Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Facoltà di Farmacia e Medicina Anno Accademico 2025/2026

Prof. Giuseppe LA REGINA

Parte Terza Principi Generali: Sezione 4

"Tu, disperato pilota, frangi ora fra gli scogli la mia barca già stanca e squassata per tante tempeste! A te accanto, mio amore! Oh schietto farmacista! Efficace è la tua droga. Con questo bacio io muoio." W. Shakespeare. Giulietta e Romeo, Atto 5, Scena 3.

Ultima revisione: 06 ottobre 2025

Solubilità dei sali poco solubili al variare del pH

• Dal momento che l'acido acetico è un acido debole ($K_A = 1 \cdot 10^{-5}$), nella soluzione risultano i seguenti equilibri:

$$CH_3COOAg \longrightarrow Ag^+ + CH_3COO^-$$

 $CH_3COO^- + H^+ \longrightarrow CH_3COOH$

- Se si aumenta la concentrazione degli ioni H⁺ aggiungendo acido nitrico, il secondo equilibrio si sposta verso destra, sottraendo una parte degli ioni CH₃COO⁻.
- La diminuzione di questi ioni richiede che altri se ne formino a spese dell'acetato di argento.

Precipitazione e Acidità Solubilità dei sali poco solubili al variare del pH

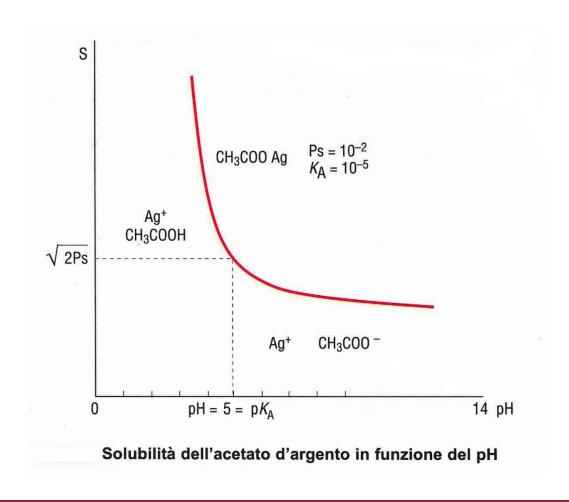
- Tale processo, con una sufficiente quantità di acido forte, continua sino alla completa dissoluzione del sale.
- E' evidente che in casi simili, la dissoluzione di un sale in un acido non è semplice un fenomeno fisico, come la dissoluzione del cloruro di sodico in acqua, ma è la conseguenza di una reazione chimica, che altera completamente la natura del sale.
- Le reazioni in cui un sale si scioglie in un acido sono molto usate in analisi qualitativa inorganica, per portare in soluzione sostanze che non si sciolgono in acqua.

Solubilità dei sali poco solubili al variare del pH

 In generale, per un sale di formula generica MX derivante dall'acido debole HX, la solubilità S in funzione di [H⁺] è data dalla relazione:

$$S = [M^{+}] = \sqrt{Ps(1+[H^{+}]/K_{A})}$$

- Da questa relazione si vede che la solubilità S è tanto maggiore quanto maggiore è il prodotto di solubilità Ps ed il pH della miscela.
- Inoltre, la solubilità è tanto maggiore quanto minore è la costante di dissociazione K_A dell'acido.


Solubilità dei sali poco solubili al variare del pH

• Dalla formula si vede anche quando $[H^{\dagger}] = K_A$, si ha:

$$S = \sqrt{2Ps}$$

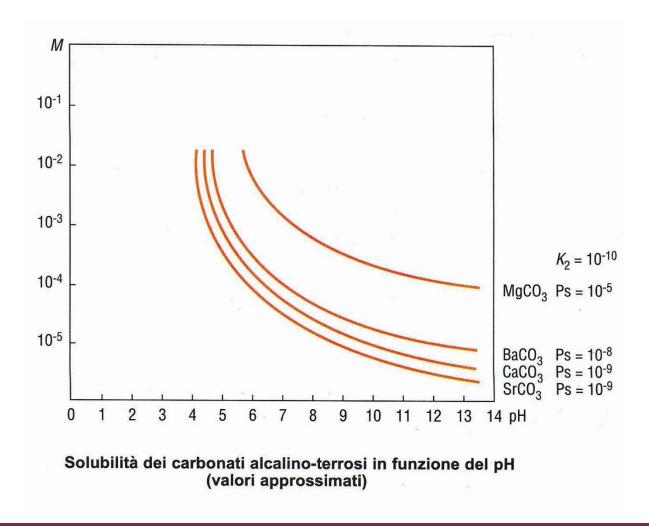
- Per piccoli valori di [H[†]], la solubilità risulta praticamente indipendente dal pH.
- A partire da $[H^{\dagger}] > K_A$, cioè quando pH < p K_A , la solubilità aumenta rapidamente.

Solubilità dei sali poco solubili al variare del pH

Solubilità dei sali poco solubili al variare del pH

- Si considerino 3 sali poco solubili, quali carbonato, cromato e solfato di bario.
- Il primo deriva da un acido debole (H₂CO₃), il secondo da un acido di media forza (H₂CrO₄), il terzo da un acido forte (H₂SO₄).
- Questi 3 sali hanno solubilità in acqua poco diverse tra loro.
- Tuttavia, il carbonato si scioglie facilmente in HCl 2 M, il cromato in HCl 6 M, il solfato non si scioglie in HCl 12 M.

Solubilità dei sali poco solubili al variare del pH

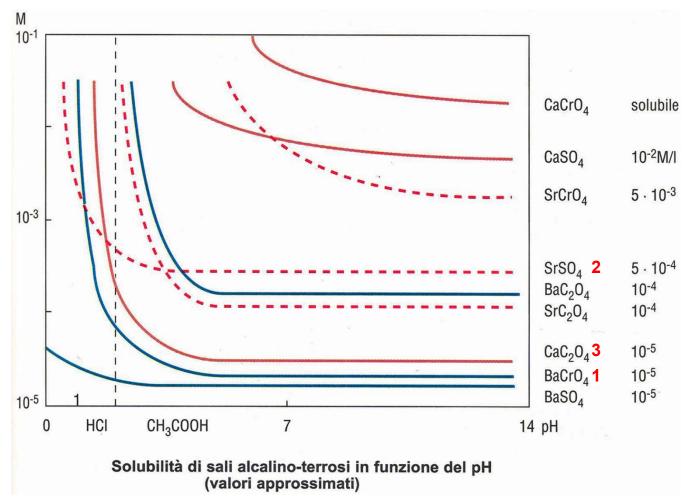

- Tale esempio dimostra che gli acidi forti sciolgono più facilmente il sale che deriva dall'acido più debole.
- I sali poco solubili derivanti da acidi forti (cloruri, bromuri, tiocianati) sono praticamente insensibili all'azione degli altri acidi forti.
- Questo comportamento si può illustrare mediante diagrammi solubilità/pH, analoghi a quello dell'acetato di argento.

