
THE NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE 2025

Mary E.

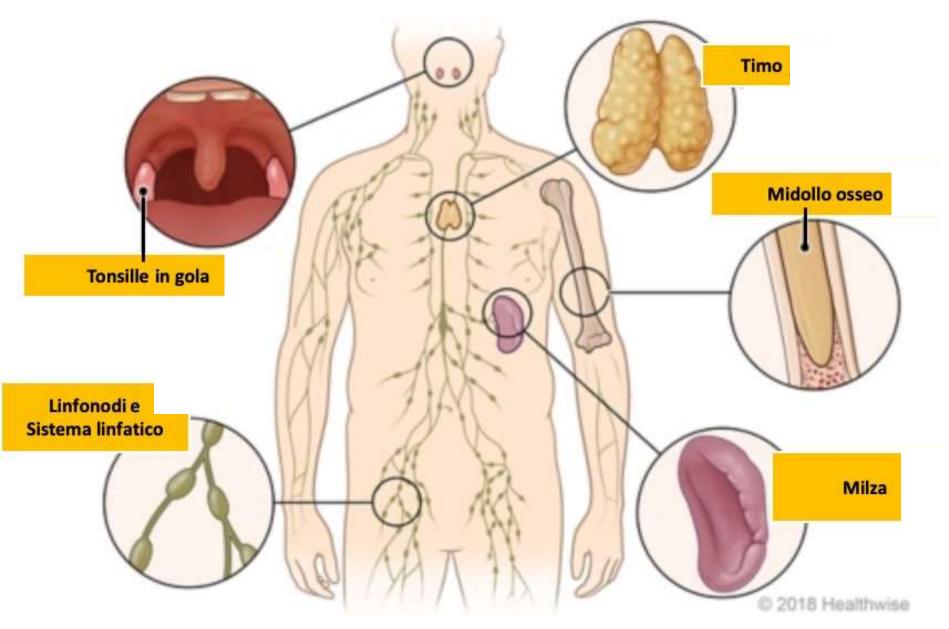
Fred Brunkow Ramsdell

Shimon Sakaguchi

"for their discoveries concerning peripheral immune tolerance"

Sistema immunitario

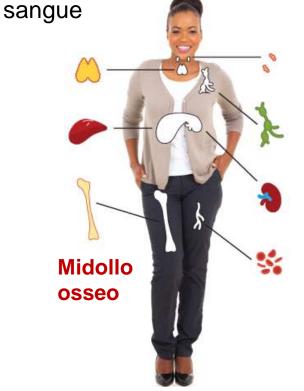
Cellule:


- Circolanti nel sangue e nella linfa
- Raggruppate negli organi linfoidi
- Disseminate nei vari tessuti
- Capacità di circolare tra sangue, linfa, organi linfoidi e tessuti

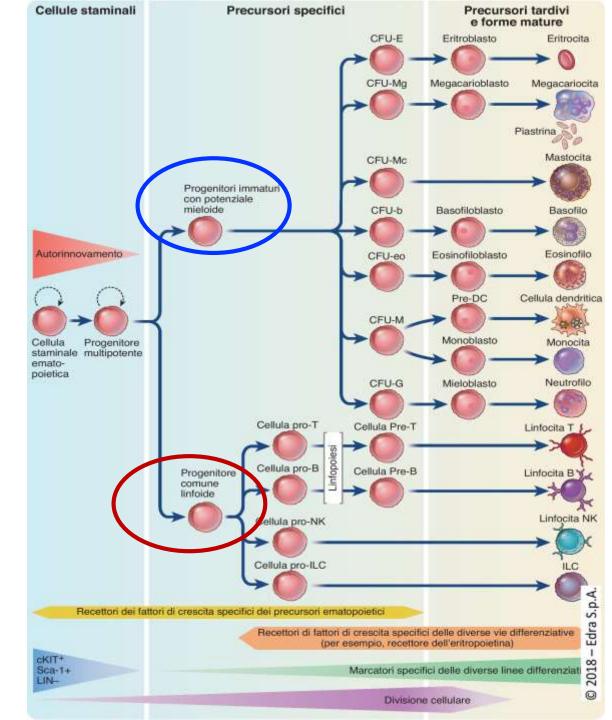
Caratteristiche:

- Risposta sia ai microbi che possono infettare l'organismo sia al danno cellulare
- Solo una piccola percentuale di cellule è in grado di rispondere in maniera antigene specifica (linfociti T e B)
- Capacità di riconoscere ed eliminare i microbi in sedi lontane da quella iniziale dove vengono attivate le risposte

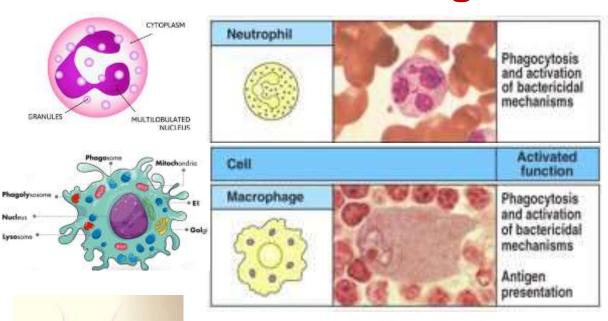
Tessuti linfoidi


Cellule e tessuti

- Fagociti: macrofagi (presenti in tutti i tessuti), neutrofili (circolanti nel sangue e reclutati velocemente nei tessuti) e le cellule dendritiche (presenti in tutti i tessuti)
- Granulociti: basofili e eosinofili (degranulano, circolanti e nei tessuti)
 e mastociti: (degranulano e sono per lo più tissutali)
- Linfociti naïve: linfociti che non hanno mai incontrato l'antigene e lo riconoscono nei linfonodi, direttamente (linfociti B) o grazie alle cellule presentanti l'antigene (APC) (linfociti T) e si attivano diventando linfociti effettori e linfociti della memoria
- Linfociti effettori e di memoria: circolano nel sangue attraverso il quale vengono trasportati nei tessuti dove l'antigene è localizzato. Nei tessuti hanno il ruolo di eliminare l'agente patogeno che esprime l'antigene specifico attraverso risposte cellulari (linfociti T) o umorali (linfociti B, Anticorpi).


Tessuti specializzati: organi linfoidi primari (timo e midollo osseo) e secondari (linfonodi, milza, MALT) che hanno il ruolo di concentrare tutti gli antigeni che entrano nell'organismo attraverso la cute, le mucose del tratto respiratorio, gastrointestinale e urogenitale.

Ematopoiesi

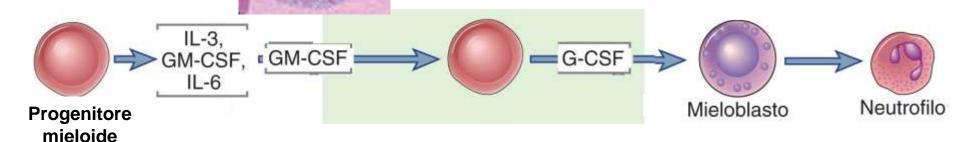

Questo albero ematopoietico illustra lo sviluppo dei principali stipiti cellulari del

Tutte le cellule del sangue derivano da una cellula staminale ematopoietica comune midollare (multipotente) e capace di autorinnovarsi

Fagociti

I fagociti: Neutrofili

Macrofagi


hanno la principale funzione di identificare, ingerire ed uccidere i microbi. Inoltre, fagocitano detriti cellulari e cellule morte (necrotiche e apoptotiche)

Anche le Cellule dendritiche (DC) hanno la funzione di internalizzare gli antigeni e fungono da cellule presentanti l'antigene

- Riconoscimento dei microbi tramite specifici recettori
- Localizzazione già nei tessuti (macrofagi e cellule dendritiche)
- Reclutamento nei siti d'infezione (neutrofili, monociti)
- Attivazione e fagocitosi dei microbi in strutture chiamate fagolisosomi
- Uccisione tramite molecole ad azione microbicida nei fagolisosomi

Neutrofili

(Cellule principale dell'infiammazione acuta)

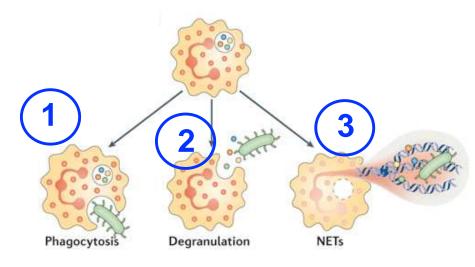
- Leucociti polimorfonucleati (PMN), diamentro 12-15 μ m, costituiscono circa il 40-60% dei globuli bianchi
- Il midollo osseo ne produce circa 100 miliardi al giorno. La maturazione nel midollo è stimolata dal GM-CSF e dal G-CSF
- •Circolano nel sangue e vengono richiamati nei tessuti in seguito ad infezione per una risposta rapida e transitoria
- Permangono nel sangue da poche ore a 5 giorni e la vita nei tessuti di 1-2 giorni
- Una volta reclutati nel sito infiammato svolgono la loro funzione fagocitica e muoiono poche ore dopo liberando il contenuto dei loro granuli (contribuendo alla formazione del **Pus**)

