

Per indurre la malattia il patogeno deve potersi riprodurre. Fattori che influenzano la crescita sono:

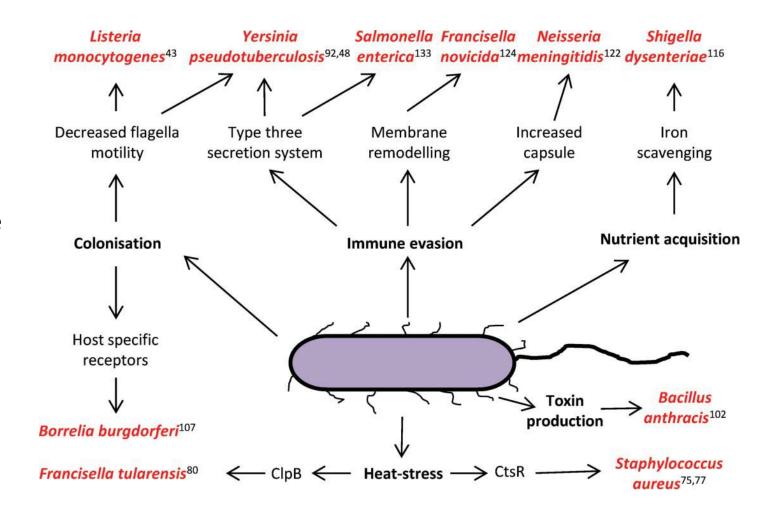
CONDIZIONI AMBIENTALI appropriate

SOSTANZE NUTRITIVE disponibili

COLONIZZAZIONE e CRESCITA

Fattori ambientali che influenzano la crescita

Per colonizzare con successo l'ospite, i batteri patogeni monitorano continuamente molteplici caratteristiche dell'ambiente circostante tra cui:


Temperatura pH Potenziale ossidoriduttivo

In risposta a condizioni ambientali idonee nell'ospite, i patogeni regolano l'espressione genica di **fattori di virulenza** che permettono di attaccarsi alle superfici delle cellule dell'ospite, di eludere le difese immunitarie o di ottenere sostanze nutritive altrimenti inaccessibili.

L'espressione non regolata di questi fattori di virulenza può essere dannosa per i batteri, attraverso lo spreco di risorse metaboliche e l'induzione inappropriata di risposte infiammatorie e immunitarie.

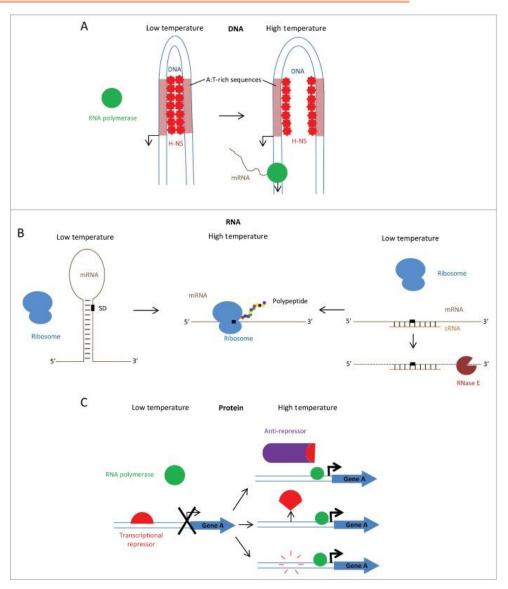
Meccanismi di termo-sensibilità

Termoregolazione di importanti fattori di virulenza nelle specie batteriche patogene → Un aumento a 37 °C (temperatura corporea dei mammiferi) è un segnale di invasione universale per i batteri e consente una regolazione fine dell'espressione dei fattori di virulenza, favorendo la sopravvivenza e la proliferazione nell'ospite.

COLONIZZAZIONE e CRESCITA

Meccanismi di termo-sensibilità

A. topologia del <u>DNA</u> → entità del superavvolgimento e della curvatura può modulare l'espressione genica.


Esempi:

- ❖ T3SS in Salmonella
- ❖ *virF* in *Shigella*
- **B.** struttura dell'<u>RNA</u> → strutture secondarie e terziarie dell'mRNA alterano il legame con i ribosomi con conseguenze sulla traduzione delle proteine.

Esempi:

- RNA termosensore (*cis*-acting): PrfA di *L. monocytogenes*
- sRNA regolatori (trans-acting): adesina AfaD di E. coli patogeni

C. attività delle <u>proteine</u> → subiscono cambiamenti conformazionali a livello di domini termosensibili che ne modulano l'attività o che ne cambiano la suscettibilità alla degradazione.

