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Abstract

The exchange of mobile genetic elements (MGEs) facilitates the spread of
functional traits including antimicrobial resistance within bacterial
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The exchange of mobile genetic elements (MGEs) facilitates
the spread of functional traits including antimicrobial
resistance within bacterial communities. Tools to spatially
map MGEs and identify their bacterial hosts in complex
microbial communities are currently lacking, limiting our
understanding of this process. Here we combined single-
molecule DNA fluorescence in situ hybridization (FISH) with
multiplexed ribosomal RNA-FISH to enable simultaneous
visualization of both MGEs and bacterial taxa. We spatially
mapped bacteriophage and antimicrobial resistance (AMR)

plasmids and identified their host taxa in human oral
biofilms.
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single-molecule DNA fluorescence in situ hybridization (FISH)
Optimization of the method

We used Escherichia coli transformed with pJKR-H-tetR plasmids encoding an

inducible GFP gene as a model system to assess and optimize MGE-FISH on a confocal
microscope (Fig. 1a).

The chromosome was detected by 16S rDNA probe
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Initial attempts using single and ten encoding probes yielded little to no separation between the signal in the plasmid and
control samples (Fig. 1b, rows 1 and 2). This was expected given the photon noise and losses inherent in confocal
microscopy as compared with a wide-field microscopeii-i2,
We designed FISH probes for the non-coding strand of the GFP gene, used non-transformed E. coli as a negative
control and tested sixdifferent FISH protocols. Initial attempts using single and ten encoding probes yielded little to
no separation between the signalin the plasmid and control samples
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detection of RNA using MERFISH and branched DNA
amplification. Sci Rep. 2019 May 22;9(1):7721. doi:
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(Fig. 1b, row 3).

Hybridization chain reaction (HCR) similarly enhanced the signal at the expense of a high background in the control (Fig. 1b,
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To improve specificity, we adopted a
to stabilize the DNA%>1,

Last, to

address autofluorescence in oral biofilms (as detailed below), we applied a gel embedding and clearing technique, in which
nucleic acids in the sample are covalently anchored to a polyacrylamide gel, followed by clearing of proteins and lipidstZL&,
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We found that the plasmid density is ~50% higher on average at the poles compared with the centre (Extended Data
Fig. 1a,b), in line with previous reports that plasmids have limited capacity to diffuse through the nucleoid at the cell

centre and tend to cluster at cell poles2223,
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Visualizing phage infection

Building on the optimized MGE-FISH method (Fig. 1b, row 6), we turned our attention to visualizing T4 phage infection
of E. coli. We staged infections at four multiplicities of infection (MOI 0, 0.01, 0.1 and 1) and fixed replicate cultures
every 10 min over a 40-min period (Fig. 1c and Extended Data Fig. 1c). We designed FISH probes targeting the non-
coding strand of the gp34 gene, which encodes a tail fibre protein, and quantified cells with 5 or more MGE spots, less
than 5 spots and no spots (Fig. 1c and Extended Data Fig. 1d).

C Multiplicity of infection B Count=0 Count<5 M Countz5
0.01 0.10 1.00 1.0
T4 phage ) CZ% = o~ D =
infection »
g% : 2 os|
N, £ Q
a2 3 A, <
16S rRNA & NS 2 06
Ko
(@]
S 04F
=,
RS
—
@
= [¢ £ o2}
o
2] 0 || .
\OOOO OO0O0OO0 O0O0O0 O000
Q)@ 0 0.01 0.10 1.00
& . . .
o Multiplicity of infection

¢, Left: diagram of MGE-FISH staining of E. coli infected by T4 phage. Middle: example images for four multiplicities of
infection at 20 min and 30 min after introducing phage to the culture. Right: results of manual counting to classify cells
into groups on the basis of the number of MGE-FISH spots.
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Combined taxonomic mapping and MGE mapping

