH 6.0), 0.1% Tween 20, 50 pg ml™ heparin),
15minat37 °Cinfresh wash buffer and 25 min at room temperaturein
freshwashbuffer. Readout was performed with anew readout buffer
(5x SSC, 0.1% Tween 20, 10% dextran sulfate, 60 nM HCR hairpins,
200 nM EUB338 readout probes). After readout, samples were washed
for 5 min at room temperature in 5x SSCT (5x SSC, 0.1% Tween 20),
30 min at room temperature in fresh 5x SSCT twice more, then 5 min
in fresh 5x SSCT. Samples were covered with Slowfade mountant
before imaging.

Spatial autocorrelation analysis

A neighbour spatial connectivity matrix was constructed from cell
segmentation centroids using a Voronoi diagram algorithm from
Pysal v.23.7. Each cell was given a binary mark indicating presence of
MGE spot. The weight matrix and marked cells were used in a global
Moran’s /test from Pysal to calculate spot autocorrelation. The meas-
ured Moran’s / value was compared against a simulation-based null
model assuming that spots are randomly distributed within the cell
space. Pvalues were calculated using atwo-tailed Monte Carlo test.

Large-scale spot density plots

After spot segmentation, the universal 16S rRNA signal was used to
create a global mask to identify the foreground. For each pixel in the
foreground, we used the nearest neighbours algorithm to calculate
the number of spots within a certain radius of each grid point and
divided this number by the area of the search to get a density value
for each point.

Spatial association measurements

We performed two versions of spot co-localization. First, in a given
colour channel, for each spot we used the nearest neighbours algorithm
to determine whether there were spots of the other colour(s) within
a 0.5 umradius and calculated the fraction of spots co-localized with
each of the other colours on the basis of the number of spots in the

reference channel. We repeated the measurement for each colour
channel. Inthe second version, we overlaid the spots from each chan-
nel (labelled as different spot types), divided the image into a grid of
squares with 5 um edges, classified each square on the basis of the
number of spot types present, counted the number of squares of each
type and normalized this number by the total number of squares with
atleast one spot type.

AMR gene distribution measurements

Segmented spots were converted into a point pattern object in the
PySAL Python package®’. Simulations were generated using the Pois-
sonPointProcess functionto generate 100 realizations of the point pat-
tern. Nearest neighbour distances were generated from these objects
with the nnd function. Histogram values were calculated using 1 pm
bins. The cumulative distribution G(d) was calculated using the G
functionin PySAL

p4

()]

n
Gd)y=> -+
d 1 ifdmm(si)<d

i

= . (6)
0 otherwise

where dis distance, nis the number of spots and d,;, (s;) is the nearest
neighbour distance of spoti. The pair correlation R(d) was calculated
using the K functionin PySAL

Z:'Z:l E,;=1 Py (d)

K(d) = . @
(@) 3
y 1 ifdy <d ®
WA(d) = 8
y(@ 0 otherwise
1 AK(d)
()= 2nd Ad ©)
where djis the distance betweenspotsiand,j, and Ais $ theinten-

sity estimation. We calculated the 95% probability envelopes for his-
togram values, cumulative distribution and pair correlation at each
distance d using a two-tailed approach. At a given d, we selected the
upper envelope value such that 2.5% of simulations had greater values
at d and the lower envelope value such that 2.5% of simulations had
lesser values atd.

Genus-level probe design

We performed full-length 16S rRNA sequencing and taxonomic clas-
sification as previously described® on the extracted DNA used for
metagenomic sequencing in ‘DNA extraction’. We searched for previ-
ously designed genus-level FISH probe sequences’® and blasted the
probes against our full-length 16S rRNA data using blastn. We filtered
results to remove ‘non-significant’ alignments as defined above in
‘DNA-FISH split-probe design’, determined the fraction of significant
alignments to non-target genera and removed probes with off-target
rate greater than 0.1. We then selected 5-bit binary barcodes for each
genus to maximize the distance between barcode fluorescent spectra.
Thedistance between sum-normalized arrays of reference spectrawas
calculated using a ‘Euclidean distance of cumulative spectrum’ met-
ric’s. On the basis of the binary barcodes, we concatenated a readout
sequence to the 3' end of each probe sequence such that the readout
sequence would hybridize the appropriate fluorescent readout probe
for the barcode (Supplementary Table 9). For barcodes with multiple
colours in the barcode, we created separate probes concatenated
with each readout sequence. We created barcodes that used only the
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488 nm, 514 nmand 561 nmlasers, thus reserving the 633 nmlaser for
MGE-FISH and the 405 nm laser for the universal EUB338 16S rRNA stain.
For stains where we targeted only 5 genera, we simply used a different
fluorophore for each genus probe.