Temperatura può influenzare:

Motilità batterica

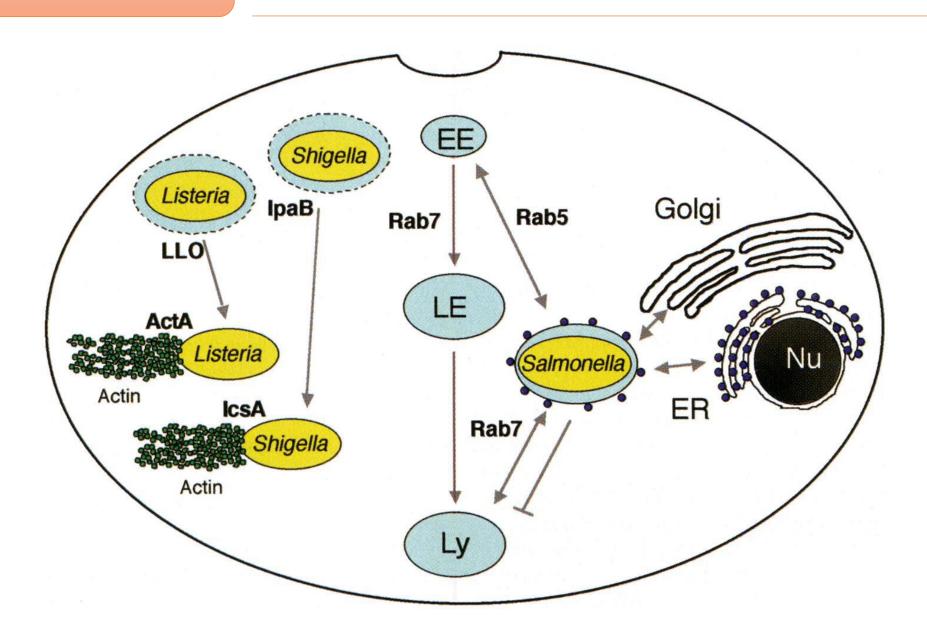

- L. monocytogenes possiede meccanismo che assicura che la motilità sia limitata ad ambienti al di sotto delle temperatura fisiologica dell'ospite (< 37°C)
- > Yersinia non è mobile a 37°C. Il meccanismo non è noto, ma potrebbe essere legato a cambiamenti nel superavvolgimento del DNA

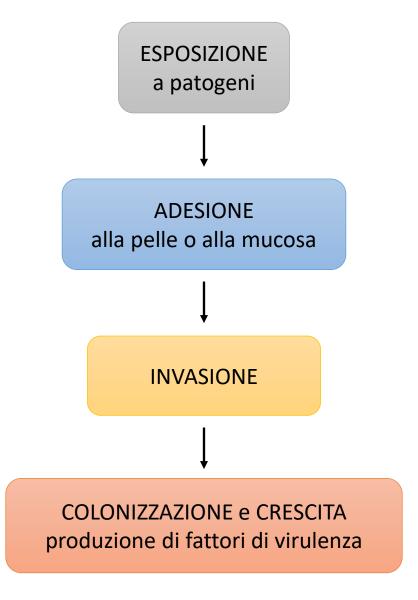
Produzione di esotossine

- > Tossina Shiga-like (Stx-2) di *E. coli* enteroemorragico (EHEC) è soggetta a termoregolazione.
- In Bacillus anthracis, la sintesi dell'attivatore della tossina dell'antrace (AtxA) è dipendente dalla temperatura.
- Adattamento tra diversi ospiti
- Assimilazione di nutrienti
 - In *Pseudomonas aeruginosa* i geni che codificano gli enzimi necessari alla biosintesi dei siderofori, sono regolati in modo differenziato a 22°C rispetto a 37°C. Geni coinvolti nella biosintesi della pioverdina sono up-regolati alle basse temperature, mentre quelli per la biosintesi della piochelina sono upregolati a 37°C.
- Meccanismi di evasione immunitaria

Sostanze nutritive che influenzano la crescita

- Nutrienti solubili come zuccheri, amminoacidi e acidi organici sono spesso presenti in quantità limitate → sono facilitati i microrganismi in grado di utilizzare composti complessi quali glicogeno.
- Vitamine e altri fattori di crescita non sono sempre presenti in quantità sufficiente e in tutti i tessuti → Brucella abortus cresce lentamente nella maggior parte dei tessuti ma rapidamente nella placenta dove è presente eritritolo.
- Oligoelementi quali ferro, zinco, manganese, rame sono presenti in quantità limitata per impedire l'istaurarsi del patogeno



