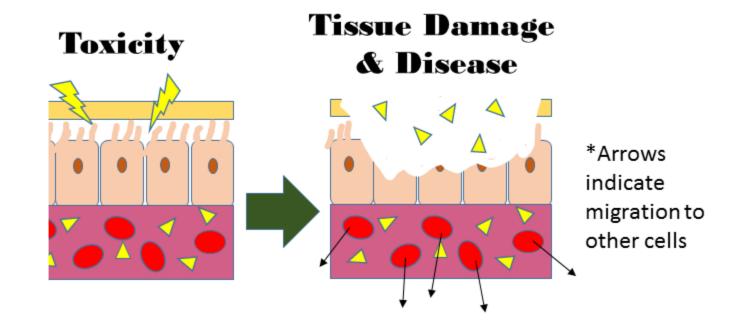

Pathogenic Infection


Pathogenic Infection

La patogenesi è promossa dalla produzione di:

FATTORI DI VIRULENZA

TOSSINE

Invasion Colonization

Molecole che aiutano il batterio a colonizzare l'ospite

Fattori di virulenza citosolici facilitano il batterio a subire un rapido adattamento metabolico e rapidi cambiamenti fisiologici e morfologici.

Fattori di virulenza
associati alla membrana
aiutano il batterio
nell'adesione e nell'evasione
della cellula ospite.

Fattori di virulenza secretori
aiutano il batterio a superare la
risposta immunitaria innata e
adattativa dell'ospite. In patogeni
extracellulari, i fattori di virulenza
secretori agiscono sinergicamente per
uccidere le cellule dell'ospite.

FATTORI DI VIRULENZA

Salmonella

L'esito di un'infezione da *Salmonella* è determinato dallo stato dell'ospite e dallo stato del batterio.

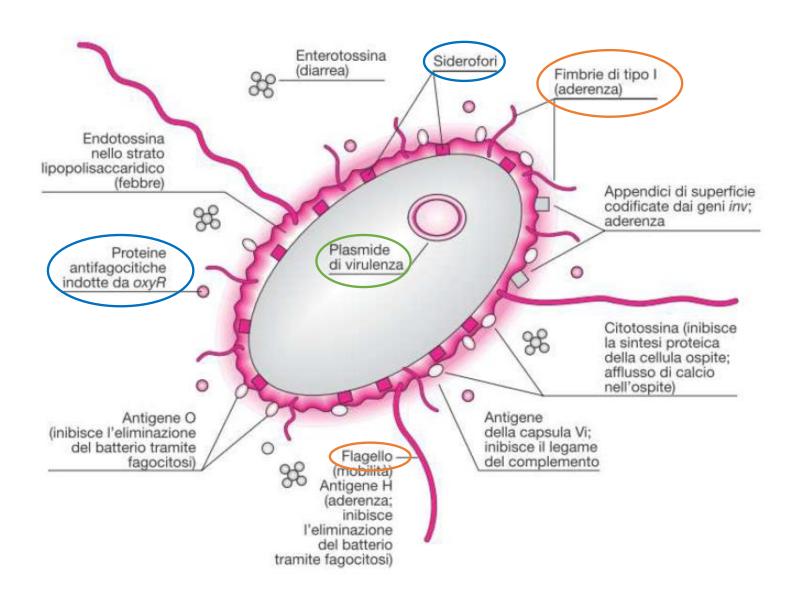
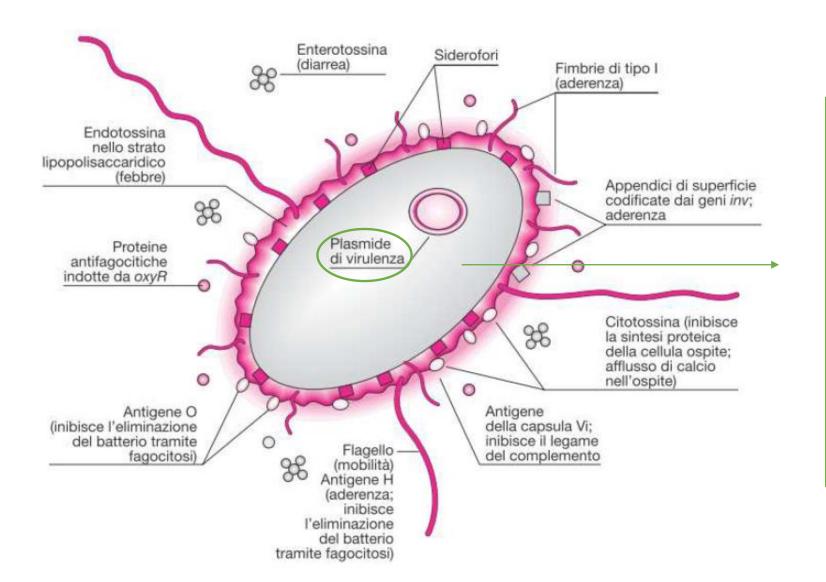

Mentre l'età, i fattori genetici e ambientali influenzano principalmente lo stato dell'ospite, lo stato del batterio è determinato dai cosiddetti fattori di virulenza. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium

Table 2 Main virulence factors, DNA location, and main functions

Virulence factor	Location	Function	
SipA	SPI-1ª	Cytoske leton rearrangement	
		Chemotaxis	
SipB	SPI-1	Translocation of effector proteins	
-		Macrophage apoptosis impairment	
SipC	SPI-1	Chemotaxis	
		Cytoskeleton rearrangement	
SptP	SPI-1	Suppression of innate immunity	
trr genes	SPI-2	Production of tetrathionate reductase	
SpiC	SPI-2	Translocation of effector proteins	
		Survival within SCV ^c	
SseB	SPI-2	Formation of macromolecular structures which serves as a translocon	
SæC	SPI-2	Formation of macromolecular structures which serves as a translocon	
SæD	SPI-2	Formation of macromolecular structures which serves as a translocon	
SseF	SPI-2	SCV perinuclear migration	
		Microtubule aggregation	
		SIF formation ^b	
SæG	SPI-2	SCV perinuclear migration	
		Microtubule aggregation	
		SIF formation	
MisL	SPI-3	Long-term persistence	
MgtCB	SPI-3	Survival within macrophages	
MarT	SPI-3	Activation of MisL expression	
SiiE	SPI-4	Adhesion to the epithelium	
SopB	SPI-5	Prevents apoptosis of epithelial cells	
SigE	SPI-5	Chaperone	
SpvR	pSLT	Regulation of spv genes	
SpvB	pSLT	Prevents actin polymerization	
SpvC	pSLT	Inhibits MAP kinase and immune signaling	
Type I Fimbrae	Chromosome	Adhesion to the epithelium	
SifA	Chromosome	SIF formation	
		SCV maintenance	
SseJ	Chromosome	SIF formation	
SopE	Chromosome	Induce membrane ruffling in cell cultures	
SopE2	Chromosome	Induce membrane ruffling in cell cultures	

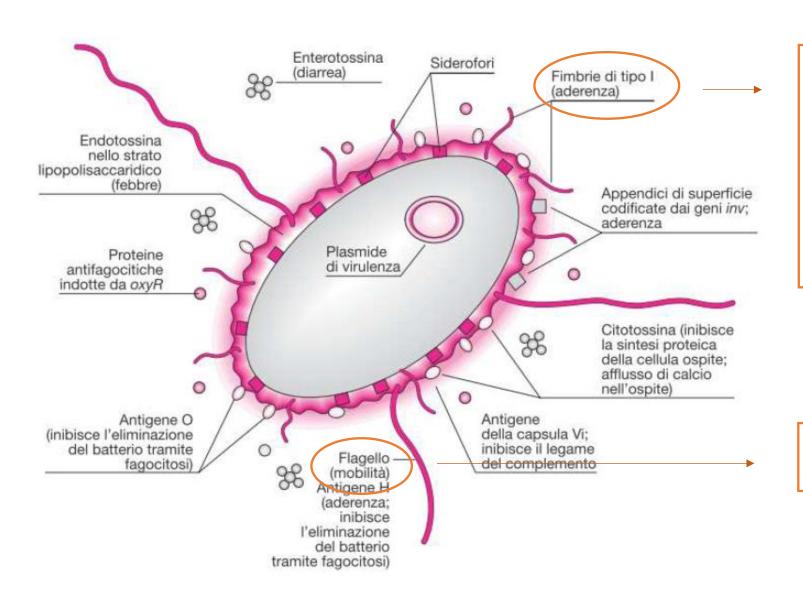
^aSPI Salmonella pathogenicity island

Salmonella



Fattori di virulenza citosolici

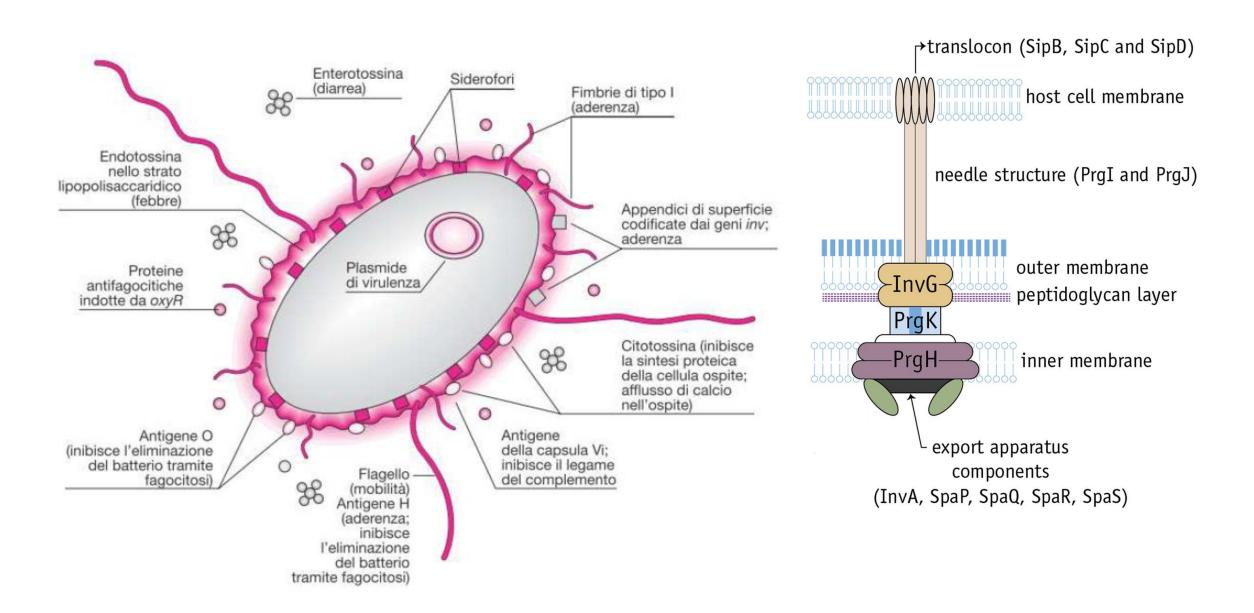
Fattori di virulenza associati alla membrana