Precipitazione e Acidità Solubilità dei sali poco solubili al variare del pH

 Bisogna, tuttavia, tener presente che i sali estremamente poco solubili (HgS, As₂S₃, ecc.), benché derivanti da acidi molto deboli, possono rimanere praticamente indisciolti anche negli acidi molto forti.

- La solubilità dei carbonati di calcio, stronzio, bario e magnesio variano al variare del pH.
- Questi sali derivanti da un acido molto debole hanno una solubilità che comincia ad aumentare già partendo da elevati valori di pH.
- Tuttavia, ad un determinato pH, i carbonati di calcio, stronzio e bario sono meno solubili di MgCO₃ perché hanno un più basso prodotto di solubilità.

Solubilità dei carbonati alcalino-terrosi



- Per un valutazione più esatta della solubilità dei sali considerati si dovrebbero prendere in considerazione tutte le reazioni secondarie, e cioè tutti gli equilibri inerenti non soltanto all'anione, ma anche al catione.
- Infatti, a certi valori di pH, la formazione di alcuni ioni complessi solubili, es. Ca(OH)+, non è più trascurabile.
- Inoltre, in ambiente sufficientemente basico, può precipitare l'idrossido anziché il carbonato.

- I cationi Ca²⁺, Sr²⁺ e Ba²⁺ possono essere precipitati come carbonati mediante carbonato ammonico.
- Dal grafico precedentemente considerato risulta evidente che conviene eseguire la precipitazione ad un pH possibilmente alto, però non tanto alto che possa precipitare anche il magnesio.
- L'optimum è di eseguire la precipitazione in soluzione tamponata a pH≈9 (NH₄OH/NH₄CI).

- E' importante tener presente che la precipitazione si considera quantitativa, cioè completa, quando la concentrazione della sostanza nella soluzione si è ridotta a ~1·10⁻⁵ mol/l.
- A questa concentrazione, i reattivi comunemente usati in analisi qualitativa inorganica cessano di rivelare gli ioni in soluzione.
- In analisi, la concentrazione iniziale che si usa comunemente è uguale a ~10⁻² mol/l.
- Pertanto, la precipitazione si considera completa quando la sua concentrazione è ridotta a ~1/1000 dal valore iniziale.

Separazione calcio - stronzio - bario

Precipitazione e Acidità Separazione calcio - stronzio - bario

- Dal grafico risulta che una separazione dei 3 cationi si può eseguire precipitando prima il bario come cromato, poi lo stronzio come solfato ed infine il calcio come ossalato.
- Infatti, seguendo un ordine diverso, le separazioni risulterebbero impossibili.
- Ad esempio, se si volesse cominciare col precipitare il bario come solfato, precipiterebbe anche lo stronzio.

Precipitazione e Acidità Separazione calcio - stronzio - bario

- In queste condizioni operative, tuttavia, la precipitazione dello stronzio come solfato non è completa, e pertanto piccole quantità di stronzio che restano in soluzione potrebbero precipitare successivamente allo stato di ossalato di stronzio.
- Si può evitare questo inconveniente operando ad un pH tale che la solubilità degli ossalati risulti opportunamente aumentata.
- Per l'acido ossalico si ha p $K_2 \approx 4$; si può, pertanto, operare in ambiente di acido acetico in eccesso (pH \approx 2).

Precipitazione degli elementi come solfuri o idrossidi

- Molti elementi formano solfuri e idrossidi poco solubili, la cui solubilità dipende da molti fattori.
- Per i sali ionizzati, la solubilità dipende soprattutto dalle dimensioni degli ioni, dalla loro carica e dalla stechiometria del composto.
- Per le sostanze covalenti, la solubilità dipende dalla differenza di elettronegatività degli elementi che costituiscono il composto.

Precipitazione degli elementi come solfuri o idrossidi

- Nel caso dei solfuri, dalla definizione stessa di elettronegatività si può desumere che, quanto più l'elettronegatività del metallo si avvicina a quella dello zolfo (2,5), tanto minore diventa la capacità dello zolfo di sottrarre elettroni al metallo per formare ioni S²⁻.
- Pertanto, tanto minore risulta la tendenza del solfuro a passare in soluzione secondo l'equazione:

$$MeS \longrightarrow Me^{2+} + S^{2-}$$

Precipitazione degli elementi come solfuri o idrossidi

- I metalli alcalini e alcalino-terrosi, che hanno bassa elettronegatività, danno solfuri molto solubili.
- D'altra parte, considerando le elettronegatività dello zinco (1,6), del cadmio (1,7) e del mercurio (1,9), risulta che la solubilità dei solfuri di questi metalli deve diminuire nell'ordine:

E, infatti, si ha: pPsZnS = 23, pPsCdS = 27, pPsHgS = 52.

Precipitazione degli elementi come solfuri o idrossidi

- Inoltre, poiché l'elettronegatività di un elemento aumenta con l'aumentare dello stato di ossidazione, risulta che, in generale, con l'aumentare dello stato di ossidazione del metallo, diminuisce la tendenza del solfuro a dissociarsi in ioni Meⁿ⁺ e S²⁻.
- Ciò porta ad una diminuzione della solubilità; ad esempio, si ha:

SnS
$$S = \sim 1.10^{-14} \text{ mol/l}$$

$$SnS_2$$
 $S = \sim 1.10^{-24} \text{ mol/l}$

 Dunque, la solubilità dei solfuri dipende molto dalla differenza di elettronegatività dei 2 elementi considerati.