(Fig. 32 ). We used
rRNA-FISH to stain five common oral genera, Veillonella, Streptococcus, Corynebacterium, Lautropia and Neisseria,
each with a different fluorophore, and we used MGE-FISH to stain the termL gene of the active prophage with a sixth
fluorophore (Fig. 3b).
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Next, we sought to confirm the host of a highly abundant plasmid discovered in the
metagenomic data. We assembled contigs using combined long- and short-read
sequencing and identified a highly abundant plasmid. Alignment of this contig to the
plasmid database (PLSDB v.2023_11_23) showed that the plasmid had previously been
observed in Prevotella nigrescens (Fig. 3e)36. We selected two genes from the contig that
encode proteins with metallo-B-lactamase (MBL) domains as targets for MGE-FISH
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Next, we investigated the taxonomic association of an unknown
plasmid within a plague biofilm of a patient diagnosed with
stage 3 periodontitis. We combined long- and short-read
sequencing to identify a complete plasmid with minimal
homology to any sequence in the RefSeq database (v.220;

Fig. 4a,b and Supplementary Table 10)42,

The plasmid carried several predicted genes for mobilization
and toxin—antitoxin systems.

However, we achieved complete coverage of the plasmid with
the nanopore sequencing data, which allowed assembly of the
full plasmid sequence (Fig. 4b). We designed MGE-FISH probes
for the plasmid and combined this MGE-FISH stain with an 18-
genera HiPR-FISH panel (Supplementary Table 12
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Using this method, we were able to make unique observations about MGE distributions across spatial
scales in model bacteria and human oral plaque biofilms.

At the subcellular level, in vitro, we found that high-copy plasmids without partition systems show
fewer puncta than expected and localize to the poles of the cells, which supports the idea that these
plasmids bunch together within the cell and do not diffuse readily in the nucleoid.

We also showed that there are dramatic changes in cell shape and ribosome density associated with the
number of copies of a replicating phage in E. coli, providing unexpected insight into the physical
response of cells to infection. At the 10—100 um scale in plaque biofilms, we demonstrated that AMR
genes on plasmids and chromosomes can form clusters. We further observed clustering of two
prophages at the same scale in plague biofilms, with clusters of host cells isolated from each other by
intervening non-host cells. Spatial clusters of prophages and AMR genes result from either short-range
MGE exchange in dense clusters of host cells or clonal expansion of MGE host cells, but we cannot
distinguish between these two possibilities with MGE-FISH.

We suggest that long-range (>100 pum) horizontal transfer of MGEs between clusters of host cells is
limited by the need for MGEs to diffuse through the non-host biofilm.
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Multi-Omics Approach Reveals the
Potential Core Vaccine Targets for
the Emerging Foodborne Pathogen
Campylobacter jejuni
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Thermotolerant campylobacters are the most frequent
cause of bacterial infection of the lower intestine
worldwide.

C. jejuni belongs to the epsilon class of proteobacteria,
in the order Campylobacteriales; this order includes
two other genera, Helicobacter and Wolinella. Like C.
jejuni, members of these genera have small genomes
(1.6—2.0 megabases)




Figure 1: The sources and outcomes of Campylobacter jejuni infection.

Several environmental reservoirs can lead to human infection by C. jejuni. It colonizes the chicken
gastrointestinal tract in high numbers, primarily in the mucosal layer, and is passed between chicks within a
flock through the faecal—oral route. C. jejuni can enter the water supply, where it can associate with
protozoans, such as freshwater amoebae, and possibly form biofilms. C. jejuni can infect humans directly
through the drinking water or through the consumption of contaminated animal products, such as
unpasteurized milk or meat, particularly poultry. In humans, C. jejuni can invade the intestinal epithelial layer,

resulting in inflammation and diarrhoea.
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doi: 10.1038/nrmicro1718. PMID: 17703225.



Campylobacter jejuni pathogenesis

The mechanism of pathogenesis comprises four main stages: adhesion to intestinal cells,
colonization of the digestive tract, invasion of targeted cells, and toxin production.
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The determination of the complete genome sequence of
several C. jejuni strains and plasmids has heralded the
beginning of a new era of C. jejuni research. These projects
have revealed the potential mechanisms by which C. jejuni
associates with the host; for example, the complete
sequencing of pVir, a plasmid that is found in some
isolates of C. jejuni, has led to the identification of a type
IV secretion system that has been demonstrated to have
a role in cellinvasion and pathogenicity in ferrets.

The publication of the genome sequence has also enabled
the development of multiple genetic and genomic tools for
use in C. jejuni, including microarrays, transposons for
efficient random mutagenesis, signature-tagged
mutagenesis, new reporter constructs and vectors for
constructing in-frame deletion mutants and chromosomal
point mutations.