Fattori di virulenza secretori

Salmonella

Plasmide di virulenza a basso numero di copie (1-2 copie per cellula) di dimensioni variabili a seconda del sierotipo (da 50 kb a 110 kb). Il plasmide di virulenza ospita i geni codificanti per i principali fattori di virulenza di Salmonella. Ad esempio, il locus spv (del plasmide di virulenza di Salmonella) di 7,8 kb che ospita 5 geni spv RABCD che hanno un ruolo nella moltiplicazione intracellulare di Salmonella.

Salmonella: fattori di virulenza associati alla membrana

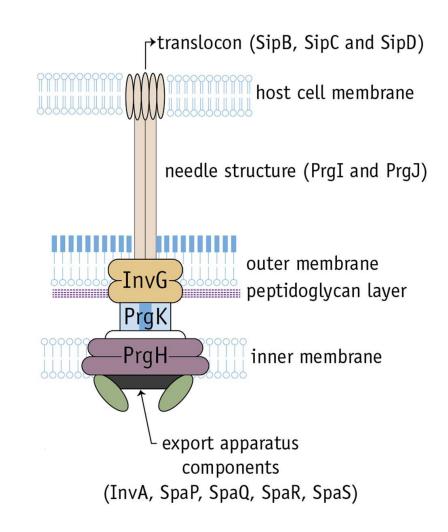


Salmonella ha 13 loci predetti per le fimbrie, molti dei quali sono indotti in vivo e sono necessari per:

- formazione del biofilm,
- adesione alle cellule dell'ospite,
- colonizzazione,
- non per la sopravvivenza intracellulare.

La motilità flagellare può aumentare l'invasività di *Salmonella*

Salmonella: fattori di virulenza secretori



Salmonella: fattori di virulenza secretori

Salmonella possiede un apparato molecolare chiamato Sistema di secrezione di tipo III (T3SS) responsabile di iniettare proteine effettrici nel citosol delle cellule ospiti.

Gli effettori esportati alterano le funzioni cellulari come la struttura del citoscheletro, il trasporto di membrana, la trasduzione del segnale e l'espressione di citochine.

Questi cambiamenti permettono l'invasione e la permanenza del batterio nella cellula infettata.

TOSSINE

Gruppo di sostanze solubili, secrete dalle cellule batteriche in grado di alterare il metabolismo delle cellule con effetti deleteri per l'organismo ospite.

Caratteristiche:

- Comprendono una varietà di molecole con meccanismi di azione molto diversi → possono agire alterando strutture vitali della cellula ospite quali la membrana esterna o agendo su uno specifico obiettivo intracellulare (es. rimodellamento del citoscheletro, innesco di processi di morte e sintesi proteica)
- Diverse tossine, prodotte anche da organismi diversi, spesso colpiscono molecole bersaglio comuni → proteine che rivestono ruoli chiave nei processi fisiologici della cellula eucariote (es. proteine della famiglia delle piccole GTPasi della famiglia Rho, Rac, CDC42 importanti nei meccanismi di polimerizzazione dell'actina)
- Un singolo patogeno può produrre un numero elevato di tossine con differenti meccanismi di azione in diverse cellule bersaglio, in coerenza con le fasi del processo di patogenesi in cui queste molecole sono coinvolte

TOSSINE

Contribuiscono al danno tissutale provocato dai batteri

ESOTOSSINE

Proteine extracellulari ad azione estremamente tossica secrete principalmente da batteri Grampositivi e solo da alcuni batteri Gramnegativi.

ENTEROTOSSINE

Esotossine che agiscono sull'intestino tenue provocando un'abbondante secrezione di fluidi nel lumen intestinale, che porta a vomito e diarrea.

ENDOTOSSINE

Componenti lipopolisaccaridiche (LPS), termostabili, della membrana esterna dei batteri Gram-negativi, liberate nella circolazione dell'ospite a seguito della lisi della cellula batterica.

Tabella 19.4 TOSSINE CHE AGISCONO DALL'ESTERNO DELLA CELLULA.