Valori normali delle cellule nel sangue

	Numero medio per mm ³	Intervallo normale
Globuli bianchi (leucociti)	7.400	4.500-11.000/mm ³
Neutrofili	4.400	40-60%
Eosinofili	200	1-4%
Basofili	40	<1%
Linfociti	2.500	20-40%
Monociti	300	2-8%

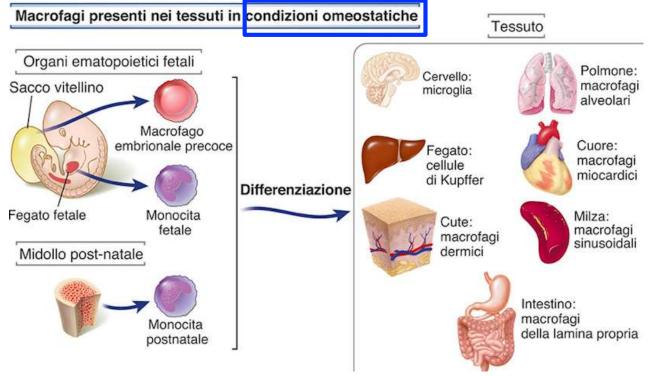

Neutrofili (leucociti polimorfonucleati)

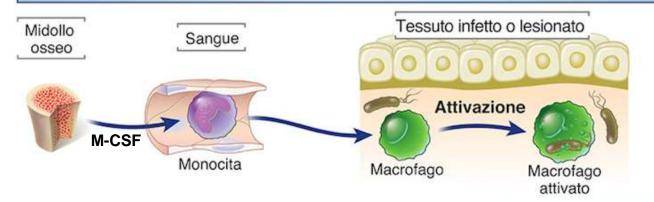
Granuli azzurrofili o primari:


- Sono evidenziati da coloranti azzurri.
- Sono più grandi (500 nm).
- Contengono defensine, catelicidine (hCAP18), mieloperossidasi, catepsine, idrolasi

Granuli specifici o secondari:

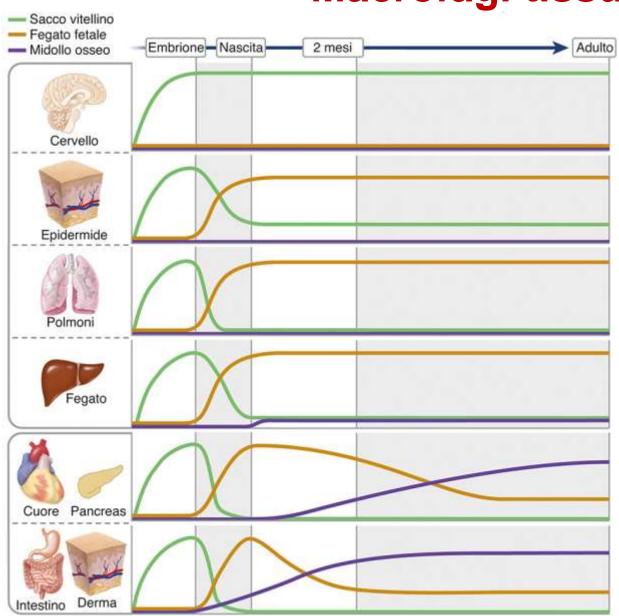
- Debole colorazione sia con ematossilina che con eosina.
- Sono più piccoli (200 nm).
- Contengono Lisozima, lattoferrina, collagenasi, elastasi, componenti della NADPH ossidasi.


Meccanismi di uccisione dei patogeni


I neutrofili possono eliminare gli agenti patogeni con meccanismi sia intracellulari che extracellulari. Quando i neutrofili incontrano i microrganismi, li fagocitano. Questi dopo essere state incapsulati nei fagosomi sono uccisi mediante meccanismi NADPH ossidasi-dipendenti (specie reattive dell'ossigeno) o proteine antibatteriche (catepsine, defensine, lattoferrina e lisozima). Le proteine antibatteriche vengono rilasciate dai granuli del neutrofilo nei fagosomi o nell'ambiente extracellulare, agendo così rispettivamente sui patogeni intra o extracellulari. I neutrofili altamente attivati possono eliminare i microrganismi extracellulari rilasciando i NET (Neutrophil Extracellular Traps) ovvero trappole extracellulari. I NET sono composti da un core centrale di DNA cui sono attaccati istoni, proteine (ad esempio lattoferrina e catepsine) ed enzimi (ad esempio MPO ed elastasi neutrofilica) che vengono rilasciati dai granuli dei neutrofili. I NET immobilizzano i patogeni, impedendone così la diffusione ma facilitando anche la successiva fagocitosi dei microrganismi intrappolati. Si pensa anche che uccidano direttamente gli agenti patogeni per mezzo di istoni e proteasi antimicrobiche.

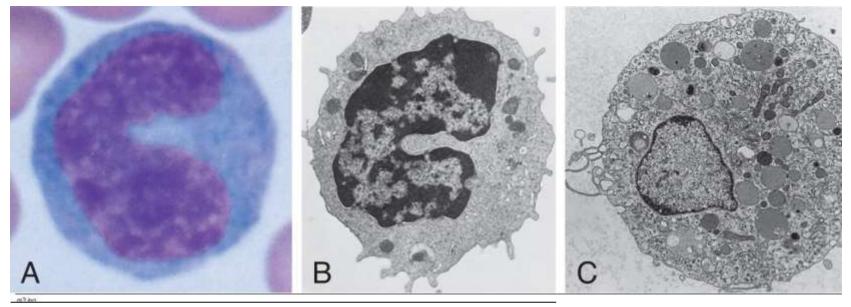
Macrofagi

Macrofagi che originano da monociti circolanti nel corso di processi infiammatori



Durante il primo sviluppo

Precocemente durante lo sviluppo, ovvero nella vita fetale, i precursori presenti nel sacco vitellino e nel fegato fetale danno origine a cellule che colonizzano i tessuti per generare macrofagi altamente specializzati residenti nei tessuti.


Inoltre, in condizioni di omeostasi negli adulti e durante le reazioni infiammatorie, i precursori nel midollo osseo generano monociti circolanti che entrano nei tessuti periferici, differenziano in macrofagi e sono attivati localmente.

Macrofagi tissutali

Contributo relativo degli organi ematopoietici fetali (sacco vitellino e fegato fetale) e del midollo osseo postnatale nella generazione dei precursori dai quali originano i macrofagi residenti nei vari tessuti in condizioni omeostatiche.

Monociti

Monocita

Macrofago

Cellula liberamente circolanti nel sangue di 10-15 μ M di diametro, nucleo a forma di fagiolo, lisosomi e vacuoli fagocitici.

- Monociti maturano da precursori midollari stimolati da M-CSF (Monocyte Colony-Stimulating Factor) e nel sangue sopravvivono per 1-7 giorni
- Monociti reclutati dal sangue nei tessuti

 Macrofagi Infiammatori

Funzioni dei macrofagi

1. Ingestione ed uccisione dei microbi

 Enzimi lisosomiali: idrolasi acide, serin-proteasi, metalloproteasi (collagenasi)

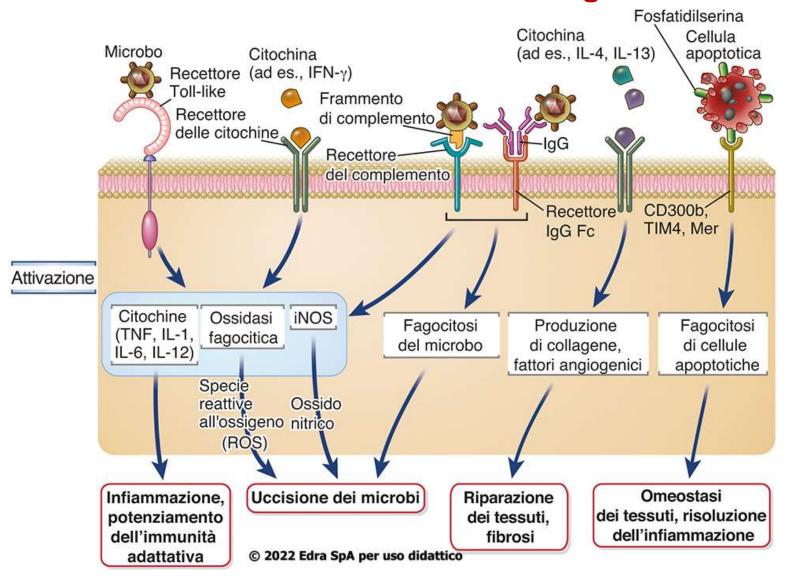
 NADPH ossidasi (ossidasi fagocitica) → produzione di specie reattive dell'ossigeno (ROS)

iNOS per la produzione di NO (ossido nitrico)