Combined MGE-FISH and HiPR-FISH staining

Samples were prepared with the sixth protocol in ‘Single-molecule
FISH-transformed E. coli hybridization method development proto-
cols’and asin ‘Plaque MGE-FISH staining’, except for the hybridization
buffer whichincluded 20 nM of pooled genus probes and an EUB 338
probe appended with R9 HiPR-FISH flanking region (Supplementary
Tables1and 9). The readout buffer included 200 nM of each of the
five fluorescent readout probes for the genus encoding plus the R9
fluorescent readout probe for the EUB 338 encoding.

Pixel-level spectral classification

To classify pixels in the 5-genus experiment (for example, Fig. 3c), we
aligned the laser channels of the spectral images using phase cross
correlation, then we performed Gaussian blurring (sigma=3) oneach
spectral channelto reduce the noise in each pixel’s spectra. We acquired
amaximumi ntensity projection along the channel axis, selected aback-
ground threshold and generated a mask. To account for non-specific
binding, which generated a low-intensity background signal with the
‘11111’ (all 5 fluorophores) spectral barcode, we multiplied the ‘11111’
reference spectrum by a scalar and subtracted the scaled spectrum
from each pixel’s measured spectrum (reference spectra for each
barcode were collected as previously described)®. We visualized the
pixel spectrabefore and after subtractionand adjusted the scalar such
thatthe visually apparent background was removed (scalar=0.05). The
adjusted pixel spectra were stored in a ‘pixel spectra matrix’ with the
following shape: number of pixels, number of spectral channels. The
reference spectraforall barcodes were sumnormalizedand mergedina
‘reference spectramatrix’ with the following shape: number of spectral
channels, number of barcodes. We performed matrix multiplication
between the ‘pixel spectra matrix’ and the ‘reference spectra matrix’
to get a ‘classification matrix’ with shape: number of pixels, number
of barcodes. Separately, we evaluated the reference spectra and cre-
ated a boolean array indicating whether we expected a signal from
eachofthethreelasers. We merged these arraysinto a ‘reference laser
presence’ matrix with shape: number of lasers, number of barcodes.
Then, for each adjusted pixel spectrum, we measured the maximum
value foreachlaser, normalized these values by the highest of the three
values and set minimum threshold values (threshold,gs = 0.3, thresh-
olds, = 0.4, thresholds,, = 0.3) to create a‘pixel laser presence’boolean
matrix with shape: number of pixels, number of lasers. We performed
matrix multiplication between the ‘pixel laser presence’ matrix and the
‘reference laser presence’ matrix to get a matrix with shape: number of
pixels, number of barcodes. We performed element-wise multiplication
between this matrix and the ‘classification matrix’ to remove barcodes
from the classification matrix if the signal from one of the lasers was
too low. For each pixel, we selected the barcode with the highest value
inthe adjusted ‘classification matrix’.

Cell segmentation-level spectral classification

We aligned the laser channels using phase cross correlation, then
applied the ‘Semi-automated image segmentation’ method to the
maximum projection of the spectral channels. In the 5-genus experi-
ment, for each object in the cell segmentation, if all the pixels within
the object were assigned to the same taxon, we assigned that taxon
to the object. If multiple taxa were represented in the cell pixels, the
object was split into multiple new objects such that each new object
encompassed pixels of only one taxon. To classify segmented cells in
the 18-genus experiment (for example, Fig. 3g), We acquired the mean
spectrum of pixels within each segmented object, then calculated the
pairwise cosine distances between all mean cell spectraand clustered

the spectra into 20 groups using agglomerative clustering. We then
manually classified each cluster by visually comparing them to pure
reference spectra, which we acquired as reported previously®.

Registration of airyscan and lambda mode images

Since HiPR-FISH images were captured using lambda mode for spectral
measurement and MGE-FISH images were captured using airyscan
mode for improved resolution, we rescaled the HiPR-FISH images so
that the pixel size matched the MGE-FISH images. We used phase cross
correlation toregister shifts between the airyscan 16S rRNA signal and
the HiPR-FISH maximum projectionimage. We then applied these shifts
to the airyscan MGE-FISH images.

Taxon-spot spatial association measurements

Giventheset of cell centroids and spot coordinates, we used the near-
est neighbour algorithm from scikit-learn to identify the nearest cell
to each spot”. We then calculated the fraction of spots associated
with each taxon and the fraction of each taxon associated with spots.

Random simulation of spot distribution

We used the foreground mask to create alist of pixel coordinates within
the plaquecells, then used arandominteger generator to select pixels
by their list index. We used the randomly selected pixel coordinates
as simulated spots and counted taxon-spot spatial associations as
described above. This was repeated for 1,000 simulations, and we
calculated the mean and standard deviation for the count values
for each taxon. We then calculated the z-score for the count values:
z=(count — mean)/standard deviation. P values were calculated by
counting the fraction of simulations with greater values than the
observed value.

