L'immunità innata:

una visione d'insieme...

Le prinicipali componenti dell'immunità innata

BARRIERE FISICO-CHIMICHE	COMPARTIMENTO UMORALE	COMPARTIMENTO CELLULARE
Cute, mucose	Proteine di fase acuta	Granulociti
Sebo	Proteina C reattiva	Monociti / macrofagi
Lisozima e altri enzimi	Lectina legante mannosio (MBL)	Cellule dendritiche
Mucine	Amiloide sierico, ficoline	Cellule NK
Defensine	Surfactante polmonare	Linfociti T intra-epiteliali
Catelicidine	Fibrinogeno	
	Sistema del complemento citochine	

PAMP, DAMP e PRR

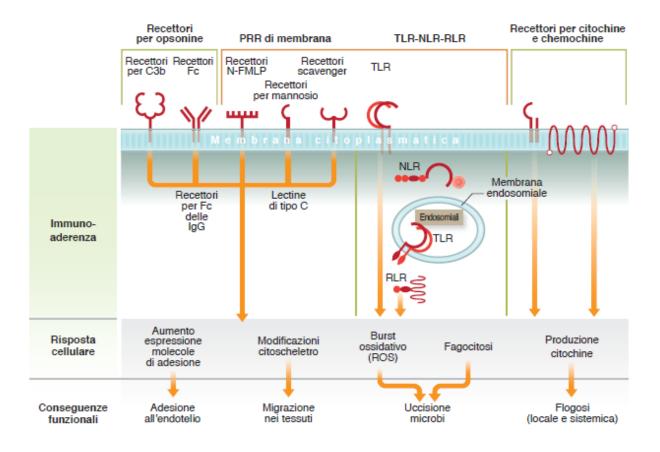
PAMP - Pathogen Associated Molecular Profile

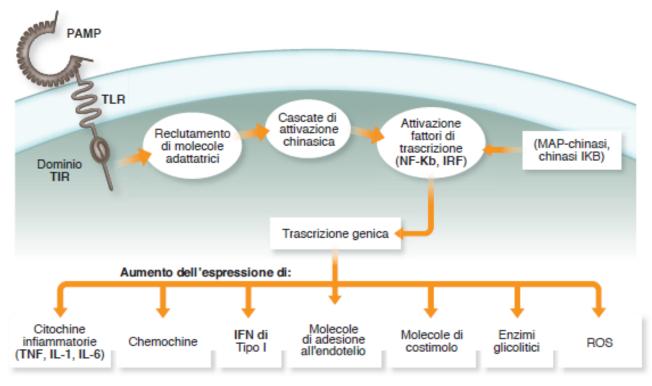
DAMP - Damage Associated Molecular Profile

PRR - Pathogen (Profile) Recognition Receptor

i PRR possono essere:

- · molecole presenti nel plasma
- · molecole espresse sulle cellule o al loro interno


PRR solubili


ration neorginaria neceptora	LUCULIUM	Opoulio Examples	FAMI/PAMI LIGUIUS
Soluble			
Pentraxins	Plasmä	C-reactive protein	Microbial phosphorylcholine and phos- phatidylethanolamine
Collectins	Plasma	Mannose-binding lectin	Carbohydrates with terminal mannose and fructose
*	Alveoli	Surfactant proteins SP-A and SP-D	Various microbial structures
Ficolins	Plasma	Ficolin	N-Acety(glucosamine and lipoteichoic acid components of the cell walls of gram-positive bacteria
Complement	Plasma	Various complement proteins	Microbial surfaces

PRR associati alle cellule

Pattern Recognition Receptors	Location	Specific Examples	PAMP/DAMP Ligands
Cell-Associated			
Toll-like receptors (TLRs)	Plasma membrane and endosemal membranes of dendritic cells, phagocytes, B cells, endothelial cells, and many other cell types	TLRs 1-9	Various microbial molaculos including bacterial LPS and peptidoglycans, viral nucleic acids
NOD-like receptors (NLRs)	Cytosol of phagocytes, epithelial	NOD1/2	Bacterial cell wall peptidoglycans
	cells, and other cells	NLRP family (inflammasomes)	Intracellular crystals (urate, silica); changes in cytosolic ATP and ion concentrations; lysosomal damage
RIG-like receptors (RLRs)	Cytosol of phagocytes and other cells	RIG-1, MDA-5	Viral RNA
Cytosolic DNA sensors (CDSs)	Cytosol of many cell types	AIM2; STING-associated CDSs	Bacterial and viral DNA
C-type lectin-like receptors (CLRs)	Plasma membranes of phagocytes	Mannose receptor	Microbial surface carbohydrates with terminal mannose and fructose
		Dectin	Glucans present in fungal cell walls
Scavenger receptors	Plasma membranes of phagocytes	CD36	Microbial diacylglycerides
#			
//-Formyl met-leu-phe receptors	Plasma membranes of phagocytes	FPR and FPRL1	Peptides containing IV-formylmethionyl residues