2. Produzione mediatori primari

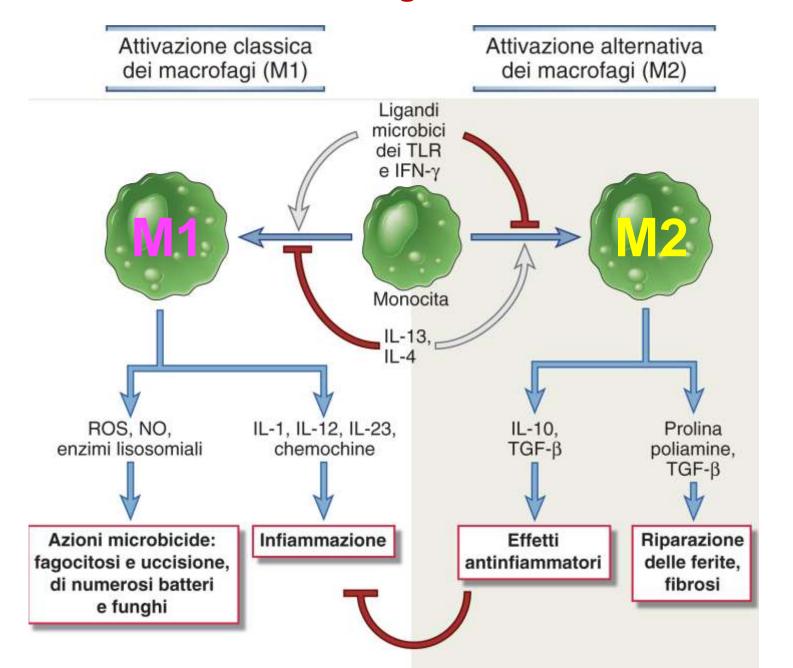
- Citochine pro-infiammatorie: IL-1, TNF, IL-6
- Prostaglandine e leucotrieni
- Chemochine (es. IL-8 e MCP-1)

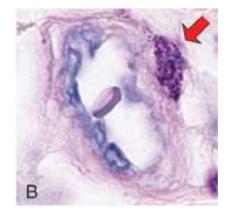
3. Risoluzione processo infiammatorio


- Ingestione e degradazione cellule morte (es. neutrofili)
- Fagocitosi cellule apoptotiche prima che rilascino il loro contenuto

4. Riparazione dei tessuti

- Angiogenesi (VEGF)
- Stimolano i fibroblasti a produrre matrice extracellulare ricca di collagene (fibrosi)


5. Presentazione dell'antigene ai linfociti T

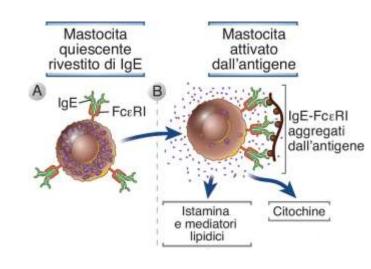

Funzioni dei macrofagi

I macrofagi possono essere attivati da molteplici segnali (prodotti microbici e non) attraverso i recettori illustrati nella figura che indurranno attivazione di fattori di trascrizione, trascrizione genica e sintesi proteica.

Attivazione dei macrofagi: classica vs alternativa

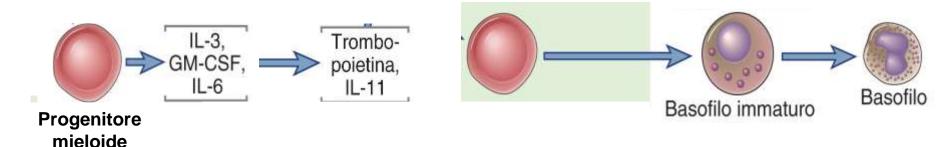
Mastociti

per lo sviluppo dei mastociti è essenziale **SCF** (stem cell factor o ligando di c-Kit)


- Cellule sentinella localizzate nella cute, nel connettivo e negli epiteli mucosali vicino a piccoli vasi ematici e nervi
- Rispondono ad infezioni ed altri stimoli rilasciando rapidamente il contenuto dei granuli citoplasmatici (granuli acidi si colorano con ematossilina)
- Rilasciano:

Istamina, eparina, proteasi neutre

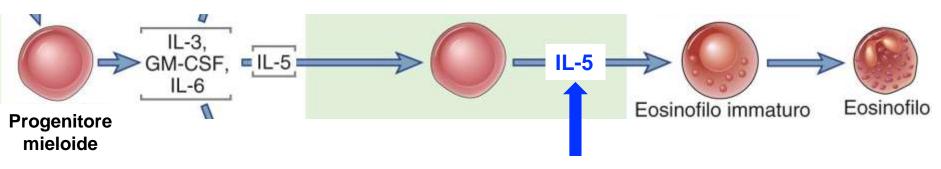
Mediatori lipidici (prostaglandine, leucotrieni)


Citochine (IL4, TNF α , IL3) e chemochine

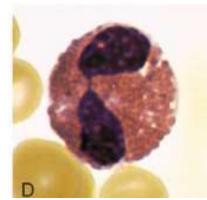
 L'attivazione è mediata da prodotti microbici o da meccanismi anticorpo-dipendenti -> rilascio del contenuto dei granuli

Sono coinvolti nelle patologie allergiche e nella difesa contro gli elminti

Basofili


Basofili < 1% dei leucociti nel circolo ematico

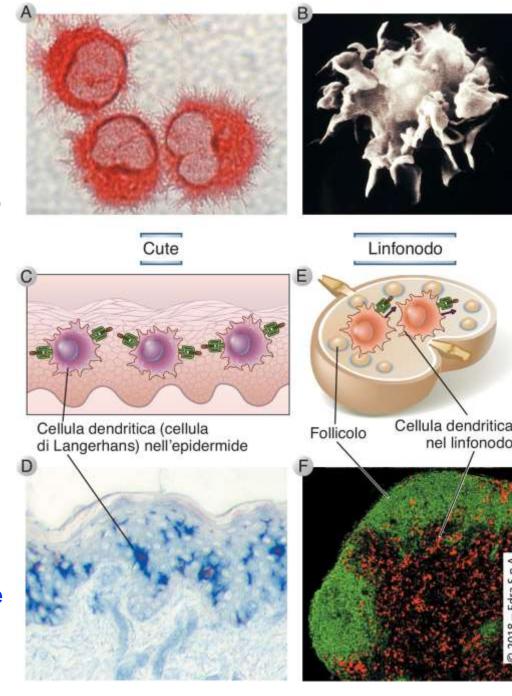
- Analogie strutturali e funzionali con i mastociti: recettori per IgE (FcεRI)
- Granuli citoplasmatici acidi (ematossilina): simili a quelli dei mastociti


	Numero medio per mm ³	Intervallo normale
Globuli bianchi (leucociti)	7.400	4.500-11.000/mm ³
Neutrofili	4.400	40-60%
Eosinofili	200	1-4%
Basofili	40	<1%
Linfociti	2.500	20-40%
Monociti	300	2-8%

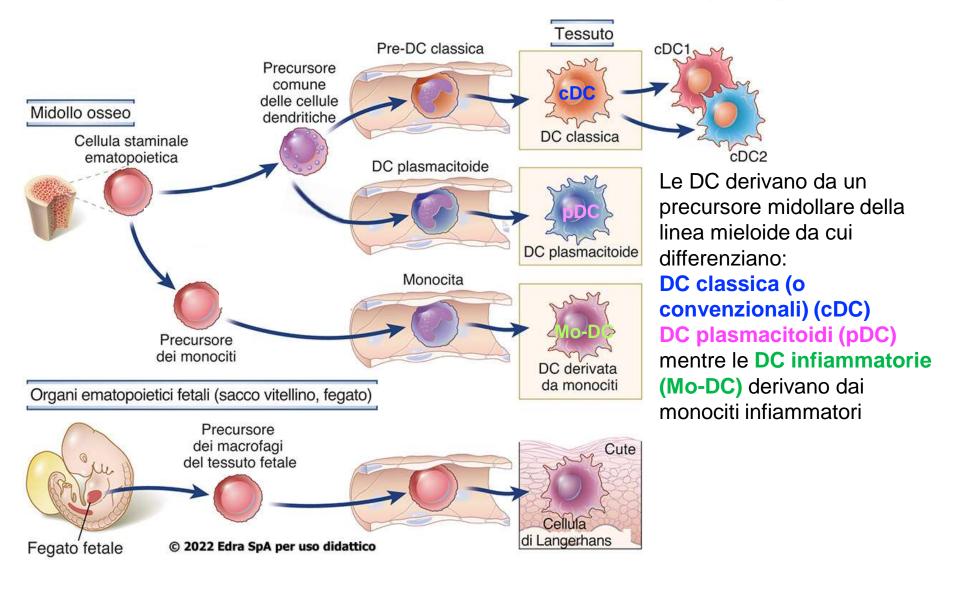
Eosinofili

GM-CSF, **IL-3** e **IL-5** ne promuovono la maturazione.