Statistics

No statistical methods were used to pre-determine sample sizes, but
our sample sizes are similar to those reported in previous publica-
tions®*°, For cultured cell experiments, the number of cells measured
was routinely in the thousands. Sample size was chosen on the basis
of fields of view, where each condition was measured with three tile
scans composed of four fields of view each, thus measuring thousands
of cells. For oral plaque experiments, the target genes were unique to
eachvolunteer, somultiple samples were not possible for agiven target
gene.Sample size was chosen on the basis of fields of view, where each
sample was measured with at least three tile scans composed of at least
4 fields of view each, thus measuring thousands of cells. For technical
controls, samples of cultured cells and plaque were allocated randomly.
Data collection and analysis were not performed blind to the conditions
of the experiments. No data were excluded from the analysis. Python
v.3.8.5was used to generate statistics. Boxplots consist of abottomline
representing the lower quartile (Q1), aline inside the box representing
the median (Q2), a top line representing the upper quartile (Q3), an
upper whisker extending from the top of the box indicating the maxi-
mumvalue within1.5times the interquartile range (IQR) above Q3 and
alower whisker extending from the bottom of the box indicating the
minimum value within1.5 times the IQR below Q1. Monte Carlo methods
with100 or1,000 simulations were used in two-sided tests to evaluate
nullhypotheses of randomdistribution of spots. Data distribution was
assumed to be normal, but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Illumina and PacBIO sequencing data are available at the National
Center for Biotechnology Information Sequence Read Archive with
accession number PRJNA981198. Microscopy data have been deposited
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at Zenodo at https://doi.org/10.5281/zenod0.8015720 (Fig. 1b and
Extended Data Fig. 1a,b)®°, https://doi.org/10.5281/zenod0.8015754
(Fig. 1c and Extended Data Fig. 1c,d, including count tables)®,
https://doi.org/10.5281/zenodo0.8015832 (Fig. 2 and Extended Data
Figs. 2 and 3)%, https://zenodo.org/doi/10.5281/zenod0.11039333
(Fig. 3 and Extended Data Fig. 4, including plasmid assembly with
Illumina and Nanopore reads)® and https://zenodo.org/doi/10.5281/
zenodo.11039443 (Fig. 4 and Extended Data Fig. 5, including plasmid
assembly with lllumina and Nanopore reads)®*.

GTDB release 207 is available at https://data.gtdb.ecogenomic.
org/releases/release207/, CARD v.3.1.0 is available at https://card.
mcmaster.ca/download, PLSDB v.2023 11 03 is available at https://
ccb-microbe.cs.uni-saarland.de/plsdb/plasmids/download/, Ref-
Seq release 220 is available at https://ftp.ncbi.nlm.nih.gov/refseq/
release/release-catalog/archive/, checkM database v.2015-01-16 is
available at https://zenodo.org/doi/10.5281/zenodo.7401544 (ref.
85), geNomad database v.1.7 is available at https://doi.org/10.5281/
zenodo.10594875 (ref. 86) and the Bakta database v.5.0 is available at
https://doi.org/10.5281/zenodo0.7669534 (ref. 87). For VIBRANT, Pfam
v.32.0isavailable https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/
Pfam32.0/, VOG v.94 is available at https://fileshare.lisc.univie.ac.at/
vog/vog94/ and KEGG v.2019-03-20 is available at ftp://ftp.genome.
jp/pub/db/kofam/archives/2019-03-20/ (ref. 31).

Code availability

The specificimplementation of code to generate figures presented here
is available on GitHub at https://github.com/benjamingrodner/hipr_
mge fish (v.1.0.0, https://zenodo.org/doi/10.5281/zenodo.11085744)%,
Thegeneralized pipeline for segmentationisavailable at https://github.
com/benjamingrodner/pipeline_segmentation (v.1.0.0, https://doi.
org/10.5281/zenodo0.11085837)%, while the generalized implemen-
tation of probe design is available at https://github.com/benjamin-
grodner/FISH_split_probe_design (v.1.0.0, https://doi.org/10.5281/
zen0do.11085839)%°.
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Extended Data Fig. 1| In vitro single MGE-FISH on plasmids and phage. c Example images of MGE-FISH staining of T4 phage gp34 gene in T4 phage
aSubcellular spot locations MGE-FISH staining of GFP-plasmid normalized to infection time series. Cyan: 16S rRNA, magenta: GFP DNA. d Example cells
average cell shape plotted as spot density. The colormap is nonlinear and maps showing examples for the different classification of cells in the manual counting
to values using a power law where color value x maps to density value y = x>, datainFig. 1c.