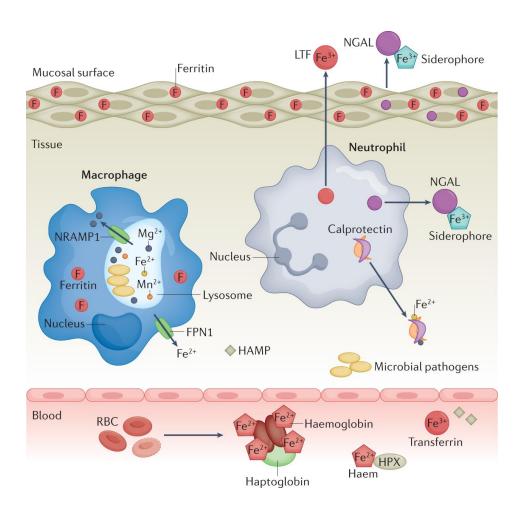

Sopravvivenza intracellulare

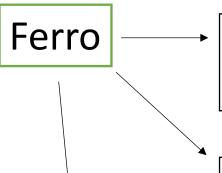
Dopo l'internalizzazione, i batteri intracellulari possono riprodursi in tre classi principali di compartimenti:

- I. <u>Vacuoli</u> simili a lisosomi, che hanno un <u>pH acido</u> e contengono enzimi idrolitici → es. *Coxiella burnetti*, l'agente della febbre Q, è un batterio intracellulare capace di sopravvivere in un compartimento lisosomiale, caratterizzato da pH acido, presenza di idrolasi e peptidi cationici. Nonostante queste condizioni ambientali difficili, *Coxiella* è in grado di replicare in modo efficiente in questo compartimento.
- II. <u>Vacuoli</u> intracellulari <u>non acidi</u> che non si fondono con i lisosomi e sono solitamente rimodellate dal patogeno creando così una nicchia meno ostile e permissiva per la loro sopravvivenza e crescita → es. *Salmonella* rimodella questi vacuoli (SCV) con effettori secreti dal T3SS. Alcuni effettori bloccano il reclutamento della NADPH ossidasi responsabile della produzione di composti battericidi.
- III. <u>Citosol</u>, nel quale alcuni patogeni risiedono dopo essere usciti dal loro vacuolo di internalizzazione → *Listeria* è in grado di sfuggire dal vacuolo di internalizzazione e di accedere al citosol delle cellula ospite grazie a LLO, una tossina formante un poro secreta dal batterio, e da due fosfolipasi batteriche PC- e PI-PLC. Una volta nel citosol, *Listeria* è in grado di replicarsi e di muoversi all'interno delle cellule utilizzando una motilità basata sull'actina.

Sopravvivenza intracellulare

Per indurre la malattia il patogeno deve potersi riprodurre. Fattori che influenzano la crescita sono:


CONDIZIONI AMBIENTALI appropriate


SOSTANZE NUTRITIVE disponibili

Sostanze nutritive che influenzano la crescita

La colonizzazione dell'ospite da parte di un patogeno richiede un'adeguata percezione e risposta ai segnali ambientali locali, per garantire l'adattamento e la sopravvivenza all'interno dell'ospite.

- Nutrienti solubili
- Vitamine e altri fattori di crescita
- Oligoelementi qual ferro zinco, manganese, rame sono presenti in quantità limitata per impedire l'istaurarsi del patogeno

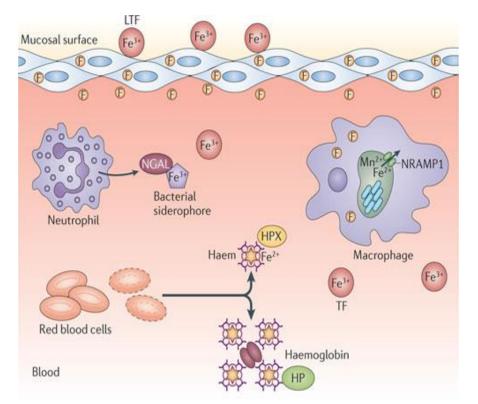
Esiste sottoforma di due stati di ossidazione:

- forma ridotta, ferro ferroso (Fe²⁺)
- forma ossidata, ferro ferrico (Fe³⁺)

Grazie al suo potenziale redox, è un elemento versatile che lo rende adatto ad assumere il ruolo di cofattore di numerose proteine coinvolte in:

- trasporto di elettroni
- detossificazione dei ROS
- sintesi di aminoacidi e nucleosidi
- sintesi del DNA
- fotosintesi

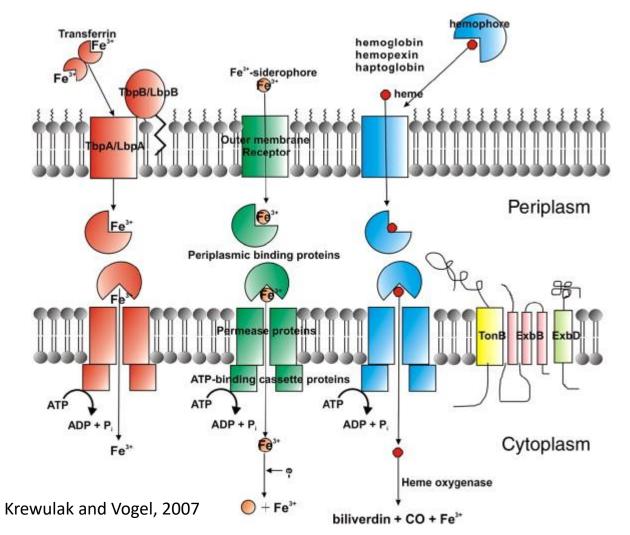
È un elemento essenziale per quasi tutti gli organismi viventi, inclusi i batteri patogeni


Biodisponibilità del ferro

Sebbene sia abbondante in natura, il ferro è difficilmente utilizzabile dalla maggior parte degli organismi viventi a causa della sua bassa solubilità in acqua in condizioni aerobie.