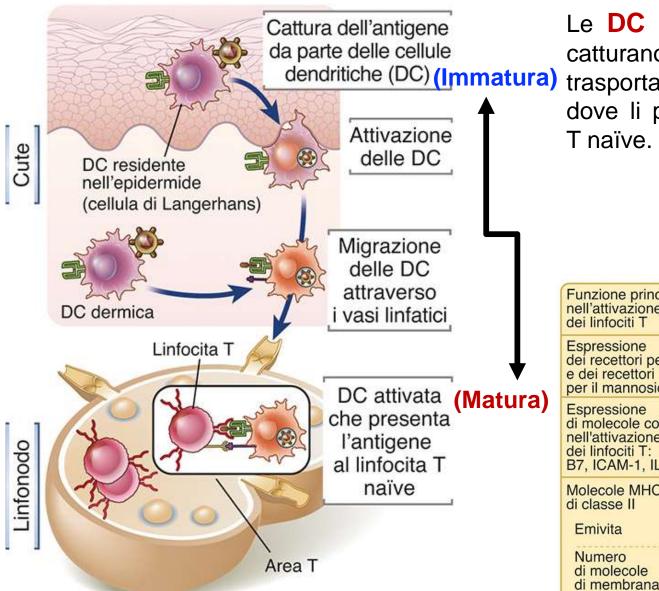
- Granulociti circolanti e residenti nelle mucose dell'apparato respiratorio, gastrointestinale e urogenitale.
- Contengono granuli citoplasmatici basici che legano eosina e contengono enzimi che vengono rilasciati in seguito a stimolazione e danneggiano la parete dei parassiti ma anche i tessuti. Molti recettori (recettori Fc per IgA e IgG, TLR, recettore per IL5) possono trasdurre segnali che li attivano e inducono il rilascio del contenuto dei granuli.
- Importanti nella difesa contro i parassiti extracellulari (elminti) e coinvolti in fenomeni patologici delle malattie allergiche.


Cellule dendritiche (DC)

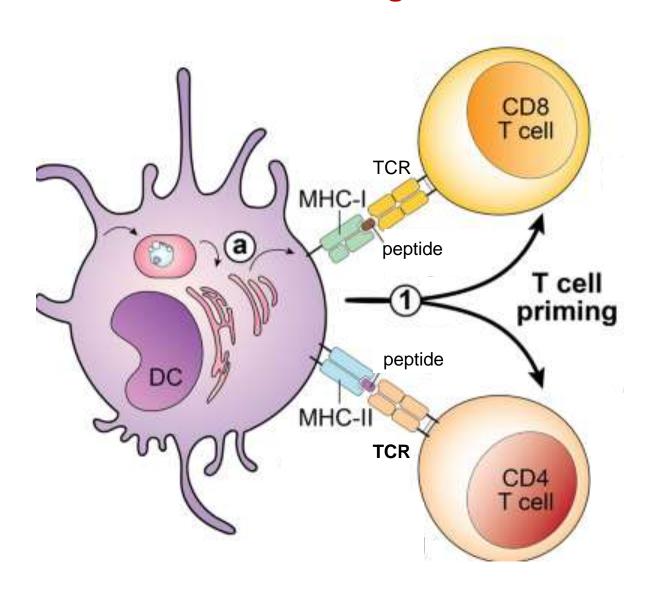
Cellule sia residenti nei tessuti che circolanti

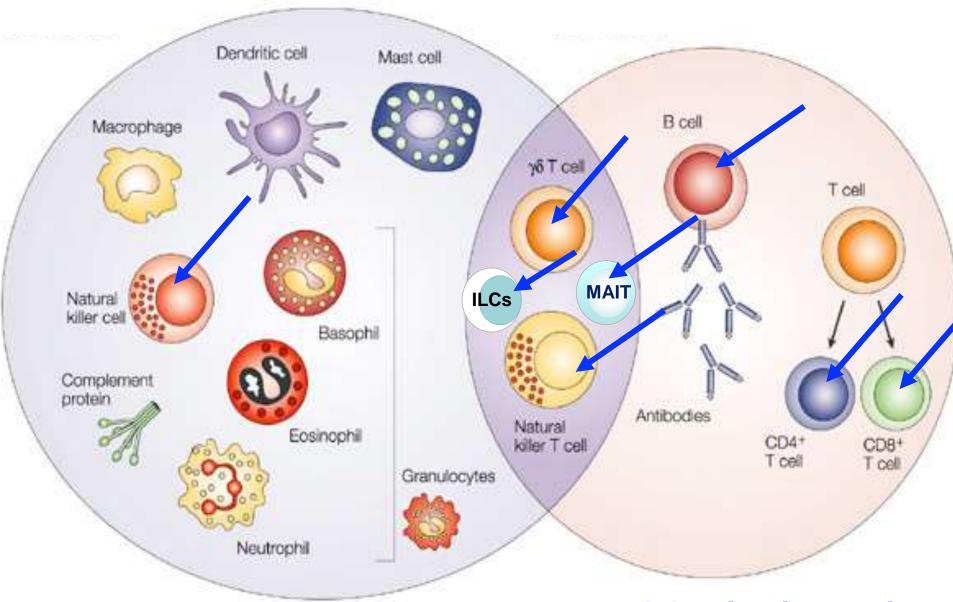

DC derivano dai precursori mieloidi del midollo osseo ed il loro sviluppo è dipendente dalla citochina Flt3L (ligando di Flt3)

Morfologia: lunghe estroflessioni membranarie


- Distribuite nei tessuti linfoidi, nella cute, negli epiteli mucosali e nel parenchima degli organi
- Recettori coinvolti nel legame con i microbi
- Alta attività di captazione degli antigeni microbici; macro e micropinocitosi
- Esprimono molecole MHC di classe I e II e presentano l'antigene ai linfociti T naïve generando risposte immunitarie adattative

Tipi di cellule dendritiche (DC)


Ruolo delle DC nella cattura e presentazione dell'antigene



Le **DC** della cute e del derma catturano gli antigeni e li trasportano nei linfonodi regionali dove li presenteranno ai linfociti T naïve.

	(Immatura)	(Matura)
	Cellule dendritiche resting che risiedono nei tessuti	Cellula dendritica attivata
unzione principale ell'attivazione ei linfociti T	Cattura dell'antigene	Presentazione dell'antigene ai linfociti T
spressione ei recettori per l'Fc dei recettori er il mannosio	++	_
spressione i molecole coinvolte ell'attivazione ei linfociti T: 7, ICAM-1, IL-12	— o bassa	++
lolecole MHC i classe II		
Emivita	~10 h	>100 h
Numero di molecole di membrana	~10 ⁶	~7 × 10 ⁶

Ruolo delle DC nella processazione e presentazione dell'antigene

Innate immunity ILCs= innate lymphoid cells (rapid response)

Adaptive immunity (late response)

Linfociti

Linfociti T: T deriva da timo dove maturano a partire dal precursore midollare

- Mediatori dell'immunità cellulo-mediata
- Distinti in CD4 (helper e regolatori) e CD8 (citotossici) ed esprimono un recettore per l'antigene (TCR) tipicamente $\alpha\beta$ e solo un 10% di tipo $\gamma\delta$.
- I TCR $\alpha\beta$ hanno alta diversificazione mentre i TCR $\gamma\delta$ molto bassa.