b Example zoomed raw images of cells where spots are located at the poles.
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Extended Data Fig. 2| Evaluation of MGE-FISH in plaque biofilms.
a Visualization of cell segmentation and spot counting on azoomregion
(gray box on the left) of Fig. 2c. Green outlines in top right image indicate cell

segmentations and green dots on the bottom right image indicate spot locations.
b Spatial autocorrelation of mefE spots using Moran’s I statistic. Colored vertical

barindicates the observed value, black vertical bar indicates the mean value of
the simulation, and the shaded area indicates the histogram of the simulation.
For the simulation spots were randomly redistributed on the same set of cell

segmentations 1000 times. The Monte Carlo method with1000 simulations was

used inatwo-sided test to evaluate the nu

Ilhypotheses of random distribution

of spots. ¢ Top: diagram of orthogonal control probes that should produce
no signal. Bottom: diagram of the gel embedding, nucleic acid anchoring, and

from orthogonal probes in uncleared and

sample clearing process. d Left: Example images showing the off-target signal

cleared plaque samples. At least three

tiled fields of view were collected for each sample with similar results. Center:
spot counts normalized by number of cells as a function of signal to noise ratio
(SNR). Right: Measurement of non-spot pixels normalized by cell pixels.
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Extended Data Fig. 3| Control experiments for T7-like prophage capsB
minor capsid protein in Plaque. a Top left: example images showing regions
of cells with similar morphology cells. From right to left the images are: MGE-
FISH controls with no encoding probes, encoding probes that are orthogonal
as determined by metagenomic analysis, or probes targeting capsB. Top right:

spot counts from each control normalized by number of cells. Bottom: observed

Moran’s I spatial autocorrelation values (vertical black lines) compared to 999

simulations of random spot distribution (filled curves). The Monte Carlo method
with 999 simulations was used in a two-sided test to evaluate the null hypotheses
of random distribution of spots. P-values were 0.40, 0.38, and <0.01 for images
captured using no encoding probes, orthogonal encoding probes, and capsB
encoding probes respectively. b Example FOV showing a large hotspot of
prophage (-100pm). Inset square shows the location of the capsB example
imageina.
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Extended Data Fig. 4| AMR gene distribution measurements. a Example
image showing spatially clustered signal from an AMR gene, pMBL, foundon a
plasmid in the metagenomic sequencing data. pMBL signal is in magenta and the
16 srRNAssignalis in gray. b Top: Histograms of pMBL nearest neighbor distances
for the observed pMBL spots (magenta) ina and 100 simulations of randomly
distributed pMBL spots (black). The solid blue line shows the mean of the
simulated histograms. 97.5% of simulation values were less than the top dotted
blueline, and 97.5% of simulation values were greater than the bottom dotted
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blue line. The Monte Carlo method with 100 simulations was used in a two-sided
test to evaluate the null hypotheses of random distribution of spots. Bottom:
Empirical probability that a pMBL spot has a nearest neighbor distance less than
the given distance for observed pMBL spots (magenta) and simulated random
PMBL spots (black). Blue solid and dashed lines are plotted as above. ¢ Empirical
pair correlation function for observed (magenta) and simulated (black) pMBL
spots. Valuesindicate the radial density of pMBL spots at a given distance from a
reference spot. Blue solid and dashed lines are plotted as above.
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Extended Data Fig. 5| Diagram of the previously undescribed plasmid. Same
as Fig. 4b but with additional information. The second ring from the inside
indicates in blue the number of tetramers of G or C nucleotide bases in the

assembled sequence per 50 base pair window. The second ring from the outside
indicates the GC skew in a 50 bp window where O indicates equal counts of Gand
Cbases, positive indicates excess G bases, and negative indicates excess C bases.
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Data collection  Confocal microscope images were collected on Zeiss LSM i880 with Zen 2.3 SP1 FP3 (Black) v14.0.28.201 software. Nanopore reads were
collected on MinlON Mk1B with MinKNOW v23.07.15.