Nell'ambiente il ferro è presente soprattutto nella forma ferrica (Fe³⁺), che è molto poco solubile in presenza di ossigeno e a pH neutro \rightarrow Fe³⁺ 10⁻⁹M

Nell'ospite il ferro è quasi completamente sequestrato da proteine che legano il ferro → Fe³+ 10⁻¹8M

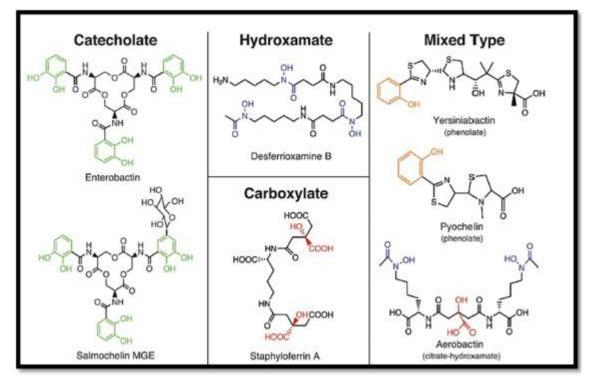

Mantengono il ferro in soluzione ma non lo rendono disponibile ai patogeni:

- Transferrina è il trasportatore del ferro nel sangue
- Lattoferrina trasporta il ferro nei fluidi secretori
- Ferritina sequestra e immagazzina il ferro all'interno delle cellule

Il ferro non è un nutriente facilmente disponibile

Meccanismi di uptake del ferro nei batteri

Al fine di colmare la differenza tra ferro biodisponibile e ferro richiesto per la crescita, i batteri hanno evoluto sistemi specializzati per l'assimilazione del ferro \rightarrow strategie utilizzate:


- Utilizzo di <u>proteine dell'ospite</u> quali transferrina, lattoferrina dalle quali il ferro viene estratto prima di poter essere trasportato nella cellula (es. Neisseria;
- Importo dell'eme all'interno della cellula come molecola intatta → per liberare l'eme legato alle proteine trasportatrici dell'ospite (es. emoglobina), i patogeni secernono esotossine es. emolisine, citolisine e proteasi;
- Produzione e secrezione di molecole a basso peso molecolare che chelano il ferro e che vengono importati come molecole intatte, i siderofori.

Tutte queste vie di assorbimento richiedono un recettore della membrana esterna, una PBP e un trasportatore ABC della membrana interna.

Siderofori

- Caratterizzati da una ridotta massa molecolare (< 1000 Da) e da un'elevata specificità ed affinità nei confronti del ferro ferrico;
- Sintetizzati e secreti dai batteri in risposta a livelli di ferro limitanti la crescita
- Una volta riconosciuto e legato il ferro nell'ambiente extracellulare, il complesso sideroforo-ferro viene legato da un recettore altamente specifico e trasportato nel citoplasma
- Classificati in base al gruppo funzionale che utilizzano per legare il ferro

Cattura del ferro siderofori-mediata nei batteri Gram- negativi e positivi

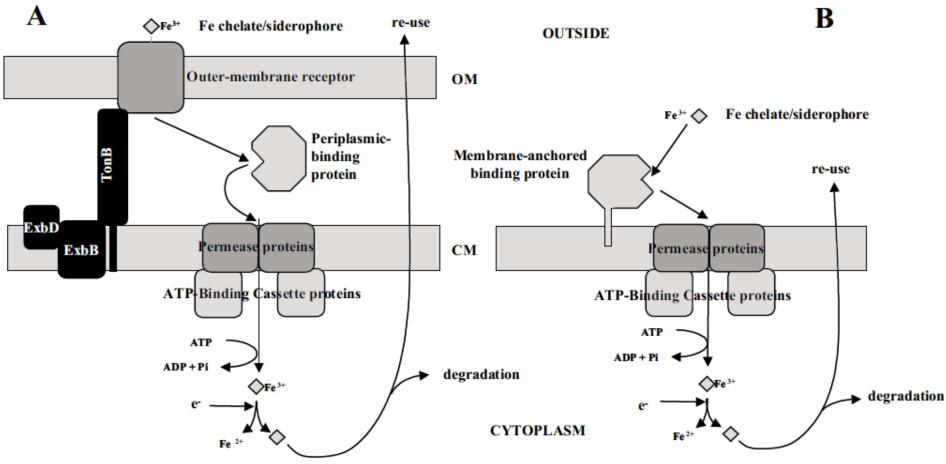
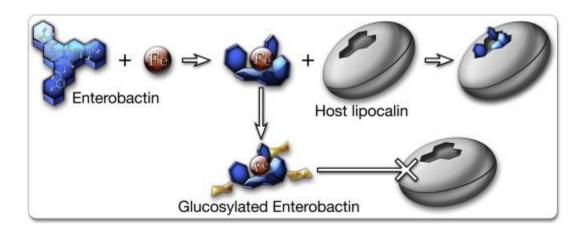