Precipitazione degli elementi come solfuri o idrossidi

- Nel caso degli idrossidi, che sono covalenti più o meno come i solfuri, si nota un comportamento analogo.
- La solubilità degli idrossidi dipende, infatti, dalla differenza di elettronegatività tra il metallo e l'ossigeno, la cui elettronegatività è sostanzialmente uguale a quella del gruppo OH-.
- Per alcuni elementi i cui solfuri precipiterebbero a pH relativamente alti, può accadere che la solubilità dell'idrossido sia minore di quella del solfuro.

Precipitazione degli elementi come solfuri o idrossidi

- In tal caso, invece del solfuro, precipita l'idrossido; ad esempio, l'alluminio ed il cromo(III) precipitano come Al(OH)₃ e Cr(OH)₃ e non come solfuri.
- Infatti, dato che l'elettronegatività degli elementi diminuisce verso la parte sinistra della tavola periodica, la solubilità sia dei solfuri che degli idrossidi aumenta verso sinistra.
- Tuttavia, la solubilità dei solfuri aumenta più rapidamente della solubilità degli idrossidi.

Precipitazione degli elementi come solfuri o idrossidi

- Ne risulta che in sostanza gli elementi che si trovano a destra del manganese, precipitano come solfuri piuttosto che come idrossidi.
- Viceversa, gli elementi che si trovano a sinistra del manganese precipitano come idrossidi piuttosto che come solfuri, quando il pH della soluzione ha raggiunto un valore opportuno.
- Ad esempio, nel caso dell'antimonio, la concentrazione di ioni Sb³⁺ necessaria per precipitare il solfuro Sb₂S₃ è molto minore di quella necessaria per precipitare l'idrossido Sb(OH)₃.

Precipitazione degli elementi come solfuri o idrossidi

- Per il lantanio, invece, accade il contrario, sicché, in soluzione acquosa, precipita l'idrossido La(OH)₃ e non il solfuro.
- Il manganese(II) precipita sia come idrossido che come solfuro.
- Il ferro(III) rappresenta un caso limite; cioè: quando il rapporto [S²-]/[OH-] è elevato precipita Fe₂S₃, mentre quando è basso precipita Fe(OH)₃.
- Ovviamente, in soluzione acida non avviene né l'una né l'altra di queste reazioni, perché si può avere la precipitazione del solfuro di ferro(II):

Precipitazione degli elementi come solfuri o idrossidi

$$2Fe^{2+} + 2H_2S \rightarrow 2FeS + 4H^+$$

oppure, se la soluzione è molto acida, si ha la riduzione dello ione Fe³⁺ a Fe²⁺:

$$2Fe^{3+} + H_2S \rightarrow 2Fe^{2+} + S + 2H^+$$

 Si deve, tuttavia, aggiungere che, aumentando lo stato di ossidazione di un determinato elemento (cioè aumentando l'elettronegatività) la precipitazione dell'idrossido è favorita rispetto a quella del solfuro.

Precipitazione e Acidità pH di precipitazione degli idrossidi

 Molti cationi formano idrossidi poco solubili; ad esempio, le soluzioni di ferro(III), trattate con una base, danno luogo a precipitazione dell'idrossido Fe(OH)₃, molto poco solubile:

$$Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{3}$$

- Il pH di precipitazione di un idrossido si può calcolare facilmente se è noto il prodotto di solubilità dell'idrossido stesso.
- Ad esempio, si consideri una soluzione di FeCl₃ 0,01 *M*. Il prodotto di solubilità dell'idrossido di ferro è:

Ps =
$$[Fe^{3+}][OH^{-}]^3 = 1.10^{-35}$$

Precipitazione e Acidità pH di precipitazione degli idrossidi

Poiché [Fe³⁺] = 0,01, risulta:

$$[OH^{-}]^{3} = (1.10^{-35})/(1.10^{-2}) = 1.10^{-33}$$

da cui:

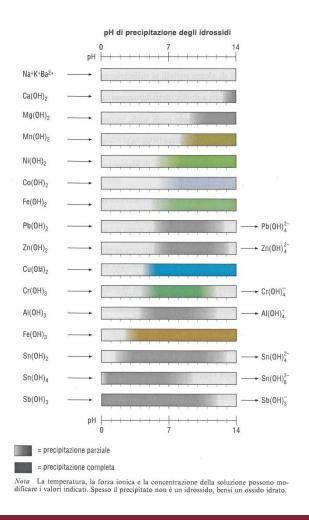
$$[OH^{-}] = \sqrt[3]{1 \cdot 10^{-33}} = 1 \cdot 10^{-11}$$

pOH = 11 e pH = 3

cioè l'idrossido di ferro(III) comincia a precipitare a pH = 3.

 Per ottenere la precipitazione completa del ferro, cioè affinché resti [Fe³⁺] = 1·10⁻⁵, si calcola:

pH di precipitazione degli idrossidi


$$[OH^{-}]^{3} = (1 \cdot 10^{-35})/(1 \cdot 10^{-5}) = 1 \cdot 10^{-30}$$

$$[OH^{-}] = \sqrt[3]{1 \cdot 10^{-30}} = 1 \cdot 10^{-10}$$

$$pOH = 10 e pH = 4$$

la precipitazione dell'idrossido di ferro(III) avviene tra pH = 3 e pH = 4.

Precipitazione e Acidità pH di precipitazione degli idrossidi

Anfoterismo degli idrossidi

 Gli idrossidi di tutti i metalli, eccetto quelli dei metalli alcalini, di calcio, stronzio, bario e tallio(I), sono poco solubili e vengono precipitati dalle soluzioni dei corrispondenti sali per aggiunta di alcali; ad esempio:

$$Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{3}$$

- L'insolubilità degli idrossidi significa che il legame tra il catione e lo ione OH⁻ è molto forte.
- Per trattamento con acidi, gli idrossidi si ridisciolgono più o meno facilmente; ad esempio:

Anfoterismo degli idrossidi

$$Fe(OH)_3 + 3H^+ \implies Fe^{3+} + 3H_2O$$

- Infatti, gli ioni H⁺ attraggono gli ioni OH⁻ abbastanza fortemente per formare H₂O indissociata, liberando lo ione Fe³⁺, che passa in soluzione.
- In questo senso, la dissoluzione di un idrossido in acido si può considerare come la reazione inversa dell'idrolisi.
- Gli idrossidi di alcuni metalli si ridisciolgono non solo negli acidi ma anche in un eccesso di alcali.