Data analysis DNA-FISH Split-Probe design. Probes were designed using a custom Snakemake v7.18.2 pipeline with rules written in Python v3.6.8 using
numpy v1.15.4 and pandas v0.24.1.53, Target gene sequences were taken as inputs along with a reference blast database. The target was
aligned to the blast database and all significant alignments were recorded for future filtering (blastn v2.13.0). All possible oligonucleotide
probes were designed to be complementary to the coding strand of the target gene (i.e. the same sense as the mRNA) using Primer3
v2.3.5.55 Pairs of Probes in this pool were identified as any probes aligning less than three base pairs distant from each other. These probe
pairs were then blasted against the reference database using blastn from NCBI. On-target blast results were removed from the results using
the target gene alignment IDs. Non-significant blast results were then filtered using user-defined parameters. These include maximum
continuous homology (12), GC count (7), and melting temperature (46C). All blast results with values in these parameters that were less than
the specified thresholds were removed as “non-significant alignments”. The remaining blast results were considered “significant” or likely to
produce off-target signal. Probe pairs were removed when both probes had off-target homologies to nearby regions in the reference
database. This nearness parameter is another user-defined threshold. The remaining probe pairs were then sorted with favored probes having
low levels of off-target homology. Going down the sorted list, probe pairs were then selected to tile along the gene without overlapping.
Selected probes were then appended with appropriate flanking regions so that the target would be stained with the intended fluorophore
(Supp. Tab. 1). Two base-pair spacers nucleotides between the flanking region and the probe were selected to minimize the off-target
homology of the full-length probes in a similar manner to how probe pairs were sorted by blast results. The pool of selected probe pairs was
then evaluated by searching for any off-target homologies where two probes were nearby each other. “Helper” probes were then selected
from the Primer3 to tile along the gene without overlapping the existing probes. The final probes were then submitted for oligo synthesis to
Integrated DNA Technologies (IDT) at a concentration of 200uM.




DNA-FISH single probe design. Single probes were designed much as the split probes up to the Primer3 step. Then, instead of pairing probes,
the probes were all blasted against the database and the blast results were filtered as the split probes were for “significant” off-target
homologies. Probes with any significant off-target homologies were removed and the remaining probes were tiled along the target gene to
ensure no overlap. The selected probes were then paired with flanking regions for the readout stain and two base pair spacers were added
and optimized as in the split probe design. The resulting probes were submitted for synthesis to IDT.

Orthogonal probe design. Probes with zero significant off-target blasts were selected from split probe pairs for different genes. For example if
the left probe from a pair targeting Gene A has zero off-target blasts it is selected, then the right probe from a pair targeting Gene B is
selected. The concept is that it is very unlikely these probes will hybridize close enough to each other to initiate HCR fluorescence
amplification. Three right probes and three left probes

Manual spot background filtering. Images were processed using a combination of Python scripts using numpy v1.21.2 and interactive Jupyter
notebooks v1.0.0 to iteratively adjust and check the results of parameter adjustments. We first applied deconvolution and pixel reassignment
to Airyscan images to return a super resolution image using Zen 2.3 SP1 FP3 (Black) v14.0.28.201. Taking this as input, we then set a manual
threshold to identify the foreground. We set the threshold such that visually distinct spots were mostly masked as separate objects. For
images with high levels of non-specific signal, “blobs”, we used watershed segmentation with the background thresholded image as seed and
a low intensity background thresholded image as a mask. We measured the foreground objects using skimage functions. We then removed
objects larger than the threshold area. Here we set the threshold such that objects containing 1-3 neighboring spots were not removed, but
objects with the continuous high signal indicative of non-specific binding were removed. We then filtered the remaining objects based on
maximum intensity. Here we set the threshold to remove objects with continuous low intensity, but keep objects with high intensity peaks.

Semi-automated image segmentation. For batches of images, an example image was selected and a zoom region within the image was
selected to manually adjust segmentation parameters. In Airyscan images, segmentation parameters were set separately for cell and spot
channels. In spectral images, the channels were aligned using phase cross correlation to correct for drift while switching between lasers, then
the maximum projection or sum projection along the channel axis was used for segmentation. The image background mask was determined
by applying a manual threshold, loading a manually adjusted background mask (as in some spot segmentation), or k-means clustering of pixel
intensities. For segmentation pre-processing, images were optionally log normalized to enhance dim cells, then denoised using Chambolle
total variation denoising implemented in skimage with adjustments to the weight parameter. In airyscan images it was sometimes necessary
to blur subcellular features, so a gaussian filter could be applied with adjustments to the sigma parameter. If objects were densely packed and
edge enhancement was required, we applied the local neighborhood enhancement algorithm to generate an edge-enhanced mask.8 In
certain cases, difference of gaussians was also used for edge enhancement of the preprocessed image. We then used the watershed
algorithm with peak local maxima as seeds to generate the final segmentation. Once the parameters were set, a Snakemake pipeline applied
the segmentation parameters to all images in the batch. Segmented objects were measured using standard skimage functions. For spot
images, local maxima were determined using skimage functions and objects with multiple local maxima were split into new objects using
Pysal60 to generate a Voronoi diagram from the maxima to set borders between the new objects. Spots were assigned to cells based on
object overlap or by radial distance between centroids.

Manual Cell and spot counting. In the 30 minute and 40 minute timepoints of the phage infection, many of the infected cells had reduced 16S
rRNA signal and lysed cells had caused clumps of cells to form that were difficult to segment. To count cells and classify them by their number
of phage spots we used a manual counting strategy where each image was loaded into a graphic design tool (Affinity Designer) and cells of
each type were counted and marked by hand. We counted a minimum of 1000 cells for each time-MOI combination.