Tipologia	Microrganismo	Tossina
Superantigeni	Streptococcus pyogenes	SPE-A, C, G, H, I, J, M, SSA
	Staphylococcus aureus	SEA, SEB, SEC(1-3), SED, SEE, SEG-Q, TSST
	Streptococcus dysgalactiae	SPE-A7, SPE-G ^{dys} , SDM
	Yersinia pseudotuberculosis	YPM-A, YPMB
Tossine RTX	Escherichia coli	HylA (emolisina)
	Actinobacillus actinomycetemcomitans	LtxA (emolisina)
	Actinobacillus pleuropneumoniae	ApxIA-ApxIVA (emolisina-leucotossina)
	Bordetella pertussis	CyaA (emolisina-adenilico-ciclasi)
	Proteus vulgaris	PvxA (emolisina)
Tossine che si legano al colesterolo (citolisine)	Streptococcus pneumoniae	Pneumolisina
	Streptococcus pyogenes	Streptolisina O
	Listeria monocytogenes	Listeriolisina O
	Clostridium perfringens	Perfringolisina O
	Clostridium tetani	Tetanolisina
	Bacillus cereus	Cereolisina
	Bacillus thuringiensis	Turingolisina

- Rilasciate nell'ambiente circostante da microrganismi in crescita, diffondendo quindi dal focolaio di infezione verso altre parti del corpo.
- Si dividono in 3 categorie:
 - 1. Tossine citolitiche → sono enzimi che attaccano i costituenti cellulari come la membrana esterna delle cellule animali, provocandone lisi e morte. Esempio: tossine che agiscono sui globuli rossi del sangue, *emolisine*; tossine che agiscono sui fosfolipidi della membrana citoplasmatica della cellula ospite, *fosfolipasi*.
 - 2. Tossine A-B → la porzione biologicamente attiva della tossina può essere internalizzata dalla cellula bersaglio e svolgere nel citoplasma la sua azione deleteria. Sono costituite da due subunità legate covalentemente: componente B si lega ad un recettore presente sulla superficie cellulare, in modo da permettere il trasferimento della subunità A attraverso la membrana della cellula bersaglio. Esempio: tossina difterica, tetanica e botulinica.
 - **3. Tossine superantigeniche** → stimolano un elevato numero di cellule deputate alla risposta immunitaria, provocando così una estesa reazione infiammatoria.

TOSSINE CITOLITICHE

- Formano pori sulla superficie cellulare
- Causano danni di differente entità, a seconda della dimensione del poro
- La lesione sulla membrana cellulare porta inevitabilmente sia all'efflusso sia all'influsso di piccole molecole e acqua sia alla distruzione del potenziale di membrana
- A seconda della dimensione del poro, la cellula coinvolta può sia recuperare sia andare incontro a morte
- Sono classificate anche in base alle dimensioni del poro nelle membrane della cellula bersaglio
 - Tossine che formano «<u>pori piccoli</u>» (1-1,5nm) determinano la permeabilità selettiva di molecole con massa molecolare <2kDa. Es: α-emolisina di *Escherichia coli* secreta mediante il sistema di secrezione di tipo I; bersaglia diverse tipologie di cellula tra cui eritrociti, leucociti, cellule endoteliali, cellule epiteliali del rene, monociti. Il danno prodotto inizia con la permeabilizzazione della membrana cellulare con perdita di piccoli soluti, shock osmotico e morte.
 - Tossine che formano «pori di grandi dimensioni» (fino a 35nm di diametro). Il meccanismo di azione comporta il legame al colesterolo sulla membrana delle cellule bersaglio, oligomerizzazione dei monomeri con conseguente formazione del poro. I pori formati permettono il flusso di molecole di piccole e grandi dimensioni che portano inevitabilmente a morte la cellula. Es: streptolisina-O di Streptococcus pyogenes

SUPERANTIGENI

- Agiscono all'esterno della cellula
- Prodotti principalmente da batteri Gram positivi: streptococchi e stafilococchi
- Tossina 1 della sindrome da shock tossico (TSST-1) prodotta da Staphylococcus aureus → interagisce direttamente con il T cell receptor (TCR) dei linfociti T helper e contemporaneamente con le molecole di MHC (Major Histocompatibility Complex) Il sulle cellule APC (Antigen Presenting Cell), come ad esempio i macrofagi.
 - Condizioni fisiologiche → antigene convenzionale catturato e processato da APC che lo presentano in associazione con MHCII sottoforma di peptidi al TCR delle cellule immunocompetenti come linfociti T helper.
 Ogni peptide attiva uno o più cloni di linfociti T che attivano immunità adattativa.
 - In presenza di super-antigeni → mediano il legame tra MCHII e TCR in assenza dell'antigene convenzionale e di conseguenza procedono all'attivazione aspecifica di un sottogruppo di linfociti T helper con conseguente rilascio di mediatori dell'infiammazione come interleuchine-1, 6, 8. Ne risulta una reazione generalizzata e non localizzata al solo tessuto/organo colpito.

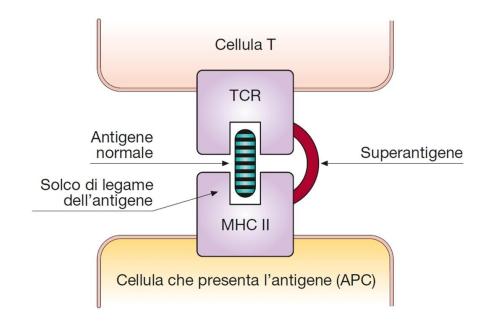


Figura 19.20 STRUTTURA DI UN SUPERANTIGENE. Un superantigene lega direttamente la molecola MHC-II (major histocompatibility complex) presente sulle cellule APC (antigen presenting cells) e interagisce in maniera aspecifica con il TCR (T cell receptor) dei linfociti T, al di fuori del solco dove sono normalmente presenti gli antigeni, attivandoli in maniera non-specifica.