Anfoterismo degli idrossidi

- Ciò avviene in quanto essi legano a sé altri ioni OH⁻, formando composti solubili, detti idrossimetallati, in cui è presente un anione complesso.
- Ad esempio, l'idrossido di alluminio Al(OH)₃ si scioglie non solo negli acidi:

$$AI(OH)_3 + 3H^+ \implies AI^{3+} + 3H_2O$$

ma anche in un eccesso di idrossido di sodio:

$$AI(OH)_3 + OH^- \Longrightarrow AI(OH)_4^-$$

Anfoterismo degli idrossidi

- Dunque, l'idrossido di alluminio può neutralizzare sia gli acidi che le basi, e cioè esso può agire sia da base che da acido; sostanze di questo tipo vengono definite anfotere.
- Oltre a Al(OH)₃, tra gli idrossidi anfoteri più comuni vi sono, per esempio, Zn(OH)₂, Cr(OH)₃, ecc.
- I cationi che non subiscono idrolisi (es., Na⁺, Ca²⁺, La³⁺) non danno neppure idrossidi anfoteri.
- Agli idrossidi anfoteri corrispondono generalmente ossidi anfoteri.

Anfoterismo degli idrossidi

Un esempio di ossido anfotero è l'ossido di zinco, per cui si ha:

$$ZnO + 2H^{+} \rightleftharpoons Zn^{2+} + H_{2}O$$

 $ZnO + 2OH^{-} + H_{2}O \rightleftharpoons Zn(OH)_{4}^{-}$

 Generalmente in composti di questo tipo, il contenuto di acqua è variabile, sicché in molti casi, piuttosto che di ossidi e idrossidi, si dovrebbe parlare di ossidi idrati.

Anfoterismo degli idrossidi

 E' questo, per esempio, il caso dell'ossido di wolframio WO₃, che nella forma idrata WO₃·H₂O è noto anche come acido wolframico (H₂WO₄) e ha proprietà basiche così deboli da risultare praticamente insolubile negli acidi.

Cause dell'anfoterismo: dimensioni atomiche

- Le dimensioni atomiche hanno notevole importanza, nel senso che gli idrossidi anfoteri derivano spesso da cationi aventi piccolo raggio ionico ed alta carica.
- Tali piccoli cationi, infatti, esercitano una forza di attrazione molto intensa sugli atomi circostanti.
- Ciò ostacola la dissociazione dello ione OH⁻, cioè rende debole la base, e contemporaneamente favorisce l'addizione di altri ioni OH⁻, cioè rende possibile la formazione di idrossimetallati.

Cause dell'anfoterismo: dimensioni atomiche

- Così, ad esempio, lo ione Al³⁺ attrae la carica elettronica dalle molecole di acqua circostanti, facilitando la rimozione dei loro protoni e dando luogo all'idrossoalluminato Al(OH)₄.
- Ne consegue che il catione ha comportamento acido (cioè neutralizza le basi), mentre l'anione Al(OH)₄ è una base (cioè neutralizza gli acidi).
- Il cromo(III), che ha un raggio ionico poco diverso da quello dell'alluminio(III) (cioè di ~0,5 A), si comporta in modo analogo.

Cause dell'anfoterismo: elettronegatività del metallo

- Quando da un idrossido di un determinato elemento si stacca uno ione OH⁻, un elettrone, originariamente condiviso tra l'ossigeno e quell'elemento, passa esclusivamente all'ossigeno.
- Ciò può accadere solo se il legame tra l'ossigeno e l'altro elemento è già abbastanza polare, ossia, se quell'elemento ha una bassa elettronegatività.
- Ne consegue che gli idrossidi più basici sono quelli dei metalli alcalini e alcalino-terrosi.

Cause dell'anfoterismo: elettronegatività del metallo

- Altri idrossidi sono non soltanto più deboli, cioè meno dissociati, ma anche meno solubili.
- Quando l'ossigeno di un gruppo OH
 ha una forte carica negativa,
 una parte di questa passa sull'idrogeno.
- Sicchè l'atomo di idrogeno perde quasi completamente la possibilità di dissociarsi come protone.
- Pertanto, una base forte non può avere anche proprietà acide.

Cause dell'anfoterismo: elettronegatività del metallo

- D'altra parte quando l'ossigeno di un gruppo OH
 ha solo una debole carica negativa, l'idrogeno è facilmente dissociabile come protone ed il composto risulta acido.
- Inoltre, poiché il legame fra l'ossigeno e l'altro elemento non è molto polare, la separazione di un gruppo OH⁻ risulta difficile.
- Pertanto, un acido forte non può agire come base.
- Infine, quando il legame tra l'ossigeno e l'altro elemento è solo moderatamente polare, l'idrossido risulta avere proprietà anfotere.

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Cause dell'anfoterismo: elettronegatività del metallo

- Infatti, gli idrossidi anfoteri possono essere solo debolmente acidi e debolmente basici.
- Da questo punto di vista, pertanto, si può far rientrare l'anfoterismo nella questione più generale delle proprietà acidobase dei composti.
- Pertanto, se si considera la tavola periodica degli elementi da sinistra a destra, passando dagli elementi metallici a quelli non metallici, si nota una completa inversione delle proprietà degli ossidi.

Cause dell'anfoterismo: elettronegatività del metallo

- Si passa così da ossidi nettamente basici ad ossidi nettamente acidi.
- Più esattamente, si nota che i metalli che formano ossidi o idrossidi anfoteri si trovano in una zona compresa fra gli elementi significativamente metallici (a sinistra della tavola) e quelli significativamente non metallici (a destra della tavola).
- Negli idrossidi anfoteri, tra il metallo e l'ossigeno vi è una differenza di elettronegatività troppo piccola perché gli idrossidi siano basi forti, ma troppo grande perché siano acidi forti.

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Cause dell'anfoterismo: elettronegatività del metallo

- Nell'idrossido di cesio CsOH, la differenza di elettronegatività tra il cesio e l'ossigeno è abbastanza grande (3,5 – 0,7 = 2,8) sicchè esso è una base forte.
- Nel composto CIOH, invece, la differenza di elettronegatività è molto piccola (3,5 – 3 = 0,5) ed il composto risulta acido.
- Nell'idrossido di argento Ag(OH), la differenza di elettronegatività ha un valore intermedio (3,5 – 1,8 = 1,7).