AMR and prophage gene discovery. Raw reads were processed with PRINSEQ lite v0.20.4 and trimmomatic v0.36 to remove optical duplicates
and sequencing adapters. Reads mapping to the human genome were discarded using BMTagger. Clean reads were assembled using SPAdes
v3.14.0 (paired-end mode and —meta option) and reads were aligned to contigs using minimap2 v2.17. Contigs were resolved into
metagenomic bins using vamb v3.0.2 with reduced hyperparameters (-1 24, -n 384 384). Completeness and contamination of bins were
evaluated with checkM v1.1.2, and taxonomies were assigned to bins using GTDB-Tk v1.0.2 with GTDB release 207. Read-level taxonomic
relative abundance estimates were carried out with Kraken2 v2.1.2 and Bracken v2.6.1. Lytic and lysogenic phage were identified and
evaluated for induction using VIBRANT v1.2.1 and PropagAtE v1.0.0, requiring a minimum length of 5000 bp and at least 10 ORFs per scaffold.
Antibiotic resistance genes were annotated on contigs and mobile elements using Resistance Gene Identifier v5.2.0 against the CARD
database v3.1.0 supplemented with the Resistomes & Variants dataset v3.0.8.

Plasmid prediction. Long raw data was processed using Dorado v0.4.2. Long reads were assembled using Flye v2.9.2. Hybrid metagenomic
assembly was performed using OPERA-MS on clean short reads and Dorado duplex outputs for long reads. Plasmids were predicted using
geNomad v1.7.1. Putative plasmids from the hybrid assembly were identified in the long read-only assembly to help with circularization of the
sequence. Short reads were aligned to putative plasmids assemblies using bowtie2 v2.5.1. Long reads were aligned using bwa mem v0.7.17
with Nanopore parameters (-x ont2d) and filtered to remove short partial alignments (identity > 80%, query coverage > 80%). Coverage
measurements were done with samtools v1.18. GC skew was calculated as (G50bp — C50bp)/(G50bp + C50bp) where G50bp and C50bp are
the number of G and C bases in a 50bp window, and the location of OriC was estimated visually based on GC skew plotting. The number of
GGGG and CCCC stretches in a plasmid sequence was counted as a 4bp window at each base; for example, GGGGG results in two counts.

Spatial autocorrelation analysis. A neighbor spatial connectivity matrix was constructed from cell segmentation centroids using a Voronoi
diagram algorithm from Pysal Each cell was given a binary mark indicating presence of MGE spot. The weight matrix and marked cells were
used in a global Moran’s | test from Pysal to calculate spot autocorrelation. The measured Moran’s | value was compared against a simulation
based null model that spots are randomly distributed within the cell space. P-values were calculated using a two tailed Monte Carlo test.

Large scale spot density plots. After spot segmentation, the universal 16S rRNA signal was used to create a global mask to identify the
foreground. For each pixel in the foreground, we used the nearest neighbors algorithm to calculate the number of spots within a certain
radius of each grid point, and divided by the area of the search to get a density value for each point.

Spatial association measurements. We performed two versions of spot colocalization. First in a given color channel, for each spot we used the
nearest neighbors algorithm to determine whether there were spots of the other color(s) within a 0.5um radius and calculated the fraction of
spots colocalized with each of the other colors based on the number of spots in the reference channel. We repeated the measurement for
each color channel. In the second version, we overlaid the spots from each channel (labeled as different spot types), divided the image into a
grid of squares with 5um edges, classified each square based on the number of spot types present, counted the number of squares of each
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type, and normalized by the total number of squares with at least one spot type.

AMR gene distribution measurements. Segmented spots were converted into a point pattern object in the PySAL python package. Simulations
were generated using the PoissonPointProcess function to generate 100 realizations of the point pattern. Nearest neighbor distances were
generated from these objects with the nnd function. Histograms values were calculated using 1um bins. The cumulative distribution G(d) was
calculated using the G function from PySAL. The pair correlation function R(d) was calculated using the K function from PySAL.

Genus level probe design. We performed full length 16S rRNA sequencing and taxonomic classification as previously described8 on the
extracted DNA used for metagenomic sequencing in DNA Extraction. We searched for previously designed genus level FISH probe
sequences29 and blasted the probes against our full length 16S rRNA data using blastn. We filtered results to remove “non-significant”
alignments as defined above in DNA-FISH Split-Probe design, determined the fraction of significant alignments to non-target genera, and
removed probes with off-target rate greater than 0.1. We then selected 5-bit binary barcodes for each genus to maximize the distance
between barcode fluorescent spectra. Distance between sum-normalized arrays of reference spectra was calculated using a “e uclidean
distance of cumulative spectrum” metric.77 Based on the binary barcodes we concatenated a readout sequence to the three prime end of
each probe sequence such that the readout sequence would hybridize the appropriate fluorescent readout probe for the barcode (Supp. Tab.
9). For barcodes with multiple colors in the barcode, we created separate probes concatenated with each readout sequence. We created
barcodes that used only the 488 nm, 514 nm, and 561 nm lasers, thus reserving the 633 nm laser for MGE-FISH and the 405 nm laser for the
universal EUB338 16S rRNA stain. For stains where we targeted only 5 genera, we simply used a different fluorophore for each genus probe.