- Tossine solubili con bersagli intracellulari → tossine che devono raggiungere il citoplasma delle cellule bersaglio per svolgere il loro ruolo biologico
- Struttura costituita da un dominio «tossico» che esplica l'attività biologica, dominio A, e un dominio carrier (trasportatore), dominio B, che media l'interazione della tossina al recettore della cellula eucariota
- I domini A e B possono essere costituiti da monomeri tenuti insieme da un ponte disolfuro, es: tossina tetanica, botulinica e difterica. In seguito al legame del dominio B con lo specifico recettore sulla cellula eucariota, al momento dell'internalizzazione avverrà una riduzione autocatalitica del legame S-S e il solo dominio A verrà internalizzato dalla cellula bersaglio oppure il dominio B rimarrà all'esterno della cellula sulla membrana

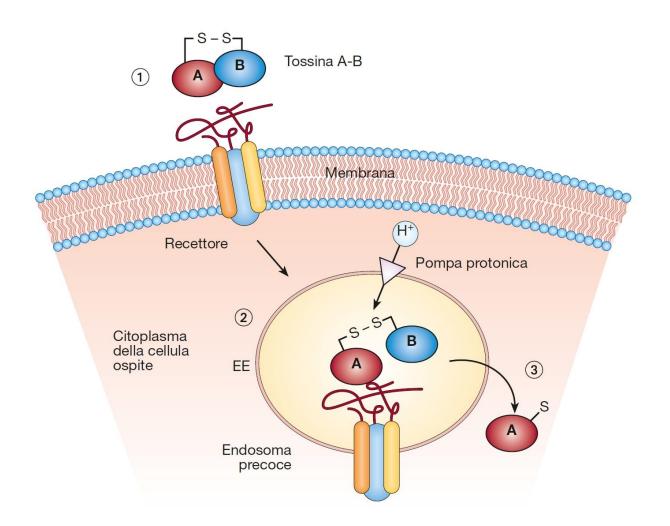
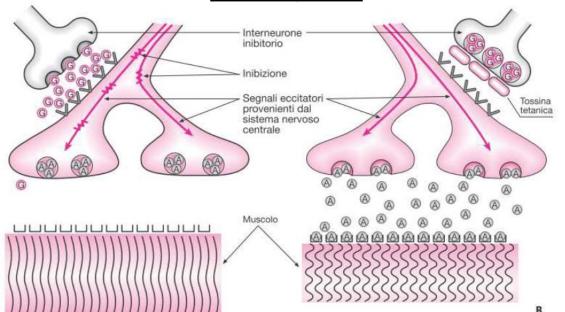


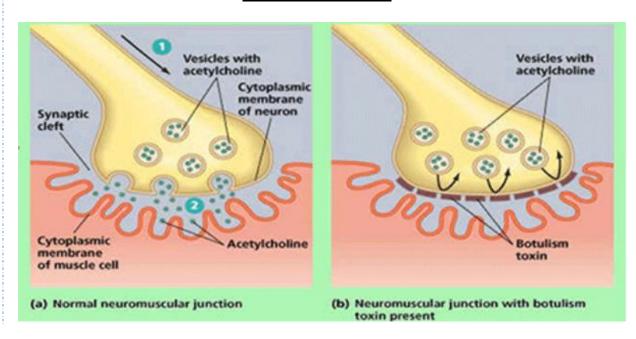
Figura 19.21 INTERNALIZZAZIONE DI UNA TOSSINA MONOMERICA A-B. (1) La tossina viene a contatto attraverso il dominio B con lo specifico recettore sulla membrana della cellula ospite. (2) Dopo l'internalizzazione, la tossina si trova all'interno dell'endosoma precoce dove avviene un processo di acidificazione a causa dell'attivazione delle pompe protoniche di membrana. (3) Questo processo causa la riduzione del legame disolfuro del complesso A-B e il rilascio nel citosol del dominio attivo A.

Tabella 19.5 ESEMPI DELLE ATTIVITÀ ENZIMATICHE DELLE TOSSINE A-B.