Genetic variation and natural transformation.

C. jejuni displays extensive genetic variation, which has arisen from intragenomic mechanisms as well as genetic
exchange between strains. Sequencing the genome of C. jejuni has revealed: the presence of hypervariable sequences

that consist of homopolymeric tracts lack of clear homologues of many E. coli DNA-repair genes.

Most of the hypervariable sequences are in regions that encode proteins that are involved in the biosynthesis or
modification of surface-accessible carbohydrate structures, such as the capsule, lipooligosaccharide (LOS) and

flagellum.

The flagellin is modified by O-linked
glycosylation. This modification is
required for flagellar assembly and
is, therefore, important for motility,
virulence and epithelial cell
adherence and invasion. The N-
linked-glycosylation system
modifies some periplasmic and
outer-membrane proteins.
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Cytolethal distending toxin.

C. jejuni produces cytolethal distending toxin (CDT),
which is also produced by a diverse group of other
bacterial species.

The toxin causes arrest at the G,/S or G,/M
transition of the cell cycle, depending on the cell

type.
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Campylobacter jejuni genomics

A total of 174 complete genome sequences of C. jejuni strains collected from
different geographic locations and isolation sources were preliminarily analyzed. To
be consistent with the genomic data, all of the sequences were annotated using the
software Prokka. The correct taxonomy classification is essential for obtaining high-
quality pangenomes (Wu et al., 2020).

In order to determine the taxonomic status and obtain a high-quality pangenome of
C. jejuni, the average nucleotide identity (ANI) values were firstly calculated to
estimate the genetic relatedness among the strains. ANI has become one of the
main genome options for DNA-DNA hybridization for taxonomic purposes. The
previously suggested species threshold of 95% ANI can represent the same species.
We found that the ANI value of the C. jejuni strain 414 is about 91%, which is
obviously different from the other 173 strains and may be an incorrect classification.
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Using the whole-genome and core genome alignment concatenation approach,
phylogenetic trees for the set of 173 genomes were constructed, the core genome tree
could be divided into six main clades, in which nine strains were diverged
independently of the other members.



Pangenome shape of Campylobacter jejuni.

(A) Pangenome flower plot showing the core genome and the different unique genes
for each strain.

(the colors correspond to the different clades in the core genome tree).
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open pangenome of 8,041
gene families was obtained
with the correct taxonomy
genomes.

The virulence property of the
core genome was analyzed
and 145 core virulence factor
(VF) genes were obtained.



Characterization of the core virulence factors
(VFs).
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Core VF Estimation for Essentiality and Non-host Homologs
Essential genes are composed of the minimum set of genes required to support cell life and have greater

therapeutic potentiality.
The identification of essential genes is a key step in designing therapeutic targets for bacterial infections.

Aong the 145 16ore\Vs) 94\(65%) Were predicted as essential genes. These genes are mainly involved

in biological processes like ATP binding, DNA binding, and transferase and permease activities.

Afterwatd, thelessentiallcore Vs Were aligned With the himan proteomelto confirm whether there is any

similarity between them.

—

These non-host homologous proteins can be preferably used for C. jejuni vaccine development to avoid
autoimmune response or recombination and integration events in humans.

Besides, proteins located in the periplasmic region, in outer membranes, and extracellularly are
considered as effective vaccine candidates.




It is known that outer membrane vesicles (OMVs) are a molecular complex consisting of
lipopolysaccharides (LPS), outer membrane proteins, periplasmic proteins, lipids, and even cytoplasmic
proteins, which are important vehicles for the simultaneous delivery of many effector molecules to host
cells. Exposed proteins are often attractive targets for vaccine design, but sometimes not all proteins
must be exposed to the surface, including some periplasmic proteins present in OMV preparations,
which may also elicit an immunogenic response. Due to the role of OMVs in intestinal adhesion and
invasion, and in regulating the dynamic interaction between host and pathogens, OMVs have become
potential vaccine targets for a variety of intestinal pathogens.