Cause dell'anfoterismo: elettronegatività del metallo

- L'atomo di argento attrae gli elettroni dell'ossigeno abbastanza da non perdere facilmente lo ione OH⁻, ma non tanto da liberare facilmente lo ione H⁺.
- Dimodoché, se l'idrossido viene trattato con un acido forte, esso agisce da base, in quanto gli ioni H⁺ attraggono gli ioni OH⁻ abbastanza fortemente per formare H₂O:

$$AgOH + H^{\dagger} \longrightarrow Ag^{\dagger} + H_2O$$

Cause dell'anfoterismo: elettronegatività del metallo

 Se, invece, l'idrossido di argento viene trattato con una base forte si comporta da acido, cioè cede ioni H⁺:

$$AgOH \longrightarrow AgO^- + H^+$$

o meglio addiziona ioni OH⁻:

$$AgOH + OH^{-} \longrightarrow Ag(OH)_{2}^{-}$$

 Interessante è il caso di alcuni elementi che danno luogo a diversi ossidi e idrossidi, corrispondenti a differenti stati di ossidazione.

Cause dell'anfoterismo: elettronegatività del metallo

- Poiché per un dato elemento l'elettronegatività aumenta all'aumentare del numero di ossidazione, risulta che:
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione più bassi sono basici;
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione più alti sono acidi;
 - gli ossidi e gli idrossidi corrispondenti agli stati di ossidazione intermedi sono anfoteri.

Cause dell'anfoterismo: elettronegatività del metallo

N. di ossidazione	Ossido	Idrossido	Carattere	Colore
+2	MnO	Mn(OH) ₂	base forte	bianco
+3	Mn_2O_3	Mn(OH) ₃	base debole	bruno
+4	MnO ₂	Mn(OH) ₄	anfotero	nero
+5	Mn ₂ O ₅ (?)	$MnO(OH)_3 = H_3MnO_4$	acido debole	azzurro
+6	MnO ₃	$MnO_2(OH)_2 = H_2MnO_4$	acido forte	verde
+7	Mn_2O_7	$MnO_3OH_2 = HMnO_4$	acido fortissimo	violetto

Cause dell'anfoterismo: solubilità dell'idrossido

- Gli equilibri di dissociazione acida o basica degli ossidi e degli idrossidi anfoteri dipendono direttamente dall'equilibrio di dissociazione ionica dell'idrossido, cioè dal suo prodotto di solubilità.
- Gli atomi di ossigeno o i gruppi OH⁻ possono formare dei legami tra i cationi, detti ponti di ossigeno, che essendo abbastanza forti, conferiscono a molti di questi ossidi o idrossidi una struttura polimerica e quindi contribuiscono notevolmente alla loro insolubilità.

Cause dell'anfoterismo: solubilità dell'idrossido

- In pratica, gli ossidi e gli idrossidi che non si sciolgono in acqua, sono solubili negli acidi forti se hanno proprietà basiche, oppure nelle basi forti se hanno proprietà acide.
- Dimodoché si può riconoscere se un determinato composto è di natura acida o basica.
- Ad esempio, il biossido di silicio, SiO₂, non dà alcuna reazione con gli acidi, ma reagisce con gli alcali dando un silicato:

$$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$

Cause dell'anfoterismo: solubilità dell'idrossido

- Se gli ossidi e gli idrossidi non si sciolgono facilmente negli acidi o nelle basi, si può ricorrere alla fusione con ossidi acidi o basici.
- In ogni caso, l'insolubilità limita notevolmente il campo di pH in cui si possono osservare le proprietà acide o basiche.
- Inoltre, essa fa sì che tali proprietà appaiano molto spesso indebolite.
- Se un ossido è assolutamente insolubile può essere difficile stabilire se esso è di natura acida o basica.

Cause dell'anfoterismo: solubilità dell'idrossido

 Molto spesso, numerosi idrossidi vengono considerati non anfoteri soltanto perché sono molto poco solubili.

- E' inoltre da tener presente che il catione polarizza lo ione OH negli idrossidi (oppure lo ione O²⁻ negli ossidi).
- Anche questa polarizzazione, tuttavia, non può essere considerata da sola come causa dell'anfoterismo.
- Infatti, se si considera, ad esempio, la sequenza Zn-Cd-Hg, si osserva che:
 - l'idrossido di zinco è anfotero;
 - l'idrossido di cadmio non è anfotero;
 - l'idrossido di mercurio è debolmente anfotero.

Cause dell'anfoterismo: polarizzazione

- Tale irregolarità dipende anche dalla stabilità del reticolo cristallino formato dall'ossido di mercurio.
- Bisogna, inoltre, aggiungere che, mentre l'idrossido di zinco è anfotero, l'idrossido di manganese Mn(OH)₂ non lo è.
- Questa differenza di comportamento si spiega probabilmente con il fatto che il potere polarizzante dei cationi bivalenti dei sottogruppi B è più forte di quello di un catione come Mn²⁺ che deriva da un elemento situato al centro della I serie di transizione e che ha il livello d occupato solo a metà.

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

- In generale, si può dire che, per un determinato idrossido, i 2 equilibri di dissociazione acida e di dissociazione basica si possono avere contemporaneamente se la polarizzazione dello ione OH⁻ da parte del catione non è né troppo forte né troppo debole.
- Se tale polarizzazione è troppo forte si ha solo il comportamento acido, mentre se è troppo debole si ha solo il comportamento basico.

- Pertanto è possibile distinguere 3 tipi di ossidi:
 - 1) gli ossidi ionici, in cui l'ossigeno è scarsamente polarizzato e che risultano basici;
 - 2) gli ossidi covalenti, in cui l'ossigeno è molto polarizzato e che hanno un comportamento acido;
 - 3) ossidi anfoteri, in cui l'ossigeno è più o meno polarizzato, costituiti da reticoli molecolari covalenti indefinitamente estesi oppure da reticoli ionici a bassa coordinazione.

- Si può aggiungere che, quando la concentrazione degli ioni OH
 è estremamente elevata, anche alcune sostanze che
 normalmente non sono affatto acide possono formare complessi
 e passare in soluzione.
- Ad esempio, anche l'idrossido di bario, Ba(OH)₂, che è una base molto forte è alquanto più solubile nell'idrossido di sodio concentrato che non in quello diluito.