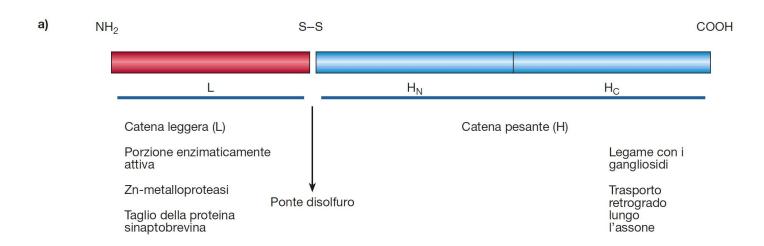

Funzione enzimatica	Tossina	Microrganismo	Effetto
ADP-ribosiltransferasi	CT(AB ₅)	Vibrio cholerae	Attivazione dell'adenilato ciclasi con susseguenti aumenti del livello di cAMP. Deregolazione nel flusso di ioni. Diarrea
	ExoA	Pseudomonas aeruginosa	Blocco della sintesi proteica
	PTX	Bordetella pertussis	Attivazione dell'adenilato ciclasi con susseguenti aumenti del livello di cAMP. Alterazione delle vie di segnalazione cellulari
	DTX	Corynebacterium diphtheriae	Blocco della sintesi proteica
	C2	Clostridium botulinum	Alterazioni strutturali e funzionali del citoscheletro
N-glicosilazione	STx1, STx2	Escherichia coli	Blocco della sintesi proteica
Glicosilazione	TcdA, TcdB	Clostridium difficile	Alterazione del citoscheletro
Deamidazione	CNF1, CNF2	Escherichia coli	Alterazione del citoscheletro
Attività proteasica	TeNT	Clostridium tetani	Inibizione del rilascio di neurotrasmettitori
	BoNT	Clostridium botulinum	Inibizione del rilascio di neurotrasmettitori
	LF	Bacillus anthracis	Rilascio di citochine pro-infiammatorie
Attività adenilato-ciclasica	СуА	Bordetella pertussis	Innalzamento dei livelli di cAMP. Alterazione della trasduzione del segnale
	EF	Bacillus anthracis	Innalzamento dei livelli di cAMP. Accumulo di fluidi

tetanica e botulinica

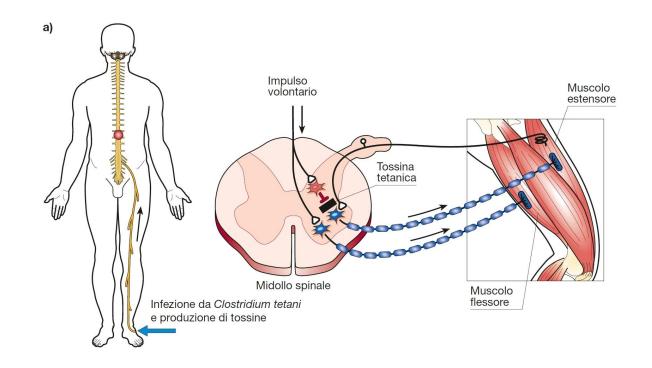
- Neurotossine → definite tali sulla base del loro bersaglio, le cellule del sistema nervoso centrale e periferico
- Bloccano il rilascio di neurotrasmettitori implicati nel controllo della contrazione muscolare → effetti diversi
- Batteri Gram positivi sporigeni, anaerobi obbligati, del suolo


Clostridium tetani

stato patologico indotto dalla sua tossina si definisce paralisi spastica


Clostridium botulinum

stato patologico causato dalla sua tossina si caratterizza come paralisi flaccida


Tossina tetanica prodotta da *Clostridium tetani*

- Si conosce una sola tossina tetanica
- > Tossina A-B prodotta come singola catena polipeptidica di 150 kDa. In seguito la catena polipeptidica genera per proteolisi due frammenti:
 - Catena heavy (H) di 100kDa è coinvolta nel legame con il recettore sulle cellule bersaglio e funge da traslocatore per la porzione attiva
 - Catena light (L) di 50kDa è la subunità attiva della tossina che agisce da agisce nel citosol delle cellule bersaglio

Tossina tetanica prodotta da *Clostridium tetani*

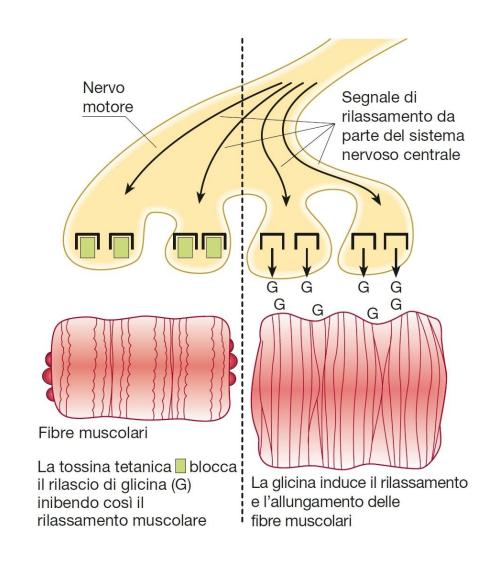
- ➤ La tossina viene introdotta mediante ferite infette da *Clostridium tetani* → quanto più è profonda la ferita (ambiente anaerobio) tanto più c'è rischio che possa essere infetta da *C. tetani*
- Viene poi internalizzata dai motoneuroni terminali

Tossina tetanica prodotta da *Clostridium tetani*

> Seguendo il trasporto assonale retrogrado lungo i microtubuli e i microfilamenti, la tossina raggiunge il sistema nervoso centrale e in particolare gli interneuroni inibitori dove viene rilasciata nel citosol mediante il classico meccanismo delle tossine A-B

<u>Interneuroni motori</u>

hanno un ruolo importante nella trasmissione dello stimolo contrattile alle cellule muscolari