Fig. 1. Schematic representation of siderophore-mediated iron uptake in Gram-negative (A) and Gram-positive (B) bacteria.

Andrews et al., 2003

Come si difende l'ospite dalla cattura del ferro siderofori-mediata?

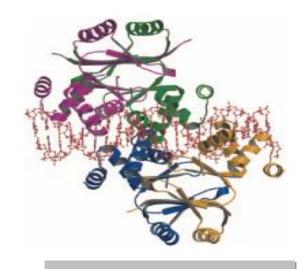
Per combattere la cattura di ione ferrico da parte dei siderofori, nei vertebrati viene prodotta dai macrofagi la lipocalina 2 o siderocalina ovvero un proteina che lega e sequestra i siderofori. La lipocalina 2 (che è anche un fattore di crescita) viene upregolata durante i processi infiammatori.

Alcuni batteri producono dei siderofori che sono in grado di eludere il legame con lipocalina grazie a specifiche modificazioni chimiche (es. glicosilazione nel caso dell'enterobactina)

Il doppio ruolo del ferro: essenziale ma tossico

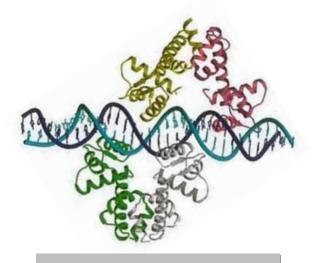
In un ambiente riducente, come quello citoplasmatico, il ferro libero è presente come ione ferroso e, in presenza di perossido di idrogeno, può catalizzare la formazione di specie reattive dell'ossigeno

Reazione di Fenton:
$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$


Le specie reattive dell'ossigeno (ROS) possono danneggiare proteine, lipidi, acidi nucleici

L'importo di ferro deve essere finemente regolato per mantenere una concentrazione intracellulare entro limiti «sicuri»

I batteri necessitano di meccanismi per percepire e controllare i livelli intracellulari di ferro

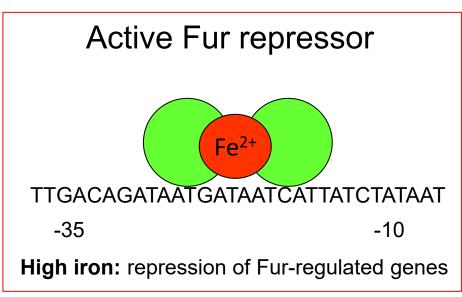

Regolazione dei sistemi di uptake del ferro

Fur (ferric uptake regulator)

Gram-negative bacteria

DtxR (Diphtheria toxin repressor)

Gram-positive bacteria

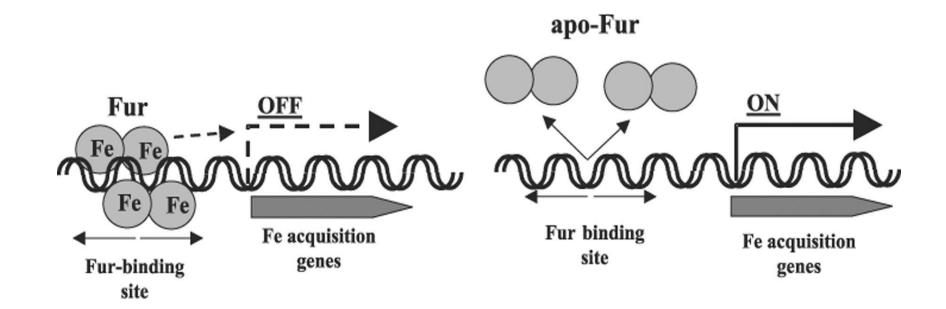

Fur e DtxR sono regolatori principali del metabolismo del ferro

Agiscono come repressori trascrizionali

Fur e la regolazione del ferro

- Piccola proteina (15-17 KDa) presente in praticamente tutti i batteri Gram-negativi
- Regola un cospicuo numero di geni → in *E. coli* sono più di 90
- Necessita del co-repressore Fe²⁺ per dimerizzare, legare il DNA (affinità 1000 volte superiore rispetto alla forma apo) a livello della Fur box e reprimere la trascrizione dei geni bersaglio
- Rappresenta un sensore dei livelli intracellulari di ferro