Linfociti B: B deriva da Borsa di Fabrizio degli uccelli dove maturano, nell'uomo invece maturano nel midollo osseo (Bone marrow)

- Linfociti B follicolari (antigeni proteici) che producono anticorpi ad alta affinità e plasmacellula a lunga sopravvivenza
- Linfociti B delle zona marginale e linfociti B-1 (antigeni non proteici) che producono anticorpi a bassa affinità che hanno limitata diversificazione e plasmacellule a breve sopravvivenza

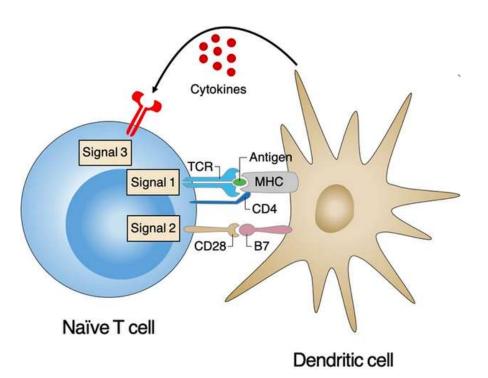
Cellule NK (natural killer): simili ai linfociti T citotossici ma con recettori diversi dal TCR e non variabili (recettori inibitori e attivatori)

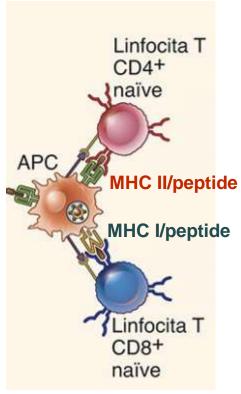
ILC (cellule linfoidi innate): morfologia e funzioni effettrici simili a quelle dei linfociti T ma non esprimono recettori antigene-specifici (TCR). Esistono tre gruppi di ILC (ILC1, ILC2 e ILC3). Anche le cellule NK rappresentano un gruppo di ILC1 con funzioni simile ai linfociti T CD8+ citotossici.

Cellule iNKT (Invariant Natural Killer T): linfociti T con TCR αβ con limitata variabilità e recettori delle NK

Cellule MAIT (mucosal-associated invariant T cells): cellule con limitata diversità recettoriale che riconoscono antigeni batterici e fungini

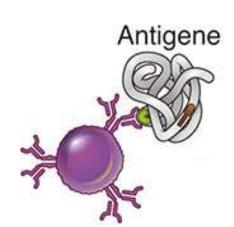
Cellule T $\gamma\delta$ T esprimo TCR poco diversificati con catene $\gamma\delta$, risiedono nelle barriere epiteliali (intestino e epidermide) e riconoscono lipidi e fosfolipidi

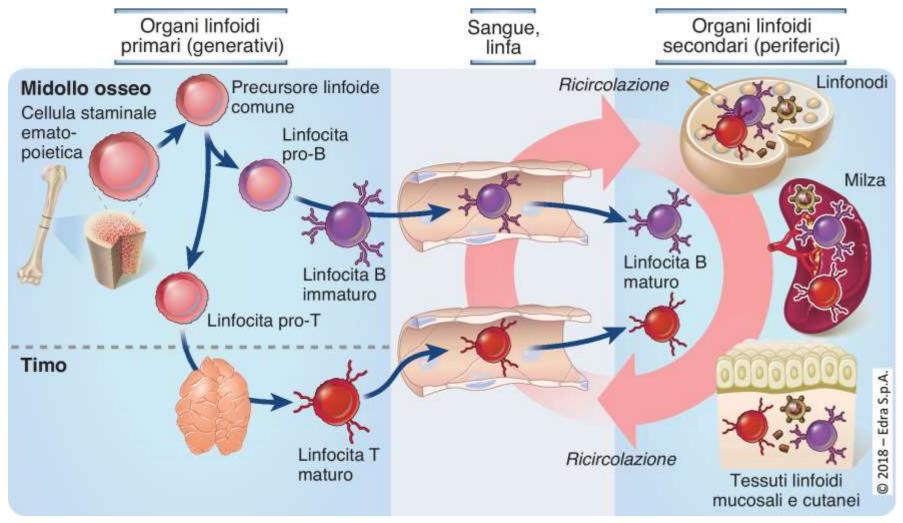

Sottopopolazioni linfocitarie


Classe	Funzioni R	ecettori per l'antigene Princ	cipali marcatori	Percentua	le dei linfociti	totali (uomo)
		e specificità	fenotipici	Sangue	Linfonodo	Milza
Linfociti T αβ Linfociti T CD4 ⁺ helper	Differenziazione delle cellule (immunità umorale) Attivazione dei macrofagi (immunità cellulo-mediata) Stimolazione o infiammazione	Specificità diverse per i complessi peptide-MHC di classe II	CD3 ⁺ , CD4 ⁺ , CD8 ⁻	50-60*	50-60	50-60
Linfociti T CD8 ⁺ citotossici	Uccisione delle cellule infetta da virus o da batteri intracellulari; rigetto dei trapianti	te Eterodimeri αβ Specificità diverse per i complessi peptide-MHC di classe l	CD3 ⁺ , CD4 ⁺ , CD8 ⁻	20-25	15-20	10-15
Cellule T regolatorie	Soppressione delle funzioni di altre cellule T (regolazione delle risposte immuni, mantenimento della tolleranza verso il sel	Eterodimeri αβ Incerto	CD3 ⁺ , CD4 ⁺ , CD25 ⁺ (i più comuni, ma sono presenti anche altri fenotipi)	Pochi	10	10
Linfociti Τ γδ	Funzioni helper e citotossiche (immunità innata)	Eterodimeri γδ Specificità limitate per antigeni peptidici e non peptidici	CD3 ⁺ , CD4 ⁺ , CD8 variabile			
Linfociti B	Produzione di anticorpi (immunità umorale)	Anticorpi di membrana Specificità diverse per tutti i tipi di molecole	Recettori per Fc; MHC di classe II; CD19; CD21	10-15	20-25	40-45
Cellule natural killer	Uccisione delle cellule infetta da virus o danneggiate (immunità innata)	te Recettori attivatori e inibitori diversi Specificità limitate per molecole MHC o MHC-like	Recettore per Fc delle IgG (CD16)	10	Pochi	10
Cellule NKT	Sopprimono o attivano rispos immuni innate e adattative	te Eterodimeri αβ Specificità limitata per i complessi glicolipidi-CD1	Recettore per Fc delle IgG (CD16); CD3	10	Pochi	10