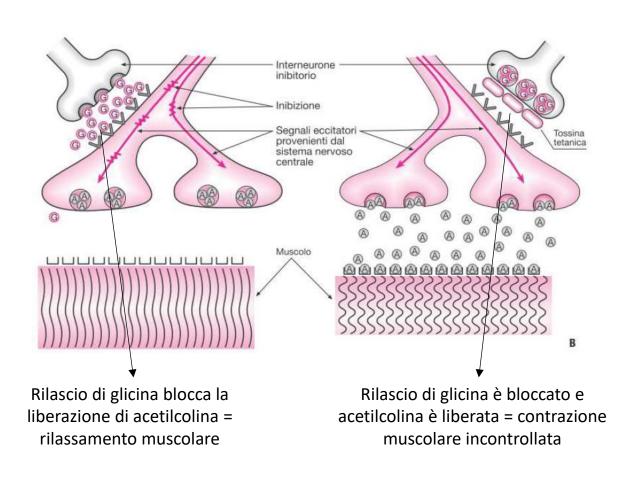

Tossina tetanica prodotta da *Clostridium tetani*

Condizione patologica

La tossina tetanica agisce sulle SNARE impedendo la fusione delle vescicole contenenti il neurotrasmettitore con la membrana presinaptica e contrastandone il rilascio

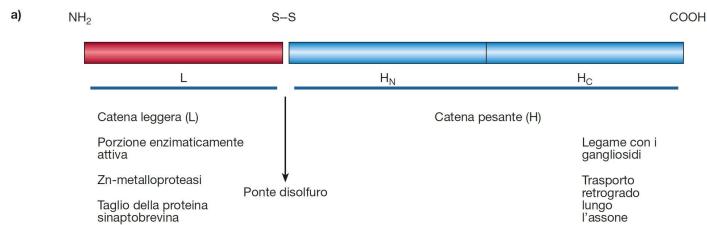
Questo determina la continuazione dello stimolo contrattile del muscolo

↓ Paralisi spastica

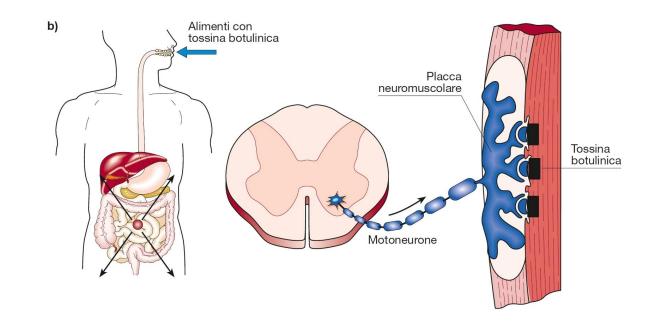


Condizione fisiologica

Interneuroni motori interrompono il circuito dello stimolo mediante il rilascio di neurotrasmettitori inibitori, di solito glicina o acido gamma-aminobutirrico (GABA), che inibiscono il rilascio di Acetilcolina da parte dei motoneuroni


Avviene il blocco della contrazione della cellula muscolare

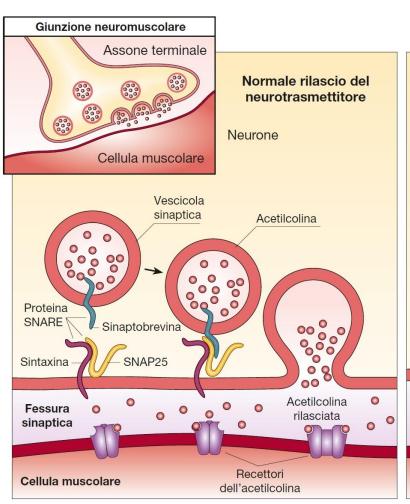
Tossina tetanica prodotta da *Clostridium tetani*


Tossina botulinica prodotta da *Clostridium botulinum*

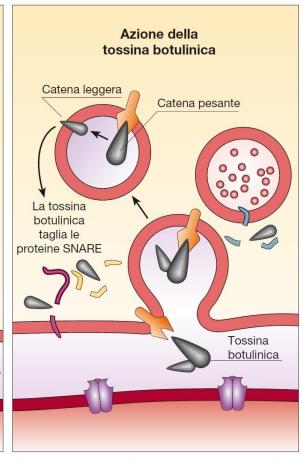
- È uno dei veleni più potenti esistenti in natura: pochi nanogrammi sono sufficienti per uccidere un essere umano
- > Esistono diversi sierotipi di tossina botulinica
- > Tossina A-B prodotta come singola catena polipeptidica di 150 kDa. In seguito la catena polipeptidica genera per proteolisi due frammenti:
 - Catena heavy (H) di 100kDa è coinvolta nel legame con il recettore sulle cellule bersaglio e funge da traslocatore per la porzione attiva
 - Catena light (L) di 50kDa è la subunità attiva della tossina che agisce da agisce nel citosol delle cellule bersaglio

Tossina botulinica prodotta da *Clostridium botulinum*

- ➤ Raramente è in grado di crescere nell'organismo animale ma può crescere e produrre la tossina in alimenti conservati non correttamente → non c'è necessità di venire a contatto con il batterio affinchè la tossina possa esercitare la sua azione
- ➤ La tossina ingerita con alimenti contaminati non viene inattivata dall'acidità gastrica ma, al contrario, viene internalizzata dalle cellule dell'epitelio gastrico. Da qui per transcitosi raggiunge il lato basolaterale delle cellule che compongono la barriera epiteliale e può avere accesso alla circolazione sanguigna
- Raggiunge i motoneuroni associati al sistema nervoso periferico