Inactive Fur repressor TTGACAGATAATGATAATCATTATCTATAAT -35 -10 Low iron: transcription of Fur-regulated genes



Repressione genica mediata da Fur

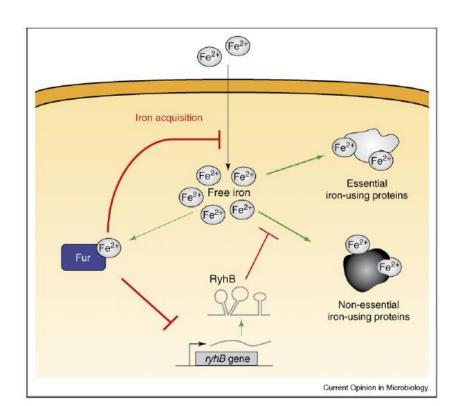
HIGH IRON
Repression of iron uptake genes

LOW IRON

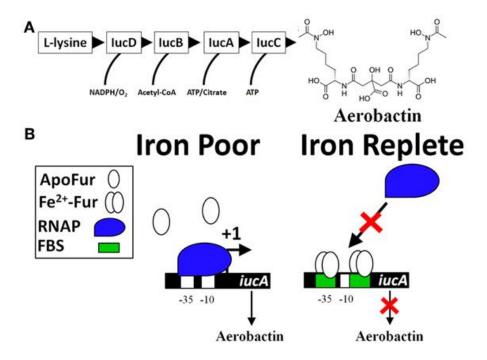
Derepression of iron uptake genes

Fur e la regolazione del ferro

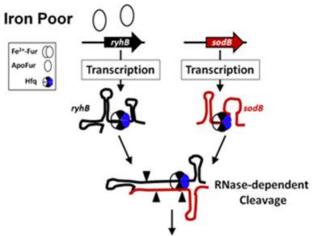
I batteri hanno anche bisogno di esprimere proteine specifiche che utilizzano il ferro in risposta ad elevati livelli di ferro


I geni indotti in presenza di ferro sono coinvolti in:

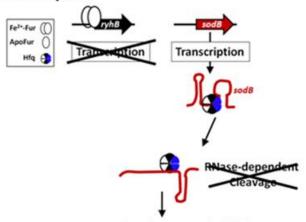
- immagazzinamento del ferro
- difesa dallo stress ossidativo
- metabolismo
- altri processi cellulari


COME?

...accoppiando due sistemi di regolazione negativa

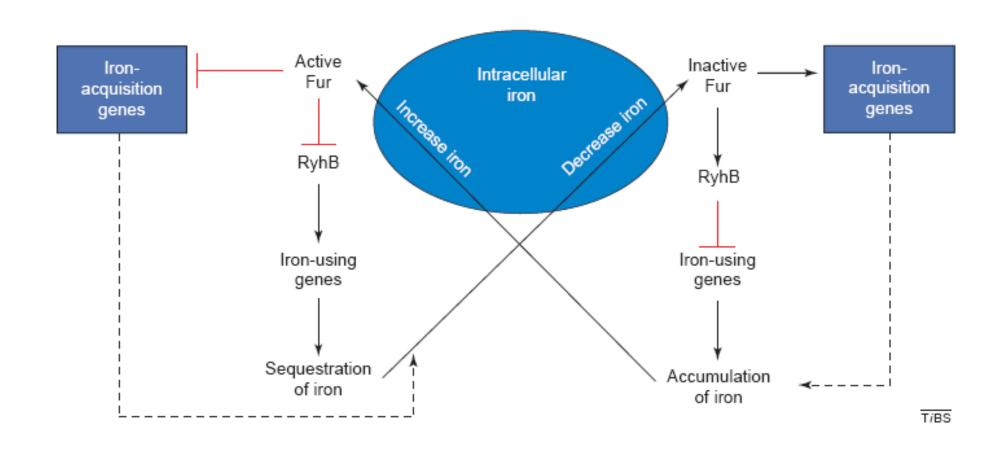

È il caso dello sRNA RyhB di E. coli

Geni regolati da Fur



A "ryhB-dependent"

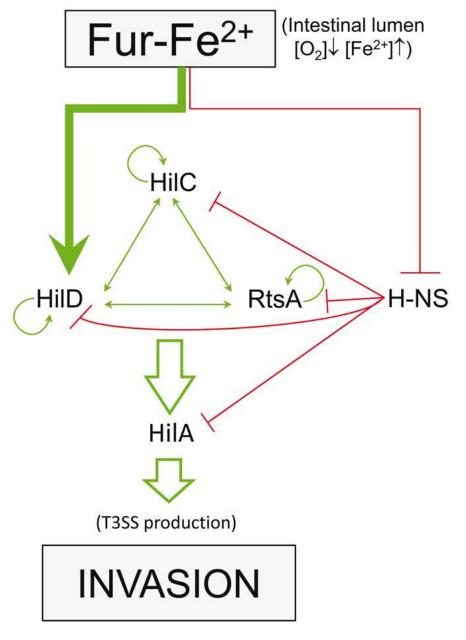
Reduced sodB mRNA half-life Reduced SodB protein