Le conseguenze funzionali dell'attivazione dei PRR

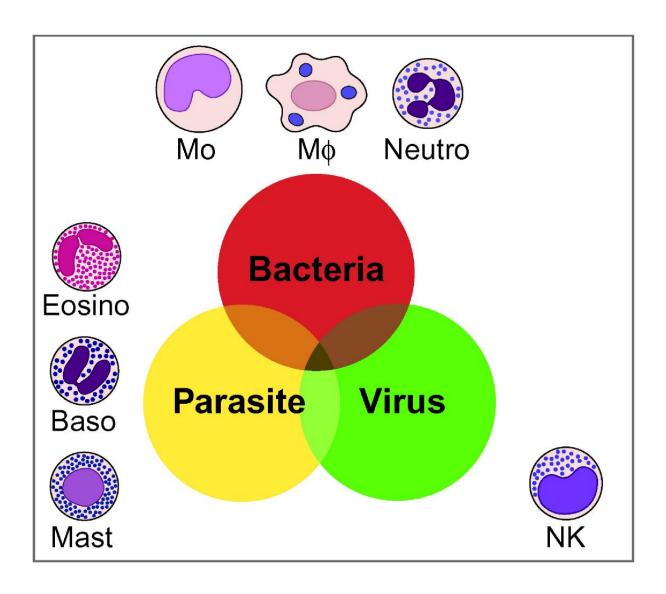
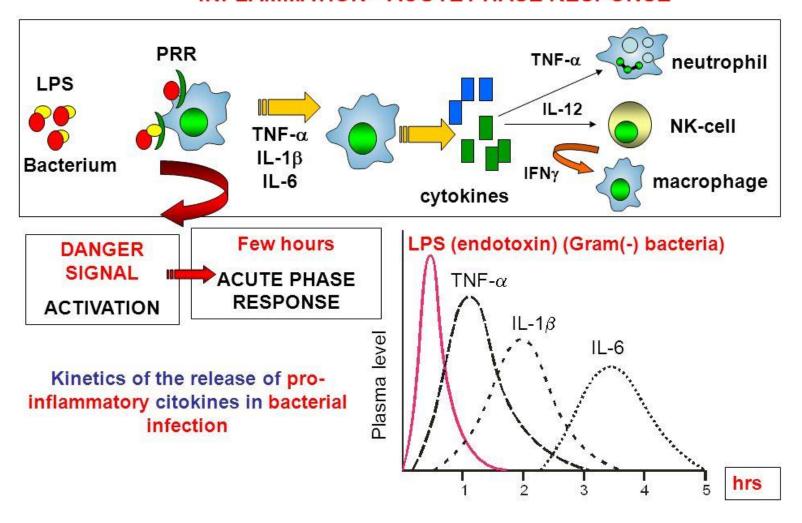


FIGURA 3.41.

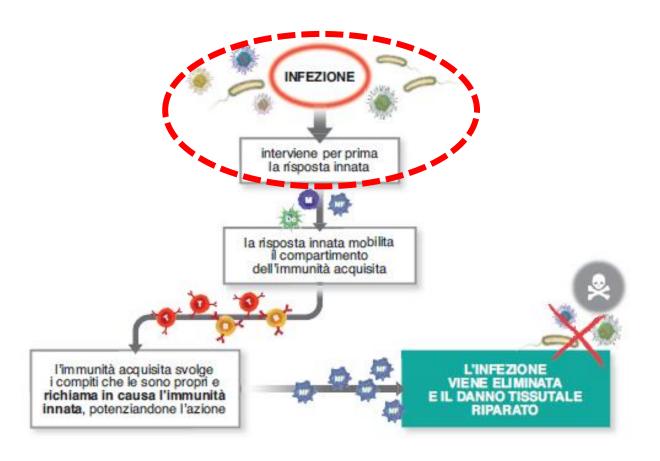
Conseguenze biologiche dell'attivazione dei TLR. L'interazione dei PAMP con i diversi TLR induce nella cellula una serie di funzioni differenti, tutte volte a concorrere alla sua attivazione e allo svolgimento delle funzioni proprie del fagocita. In particolare, la cellula attivata produce una serie di citochine destinate ad attivare gli endoteli e di chemochine necessarie per il reclutamento cellulare nel sito di flogosi. La cellula potenzia anche l'espressione di molecole di costimolo (B7-1/2) che facilitano il compito di presentare l'antigene alle cellule dell'immunità acquisita. La cellula va anche incontro al cosiddetto burst ossidativo, che implica un incremento dell'attività glicolitica e della produzione di specie reattive dell'ossigeno (ROS), volte a favorire processi ATP-dipendenti quali la fagocitosi, nonché l'uccisione dei microbi fagocitati (radicali O₂, ossido nitrico),