Riconoscimento dell'antigene da parte dei linfociti

Linfocita T

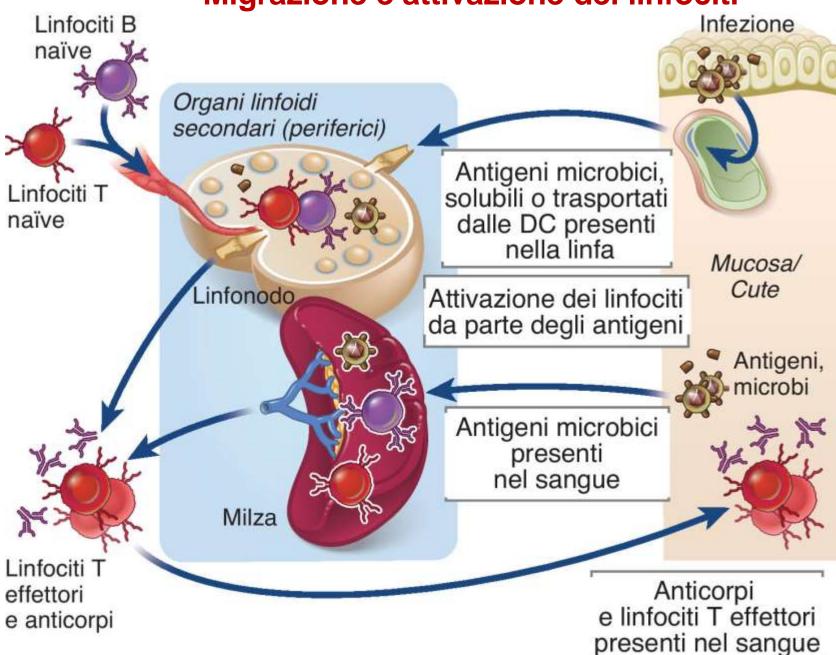

Antigene > frammento peptidico



Linfocita B

Antigene > tutte le classi di molecole

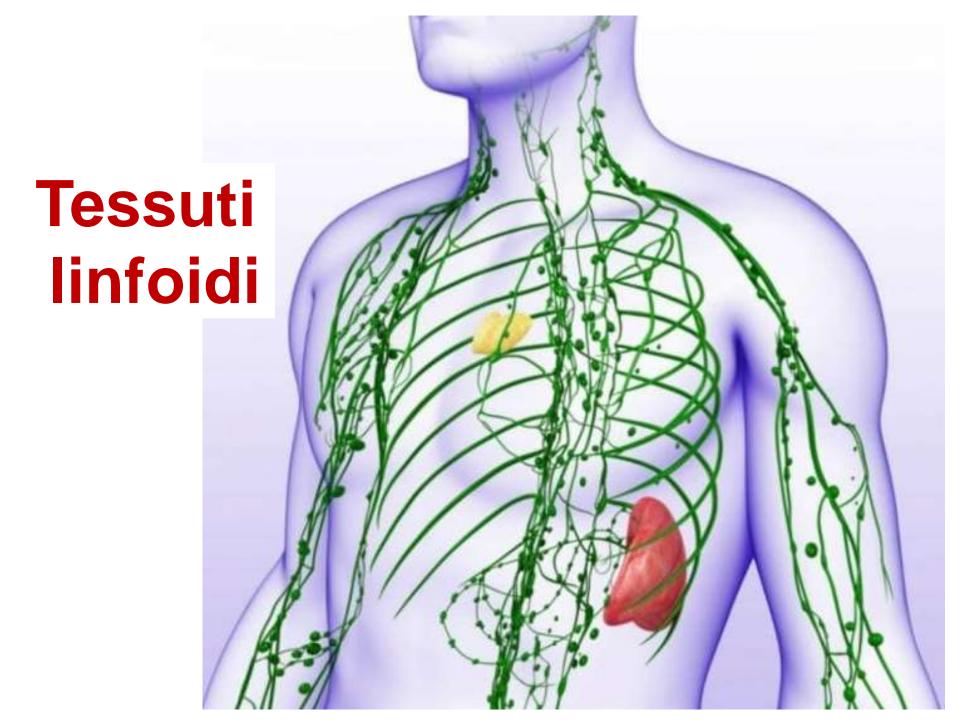
Maturazione e circolazione dei linfociti


I linfociti derivano da una cellula staminale midollare, maturano negli organi linfoidi primari (midollo osseo per i linfociti B e timo per linfociti T) e successivamente raggiungono attraverso il sangue gli organi linfoidi secondari (linfonodi, milza, tessuti linfoidi regionali come il MALT). I linfociti T escono dal timo dopo maturazione completata, mentre linfociti B escono dal midollo ancora immaturi e completano la loro maturazione negli organi linfoidi secondari. I linfociti naive possono rispondere agli antigeni nei tessuti linfoidi secondari o tornare con la linfa al sangue e circolare in altri organi linfoidi secondari.

Fasi della vita dei linfociti

Tipo cellulare	Stadio © 2022 Edra SpA per uso didattico			
	Cellula naïve	Linfocita attivato	Linfocita effettore	Linfocita della memoria
Linfociti B	Riconoscimento dell'antigene	Proliferazione e differenziazione	Plasmacellule	
Linfociti T	Riconoscimento dell'antigene	Proliferazione e differenziazione	Linfociti T helper o CTL	

In risposta all'antigene, i **linfociti naive** negli organi linfoidi secondari proliferano e si differenziano in **cellule effettrici**, chi si attivano per orchestrare la risposta immunitaria. Le cellule effettrici dello stipite linfocitario B sono le plasmacellule, che secernono anticorpi. Le cellule effettrici dello stipite linfocitaria T CD4 sono i linfociti T helper che producono citochine, e le cellule effettrici dello stipite CD8 sono i linfociti T citotossici (non mostrati). La maggior parte dei linfociti T effettori lascia gli organi linfoidi secondari e migra nei tessuti infetti. Alcuni linfociti T rimangono negli organi linfoidi secondari dove aiutano i linfociti B a creare risposte anticorpali. Altri discendenti dei linfociti stimolati dall'antigene si differenziano in cellule della memoria a lunga sopravvivenza che si trovano negli organi linfoidi secondari e nei tessuti non linfoidi.


Migrazione e attivazione dei linfociti

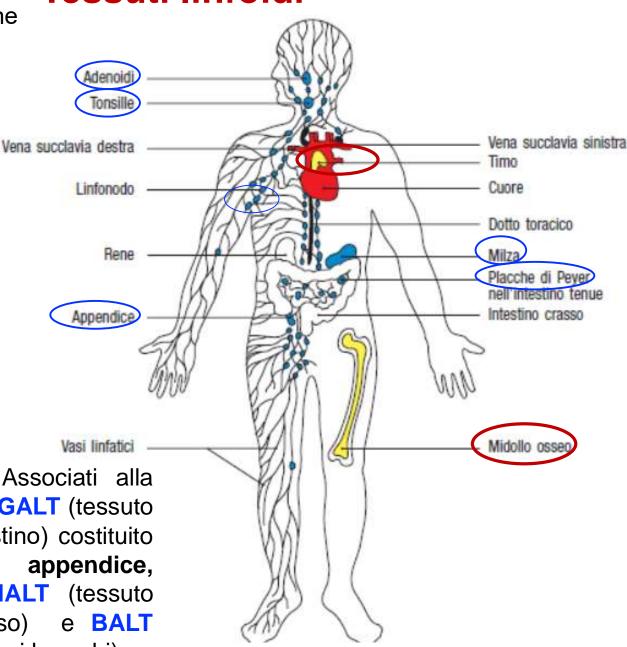
© 2018 - Edra S.p.A.

Caratteristiche dei linfociti naive, effettori e della memoria

	Cellule naïve	Linfociti attivati o effettori	Linfociti della memoria
Linfociti T			
Migrazione	Preferenzialmente negli organi linfoidi secondari	Preferenzialmente nei tessuti infiammati	Preferenzialmente nei tessuti inframmati, ner tessuti associati alle mucose
Frequenza di cellule che rispondono a un particolare antigene	Molto bassa	Elevata	Bassa
Funzioni effettrici	Nessuna	Secrezione di citochine; attività citotossica	Nessuna
Proliferazione	No	Si	+/-
Espressione di proteine di membrana IL-2R (CD25) L-selectina (CD62L) IL-7R (CD127) Molecole di adesione: integrine, CD44 Recettore per le chemochine: CCR7 Principale isoforma del CD45 (solo nell'uomo)	Bassa Elevata Moderatamente elevata Bassa Elevata CD45RA	Elevata Bassa Bassa Elevata Bassa CD45RO	Bassa Variabile Elevata Elevata Variabile CD45R0; variabile
Morfologia	Piccoli; scarso citoplasma	Grandi; citoplasma abbondante	Piccoli
Linfociti B			
Isotipo delle immunoglobuline (Ig) di membrana	IgM e IgD	Frequentemente IgG, IgA, IgE	Frequentemente IgG, IgA, IgE
Affinità delle lg prodotte	Relativamente bassa	Aumenta durante la risposta immunitaria	Relativamente elevata
Funzione effettrice	Nessuna	Secrezione di anticorpi	Nessuna
Morfologia	Piccoli; scarso citoplasma	Grandi; abbondante citoplasma; plasmacellula	Piccoli
Espressione di proteine di membrana Recettore per le chemochine CXCR5 CD27	Elevata Bassa	Bassa Elevata	? Elevata

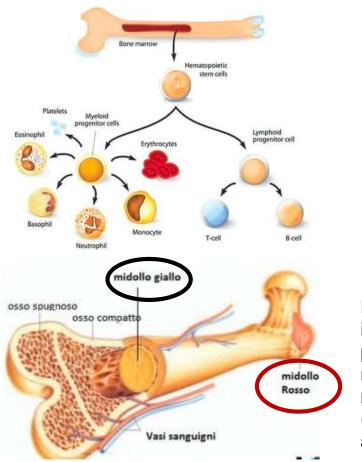
Primari o centrali:

acquisizione dell'espressione del recettore e maturità fenotipica e funzionale dei linfociti


- Midollo Osseo: maturazione Linfociti B
- Timo: maturazione Linfociti T

Secondari o periferici: iniziano e si sviluppano

le risposte agli antigeni


- Linfonodi
- Milza
- MALT (Tessuti Linfoidi Associati alla Mucosa) che includono il GALT (tessuto linfoide associato all'intestino) costituito da adenoidi, tonsille, appendice, Placche di Peyer e NALT (tessuto linfoide associato al naso) e BALT (tessuto linfoide associato ai bronchi)

Tessuti linfoidi

Midollo osseo

Tessuto spugnoso presente al centro delle ossa. Rappresenta l'organo che produce le cellule del sangue: leucociti o globuli bianchi, eritrociti e piastrine ed è sede di maturazione dei linfociti B. In esso, sono presenti le cellule staminali ematopoietiche (HSC; markers: CD34; c-KIT) comuni midollari da cui si sviluppano i principali stipiti cellulari del sangue (ematopoiesi). Questo processo è stimolato dall'azione di citochine (CSF colony stimulating factors).