Pixel-level spectral classification. To classify pixels in the 5 genus experiment (e.g. Fig. 3c), we aligned the laser channels of the spectral images
using phase cross correlation, then we performed gaussian blurring (sigma=3) on each spectral channel to reduce the noise in each pixel’s
spectra. We acquired a maximum intensity projection along the channel axis, selected a background threshold, and generated a mask. To
account for nonspecific binding, which generates a low intensity background signal with the “11111” (all 5 fluorophores) spectral barcode, we
multiplied the “11111” reference spectrum by a scalar and subtracted the scaled spectrum from each pixel’s measured spectrum (reference
spectra for each barcode were collected as previously described). We visualized the pixel spectra before and after subtraction and adjusted
the scalar such that the visually apparent background was removed (scalar=0.05). The adjusted pixel spectra were stored in a “pixel spectra
matrix” with the following shape: (number of pixels,number of spectral channels). The reference spectra for all barcodes were sum
normalized and merged in a “reference spectra matrix” with the following shape: (number of spectral channels,number of barcodes). We
performed matrix multiplication between the “pixel spectra matrix” and the “reference spectra matrix” to get a “classification matrix” with
shape: (number of pixels,number of barcodes). Separately, we evaluated the reference spectra and created a boolean array indicating
whether or not we expected a signal from each of the three lasers. We merged these arrays into a “reference laser presence” matrix with
shape: (number of lasers,number of barcodes). Then, for each adjusted pixel spectrum we measured the maximum value for each laser,
normalized these values by the highest of the three values, and set minimum threshold values (threshold488=0.3, threshold514=0.4,
threshold561=0.3) to create a “pixel laser presence” boolean matrix with shape: (number of pixels,number of lasers). We performed matrix
multiplication between the “pixel laser presence” matrix and the “reference laser presence” matrix to get a matrix with shape: (number of
pixels,number of barcodes). We performed element-wise multiplication between this matrix and the “classification matrix” to remove
barcodes from the classification matrix if the signal from one of the lasers was too low. For each pixel, we selected the barcode with the
highest value in the adjusted “classification matrix”.

Cell segmentation level spectral classification. We aligned the laser channels using phase cross correlation, then applied the Semi-automated
image segmentation method to the maximum projection of the spectral channels. In the 5-genus experiment, for each object in the cell
segmentation, if all the pixels within the object were assigned to the same taxon, we assigned that taxon to the object. If multiple taxa were
represented in the cell pixels, the object was split into multiple new objects such that each new object encompassed pixels of only one taxon.
To classify segmented cells in the 18-genus experiment (e.g. Fig. 3g), We acquired the mean spectrum of pixels within each segmented object,
then calculated the pairwise cosine distances between all mean cell spectra and clustered the spectra into 20 groups using agglomerative
clustering. We then manually classified each cluster by visually comparing them to pure reference spectra, which we acquired as reported
previously.

Registration of Airyscan and Lambda mode images. Since HiPR-FISH images were captured using Lambda mode for spectral measurement and
MGE-FISH images were captured using Airyscan mode for improved resolution, we rescaled the HiPR-FISH images so that the pixel size
matched the MGE-FISH images. We used phase cross-correlation to register shifts between the Airyscan 16s rRNA signal and the HiPR-FISH
maximum projection image. We then applied these shifts to the Airyscan MGE-FISH images.

Taxon-spot spatial association measurements. We created isolated the a subset set of the cell centroids for each taxon. Then for each taxon
we used the nearest neighbor algorithm to measure the distance from each spot to the nearest cell of that taxon and counted the number of
spots where distance was less than 0.5um. To calculate the fraction of spots and taxon cells, we divided the count by the total number of
spots and total number of taxon cells respectively.

Random simulation of spot distribution. We used the foreground mask to create a list of pixel coordinates within the plaque cells, then used a
random integer generator to select pixels by their list index. We used the randomly selected pixel coordinates as simulated spots and counted
taxon-spot spatial associations as described above. This was repeated for 1000 simulations and we calculated the mean and standard
deviation for the count values for each taxon. We then calculated the z-score for the count values: z=(count - mean) / standard deviation. P-
values were calculated by counting the fraction of simulations with greater values than the observed value.