Protein name Location PsortB score TMHMM prediction Molecular weight (kDa) VaxidJen score VaxiJen prediction
SodB Periplasmic 9.44 QOutside 24.81 0.5003 Probable antigen
FigC Periplasmic 9.44 QOutside 18.30 0.4831 Probable antigen
HtrA Periplasmic 9.76 Qutside 51.01 0.5379 Probable antigen
KpsD Periplasmic 9.44 Qutside 60.84 0.4261 Probable antigen

CadF Outer membrane 10 Outside 36.00 0.8043 Probable antigen




Campylobacter jejuni transcriptome analysis in human INT 407 and Caco-2 cells and the pig intestinal loop.
the expression levels of 126 genes, including the 25 core VFs (which include sodB, cadF, and flgC) were increased and the expression

levels of 148 genes (including 13 core VFs) were decreased under human immune stress.
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Upon functional genomics and immunological analyses, five core VF proteins with high antigenicity were
selected as potential core vaccine targets for humans.

For the five selected proteins, nearly all of them had an apparent differential to the stress in human and pig.

The oxidative stress response genes and the iron acquisition genes, including the potential vaccine
targets htrA, sodB, and other core VFs such as chuA, chuB, and chuD, were expected to be decreased due to the
intestinal mucus in the intestinal loop of pig.

This study found that the increased core VFs were mainly associated with the motility- and flagellar-related
genes in both human and pigs and that the decreased core VFs were mainly related to iron transport system
proteins.

These results indicate that the flagellar genes are important VFs, which are essential for C. jejuni motility and
the secretion of virulence proteins. The differences in the gene expressions could be caused by the different
transcriptional responses by different hosts or the need for a certain reaction time after infection.

The candidate proteins found in this study may be efficient vaccine targets both in human and other animals.
With the development of more animal models, these core VFs can provide abundant gene resources, which
may be beneficial to the study of the virulence mechanisms of C. jejuni
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Carbapenem-resistant Escherichia coli (CREC) ST410

« CREC prevalence increased in Chinese hospitals
between 2017 and 2021.

 ST410is the most frequent. Four groups of E. coli ST410
were identified in this children’s hospital,
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Carbapenem-resistant Escherichia coli (CREC) ST410

Genomic analysis identifies a hypervirulent CREC
ST410 clone, B5/H24RxC

It may have emerged from the previously characterized
B4/H24RxC in 2006

Compared with B4/H24RxC, B5/H24RxC lacks the
blagy, 15,-bearing X3 plasmid, but carries a F-type
plasmid containing blaypm._s

Most of B5/H24RxC also carry a high pathogenicity
island YBT and a novel O-antigen gene cluster

B5/H24RxC grew faster in vitro and is more virulent in vivo
Globally disseminated hypervirulent CREC clone,

highlights the ongoing evolution of ST410 towards
increased resistance and virulence.
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a Midpoint rooted maximume-likelihood phylogeny of 956
global ST410 was constructed using a core-genome SNP
alignment generated by Snippy v4.6.0 with ST410 isolate YD786
(GenBank accession CP013112.1) as the reference.

b Violin plot showing the distribution of total number of ARGs
and mutations that confer resistance in B4/H24RxC and
B5/H24RxC clones.

c Violin plot showing distribution of total number of virulence
factors in B4/H24RxC and B5/H24RxC clones.

d Bar plot showing the presence of the lipopolysaccharide (O)
and flagellar (H) surface antigens in B4/H24RxC and B5/H24RxC
clones.

e Comparison of the recombination regions in strain 020026
and 19-7 identified the O-antigen switch from 08 in B4/H24RxC
to Onovell (OgN5) in B5/H24RxC and the HPI gene cluster in
B5/H24RxC clone.
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B5/H24RxC had 176 putative virulence genes, B4/H24RxC had 166

The difference:

the presence of the high pathogenicity island (Yersiniabactin) originated from in Yersinia enterocolitica
(fyuA, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtl, ybtU, and ybtX)

And the O-antigen genes were associated with B4/H24RxC (wzm/wzt O8) changed with wzx/wzy
Onovell in B5/H24RxC
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The analysis estimated the
age of the ST410 lineage to
be approximately 205 years,
around 1816 (Fig. 6a)

The B4/H24RxC ancestor
was estimated to have
originated in 2003 (95%
HPD, 2000-2005).

The time of the most
recent common ancestor
(TMRCA) of B5/H24RxC was
estimated at around May
2006 (Fig. 6¢).
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