Precursori ematici a vari stadi, cellule stromali non ematopoietiche ed adipociti

Central tongitudinal vein

Advunitial reticular cell

Basement membrane

Endothellal cells

Erythrocytes

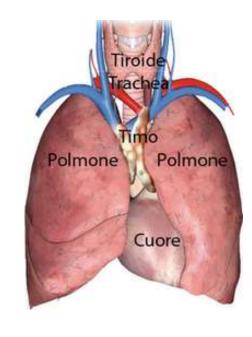
leukocytes

istand (macrophage)

Fat cell

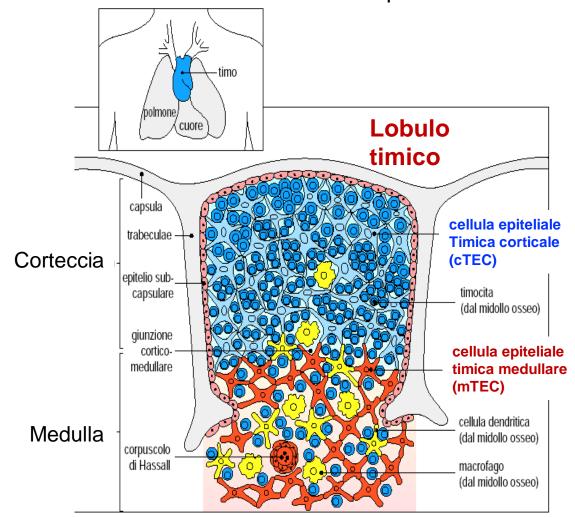
Fat cell

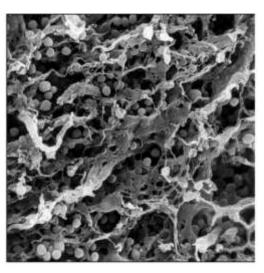
Il midollo è anche la sede di plasmacellule e linfociti T di memoria a lunga sopravvivenza


Distinguiamo due tipi di midollo osseo: il **midollo osseo rosso** (costituito principalmente da tessuto mieloide, la maggioranza del midollo presente alla nascita) ed il **midollo osseo giallo** (costituito soprattutto da tessuto adiposo che ne determina il colore).

Timo

- Sede nella quale sviluppano e maturano i linfociti T
- Organo bilobato localizzato nel torace (mediastino anteriore) suddiviso in molti lobuli e ricco di vasi linfatici afferenti ed efferenti. Nell'uomo è completamente sviluppato alla nascita, ha un funzionamento più elevato fino all'età puberale ed involve in età adulta.
- Nella ghiandola timica i timociti (precursori linfoidi dei linfociti T) vanno incontro ad un processo di maturazione e di selezione che elimina dal repertorio i linfociti T autoreattivi (tolleranza al self).

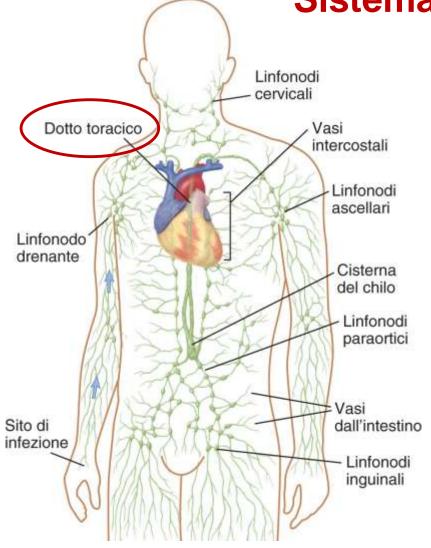

Topo nudo privo di timo (senza pelo e linfociti T)



Animella di vitello (timo)

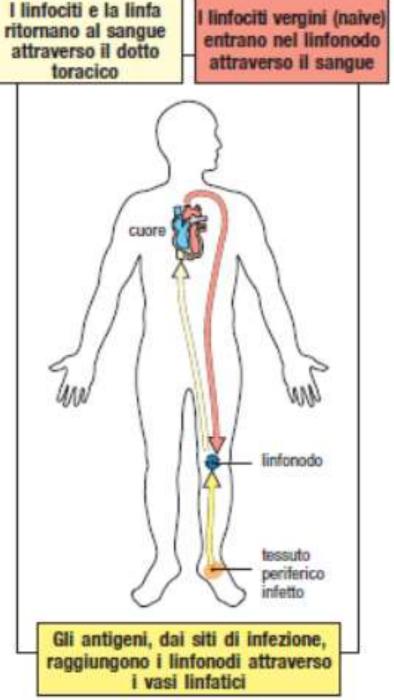
Timo

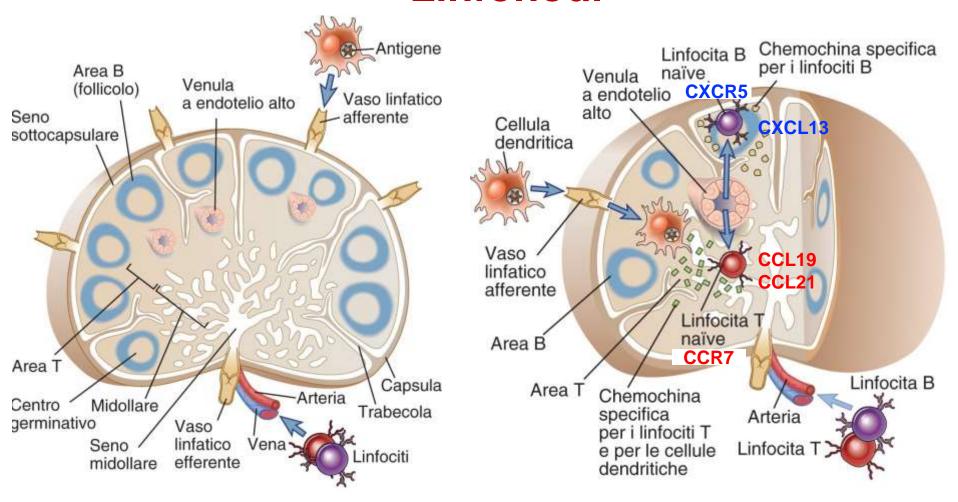
I timociti immaturi entrano nella corticale maturano (selezione positiva) e passano nella regione midollare (selezione negativa) ed infine i linfociti T maturi entrano nella circolazione periferica.



Il timo al microscopio elettronico a scansione

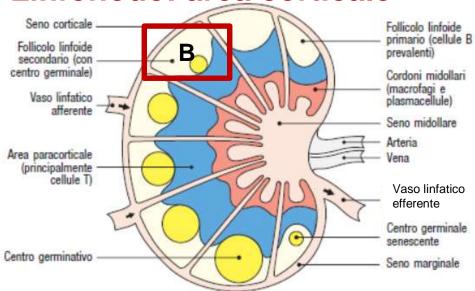
Cellule epiteliali distribuite in tutto l'organo → quelle della corticale producono IL-7 necessaria per la proliferazione dei timociti


Sistema linfatico


I vasi linfatici raccolgono gli antigeni microbici dal sito di ingresso e attraverso la linfa li trasportano ai linfonodi dove si attivano le risposte linfocitarie (risposte immunitarie adattative)

- Essenziale per l'omeostasi dei fluidi tissutali e le risposti immuni
- Vasi specializzati drenanti i liquidi (fluidi interstiziali = plasma che fuoriesce dai capillari) dai tessuti ai linfonodi e dai linfonodi al sangue
- Capillari linfatici (a fondo cieco localizzati nel parenchima di tutti i tessuti) assorbono e drenano i liquidi in quanto rivestiti da cellule endoteliali prive di giunzioni strette e membrana basale
- I liquidi dai capillari affluiscono ai vasi linfatici (contrazione cellule muscolari lisce perilinfatiche)
- Vasi linfatici afferenti > portano la linfa ai linfonodi
- Vasi linfatici efferenti > confluiscono nel dotto toracico > vena cava superiore e circolo sanguigno

I linfociti circolanti incontrano l'antigene negli organi linfoidi secondari


Linfonodi

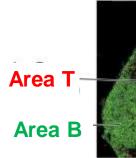
Piccole strutture a forma di fagiolo (1-2 cm lunghezza) disposte sul decorso dei vasi linfatici (fibroblasti reticolari collegati da fibrille di collagene e proteine della matrice extracellulare e una rete di fibrillina, linfociti, macrofagi, cellule dendritiche).