Statistics. Python v3.8.5 was used to generate statistics. Box plots consist of a bottom line representing the lower quartile (Q1), a line inside
the box representing the median (Q2), a top line representing the upper quartile (Q3), an upper whisker extending from the top of the box
indicating the maximum value within 1.5 times the interquartile range (IQR) above Q3, and a lower whisker extending from the bottom of the
box indicating the minimum value within 1.5 times the IQR below Q1. Monte Carlo methods with 100 or 1000 simulations were used in two-
sided tests to evaluate null hypotheses of random distribution of spots.

The specific implementation of code to generate figures presented here is available on GitHub at https://github.com/benjamingrodner/
hipr_mge_fish (v1.0.0, https://zenodo.org/doi/10.5281/zenodo.11085744). The generalized pipeline for segmentation is available at https://
github.com/benjamingrodner/pipeline_segmentation (v1.0.0, https://doi.org/10.5281/zenodo.11085837), while the generalized
implementation of probe design is available at https://github.com/benjamingrodner/FISH_split_probe_design (v1.0.0, https://
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doi.org/10.5281/zenodo.11085839).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Illumina and PacBIO sequencing data are available at the NCBI Sequence Read Archive (SRA) with accession number PRINA981198. Microscopy data have been
deposited to Zenodo at https://doi.org/10.5281/zenodo.8015720 (Fig. 1b, Fig. S1a,b), https://doi.org/10.5281/zenodo.8015754 (Fig. 1c, Extended Data Fig. 1c,d,
including count tables), https://doi.org/10.5281/zenodo.8015832 (Fig. 2, Extended Data Fig. 2, 3), https://zenodo.org/doi/10.5281/zenodo.11039333 (Fig. 3,
Extended Data Fig. 4, including plasmid assembly with Illumina and Nanopore reads), and https://zenodo.org/doi/10.5281/zenodo.11039443 (Fig. 4, Extended Data
Fig. 5, including plasmid assembly with Illumina and Nanopore reads).

GTDB release 207 is available at https://data.gtdb.ecogenomic.org/releases/release207/, CARD v3.1.0 is available at https://card.mcmaster.ca/download, PLSDB
v.2023_11_03 is available at https://ccb-microbe.cs.uni-saarland.de/plsdb/plasmids/download/, RefSeq release 220 is available at https://ftp.ncbi.nlm.nih.gov/
refseq/release/release-catalog/archive/, checkM database v2015-01-16 is available at https://zenodo.org/doi/10.5281/zenodo.7401544, geNomad database v1.7 is
available at https://doi.org/10.5281/zen0odo.10594875, and the Bakta database v5.0 is at https://doi.org/10.5281/zenodo.7669534. For VIBRANT, Pfam v32.0 is
available https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/, VOG v94 is available at https://fileshare.lisc.univie.ac.at/vog/vog94/, and KEGG
v2019-03-20 is available at ftp://ftp.genome.jp/pub/db/kofam/archives/2019-03-20/.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender were not relevant in study design.

Reporting on race, ethnicity, or  Socially relevant groupings were not relevant in study design.
other socially relevant

groupings

Population characteristics No covariate relevant population characteristics were considered in study design.

Recruitment Two healthy volunteers donated samples were recruited Cornell. At Harvard School of Dental Medicine, one donor was
recruited from patients in the advanced graduate periodontal department during their initial examination and/or dental
hygiene therapy visit with inclusion criteria of age greater than 18 years and diagnosed periodontitis and exclusion criteria of
greater than 20 cigarettes a day, antibiotic use within the last 8 weeks, and systemic condition requiring antibiotic
prophylaxis.

Ethics oversight The protocol for volunteer sample collection was approved by the Cornell Institutional Review Board (IRB) #2102010112. At

Harvard School of Dental Medicine, IRB approval (IRB21-0662) was obtained for collection of patient specimens in the
advanced graduate periodontal department.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications.
For cultured cell experiments, the number of cells measured was routinely in the thousands. Sample size was chosen based on fields of view,
where each condition was measured with three tile scans composed of four fields of view each thus measuring thousands of cells. For oral
plague experiments, the target genes were unique to each volunteer, so multiple samples were not possible for a given target gene. Sample
size was chosen based on fields of view, where each sample was measured with at least three tile scans composed of at least 9 fields of view
each thus measuring thousands of cells.
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Data exclusions | No data were excluded from the analysis.

Replication All attempts at replication were successful. Multiple fields of view were collected for each sample. For oral plagque experiments, generally two
technical replicates were performed. For cultured cell imaging, two replicates were performed.

Randomization  For technical controls, samples of cultured cells and plaque were allocated randomly.
Blinding Blinding was not applicable in the methods development studies using cultured cells since imaging and image analysis settings were

quantitatively standardized and replicated for negative and positive controls. Blinding was not needed for the descriptive and exploratory
studies using plaque samples. No specific hypothesis was tested.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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