L'immunità innata combatte le 3 classi principali di patogeni impiegando diversi tipi cellulari

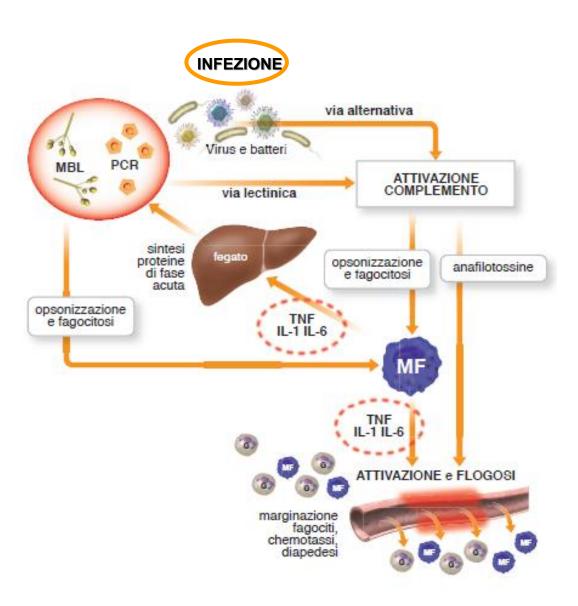
Principali meccanismi di eliminazione del patogeno

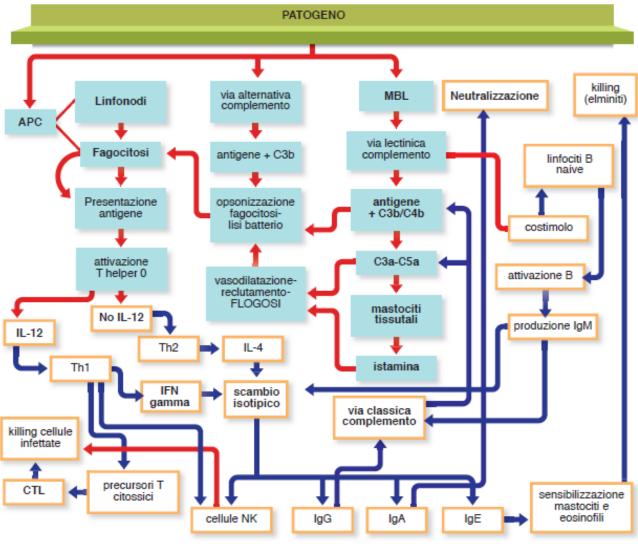

meccanismo	efficiente contro
Uccisione intracellulare (fagocitosi) - monociti/macrofagi neutrofili	batteri extracellulari funghi, protozoi
Uccisione extracellulare Cellule NK, Iinfociti T citotossici	cellule infettate da virus o da patogeni intracellulari
granulociti	elminti
complemento	batteri extracellulari

Caratteristiche principali della risposta innata


- Include barriere fisiche e chimiche.
- E' molto veloce (minuti, ore).
- I componenti coinvolti sono immediatamente capaci di svolgere funzioni effettrici.
- Non cambiano nel corso della risposta e sono pronti ad intervenire allo stesso modo in seguito a reinfezione (non si instaura memoria immunologica).
- Principali componenti:
 - * cellulari: fagociti, cellule dendritiche, cellule NK
 - solubili: peptidi ad attività anti-batterica, citochine, complemento

MECHANISMS OF INNATE IMMUNITY


INFLAMMATION - ACUTE PHASE RESPONSE



Le dinamiche di azione dell'immunità innata e acquisita

L'immunità innata: una visione d'insieme

FIGURA 3.46.

Schema riassuntivo del funzionamento dei compartimenti innato e acquisito dell'immunità. I riquadri azzurri e le frecce di collegamento in rosso si riferiscono a fenomeni pertinenti al compartimento dell'immunità innata; i riquadri bianchi e le frecce blu si riferiscono a fenomeni relativi al compartimento della risposta adattativa, che prenderemo in esame più avanti.