Iron Replete

Increased sodB mRNA half-life Increased SodB protein

Omeostasi del ferro

Un equilibrio ben regolato dell'attività di Fur permette ai batteri di mantenere l'omeostasi del ferro

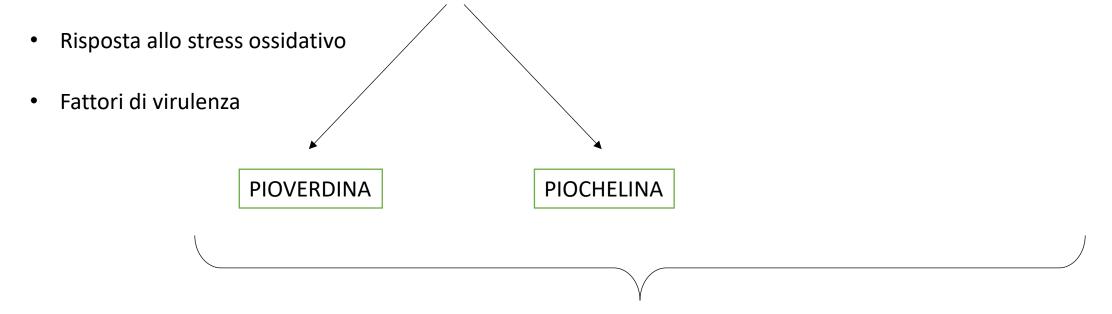

Fur in Salmonella

In Salmonella enterica la concentrazione del ferro è associata all'espressione del T3SS

Nel lumen dell'intestino tenue Fe²⁺ è abbondante

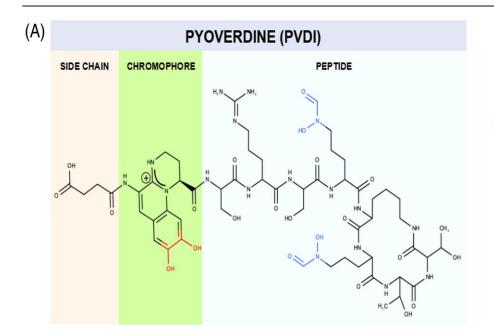
La concentrazione di Fe²⁺ rappresenta un segnale che permette al patogeno di percepire la propria posizione all'interno dell'ospite

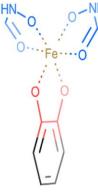
molti dei geni di *Salmonella* rimangono silenti finché il batterio è confinato nel lumen intestinale mentre i geni per l'invasione vengono espressi Es. HilD e SPI1



Fur in *Pseudomonas aeruginosa*

Esempio paradigmatico di microrganismo nel quale l'assimilazione e il metabolismo del ferro sono processi altamente regolati

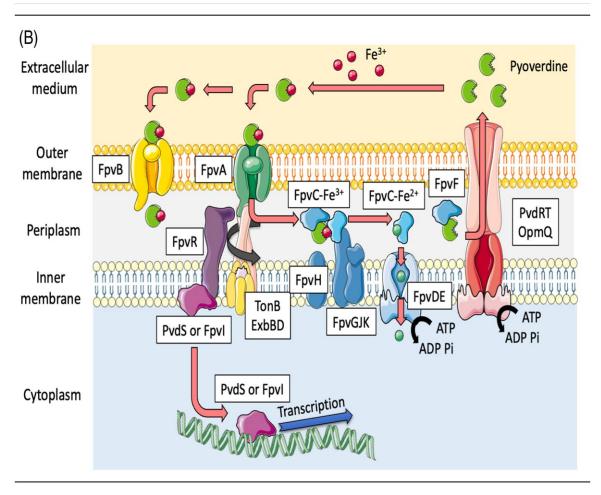

La disponibilità di ferro ha una influenza considerevole sul profilo globale di espressione genica → i geni la cui espressione risulta influenzata, direttamente o indirettamente, da Fur rappresentano il 4% dell'intero genoma di *P. aeruginosa*. Tra questi:


Metabolismo del ferro → sintesi di siderofori, recettori per l'importo di ferro, proteine per immagazzinare il ferro

L'attività del regolatore Fur ha un ruolo chiave nella crescita e nella patogenesi di P. aeruginosa