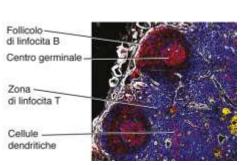
Si aggregano in particolari sedi: collo, ascelle, inguine e regione para-aortica

Linfonodo: area corticale

Principale sito dei linfociti B, pochi linfociti T

Linfociti B naïve:

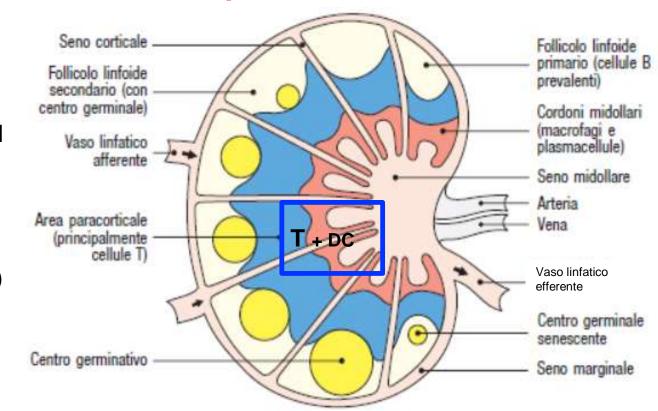

Entrano nel linfonodo attraverso le venule ad alto endotelio (HEV) e passano ai follicoli attirati dalla chemochina CXCL13 (recettore CXCR5)


Attivati da uno stimolo antigenico proliferano e si localizzano nei follicoli linfoidi dando origine al centro germinativo (sito cruciale per gli eventi relativi alla risposta anticorpale: maturazione dell'affinità degli Ab, scambio isotipico, generazione di plasmacellule e linfociti B della memoria).

Il centro germinativo comprende una "zona scura" di linfociti B attivamente proliferanti (centroblasti) da cui derivano i centrociti che popolano la "zona chiara". I centrociti che esprimono Ig ad alta affinità sono selezionati positivamente e danno origine a plasmacellule e cellule B di memoria che lasciano il follicolo, passano nella paracorteccia e nei seni midollari.

Cellule accessorie: necessarie per supportare la risposta dei linfociti B

- Linfociti T helper follicolari indispensabili per la formazione, il funzionamento e le reazioni del centro germinativo e quindi per la generazione di plasmacellule e linfociti B della memoria.
- Cellule follicolari dendritiche (FDC) (attività di esposizione di antigeni e produzione di CXCL13)
- Macrofagi (attività fagocitica): localizzati sia nei seni sottocapsulari, nel cordone midollare e nei centri germinativi.



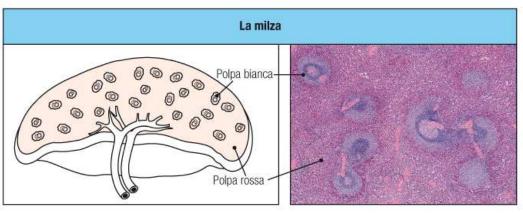
Linfonodo: area paracorticale

Il principale sito per i linfociti T nel linfonodo.

Linfociti T näive:

- Entrano nel linfonodo dal sangue attraverso le venule ad alto endotelio (HEV) richiamati dalle chemochine CCL19 e CCL21 (recettore CCR7)
- Vengono attivati dall'antigene presentato dalle cellule dendritiche

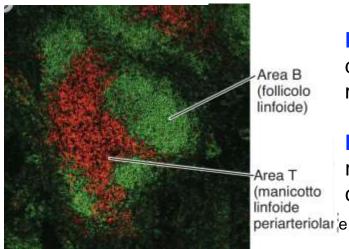

- Proliferazione clonale: clone di linfociti T effettori che rispondono ad uno specifico antigene.
- I linfociti T effettori entrano nel torrente circolatorio per raggiungere i tessuti periferici.
- Cellule accessorie: Cellule dendritiche (numerose nella paracorteccia) che agiscono come APC (cellule presentanti l'antigene) e cellule reticolari fibroblastiche (FRC) che producono CCL19 e CCL21


Localizzata nel quadrante superiore sinistro dell'addome

Milza

Struttura:

Organo molto vascolarizzato di circa 150 g nell'adulto il cui parenchima è suddiviso in polpa rossa e polpa bianca.



Polpa rossa: numerosi seni e sinusoidi vascolari riempiti di sangue e macrofagi

Polpa bianca: ricca di linfociti T e B

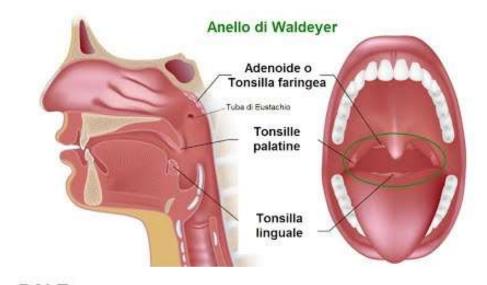
Funzioni:

Visione schematica della milza in cui è in evidenza la polpa bianca costituita dalle aree T e B.

Polpa rossa: rimuovere i globuli rossi danneggiati, gli immunocomplessi ed i microbi opsonizzati

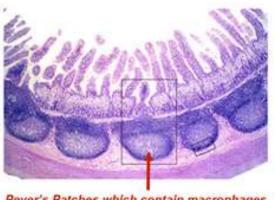
Polpa bianca: sede di attivazione delle risposte adattative (dei linfociti T e B) contro gli antigeni presenti nel sangue

Tessuto linfoide associato alla mucosa (MALT)

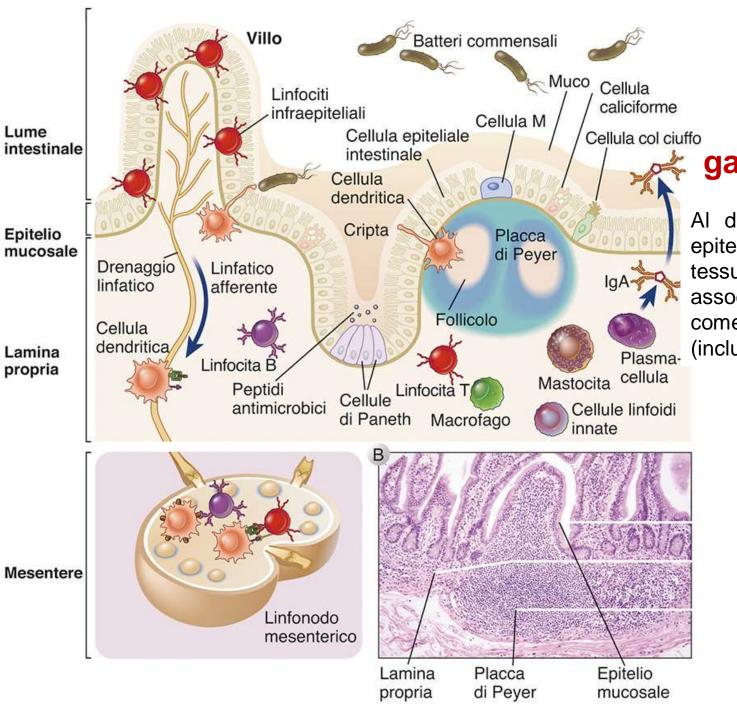

Tessuto linfoide associato all'intestino (GALT) e alle vie respiratorie (NALT e BALT)

GALT (gut associated lymphoid tissue):

- Tonsille e adenoidi (anello di Waldeyer)
- Placche del Peyer (grandi aggregati di cellule linfoidi nell'intestino tenue)
- Aggregati linfoidi nell'appendice e nell'intestino crasso
- Tessuto linfoide dello stomaco
- Piccoli aggregati linfoidi dell'esofago
- Cellule linfoidi e plasmacellule distribuite diffusamente nella lamina propria dell'intestino


NALT (nasal-associated lymphoid tissue): tessuto linfoide associato al naso

BALT (bronchus-associated lymphoid tissue): tessuto linfoide associato ai bronchi


BALT (Bronchus-Associated Lymphoid Tissue

GALT (Gut-Associated Lymphoid Tissue)

Peyer's Patches which contain macrophages

Il MALT ha follicoli distinti di linfociti B e aree di linfociti T oltre a numerose cellule presentanti l'antigene.

Il sistema Immunitario gastrointestinale

Al di sotto della barriera epiteliale sono presenti tessuti linfoidi organizzati associati alla mucosa come le placche di Peyer (incluse nel GALT)