Cause dell'anfoterismo: costanti di dissociazione

- Un idrossido anfotero, di formula generica MOH, ha ovviamente 2 costanti di dissociazione: una costante acida K_A ed una costante basica K_B .
- Secondo che sia $K_A > K_B$ oppure $K_A < K_B$ l'idrossido ha prevalentemente proprietà acide o basiche.
- Ad esempio, l'idrossido di argento, AgOH, che ha p K_A = 17 e p K_B = 8, è prevalentemente basico.
- L'idrossido di vanadile, VO_2OH , che ha p $K_A = 8$ e p $K_B = 15$, è prevalentemente acido.

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Cause dell'anfoterismo: costanti di dissociazione

- Esistono anche elettroliti anfoteri con proprietà acide e basiche di ugual forza.
- A parte l'acqua, che è un caso particolare, si può citare per esempio l'idrossido di gallio, $Ga(OH)_3$, le cui costanti K_{A1} e K_{B1} sono quasi uguali: $2 \cdot 10^{-11}$ e $3 \cdot 10^{-11}$.

Precipitazione e Acidità Effetti dell'anfoterismo

Molte proprietà degli elementi variano parallelamente al carattere dei loro ossidi e, in particolare, sono collegate all'anfoterismo.

- Gli elementi che formano gli ossidi più basici, formano anche i sali meno idrolizzabili. E viceversa.
- Gli elementi che formano gli ossidi più acidi, formano anche solfuri anfoteri, noti come solfoanidridi.
- Gli elementi che formano gli ossidi più acidi, formano gli alogenuri più covalenti (più solubili nei solventi organici) e alogenocomplessi con gli alogeni più pesanti.

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Solubilità degli idrossidi anfoteri in funzione del pH

- Si consideri una soluzione acida, contenente un sale di formula generica MX, che è dissociato in M⁺ e X⁻.
- Per aggiunta di un idrossido, il pH aumenta, cioè aumenta la concentrazione degli ioni OH⁻, finché si raggiunge il prodotto di solubilità dell'idrossido MOH:

$$Ps = [M^{+}][OH^{-}]$$

A questo punto, l'idrossido comincia a precipitare.

Solubilità degli idrossidi anfoteri in funzione del pH

• Tenendo presente che $[H^{+}][OH^{-}] = K_{w}$, si può scrivere:

$$[M^{+}] = \frac{Ps}{[OH^{-}]} = \frac{Ps [H^{+}]}{K_{w}}$$

- Questa relazione ci permette di calcolare la concentrazione degli ioni M⁺ ai diversi valori del pH in soluzione acida.
- Se l'idrossido è anfotero, in soluzione basica si ha l'equilibrio:

$$MOH + OH^{-} \longrightarrow M(OH)_{2}^{-}$$

Solubilità degli idrossidi anfoteri in funzione del pH

• Il valore di $[M(OH)_2^-]$ si può ricavare tenendo presente che l'equilibrio:

$$M(OH)_2^- + H^+ \longrightarrow MOH + H_2O$$

è caratterizzato da una costante K:

$$K = [M(OH)_{2}^{-}][H^{+}]$$

 La costante K è determinabile sperimentalmente ed in molti casi è conosciuta.

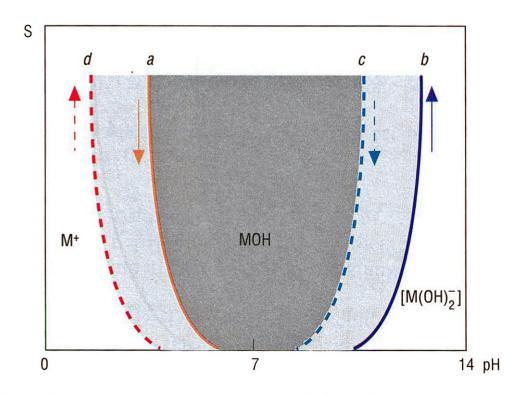
Solubilità degli idrossidi anfoteri in funzione del pH

• Pertanto:

$$[M(OH)_{2}^{-}] = \frac{K}{[H^{+}]}$$

 Trascurando la concentrazione di MOH disciolto, la solubilità dell'idrossido è data dall'espressione:

$$S = [M^{+}] + [M(OH)_{2}^{-}]$$


• Cioè, per quanto detto, si ha:

$$S = \frac{Ps [H^{+}]}{K_{w}} + \frac{K}{[H^{+}]}$$

Solubilità degli idrossidi anfoteri in funzione del pH

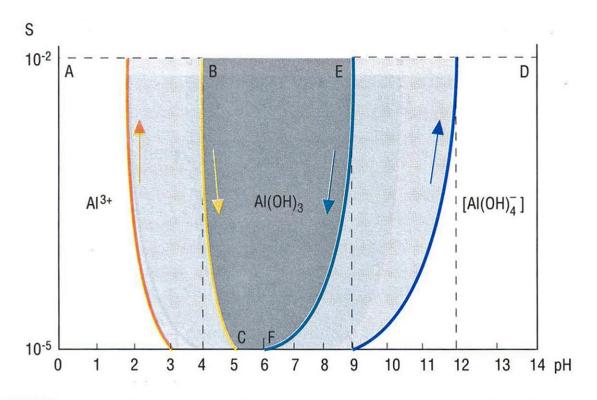
- Questa espressione è valida per la soluzione satura e si presta ad alcune approssimazioni.
- Per elevati valori di [H⁺], il termine K/[H⁺] diventa trascurabile rispetto a Ps[H⁺]/K_w, mentre in ambiente basico accade il contrario.
- Se si riporta in un diagramma il valore di S in funzione del pH, si ottiene una curva formata da 2 parti, in cui la prima varia secondo l'espressione (Ps/K_w)10^{-pH} e la seconda secondo l'espressione K10^{pH}.

Solubilità degli idrossidi anfoteri in funzione del pH

Solubilità di un idrossido anfotero MOH in funzione del pH

Solubilità degli idrossidi anfoteri in funzione del pH

- In teoria, i rami "c" e "d" dovrebbero coincidere rispettivamente con i rami "b" e "a", ma in pratica ciò non avviene.
- Infatti, gli idrossidi spesso subiscono il fenomeno dell'invecchiamento, cioè si trasformano in forme addensate che richiedono per la dissoluzione un pH diverso da quello di precipitazione.
- Si potrebbero raccordare i fenomeni reali indicando vari prodotti di solubilità apparenti e quindi tracciando varie curve di solubilità a seconda del grado di invecchiamento dell'idrossido.


Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)

Solubilità degli idrossidi anfoteri in funzione del pH

- La precipitazione dell'idrossido di un dato catione avviene in un intervallo di pH che dipende dalla carica del catione stesso.
- Approssimativamente si ha:

Reazione	Intervallo di precipitazione
$M^+ + OH^- \rightarrow MOH$	3 unità di pH
$M^{2+} + 2OH^- \rightarrow M(OH)_2$	1,5 unità di pH
$M^{3+} + 3OH^- \rightarrow M(OH)_3$	1 unità di pH
$M^{4+} + 4OH^- \rightarrow M(OH)_4$	0,75 unità di pH

Solubilità di Al(OH)₃ in funzione del pH

Solubilità dell'idrossido di alluminio in funzione del pH (valori approssimati)

Precipitazione e Acidità Disidratazione degli idrossidi

- Alcuni cationi di metalli pesanti, quando reagiscono con una soluzione basica, danno un precipitato costituito non da un idrossido, bensì da un ossido.
- Ad esempio, se una soluzione acida di nitrato mercurico Hg(NO₃)₂ viene neutralizzata con alcali, precipita l'ossido HgO e non l'idrossido Hg(OH)₂.
- In alcuni casi, in un primo tempo precipita l'idrossido, ma successivamente l'idrossido precipitato disidrata spontaneamente, fornendo l'ossido.

Disidratazione degli idrossidi

- Reazioni di questo tipo, in molti casi, dipendono dall'anfoterismo dell'idrossido.
- L'idrossido di argento si può dissociare secondo le equazioni:

AgOH
$$\implies$$
 AgO⁺ + OH⁻
AgOH \implies AgO⁻ + H⁺

 In soluzione, la concentrazione del composto AgOH indissociato non può superare un certo valore.

Disidratazione degli idrossidi

 Se gli ioni Ag⁺ e AgO⁻ sono presenti in concentrazione tale che il prodotto [Ag⁺][AgO⁻] superi tale valore, avviene la reazione:

$$Ag^{+} + AgO^{-} \implies Ag_{2}O$$

- Analoghe considerazioni possono essere fatte per altri metalli, quali mercurio, rame, piombo, zinco, ecc.
- In vari casi, prima della precipitazione dell'idrossido, si può avere la precipitazione di idrossidosali.

Disidratazione degli idrossidi

Ad esempio, il bismuto esiste come ione Bi³⁺ a pH = 0; in soluzione meno acida esso forma i composti Bi(OH)Cl₂, Bi(OH)₂Cl, BiOCl, aventi solubilità gradatamente decrescente e, infine, a pH = 5, esso dà luogo al composto Bi(OH)₃ insolubile (pPs = 30).

Precipitazione dei solfuri

- Poiché molti elementi formano solfuri poco solubili, in analisi si profitta di ciò per precipitarli mediante ioni S²⁻ (o anche HS⁻).
- Gli ioni S²⁻ necessari per la precipitazione sono forniti dal solfuro di idrogeno, H₂S, che in soluzione acquosa è un acido molto debole, dissociandosi secondo l'equazione complessiva:

$$H_2S \implies 2H^+ + S^{2-} (KH_2S \approx 1.10^{-22})$$

 Da questa relazione di equilibrio risulta che, diminuendo la concentrazione degli ioni H⁺, l'equilibrio si sposta verso destra e quindi aumenta la concentrazione degli ioni S²⁻.

Precipitazione dei solfuri

- In altri termini, quanto meno acida è la soluzione, tanto maggiore è la concentrazione degli ioni S²⁻.
- Il pH di precipitazione dei vari solfuri si può calcolare conoscendo la costante di dissociazione di H₂S ed il prodotto di solubilità dei solfuri.
- Per un generico solfuro MeS il prodotto di solubilità è dato dalla relazione:

$$Ps = [Me^{2+}][S^{2-}]$$

Precipitazione dei solfuri

da cui si deduce:

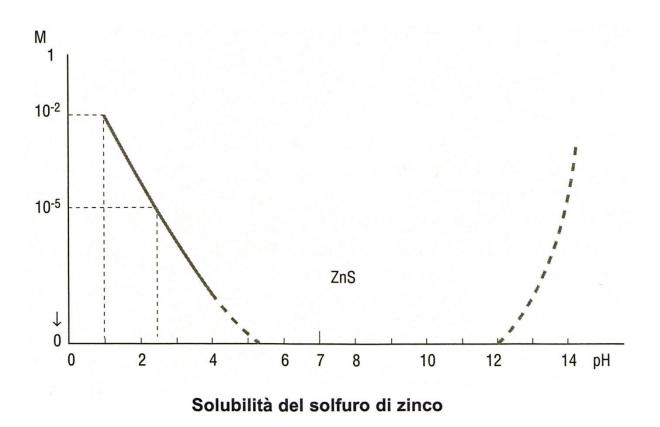
$$[S^{2-}] = \frac{Ps}{[Me^{2+}]}$$

Dalla costante dell'acido risulta che:

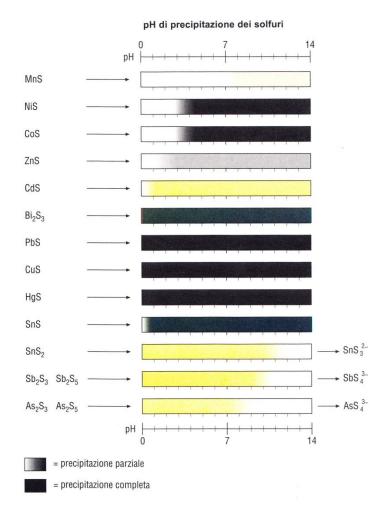
$$KH_2S = \frac{[H^+]^2 [S^{2-}]}{[H_2S]} = 1.10^{-22}$$

Precipitazione dei solfuri

 Poiché una soluzione acquosa satura di H₂S, a temperatura ambiente, ha una concentrazione ~0,1 M, si può scrivere:


$$[H^{+}]^{2}[S^{2-}] = (1 \cdot 10^{-22})(0,1) = 1 \cdot 10^{-23}$$

$$[H^{\dagger}]^2 = \frac{1 \cdot 10^{-23}}{[S^{2-}]}$$


sostituendo in questa espressione il valore di [S²⁻] ricavato sopra:

$$[H^{+}]^{2} = \frac{1.10^{-23} [Me^{2+}]}{[Ps]}$$

Precipitazione dei solfuri

Precipitazione dei solfuri

Precipitazione e Acidità Precipitazione dei solfuri

- Aggiustando il pH della soluzione in maniera opportuna, cioè regolando la concentrazione degli ioni S²⁻, si può fare in modo di precipitare solo i solfuri meno solubili.
- In questo modo, i solfuri vengono separati dai cationi che formano solfuri più solubili e che quindi restano in soluzione.
- Ad esempio, a pH = 0,5 possono precipitare solo i solfuri di arsenico, antimonio, stagno, mercurio, rame, piombo, bismuto e cadmio, che hanno Ps < 1·10⁻²³.