Tossina botulinica prodotta da Clostridium botulinum

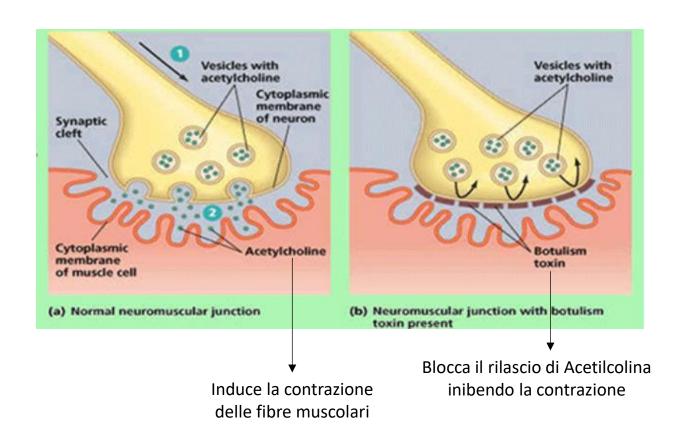

Condizione fisiologica

A livello delle sinapsi neuromuscolari, il motoneurone presinaptico rilascia il neurotrasmettitore, l'Acetilcolina, mediante un meccanismo che comporta la fusione sulla membrana cellulare di vescicole contenenti Acetilcolina SNARE

Avviene la propagazione dello stimolo e la contrazione muscolare

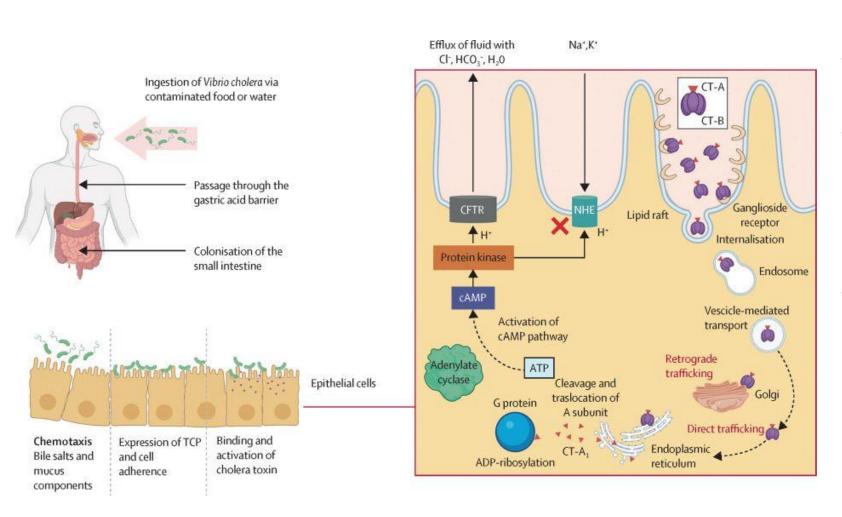
Attivazione della cellula muscolare

Blocco dell'attivazione della cellula muscolare


Condizione patologica

La tossina, una volta internalizzata dai motoneuroni, viene rilasciata nel citosol dove esercita la sua azione proteolitica sulle proteine del complesso SNARE

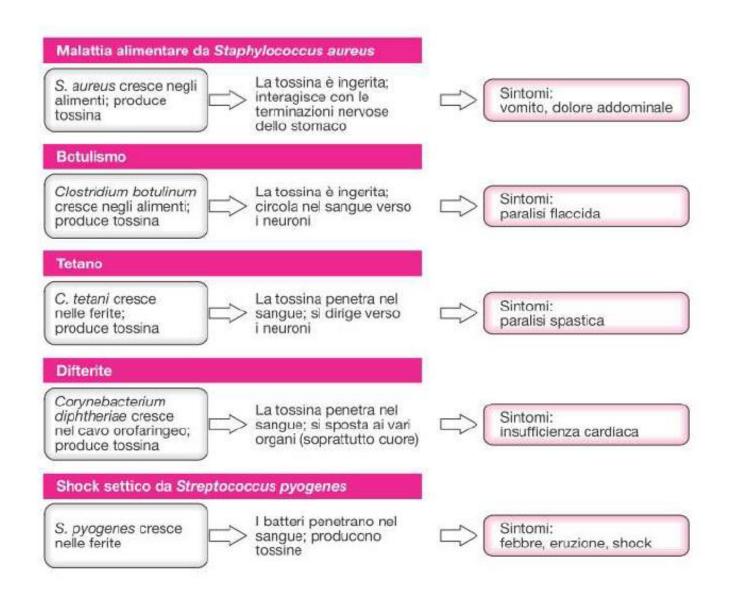
Impedimento nella fusione delle vescicole e mancato rilascio dell'Acetilcolina con conseguente assenza di contrazione muscolare


> ↓ Paralisi flaccida

Tossina botulinica prodotta da Clostridium botulinum

ENTEROTOSSINE

La tossina colerica



- Prodotta da Vibrio cholerae, agente eziologico del colera
- Tossina A-B: subunità B lega il ganglioside GM1 presente sulla membrana delle cellule epiteliali; subunità A viene trasferita nel citoplasma della cellula bersaglio
- Subunità A attiva l'enzima cellulare adenilatociclasi che converte l'ATP in AMP ciclico

 l'aumento dei livelli di AMP ciclico provoca una secrezione attiva di ioni cloro e bicarbonato da parte delle cellule della mucosa nel lumen intestinale.

 massiva perdita di liquidi, disidratazione e morte.

TOSSINE