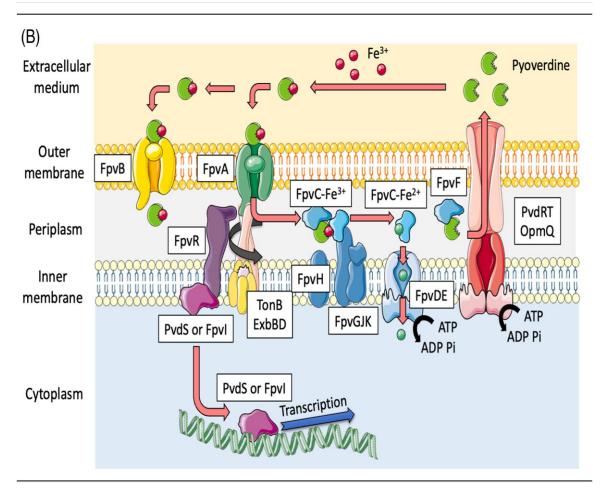
Pioverdina in *Pseudomonas aeruginosa*

Side chain modifications


- · succinamide: CH2CH2CONH2
- succinic: CH₂CH₂COOH
- α-ketoglutaric: COCH₂CH₂COOH

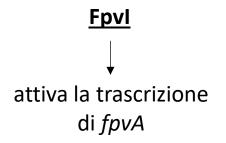
Peptide sequence

- PVDI: D-Ser-L-Arg-L-fOHOrn-[L-Lys-L-fOHOrn-L-Thr-L-Thr]
- PVDII: D-Ser-L-fOHOrn-L-Orn-Gly-D-Thr-L-Ser-L-cOHOrn
- PVDIII: D-Ser-Dab-L-fOHOrn-L-GIn-D-GIn-L-fOHOrn-Gly
- PVDIV: D-Ser-Dab-L-fOHOrn-L-GIn-L-fOHOrn-Gly


- È il principale sistema di acquisizione del ferro durante il processo infettivo
- Fa parte di un gruppo di siderofori verde-fluorescenti prodotti dalle diverse specie del genere Pseudomonas
- È composto da:
 - un cromoforo fluorescente, altamente conservato
 - catena peptidica variabile nelle diverse pioverdine
 - gruppi idrossammati altamente affini al legame con il Fe³⁺

Sistema di uptake della pioverdina

- 2 trasportatori dipendenti da TonB (TBDT) sono responsabili dell'importo del complesso pioverdina-Fe3+ : FpvA e FpvB;
- Il complesso pioverdina-Fe³⁺ viene dissociato
- **FpvG**, proteina associata alla membrana interna, riduce Fe³⁺ a Fe²⁺ mentre la pioverdina non subisce nessuna modifica chimica
- Fe²⁺ viene legato dalla proteina periplasmatica FpvC che probabilmente porta il metallo al trasportatore ABC FpvDE, permettendo il passaggio di Fe²⁺ nel citoplasma
- FpvF si lega all'apo-pioverdina dopo il rilascio del ferro e la porta alla pompa di efflusso PvdRTOpmQ per il riciclo del sideroforo nel mezzo extracellulare.


Regolazione in risposta all'importo di pioverdina-Fe³⁺

Legame della pioverdina-Fe³⁺ al sito di legame di **FpvA**

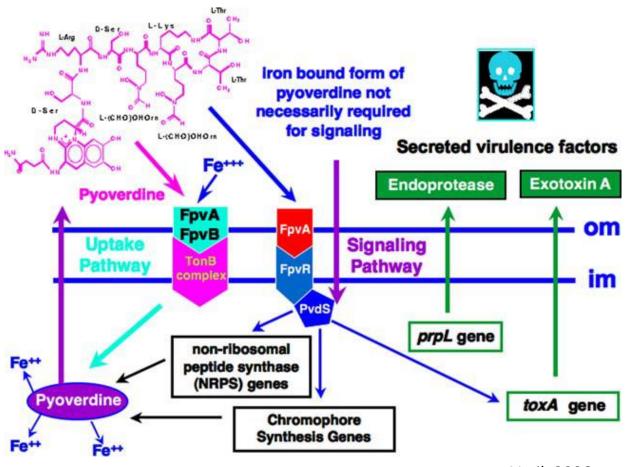
interazione tra il dominio di segnalazione del trasportatore e la regione periplasmatica del fattore antisigma **FpvR**

FpvR rilascia quindi i due fattori sigma:

PvdS

attiva la trascrizione di tutti gli altri geni coinvolti nella biosintesi di pioverdina e nell'assorbimento del ferro tramite pioverdina

Schalk and Perraud, 2022


Ruolo della pioverdina nella patogenesi di P. aeruginosa

Esotossina A

Secreta nello spazio extracellulare sottoforma di singola catena polipeptidica di 71KDa formata da due frammenti A (active) e B (binding).

Frammento B si lega al recettore della cellula ospite e permette l'ingresso del frammento A nella cellula.

Frammento A è un'ADP-ribosiltransferasi e va ad inibire il fattore di allungamento EF-2 e quindi la sintesi proteica con conseguente morte della cellula ospite.

Proteasi PrpL

Agisce degradando le proteine dell'ospite tra cui lattoferrina e transferrina

Vasil, 2006