Precipitazione e Acidità Precipitazione dei solfuri

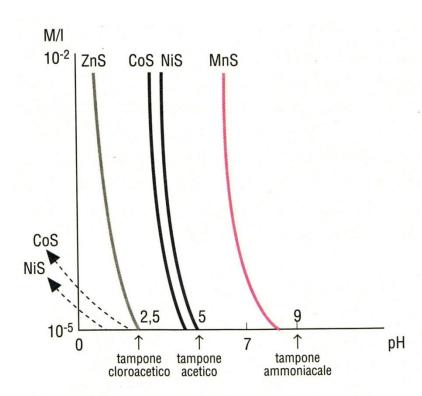
- A pH = 0,5, infatti, lo zinco, il cobalto, il nichel ed il manganese restano in soluzione e vengono precipitati solo a pH più elevato.
- Bisogna, tuttavia, tenere presente che, dato il margine di sicurezza non molto largo, e data la possibilità di fenomeni di co-precipitazione e post-precipitazione, talvolta nella pratica analitica, si può avere la precipitazione del solfuro di zinco.

Precipitazione dei solfuri: effetti sul pH

- Come una variazione del pH può portare alla formazione di precipitati, così la formazione di un precipitato può portare a variazioni del pH.
- Si consideri una soluzione di HCN 1N; essendo p K_A = 9, si ha che pH = 4,5.
- Per aggiunta di nitrato di argento precipita il cianuro di argento, praticamente insolubile, secondo l'equazione:

$$HCN + Ag^{+} \longrightarrow AgCN + H^{+}$$

Precipitazione dei solfuri: effetti sul pH


- Se si aggiunge 1 equivalente di ioni Ag⁺ si può dire che si forma una concentrazione di [H⁺] = 1, e cioè il pH della soluzione diminuisce da 4,5 a 0.
- La variazione di pH è particolarmente importante nel caso della precipitazione analitica del solfuri.
- Infatti, durante la reazione di precipitazione l'acido debole scompare mentre si forma l'acido forte HCI.
- Ad esempio:

$$CdCl_2 + H_2S \rightarrow CdS + 2HCI$$

Precipitazione dei solfuri: effetti sul pH

- Ciò porta ad un sensibile aumento dell'acidità e quindi ad una variazione significativa del pH.
- Tale fenomeno può rendere incompleta la precipitazione di alcuni solfuri, specialmente quella del solfuro di cadmio.
- Di qui deriva la regola di controllare il pH della soluzione non solo prima della precipitazione con H₂S, ma anche dopo.
- Se il pH risulta diminuito, conviene ripristinarlo e trattare ancora con H₂S per completare la precipitazione.

Precipitazione dei solfuri: Zn, Co, Ni, Mn

Solubilità di solfuri

Precipitazione dei solfuri: Zn, Co, Ni, Mn

- A pH = 2,5, cioè in una soluzione tamponata con acido cloroacetico/cloroacetato sodico precipita solo il solfuro di zinco.
- A pH = 5, cioè in una soluzione tamponata con acido acetico/acetato sodico precipitano i solfuri di zinco, cobalto e nichel, mentre il manganese rimane in soluzione.
- A pH = 9, cioè in una soluzione tamponata con ammonio idrossido/ammonio cloruro, precipitano tutti assieme i solfuri di zinco, cobalto, nichel e manganese.

Precipitazione dei solfuri: Zn, Co, Ni, Mn

- Quindi, aggiustando il pH della soluzione con opportuni successivi tamponamenti, si può precipitare in un primo tempo esclusivamente lo zinco.
- Successivamente si precipitano insieme il cobalto e il nichel e, infine, si precipita il manganese.
- In pratica, tale separazione si esegue solo in casi particolari; in genere si preferisce precipitare i quattro solfuri insieme a pH ≈ 9 e successivamente si ricercano i singoli elementi.

Precipitazione dei solfuri: ridissoluzione

- La dissoluzione dei solfuri negli acidi avviene generalmente in condizioni molto diverse da quelle di precipitazione.
- Infatti, nella precipitazione si opera in eccesso di H₂S, mentre nella ridissoluzione, la concentrazione del catione è dello stesso ordine di quella dello ione S²⁻.
- Pertanto, i calcoli sul pH di ridissoluzione dei solfuri richiedono tante approssimazioni, che i risultati non sempre concordano con i valori sperimentali.

Precipitazione dei solfuri: ridissoluzione

- Bisogna aggiungere che i solfuri subiscono in generale il fenomeno dell'invecchiamento, per cui essi si ridisciolgono ad un pH talvolta notevolmente inferiore a quello di precipitazione o a quello che si potrebbe calcolare.
- Particolarmente notevole è l'invecchiamento del solfuro di nichel e del solfuro di cobalto, i quali precipitano a pH ≈ 5, ma una volta precipitati non si ridisciolgono facilmente nemmeno in HCI concentrato.

Precipitazione dei solfuri: ridissoluzione

- Le curve di ridissoluzione di CoS e NiS seguono un andamento molto diverso da quelle di precipitazione.
- Nel procedimento analitico si profitta di ciò per separare i solfuri di cobalto e di nichel dai solfuri di zinco e di manganese, i quali si ridisciolgono facilmente in acido cloridrico concentrato.
- Per ridisciogliere i solfuri di cobalto e nichel si ricorre all'acido nitrico, che ossida gli ioni S²⁻ in modo da spostare l'equilibrio di dissociazione verso destra fino alla completa dissoluzione del solfuro stesso (es., NiS → Ni²⁺ + S²⁻).

Prof. Giuseppe La Regina, Corso di Analisi Chimico Farmaceutica e Tossicologica I (M-Z)